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INtfroduction

As described in the Preface, the subject of this book is how to efficiently mea-
sure a gear and compute from these measurements the kinematic (force and mass
independent) contribution of the measured gear to its transmission error, how to
compute the working-surface-deviations that are the cause of any user-identified
transmission-error rotational harmonic, and how to understand the relationship
between such working-surface-deviations and the resultant rotational-harmonic con-
tributions caused by these deviations.

Using computer numerically controlled (CNC) dedicated gear metrology equip-
ment, measurements on a helical gear in sufficient detail to accurately carry out the
above-described computations can take from a few to several hours. Hence, this
methodology is not generally suitable for continuous production checking, but it is
suitable, and is being used, for intermittent checking. Because the manufacturing
errors generated by each individual manufacturing machine generally are consistent
from one manufactured gear to another in a manufacturing run, it is sensible to
regard the methods described herein as suitable for assessing the quality of a par-
ticular manufacturing machine, or process. Furthermore, because transmission-error
contributions from working-surface errors are caused by the collective working-surface
error pattern of all teeth on a gear, the methods described herein also may be suitable
for establishing performance-based gear-accuracy standards.

The analytical relationships derived herein between tooth-working-surface-
deviations and resulting transmission-error frequency spectra allow the reader
to understand the causes of certain transmission-error tones, such as “‘sideband
tones” and “ghost tones.” Moreover, because tooth damage, such as surface damage
and bending-fatigue damage, cause transmission-error contributions in the same
manner as manufacturing deviations, the analysis contained herein is applicable to
gear-health monitoring considerations.

Because the means by which a gear must be measured to enable computation
of its kinematic transmission-error contributions, and the method of kinematic
transmission-error computation, both involve considerable detail, a general
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orientation to the content of the book is described in the remainder of this
Introduction. It is hoped this orientation might give the reader a broad perspective
before he or she begins working through the details of the analysis.

1.1 Transmission Error

The transmission error of a meshing-gear-pair describes the deviation from the trans-
mission of an exactly constant speed ratio. It can be displayed in the time domain as a
function of the rotational position of one of the two meshing gears, or in the frequency
domain. The transmission error is the principal source of vibration excitation caused
by meshing-gear-pairs, for example, Mark (1992b), Smith (2003), and Houser (2007).
The subject of this book is transmission-error contributions caused by geometric
deviations from equispaced perfect involute surfaces of the tooth-working-surfaces
of parallel-axis helical or spur gears. Because an idealized pair of parallel-axis helical
gears, each with equispaced rigid perfect involute teeth would transmit an exactly
constant speed ratio, the transmission-error contribution from each gear of a meshing-
pair of nominally involute gears is the instantaneous deviation of the position of that
gear from the position of its rigid perfect involute counterpart. Therefore, as described
earlier in Chapter 3 by Equation (3.2), and in more detail in Chapters 5 and 7, the
transmission-error contributions from each of two meshing gears are additive to yield
the transmission error of the gear-pair. Consequently, especially with regard to the
geometric deviations of the working-surfaces from equispaced perfect involute sur-
faces, it is rigorously meaningful to define and compute the transmission-error contri-
bution arising from the geometric deviations of the working-surfaces of a single gear.

Frequency Spectrum

Vibration analyses and measurements are very often carried out in the frequency
domain. It generally is impossible to directly measure the source of vibration;
normally what is measured is the structural response, or in the case of noise, the
acoustic response. Because the structural path between source of vibration and
response measurement location is usually well modeled as a linear time-invariant
system, source vibration tones retain their identity between source and receiver,
although their amplitudes and phases are affected by the transmission media. But
such media normally cause substantial changes in temporal vibration signals.

Because gears are circular and normally have equispaced teeth, dealing with their
vibration signatures in the frequency domain is especially useful. Thus, dealing only
with a single gear of a meshing-pair, as described above, because the gear is circular,
its fundamental rotational frequency has a period of one gear rotation, and all of its
harmonics are integer multiples of the fundamental frequency associated with one
gear rotation.

