
1
Introduction

As described in the Preface, the subject of this book is how to efficiently mea-
sure a gear and compute from these measurements the kinematic (force and mass
independent) contribution of the measured gear to its transmission error, how to
compute the working-surface-deviations that are the cause of any user-identified
transmission-error rotational harmonic, and how to understand the relationship
between such working-surface-deviations and the resultant rotational-harmonic con-
tributions caused by these deviations.

Using computer numerically controlled (CNC) dedicated gear metrology equip-
ment, measurements on a helical gear in sufficient detail to accurately carry out the
above-described computations can take from a few to several hours. Hence, this
methodology is not generally suitable for continuous production checking, but it is
suitable, and is being used, for intermittent checking. Because the manufacturing
errors generated by each individual manufacturing machine generally are consistent
from one manufactured gear to another in a manufacturing run, it is sensible to
regard the methods described herein as suitable for assessing the quality of a par-
ticular manufacturing machine, or process. Furthermore, because transmission-error
contributions from working-surface errors are caused by the collective working-surface
error pattern of all teeth on a gear, the methods described herein also may be suitable
for establishing performance-based gear-accuracy standards.

The analytical relationships derived herein between tooth-working-surface-
deviations and resulting transmission-error frequency spectra allow the reader
to understand the causes of certain transmission-error tones, such as ‘‘sideband
tones’’ and ‘‘ghost tones.’’ Moreover, because tooth damage, such as surface damage
and bending-fatigue damage, cause transmission-error contributions in the same
manner as manufacturing deviations, the analysis contained herein is applicable to
gear-health monitoring considerations.

Because the means by which a gear must be measured to enable computation
of its kinematic transmission-error contributions, and the method of kinematic
transmission-error computation, both involve considerable detail, a general
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2 Performance-Based Gear Metrology

orientation to the content of the book is described in the remainder of this
Introduction. It is hoped this orientation might give the reader a broad perspective
before he or she begins working through the details of the analysis.

1.1 Transmission Error

The transmission error of a meshing-gear-pair describes the deviation from the trans-
mission of an exactly constant speed ratio. It can be displayed in the time domain as a
function of the rotational position of one of the two meshing gears, or in the frequency
domain. The transmission error is the principal source of vibration excitation caused
by meshing-gear-pairs, for example, Mark (1992b), Smith (2003), and Houser (2007).
The subject of this book is transmission-error contributions caused by geometric
deviations from equispaced perfect involute surfaces of the tooth-working-surfaces
of parallel-axis helical or spur gears. Because an idealized pair of parallel-axis helical
gears, each with equispaced rigid perfect involute teeth would transmit an exactly
constant speed ratio, the transmission-error contribution from each gear of a meshing-
pair of nominally involute gears is the instantaneous deviation of the position of that
gear from the position of its rigid perfect involute counterpart. Therefore, as described
earlier in Chapter 3 by Equation (3.2), and in more detail in Chapters 5 and 7, the
transmission-error contributions from each of two meshing gears are additive to yield
the transmission error of the gear-pair. Consequently, especially with regard to the
geometric deviations of the working-surfaces from equispaced perfect involute sur-
faces, it is rigorously meaningful to define and compute the transmission-error contri-
bution arising from the geometric deviations of the working-surfaces of a single gear.

Frequency Spectrum

Vibration analyses and measurements are very often carried out in the frequency
domain. It generally is impossible to directly measure the source of vibration;
normally what is measured is the structural response, or in the case of noise, the
acoustic response. Because the structural path between source of vibration and
response measurement location is usually well modeled as a linear time-invariant
system, source vibration tones retain their identity between source and receiver,
although their amplitudes and phases are affected by the transmission media. But
such media normally cause substantial changes in temporal vibration signals.

Because gears are circular and normally have equispaced teeth, dealing with their
vibration signatures in the frequency domain is especially useful. Thus, dealing only
with a single gear of a meshing-pair, as described above, because the gear is circular,
its fundamental rotational frequency has a period of one gear rotation, and all of its
harmonics are integer multiples of the fundamental frequency associated with one
gear rotation.