Figure 1.1 is a sketch of the stronger harmonics that typically are observed from
a single gear. The harmonic labeled 1 near the origin is the fundamental frequency
associated with the rotational period of the gear. All harmonics shown are integer
multiples of this fundamental rotational harmonic. If the gear has N teeth, then the
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Figure 1.1 Sketch of dominant rotational harmonics caused by a single gear of a
meshing-pair operating at constant speed and fransmitting constant loading. Abscissa
labels rotational-harmonic numbersn=1, 2, ... The period of rotational harmonic n=1
is the rotation period of the gear. Allharmonics are integer multiples of n= 1. Rotational
harmonic n=N is the tooth-meshing fundamental harmonic with period equal to the
gear rotation period divided by the number of teeth, N. Low-order rotational harmonics
B and "'sideband’ harmonics C typically are strong. “*Ghost tone,”” when present, is
labeled D (Adapted from Mark (1991))

Nth rotational harmonic is the tooth-meshing fundamental harmonic. The period of the
tooth-meshing fundamental is the gear rotation period divided by the number N of
teeth. The first heavy harmonic, rotational harmonic N in Figure 1.1, is the tooth-
meshing fundamental. Also shown heavy is another harmonic at rotational harmonic
2N, which is twice the frequency of the tooth-meshing fundamental harmonic. These
two harmonics are labeled A. In the neighborhoods of these tooth-meshing-harmonics
are so-called ““sideband rotational harmonics” labeled C. Also shown are low-order
rotational harmonics 1, 2, ... labeled B, and a ““ghost-tone” rotational harmonic
labeled D. The physical sources of all such harmonics are explained in this book.
Although not shown, unless a gear is geometrically perfect, there normally will be
weak contributions to all integer multiples of the rotational fundamental harmonic.

When a frequency analysis of the structural response to the vibration excitation
caused by a pair of meshing gears operating at constant speed and loading is carried
out, a superposition of two such spectra as that shown in Figure 1.1 is obtained.
Because of the manner in which the teeth of the two gears mesh, the locations of
the tooth-meshing-harmonics A from each of the two meshing gears will coincide,
but generally, the locations of all other rotational harmonics will differ, because the
rotation periods of the two individual gears generally will differ (unless they both
have the same number of teeth).

Physical Sources of Harmonic Contributions

It is important to understand the physical sources of the various harmonics shown
in Figure 1.1. If the subject gear is geometrically perfect, such that every tooth is
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geometrically identical with no spacing errors and modified (e.g., with tip and
end relief) exactly the same, then the only harmonics that would be present in
Figure 1.1 would be the tooth-meshing-harmonics labeled A (assuming exactly con-
stant rotational speed and loading). These tooth-meshing-harmonics A are caused
by deviations of the elastically deformed teeth from perfect involute surfaces. Such
deviations are the combined superposition of intentional (and unintentional) geomet-
ric modifications of the teeth and tooth/gearbody elastic deformations. (This fact is
easily understood from the observation that if all elastically deformed tooth-working-
surfaces are identical with no spacing errors, the only lack of smooth transmission
is that associated with a period equal to the tooth-meshing period.) Hence, the gen-
eration of all rotational harmonics B, C, and D is caused by geometric variations of
the individual tooth-working-surfaces from the mean (average) modification (inten-
tional or otherwise) of the working-surfaces, assuming constant speed and constant
loading. These deviations causing rotational harmonics B, C, and D thus are tooth-to-
tooth geometric variations of the working-surfaces, including tooth-spacing errors,
from the mean working-surface. Computation of the transmission-error amplitudes
of these rotational harmonics, and diagnosing their working-surface sources, is the
principal subject of this book. The gear measurements required to successfully accom-
plish this, in any specific application, also yield a very accurate three-dimensional
determination of the working-surface modification, averaged over all teeth, enabling
this achieved modification to be compared with that specified by the design engineer.

1.2 Mathematical Model

The mathematical analysis contained herein, leading to a systematic method for
measuring a helical (or spur) gear, and computing from those measurements the
locations and amplitudes of any transmission-error rotational harmonics, such as B,
C, and D of Figure 1.1, has been possible because of the elegant relative simplicity of
the meshing action of involute helical gears, described in more detail in Chapter 2.
How this analysis has been possible can be partially understood with the aid of
Figure 1.2, reproduced again as Figure 2.6.

Contact between the teeth of perfect involute helical gears takes place in a plane
surface, the plane of contact shown in Figure 1.2, also called the plane of action.
Real teeth have intentional modifications and manufacturing errors, however small,
and they elastically deform. The (lineal) transmission error contribution from either
gear in Figure 1.2 is, simply, the error in the instantaneous position of that gear,
“measured” in the direction of the plane of contact of the lower figure, relative
to the instantaneous position of its rigid perfect involute counterpart. The (lineal)
transmission error of the gear-pair then is the superposition (algebraic sum) of the
contributions from each of the two gears. Recall that rigid perfect involute gears
transmit an exactly constant speed ratio.

It can be seen from the lower part of Figure 1.2 that, in any plane cut normal to
the gear axes, tooth-pair contact takes place at a single point on each tooth. That
point is in the plane of contact. When projected axially on tooth-working-surfaces,
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Figure 1.2 Lines of tooth-pair contact and zone of contact in plane of contact of
a meshing-pair of geometrically perfect involute helical gears (Adapted from Mark
(1978))

these points become lines of contact as illustrated in the upper part of Figure 1.2,
which is the plane of contact of the lower part of the figure. As the gears rotate,
these lines of contact move across the tooth-working-surfaces, and through the zone
of contact shown in the upper part of the figure. (In reality, these “lines” of contact
have finite width due to the local “Hertizian deformation” of the tooth-working-
surfaces.)

It can be seen from the upper portion of Figure 1.2 that the transmission-error
amount by which one gear approaches its mating gear, in the plane of contact, is
a function of the deviations of the tooth-working-surfaces of all teeth in contact,
on the lines of contact, at that particular instant of gear-pair rotation. As the gear-
pair rotates, each line of contact sweeps across a tooth-working-surface. Thus, the
mathematical problem is to describe, in a useful way, the simultaneous deviations
of all teeth in contact, along the above-described lines of contact on the individual
teeth, as a function of the rotational positions of the gears. The relative simplicity
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of involute helical gear geometry has made this possible. “Linear-system analysis”
methods have been utilized. The details are carried out in Chapter 7. But the book
has been organized to show how gears must be measured, and transmission-error
computations carried out and understood, without perhaps full comprehension of
every detail of Chapter 7.

Role of Discrete Fourier Transform (DFT)

In carrying out the original analysis (Mark, 1978) thatis the foundation analysis for this
book, the expression for the transmission-error Fourier series coefficients, Equations
(112) and (111) of that reference, could be made useful (and understandable) only
by mathematically representing the tooth-working-surface-deviations as a linear
superposition of “elementary errors,” that is, by Equation (131) of the above-cited
reference. This representation led to Equations (134) and (135) of the above-cited
reference for the Fourier series coefficients of the transmission error contributions,
Equation (134), expressed as a function of the discrete Fourier transform (DFT),
Equation (135), of the expansion coefficients of the above-described superposition of
elementary errors. (The counterparts to these equations in Chapter 7 are, respectively,
Equations (7.49), (7.48), (7.50), (7.60), and (7.59).)