Figure 1.1 is a sketch of the stronger harmonics that typically are observed from
a single gear. The harmonic labeled 1 near the origin is the fundamental frequency
associated with the rotational period of the gear. All harmonics shown are integer
multiples of this fundamental rotational harmonic. If the gear has N teeth, then the
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Figure 1.1 Sketch of dominant rotational harmonics caused by a single gear of a
meshing-pair operating at constant speed and transmitting constant loading. Abscissa
labels rotational-harmonic numbers n = 1, 2, . . . The period of rotational harmonic n = 1
is the rotation period of the gear. All harmonics are integer multiples of n = 1. Rotational
harmonic n = N is the tooth-meshing fundamental harmonic with period equal to the
gear rotation period divided by the number of teeth, N. Low-order rotational harmonics
B and ‘‘sideband’’ harmonics C typically are strong. ‘‘Ghost tone,’’ when present, is
labeled D (Adapted from Mark (1991))

Nth rotational harmonic is the tooth-meshing fundamental harmonic. The period of the
tooth-meshing fundamental is the gear rotation period divided by the number N of
teeth. The first heavy harmonic, rotational harmonic N in Figure 1.1, is the tooth-
meshing fundamental. Also shown heavy is another harmonic at rotational harmonic
2N, which is twice the frequency of the tooth-meshing fundamental harmonic. These
two harmonics are labeled A. In the neighborhoods of these tooth-meshing-harmonics
are so-called ‘‘sideband rotational harmonics’’ labeled C. Also shown are low-order
rotational harmonics 1, 2, . . . labeled B, and a ‘‘ghost-tone’’ rotational harmonic
labeled D. The physical sources of all such harmonics are explained in this book.
Although not shown, unless a gear is geometrically perfect, there normally will be
weak contributions to all integer multiples of the rotational fundamental harmonic.

When a frequency analysis of the structural response to the vibration excitation
caused by a pair of meshing gears operating at constant speed and loading is carried
out, a superposition of two such spectra as that shown in Figure 1.1 is obtained.
Because of the manner in which the teeth of the two gears mesh, the locations of
the tooth-meshing-harmonics A from each of the two meshing gears will coincide,
but generally, the locations of all other rotational harmonics will differ, because the
rotation periods of the two individual gears generally will differ (unless they both
have the same number of teeth).

Physical Sources of Harmonic Contributions

It is important to understand the physical sources of the various harmonics shown
in Figure 1.1. If the subject gear is geometrically perfect, such that every tooth is
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geometrically identical with no spacing errors and modified (e.g., with tip and
end relief) exactly the same, then the only harmonics that would be present in
Figure 1.1 would be the tooth-meshing-harmonics labeled A (assuming exactly con-
stant rotational speed and loading). These tooth-meshing-harmonics A are caused
by deviations of the elastically deformed teeth from perfect involute surfaces. Such
deviations are the combined superposition of intentional (and unintentional) geomet-
ric modifications of the teeth and tooth/gearbody elastic deformations. (This fact is
easily understood from the observation that if all elastically deformed tooth-working-
surfaces are identical with no spacing errors, the only lack of smooth transmission
is that associated with a period equal to the tooth-meshing period.) Hence, the gen-
eration of all rotational harmonics B, C, and D is caused by geometric variations of
the individual tooth-working-surfaces from the mean (average) modification (inten-
tional or otherwise) of the working-surfaces, assuming constant speed and constant
loading. These deviations causing rotational harmonics B, C, and D thus are tooth-to-
tooth geometric variations of the working-surfaces, including tooth-spacing errors,
from the mean working-surface. Computation of the transmission-error amplitudes
of these rotational harmonics, and diagnosing their working-surface sources, is the
principal subject of this book. The gear measurements required to successfully accom-
plish this, in any specific application, also yield a very accurate three-dimensional
determination of the working-surface modification, averaged over all teeth, enabling
this achieved modification to be compared with that specified by the design engineer.

1.2 Mathematical Model

The mathematical analysis contained herein, leading to a systematic method for
measuring a helical (or spur) gear, and computing from those measurements the
locations and amplitudes of any transmission-error rotational harmonics, such as B,
C, and D of Figure 1.1, has been possible because of the elegant relative simplicity of
the meshing action of involute helical gears, described in more detail in Chapter 2.
How this analysis has been possible can be partially understood with the aid of
Figure 1.2, reproduced again as Figure 2.6.

Contact between the teeth of perfect involute helical gears takes place in a plane
surface, the plane of contact shown in Figure 1.2, also called the plane of action.
Real teeth have intentional modifications and manufacturing errors, however small,
and they elastically deform. The (lineal) transmission error contribution from either
gear in Figure 1.2 is, simply, the error in the instantaneous position of that gear,
‘‘measured’’ in the direction of the plane of contact of the lower figure, relative
to the instantaneous position of its rigid perfect involute counterpart. The (lineal)
transmission error of the gear-pair then is the superposition (algebraic sum) of the
contributions from each of the two gears. Recall that rigid perfect involute gears
transmit an exactly constant speed ratio.