This original analysis, and its counterpart in Chapter 7, illustrates that the DFT
(Cooley, Lewis, and Welch, 1969, 1972) is the exact mathematical tool required to
compute, understand, and diagnose transmission-error rotational harmonic contri-
butions, such as those illustrated by the B, C, and D contributions in Figure 1.1.
As one might guess, use of the DFT arises because the working-surface geometric
deviations at any fixed location on each of the tooth-working-surfaces of a gear with
N teeth constitute a discrete equispaced sequence of N deviations, which because a
gear is circular, is periodic with period N. The DFT is the exact mathematical tooth
required to describe the frequency content of such phenomena. Cooley, Lewis, and
Welch (1969, 1972) refer to the DFT as the “Finite Fourier Transform.”” Our use of its
definition and properties in Chapter 4, and beyond, is consistent with that of Cooley,
Lewis, and Welch.

1.3 Measurable Mathematical Representation
of Working-Surface-Deviations

The above-described requirement to mathematically represent the tooth-working-
surface-deviations as a linear superposition of “elementary errors’” has suggested
this representation method as a sensible starting point in the overall developments
to be carried out. Requirements for a satisfactory representation method of tooth-
working-surface-deviations are: it be capable of representing any deviations, that is,
mathematically “‘complete,” appropriately normalized so that expansion coefficients
can be interpreted, measureable by dedicated CNC gear metrology equipment,
“efficient” in some sense, and amendable to Fourier integral transformation of
simple form. This last requirement is a consequence of Equation (125) of Mark (1978),
which is Equation (7.62) of Chapter 7.
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Among known methods of representation, two-dimensional normalized Legendre
polynomials meet all of the above-mentioned requirements. If enough terms are
used they can accurately represent any deviation surface, that is, they are complete,
for example, Jackson (1941, pp. 63-68) and Bell (1968, p. 57). When appropriately
normalized, Equations (3.13) and (3.14), their expansion coefficients can be directly
interpreted, as in Equation (3.23). As a consequence of their important (unweighted)
least-squares property (Jackson, 1941, pp. 215, 216) they are generally efficient. More-
over, the lowest-order two-dimensional Legendre term is a constant, representing
exactly a tooth-spacing error, and the next-order linear terms represent straight-line
errors commonly observed in lead (alighment) measurements and profile measure-
ments. The Fourier integral transform of a generic Legendre polynomial is a spherical
Bessel function of the first kind (Bateman, 1954, p. 122; Antosiewicz, 1964, p. 437).
This very important property allows the final form of the analytical results to be rep-
resented as simply as is possible considering the complexity of the physical problem
being analyzed.

Measurement Compatibility

Present-day dedicated CNC gear metrology equipment can carry out line-scanning
(lead) measurements in an axial direction and line-scanning (profile) measurements in
aradial direction on tooth-working-surfaces. Consequently, to obtain a representation
of the working-surface-deviations over the entire rectangular working-surfaces, some
sort of interpolation procedure is required to provide an (approximate) determination
of the working-surface-deviations between the line-scanning measurements.

CNC gear measurement machines can be programmed to carry out such scanning
measurements at any location, that is, locations of the lead-scanning measurements at
any radial locations, and locations of the profile-scanning measurements at any axial
locations. Consider, for example, obtaining an approximation to the working-surface-
deviations utilizing only working-surface measurements provided by scanning lead
measurements. Suppose scanning lead measurements are made at # different radial
locations on a tooth. Then, by using the Lagrange interpolation formula (Lanczos,
1961, pp. 5, 6; Lanczos, 1956, pp. 397, 398) it is known that at any axial location, a
polynomial of degree n—1 can be constructed to interpolate radially across the n
scanning lead measurements to provide an approximation to the profile deviations at
that axial location, which will agree exactly with the n scanning lead measurements at
that axial location. Then, by providing such an interpolation at each axial location, an
approximation to the working-surface could be obtained everywhere, which would
agree at all points on the n scanning lead measurements. But, it is possible to do
much better.