It can be seen from the lower part of Figure 1.2 that, in any plane cut normal to
the gear axes, tooth-pair contact takes place at a single point on each tooth. That
point is in the plane of contact. When projected axially on tooth-working-surfaces,
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Figure 1.2 Lines of tooth-pair contact and zone of contact in plane of contact of
a meshing-pair of geometrically perfect involute helical gears (Adapted from Mark
(1978))

these points become lines of contact as illustrated in the upper part of Figure 1.2,
which is the plane of contact of the lower part of the figure. As the gears rotate,
these lines of contact move across the tooth-working-surfaces, and through the zone
of contact shown in the upper part of the figure. (In reality, these ‘‘lines’’ of contact
have finite width due to the local ‘‘Hertizian deformation’’ of the tooth-working-
surfaces.)

It can be seen from the upper portion of Figure 1.2 that the transmission-error
amount by which one gear approaches its mating gear, in the plane of contact, is
a function of the deviations of the tooth-working-surfaces of all teeth in contact,
on the lines of contact, at that particular instant of gear-pair rotation. As the gear-
pair rotates, each line of contact sweeps across a tooth-working-surface. Thus, the
mathematical problem is to describe, in a useful way, the simultaneous deviations
of all teeth in contact, along the above-described lines of contact on the individual
teeth, as a function of the rotational positions of the gears. The relative simplicity
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of involute helical gear geometry has made this possible. ‘‘Linear-system analysis’’
methods have been utilized. The details are carried out in Chapter 7. But the book
has been organized to show how gears must be measured, and transmission-error
computations carried out and understood, without perhaps full comprehension of
every detail of Chapter 7.

Role of Discrete Fourier Transform (DFT)

In carrying out the original analysis (Mark, 1978) that is the foundation analysis for this
book, the expression for the transmission-error Fourier series coefficients, Equations
(112) and (111) of that reference, could be made useful (and understandable) only
by mathematically representing the tooth-working-surface-deviations as a linear
superposition of ‘‘elementary errors,’’ that is, by Equation (131) of the above-cited
reference. This representation led to Equations (134) and (135) of the above-cited
reference for the Fourier series coefficients of the transmission error contributions,
Equation (134), expressed as a function of the discrete Fourier transform (DFT),
Equation (135), of the expansion coefficients of the above-described superposition of
elementary errors. (The counterparts to these equations in Chapter 7 are, respectively,
Equations (7.49), (7.48), (7.50), (7.60), and (7.59).)

This original analysis, and its counterpart in Chapter 7, illustrates that the DFT
(Cooley, Lewis, and Welch, 1969, 1972) is the exact mathematical tool required to
compute, understand, and diagnose transmission-error rotational harmonic contri-
butions, such as those illustrated by the B, C, and D contributions in Figure 1.1.
As one might guess, use of the DFT arises because the working-surface geometric
deviations at any fixed location on each of the tooth-working-surfaces of a gear with
N teeth constitute a discrete equispaced sequence of N deviations, which because a
gear is circular, is periodic with period N. The DFT is the exact mathematical tooth
required to describe the frequency content of such phenomena. Cooley, Lewis, and
Welch (1969, 1972) refer to the DFT as the ‘‘Finite Fourier Transform.’’ Our use of its
definition and properties in Chapter 4, and beyond, is consistent with that of Cooley,
Lewis, and Welch.

1.3 Measurable Mathematical Representation
of Working-Surface-Deviations

The above-described requirement to mathematically represent the tooth-working-
surface-deviations as a linear superposition of ‘‘elementary errors’’ has suggested
this representation method as a sensible starting point in the overall developments
to be carried out. Requirements for a satisfactory representation method of tooth-
working-surface-deviations are: it be capable of representing any deviations, that is,
mathematically ‘‘complete,’’ appropriately normalized so that expansion coefficients
can be interpreted, measureable by dedicated CNC gear metrology equipment,
‘‘efficient’’ in some sense, and amendable to Fourier integral transformation of
simple form. This last requirement is a consequence of Equation (125) of Mark (1978),
which is Equation (7.62) of Chapter 7.
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Among known methods of representation, two-dimensional normalized Legendre
polynomials meet all of the above-mentioned requirements. If enough terms are
used they can accurately represent any deviation surface, that is, they are complete,
for example, Jackson (1941, pp. 63–68) and Bell (1968, p. 57). When appropriately
normalized, Equations (3.13) and (3.14), their expansion coefficients can be directly
interpreted, as in Equation (3.23). As a consequence of their important (unweighted)
least-squares property (Jackson, 1941, pp. 215, 216) they are generally efficient. More-
over, the lowest-order two-dimensional Legendre term is a constant, representing
exactly a tooth-spacing error, and the next-order linear terms represent straight-line
errors commonly observed in lead (alignment) measurements and profile measure-
ments. The Fourier integral transform of a generic Legendre polynomial is a spherical
Bessel function of the first kind (Bateman, 1954, p. 122; Antosiewicz, 1964, p. 437).
This very important property allows the final form of the analytical results to be rep-
resented as simply as is possible considering the complexity of the physical problem
being analyzed.

Measurement Compatibility

Present-day dedicated CNC gear metrology equipment can carry out line-scanning
(lead) measurements in an axial direction and line-scanning (profile) measurements in
a radial direction on tooth-working-surfaces. Consequently, to obtain a representation
of the working-surface-deviations over the entire rectangular working-surfaces, some
sort of interpolation procedure is required to provide an (approximate) determination
of the working-surface-deviations between the line-scanning measurements.

CNC gear measurement machines can be programmed to carry out such scanning
measurements at any location, that is, locations of the lead-scanning measurements at
any radial locations, and locations of the profile-scanning measurements at any axial
locations. Consider, for example, obtaining an approximation to the working-surface-
deviations utilizing only working-surface measurements provided by scanning lead
measurements. Suppose scanning lead measurements are made at n different radial
locations on a tooth. Then, by using the Lagrange interpolation formula (Lanczos,
1961, pp. 5, 6; Lanczos, 1956, pp. 397, 398) it is known that at any axial location, a
polynomial of degree n − 1 can be constructed to interpolate radially across the n
scanning lead measurements to provide an approximation to the profile deviations at
that axial location, which will agree exactly with the n scanning lead measurements at
that axial location. Then, by providing such an interpolation at each axial location, an
approximation to the working-surface could be obtained everywhere, which would
agree at all points on the n scanning lead measurements. But, it is possible to do
much better.

To generate the Legendre expansion coefficients of the working-surface-deviations,
integrations over the working-surfaces, Equation (3.20), are required. Continuing to
consider lead-scanning measurements, these integrations over the working-surfaces
are to be treated as iterated integrals, first along the line-scanning measurements, as
in Equation (3.30), then across the line-scanning measurements, as in Equation (3.31).
The accuracy of the integrals, Equation (3.30), along the line-scanning measurements,
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is limited only by the density of sample points along the scanning lines (and the
accuracy of the measurements). The second integrals, Equation (3.31), across the
line-scanning measurements, are integrations involving the expansion coefficients
obtained along the line-scanning measurements. We generally can expect these
expansion coefficients to vary more smoothly in the direction across the line-scanning
measurements than the raw measurements, especially in the case of the lower-order
expansion coefficients.

As suggested above, these second integrations, Equation (3.31), could be carried
out by utilizing the Lagrange interpolation formula to interpolate the integrands,
yielding a polynomial representation of each integrand of degree n − 1, assuming
there have been n scanning lead measurements. But a CNC gear-measurement
machine can be programmed to locate the n scanning lead measurements at any
radial locations. If these radial locations are chosen to be at the n zero locations of
an appropriately normalized Legendre polynomial of degree n, then the accuracy
achievable in the integrations is comparable to what would normally be achieved by
2n scanning lead measurements, for any radial locations of these additional n scanning
lead measurements (Lanczos, 1956, pp. 396–400). The resulting integration procedure
is called Gaussian quadrature. The above reference by Lanczos provides a very clear
proof and explanation of this remarkable result. A comparable mathematically exact
statement can be found in Cheney (1982, p. 110). The radial coordinate used in our
analysis is ‘‘roll distance,’’ Equation (3.3).

The case where profile scanning measurements are used instead of lead scanning
measurements is completely analogous to that described above; in this case, say m
scanning profile measurements would be located axially at the zeros of a normalized
Legendre polynomial of degree m.