To generate the Legendre expansion coefficients of the working-surface-deviations,
integrations over the working-surfaces, Equation (3.20), are required. Continuing to
consider lead-scanning measurements, these integrations over the working-surfaces
are to be treated as iterated integrals, first along the line-scanning measurements, as
in Equation (3.30), then across the line-scanning measurements, as in Equation (3.31).
The accuracy of the integrals, Equation (3.30), along the line-scanning measurements,
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is limited only by the density of sample points along the scanning lines (and the
accuracy of the measurements). The second integrals, Equation (3.31), across the
line-scanning measurements, are integrations involving the expansion coefficients
obtained along the line-scanning measurements. We generally can expect these
expansion coefficients to vary more smoothly in the direction across the line-scanning
measurements than the raw measurements, especially in the case of the lower-order
expansion coefficients.

As suggested above, these second integrations, Equation (3.31), could be carried
out by utilizing the Lagrange interpolation formula to interpolate the integrands,
yielding a polynomial representation of each integrand of degree n —1, assuming
there have been n scanning lead measurements. But a CNC gear-measurement
machine can be programmed to locate the n scanning lead measurements at any
radial locations. If these radial locations are chosen to be at the n zero locations of
an appropriately normalized Legendre polynomial of degree n, then the accuracy
achievable in the integrations is comparable to what would normally be achieved by
2n scanning lead measurements, for any radial locations of these additional n scanning
lead measurements (Lanczos, 1956, pp. 396—400). The resulting integration procedure
is called Gaussian quadrature. The above reference by Lanczos provides a very clear
proof and explanation of this remarkable result. A comparable mathematically exact
statement can be found in Cheney (1982, p. 110). The radial coordinate used in our
analysis is ““roll distance,”” Equation (3.3).

The case where profile scanning measurements are used instead of lead scanning
measurements is completely analogous to that described above; in this case, say m
scanning profile measurements would be located axially at the zeros of a normalized
Legendre polynomial of degree m.

As mentioned in Hildebrand (1974, p. 467) and shown explicitly in Mark (1983),
use of Gaussian quadrature to evaluate the Legendre expansion coefficients yields
Legendre polynomial expansions that agree, exactly, with the data values at the
n Legendre polynomial zeros used to evaluate the expansion coefficients. That is,
the resultant Legendre polynomial expansions interpolate, exactly, the data values.
However, it is shown below that the Legendre polynomial expansion interpretation
is the preferred interpretation.

It is known that as 7 — oo, the errors in Gaussian quadrature converge to zero
for any continuous function (Cheney, 1982, p. 111). This behavior is in contrast
to equispaced polynomial interpolation which can exhibit non-convergent oscil-
latory behavior (Lanczos, 1961, pp. 12, 13; Lanczos, 1956, p. 348). Consequently,
all results contained in this book assume that line scanning lead and/or pro-
file measurements are made at the zeros of appropriately normalized Legendre
polynomials.

An essential requirement of a tooth-working-surface representation and measure-
ment method is that it be capable of accurately representing sinusoidal working-
surface-deviations responsible (as shown herein) for causing “’ghost tones,” which are
strong rotational-harmonic transmission-error tones, as illustrated by D in Figure 1.1.
The lower curve in Figure 1.3 (reproduced again as Figure 3.B.2), shows a sinusoid
that has been sampled by 32 samples, indicated by the small circles. The abscissa
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Figure 1.3 Upper curve (0) is Legendre polynomial reconstruction of the sinusoid,
where the Legendre polynomial expansion coefficients were evaluated by Gaussian
quadrature using only the 32 sample values of the sinusoid from the lower curve (b).
Lower curve (b) shows 32 discrete samples of a sinusoid with 8 full cycles. Abscissa
sample locations are the zero locations of a Legendre polynomial of degree 32
(From Mark and Reagor (2001), reproduced by permission of the American Gear
Manufacturers Association)

locations of these samples are the zero locations of a Legendre polynomial of degree
32. The upper curve in Figure 1.3 is a Legendre polynomial reconstruction, where the
Legendre polynomial expansion coefficients were evaluated by Gaussian quadrature
using only the 32 sample values of the sinusoid of the lower curve. The upper curve is
a virtually identical reconstruction of the lower curve, which illustrates the accuracy
obtainable by utilizing Gaussian quadrature to evaluate the expansion coefficients of
the Legendre polynomial reconstruction of the upper curve.