As mentioned in Hildebrand (1974, p. 467) and shown explicitly in Mark (1983),
use of Gaussian quadrature to evaluate the Legendre expansion coefficients yields
Legendre polynomial expansions that agree, exactly, with the data values at the
n Legendre polynomial zeros used to evaluate the expansion coefficients. That is,
the resultant Legendre polynomial expansions interpolate, exactly, the data values.
However, it is shown below that the Legendre polynomial expansion interpretation
is the preferred interpretation.

It is known that as n → ∞, the errors in Gaussian quadrature converge to zero
for any continuous function (Cheney, 1982, p. 111). This behavior is in contrast
to equispaced polynomial interpolation which can exhibit non-convergent oscil-
latory behavior (Lanczos, 1961, pp. 12, 13; Lanczos, 1956, p. 348). Consequently,
all results contained in this book assume that line scanning lead and/or pro-
file measurements are made at the zeros of appropriately normalized Legendre
polynomials.

An essential requirement of a tooth-working-surface representation and measure-
ment method is that it be capable of accurately representing sinusoidal working-
surface-deviations responsible (as shown herein) for causing ‘‘ghost tones,’’ which are
strong rotational-harmonic transmission-error tones, as illustrated by D in Figure 1.1.
The lower curve in Figure 1.3 (reproduced again as Figure 3.B.2), shows a sinusoid
that has been sampled by 32 samples, indicated by the small circles. The abscissa
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Figure 1.3 Upper curve (a) is Legendre polynomial reconstruction of the sinusoid,
where the Legendre polynomial expansion coefficients were evaluated by Gaussian
quadrature using only the 32 sample values of the sinusoid from the lower curve (b).
Lower curve (b) shows 32 discrete samples of a sinusoid with 8 full cycles. Abscissa
sample locations are the zero locations of a Legendre polynomial of degree 32
(From Mark and Reagor (2001), reproduced by permission of the American Gear
Manufacturers Association)

locations of these samples are the zero locations of a Legendre polynomial of degree
32. The upper curve in Figure 1.3 is a Legendre polynomial reconstruction, where the
Legendre polynomial expansion coefficients were evaluated by Gaussian quadrature
using only the 32 sample values of the sinusoid of the lower curve. The upper curve is
a virtually identical reconstruction of the lower curve, which illustrates the accuracy
obtainable by utilizing Gaussian quadrature to evaluate the expansion coefficients of
the Legendre polynomial reconstruction of the upper curve.

The reconstruction of the upper curve in Figure 1.3 also illustrates why the least-
squares property of Legendre polynomial representations is the interpretation pre-
ferred over the above-mentioned interpolation property. Although the upper curve
clearly agrees with every one of the 32 sample points of the lower curve, if given only
those 32 sample points, one would be hard pressed to provide a smooth curve through
them. Yet, Gaussian quadrature combined with the least-squares property of Leg-
endre polynomial expansions provides the remarkable reconstruction shown by the
upper curve. Rules are provided in Appendix 3.B for choosing the minimum number
of line-scanning measurements required to accurately represent working-surface-
deviations causing any ghost tone of user-specified rotational-harmonic number.
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1.4 Final Form of Kinematic-Transmission-Error Predictions

The fact that meshing-gear-pairs generate tones suggests immediately the use of
frequency analysis methods. Moreover, because a gear is circular, implying a fun-
damental rotational frequency with period equal to the gear rotational period, the
frequency analysis method to be used is Fourier series. However, because the tooth-
working-surface-deviations on all N teeth on a gear at any fixed location y, z on
the tooth-working-surfaces, Figure 1.4, constitute an equispaced sequence of N dis-
crete values, which are periodic with period N, the fundamental mathematical tool
required to describe these deviations in the frequency domain is the discrete Fourier
transform (DFT).

In Chapter 4, this DFT representation is shown by Equation (4.22) to be

η̂C
(
n; y, z

) =
∞∑

k=0

∞∑
�=0

Bk� (n) ψyk
(
y
)
ψz� (z) , n = 0, ± 1, ± 2, · · · (1.1)

where Bk�(n) is the DFT, Equation (4.21), of the expansion coefficients of the two-
dimensional normalized Legendre polynomials ψyk (y) ψz�(z) used to represent
the working-surface-deviations. The above equation expresses the collective devi-
ations (e.g., errors) of all N teeth, at each working-surface location y, z, in the
frequency domain, where n is rotational-harmonic number. (The terms ‘‘deviation’’
and ‘‘error’’ are used here and everywhere in the book to describe deviations of tooth-
working-surfaces from equispaced perfect involute surfaces. These deviations can
include intentional modifications.) The mean-square error spectrum then is shown
by Equation (4.30) to be

Gη(n) = 2
∞∑

k=0

∞∑
�=0

∣∣Bk�(n)
∣∣2 , n = 1,2,3, · · · (1.2)

which describes, in the frequency domain as a function of rotational-harmonic
number n, the collective mean-square contributions of the tooth-working-surface-
deviations at all locations y, z, but not including any of the attenuating effects that
would be attributable to the meshing action with a mating gear. That is, Gη(n)

z z

D

D/2 F/2

F

+ + y

Figure 1.4 Tooth-working-surface coordinate system. The location of a generic point
on the tooth-working-surfaces is described by Cartesian coordinates y, z
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describes in the frequency domain only properties arising from working-surface-
deviations from equispaced perfect involute surfaces.

The (complex) Fourier series coefficients of the kinematic transmission-error con-
tributions arising from the working-surface-deviations of a single gear are given by
Equation (5.16) as

αn =
∞∑

k=0

∞∑
�=0

Bk� (n) φ̂k�

( n
N

)
, n = 0, ± 1, ± 2, · · · . (1.3)

Comparison of Equations (1.1) and (1.3) permits a simple interpretation of the
‘‘mesh-attenuation functions’’ φ̂k�(n/N). Each pair of normalized Legendre polyno-
mial terms ψyk (y)ψz�(z) in Equation (1.1) represents a unique two-dimensional ‘‘error
pattern’’ on the tooth-working-surface illustrated in Figure 1.4. The amplitude of this
error pattern is described in the frequency domain by Bk�(n), which of course will
differ for every different measured gear. By a direct comparison of Equations (1.1)
and (1.3) one can conclude (correctly) that the function φ̂k�(n/N), for each Legendre
k� pair, describes the computed attenuation, in the frequency domain, of the specific
error pattern characterized by the pair of normalized Legendre terms ψyk (y)ψz�(z).
This is the attenuation of working-surface-deviations that a mating gear would
provide, if the measured gear were meshed with a mating gear and the transmission-
error contributions arising from the measured gear were somehow measured, for
example, in a single-flank test. The mean-square spectrum of the computed kinematic
transmission-error contributions is given by Equation (5.18),

Gζ (n) = 2
∣∣αn

∣∣2 , n = 1,2,3, · · · (1.4)

where αn is given by Equation (1.3).
Especially in the case of the higher-order rotational harmonics n, the mesh-

attenuation functions φ̂k�(n/N) in Equation (1.3) usually provide significant attenu-
ation to the harmonics of the spectra Bk�(n) which are caused by the unattenuated
working-surface-deviations. This reduction in amplitude can be observed for each
rotational harmonic n by direct comparison of the after-attenuation spectrum,
Equation (1.4), with the before-attenuation spectrum, Equation (1.2). (In example
computations, we compare the rms values of these two spectra.) However, in the case
of ‘‘ghost tones,’’ very little, if any, attenuation is observed. It is for this reason that
‘‘ghost tones’’ create unwanted noise problems.

The kinematic transmission-error contributions from the measured gear are com-
puted in the ‘‘time’’ domain, that is, as a function of ‘‘roll distance’’ x, by Equation
(7.177),

ζ (x) = α0e + 2
∞∑

n=1

[
αnecos (2πnx/N	) + αnosin (2πnx/N	)

]
. (1.5)

The algorithms by which all computations can be carried out are summarized in
Chapter 8.
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Fundamental Assumptions and Parametric Dependence
of Mesh-Attenuation Functions φ̂k�(n/N)

To carry out the kinematic transmission-error computations it is assumed that every
tooth on a gear is measured over a rectangular region, as illustrated in Figure 1.4,
defined by axial facewidth F, and radial distance D determined from tip and root
roll angle values by Equation (3.7). Consequently, a fundamental assumption is that
the tooth-pair contact region on the subject gear is over the same rectangular region
(−F/2) < y < (F/2), (−D/2) < z < (D/2) of every tooth on the gear. This rectangular
region generally will be smaller than the full region illustrated in Figure 1.4, and
is chosen by the engineer responsible for the gear measurements. Therefore, it is
assumed that tooth contact with a mating gear would take place over this full
rectangular region used in the gear measurements. The locations of the normalized
Legendre polynomial zeros used to specify scanning lead and/or scanning profile
measurement locations are then normalized to D in the case of the lead measurements
and F in the case of the profile measurements, as described in Appendices 3.A
and 3.B.