The reconstruction of the upper curve in Figure 1.3 also illustrates why the least-
squares property of Legendre polynomial representations is the interpretation pre-
ferred over the above-mentioned interpolation property. Although the upper curve
clearly agrees with every one of the 32 sample points of the lower curve, if given only
those 32 sample points, one would be hard pressed to provide a smooth curve through
them. Yet, Gaussian quadrature combined with the least-squares property of Leg-
endre polynomial expansions provides the remarkable reconstruction shown by the
upper curve. Rules are provided in Appendix 3.B for choosing the minimum number
of line-scanning measurements required to accurately represent working-surface-
deviations causing any ghost tone of user-specified rotational-harmonic number.
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1.4 Final Form of Kinematic-Transmission-Error Predictions

The fact that meshing-gear-pairs generate tones suggests immediately the use of
frequency analysis methods. Moreover, because a gear is circular, implying a fun-
damental rotational frequency with period equal to the gear rotational period, the
frequency analysis method to be used is Fourier series. However, because the tooth-
working-surface-deviations on all N teeth on a gear at any fixed location y,z on
the tooth-working-surfaces, Figure 1.4, constitute an equispaced sequence of N dis-
crete values, which are periodic with period N, the fundamental mathematical tool
required to describe these deviations in the frequency domain is the discrete Fourier
transform (DFT).
In Chapter 4, this DFT representation is shown by Equation (4.22) to be

cmy2) =" Bum¥y(y) vy @, n=0+1,+2,.-. (1.1)

k=0 €=0

where By, (n) is the DFT, Equation (4.21), of the expansion coefficients of the two-
dimensional normalized Legendre polynomials Yk (y) ¥,(z) used to represent
the working-surface-deviations. The above equation expresses the collective devi-
ations (e.g., errors) of all N teeth, at each working-surface location y,z, in the
frequency domain, where # is rotational-harmonic number. (The terms “deviation”
and “error”” are used here and everywhere in the book to describe deviations of tooth-
working-surfaces from equispaced perfect involute surfaces. These deviations can
include intentional modifications.) The mean-square error spectrum then is shown
by Equation (4.30) to be

G, =2 [Bum[* , n=123, (1.2)

k=0 €=0

which describes, in the frequency domain as a function of rotational-harmonic
number 7, the collective mean-square contributions of the tooth-working-surface-
deviations at all locations v, z, but not including any of the attenuating effects that
would be attributable to the meshing action with a mating gear. That is, G, (1)

Figure 1.4 Tooth-working-surface coordinate system. The location of a generic point
on the tooth-working-surfaces is described by Cartesian coordinates y, z
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describes in the frequency domain only properties arising from working-surface-
deviations from equispaced perfect involute surfaces.

The (complex) Fourier series coefficients of the kinematic transmission-error con-
tributions arising from the working-surface-deviations of a single gear are given by
Equation (5.16) as

oo
an

Y By (), n=0t1x2--. (13)

k=0 €=0

Comparison of Equations (1.1) and (1.3) permits a simple interpretation of the
“‘mesh-attenuation functions” @, (n/N). Each pair of normalized Legendre polyno-
mial terms ¥k () ,,(z) in Equation (1.1) represents a unique two-dimensional “‘error
pattern” on the tooth-working-surface illustrated in Figure 1.4. The amplitude of this
error pattern is described in the frequency domain by By, (1), which of course will
differ for every different measured gear. By a direct comparison of Equations (1.1)
and (1.3) one can conclude (correctly) that the function ¢y, (11/N), for each Legendre
ke pair, describes the computed attenuation, in the frequency domain, of the specific
error pattern characterized by the pair of normalized Legendre terms ¥ (y)¥(2).
This is the attenuation of working-surface-deviations that a mating gear would
provide, if the measured gear were meshed with a mating gear and the transmission-
error contributions arising from the measured gear were somehow measured, for
example, in a single-flank test. The mean-square spectrum of the computed kinematic
transmission-error contributions is given by Equation (5.18),

2

G (n) =2]a,|", n=123,--- (1.4)

where «,, is given by Equation (1.3).

Especially in the case of the higher-order rotational harmonics 1, the mesh-
attenuation functions ¢y, (1/N) in Equation (1.3) usually provide significant attenu-
ation to the harmonics of the spectra B,(11) which are caused by the unattenuated
working-surface-deviations. This reduction in amplitude can be observed for each
rotational harmonic n by direct comparison of the after-attenuation spectrum,
Equation (1.4), with the before-attenuation spectrum, Equation (1.2). (In example
computations, we compare the rms values of these two spectra.) However, in the case
of “ghost tones,” very little, if any, attenuation is observed. It is for this reason that
“ghost tones” create unwanted noise problems.

The kinematic transmission-error contributions from the measured gear are com-
puted in the “time” domain, that is, as a function of ““roll distance” x, by Equation
(7.177),

C(x) =0, +2 Z [a,,co8 2mnx/NA) + o, sin 2rnx/NA)]. (1.5)

n=1

The algorithms by which all computations can be carried out are summarized in
Chapter 8.
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Fundamental Assumptions and Parametric Dependence
of Mesh-Attenuation Functions ¢,,(n/N)

To carry out the kinematic transmission-error computations it is assumed that every
tooth on a gear is measured over a rectangular region, as illustrated in Figure 1.4,
defined by axial facewidth F, and radial distance D determined from tip and root
roll angle values by Equation (3.7). Consequently, a fundamental assumption is that
the tooth-pair contact region on the subject gear is over the same rectangular region
(—F/2)<y<(F/2), (—D/2) <z <(D/2) of every tooth on the gear. This rectangular
region generally will be smaller than the full region illustrated in Figure 1.4, and
is chosen by the engineer responsible for the gear measurements. Therefore, it is
assumed that tooth contact with a mating gear would take place over this full
rectangular region used in the gear measurements. The locations of the normalized
Legendre polynomial zeros used to specify scanning lead and/or scanning profile
measurement locations are then normalized to D in the case of the lead measurements
and F in the case of the profile measurements, as described in Appendices 3.A
and 3.B.

For any parallel-axis helical (or spur) gear of nominal involute design, this rect-
angular region together with the gear nominal parametric descriptions determines
both the axial Q, and transverse Q, contact ratios, as can be seen from Equations
(6.5) to (6.8). These contact ratios thus effectively describe, for any helical or spur
gear, the rectangular contact region on the tooth-working-surfaces. The computed
mesh-attenuation functions ¢y, (11/N) are parametrically dependent on both Q, and
Q;. In addition, their rotational-harmonic dependence is a function only of the ratio
n/N, where N is the number of teeth. The tooth-meshing fundamental rotational
harmonicis n=N.

Finally, it is shown in Chapter 5 by Equation (5.13), and more rigorously in
Chapter 7, that if the tooth-pair stiffness per unit length of line of contact is
assumed to be constant, the mesh-attenuation functions ¢y, (1/N) are independent of
tooth-pair stiffness. Consequently, in this practically important case, apart from the
tooth-meshing-harmonic contributions at n/N=1,2,3, ..., the transmission-error
contributions are dependent only on the geometric working-surface-deviations from
equispaced perfect involute tooth surfaces, and for any rotational-harmonic values
n=1,2,3...,(n/N)#1,2,3, ... only on the axial Q, and transverse Q, contact ratios.
These loading and inertia independent transmission-error contributions are the
kinematic contributions to the transmission error (Merritt, 1971, p. 84).

1.5 Diagnosing Transmission-Error Contributions

Tooth-Meshing-Harmonic Contributions

The tooth-meshing-harmonic contributions A in Figure 1.1 to the transmission-error
spectrum of a meshing-gear-pair operating at constant speed and constant torque
are the harmonics at