For any parallel-axis helical (or spur) gear of nominal involute design, this rect-
angular region together with the gear nominal parametric descriptions determines
both the axial Qa and transverse Qt contact ratios, as can be seen from Equations
(6.5) to (6.8). These contact ratios thus effectively describe, for any helical or spur
gear, the rectangular contact region on the tooth-working-surfaces. The computed
mesh-attenuation functions φ̂k�(n/N) are parametrically dependent on both Qa and
Qt. In addition, their rotational-harmonic dependence is a function only of the ratio
n/N, where N is the number of teeth. The tooth-meshing fundamental rotational
harmonic is n = N.

Finally, it is shown in Chapter 5 by Equation (5.13), and more rigorously in
Chapter 7, that if the tooth-pair stiffness per unit length of line of contact is
assumed to be constant, the mesh-attenuation functions φ̂k�(n/N) are independent of
tooth-pair stiffness. Consequently, in this practically important case, apart from the
tooth-meshing-harmonic contributions at n/N = 1, 2, 3, . . . , the transmission-error
contributions are dependent only on the geometric working-surface-deviations from
equispaced perfect involute tooth surfaces, and for any rotational-harmonic values
n = 1, 2, 3 . . . , (n/N) �= 1, 2, 3, . . . only on the axial Qa and transverse Qt contact ratios.
These loading and inertia independent transmission-error contributions are the
kinematic contributions to the transmission error (Merritt, 1971, p. 84).

1.5 Diagnosing Transmission-Error Contributions

Tooth-Meshing-Harmonic Contributions

The tooth-meshing-harmonic contributions A in Figure 1.1 to the transmission-error
spectrum of a meshing-gear-pair operating at constant speed and constant torque
are the harmonics at rotational harmonics n = N, 2N, 3N, . . . , where n is rotational-
harmonic number of one of the meshing gears and N is the number of teeth on that
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gear. These harmonics are caused by the additive contributions of the tooth-pair elastic
deformations and the combined geometric deviations of the mean working-surface
from a perfect involute surface of each of the two gears. The gear measurement,
interpolation, and analysis methods developed in this book provide very accurate
determination of the three-dimensional mean-working-surface-deviation of a mea-
sured gear, limited only by the accuracy of the CNC gear measurements. But tooth
elastic deformations are not dealt with herein, and therefore, tooth-meshing-harmonic
contributions to the transmission error are not computed.

Kinematic-Transmission-Error Contributions

Once any rotational harmonic n, in either a measured noise spectrum or structure-
borne transducer spectrum, is identified to be of interest, the method described in
Section 4.5 can be used to compute the three-dimensional working-surface error-
pattern on some or all of the teeth that is the cause of the particular identified
rotational harmonic n, that is, by Equation (4.42). To accomplish this, the working-
surfaces of all teeth on the subject gear must be measured as described in Chapter 3.
This computation does not require the more involved computation of the kinematic
transmission-error spectrum.

However, if the rotational-harmonic n of interest is identified in the computed
transmission-error spectrum, Equation (1.4), then the same computation described
by Equation (4.42) is to be utilized to generate the working-surface error pattern
causing the identified rotational harmonic. The resultant error pattern, computed by
Equation (4.42), provides the information required to diagnose the manufacturing
source of this error pattern, which is the cause of the identified rotational-harmonic
tone.

Analytical approximations to the mesh-attenuation functions are described in
Chapter 6 for various classes of errors, that is, accumulated tooth-spacing (index)
errors, higher-order polynomial errors, and undulation errors. The behavior of
these mesh-attenuation-function approximations allows one to diagnose, with some
confidence, the manufacturing-error sources of low-order rotational harmonics
n = 1, 2, . . . , B in Figure 1.1, so-called ‘‘sideband harmonics,’’ C, and ‘‘ghost tones,’’ D.

1.6 Application to Gear-Health Monitoring

Because tooth-working-surface damage affects the transmission-error spectrum in
the same way that working-surface-deviations affect it, the general results and
insights provided by the analysis in this book are applicable to gear-health mon-
itoring considerations. In particular, because damage on one tooth or a few teeth
will cause only a small change to the mean-working-surface-deviation, detection
methods utilizing changes in rotational-harmonic amplitudes, n �= N, 2N, . . . , should
enable the earliest detections, for example, Mark et al. (2010). Furthermore, because
the non-tooth-meshing rotational-harmonic amplitudes of the transmission error,
n �= N, 2N, . . . , are almost entirely independent of tooth stiffness, these harmonic
amplitudes normally are virtually unaffected by modest changes in gear loading.
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Legendre polynomials provide a very efficient system for representing the working-
surface-deviations caused by tooth-bending-fatigue damage (Mark, Reagor, and
McPherson, 2007, Figure 5); therefore, the methods described herein can be used to
compute the changes in transmission error caused by tooth-bending-fatigue damage
(Mark and Reagor, 2007).

Although application to gear metrology of the overall methodology described
herein utilizes normalized two-dimensional Legendre polynomials to mathemati-
cally represent tooth-working-surface-deviations, the general method of computing
transmission-error contributions described in Section 7.3 initially uses a com-
pletely generic method of mathematically representing working-surface-deviations,
Equation (7.50), which later is specialized to the use of Legendre polynomials,
beginning with Equation (7.75). This more general representation method has been
motivated, in part, because of the potential use of other working-surface-deviation
representations for application in gear-health monitoring. A wide range of machinery
monitoring methods can be found in Randall (2011).

1.7 Verification of Kinematic Transmission Error as a Source
of Vibration Excitation and Noise

After publication of Mark and Reagor (2001) illustrating computer implementation
of the gear measurement and computational methods described herein, we were
asked to exercise these methods on a helical gear that we were told was responsible
for causing an unwanted ‘‘ghost tone.’’ Because we knew the manufacturing errors
causing this problem were likely to be very small, we decided to carry out two
independent complete measurements of the gear using line-scanning profile and
lead measurements made at the zero locations of normalized Legendre polynomials,
as described in Chapter 3 of this book. Computation of the kinematic-transmission-
error rotational-harmonic spectrum utilizing measurements from each of the two
independent sets of measurements was carried out using the algorithms outlined in
Chapter 8. If the two computed spectra were found to be in good agreement, we
could be confident in our predictions of the spectra.

The measured helical gear had 51 teeth. The only information provided to us was
the physical gear, the nominal design parameters of the gear, and a statement that the
ghost-tone harmonic was located modestly above the tooth-meshing fundamental
harmonic, n = N = 51. Transverse and axial contact ratios were both over 2.0.

In one of the two sets of measurements, 17 scanning profile measurements and
seven scanning lead measurements were made on each tooth, and in the other set
seven scanning profile measurements and 17 scanning lead measurements were
made on each tooth. Because relatively good agreement of the predicted kinematic
transmission-error spectrum line amplitudes was obtained from the two sets of
measurements, only the prediction obtained from the measurement set using seven
profile measurements and 17 lead measurements was provided to the gear owner.
The dominant ‘‘ghost-tone’’ harmonic was found to be n = 72. Its computed rms
amplitude was 0.102 μm (4.02 μin.). For the other measurement set, the computed
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dominant ‘‘ghost-tone’’ harmonic also was n = 72 with a computed rms amplitude of
0.127 μm (5.00 μin.).

After submission of the written report to the gear owner, the acoustic spectrum,
obtained by spectrum analysis of a microphone output, was provided to us by
the gear owner. This noise spectrum had been obtained by operating the gear we
had measured with another higher quality gear. We had no way to know the
transfer function (attenuation characteristic) between the operating gears and the
microphone. But we could compare our computed kinematic transmission-error
spectra with that obtained from the microphone output by forcing agreement of the
amplitudes of rotational harmonic n = 72, and comparing the remaining harmonic
amplitudes obtained from the acoustic measurements and our two computations.
The result of this comparison is shown in Figure 1.5, where our computed amplitudes
of the neighboring harmonics in the vicinity of n = 72 are shown encircled. Computed
and measured amplitudes are linear (not logarithmic) measure.

This example clearly demonstrates that it is possible to measure a gear in detail and
compute from those measurements the rotational-harmonic location of a dominant
ghost tone, n = 72 in this case, even for a transmission-error contribution of exceed-
ingly small amplitude. Moreover, it has demonstrated the kinematic transmission
error as a source of vibration excitation and noise. (The very small working-surface
errors causing rotational harmonic n = 72 are delineated in Chapter 6.) Furthermore,
because the subject gear had 51 teeth, rotational harmonic n = 51 is the tooth-meshing
fundamental harmonic, which exhibits a much lower amplitude in Figure 1.5 than
the ghost tone located at n = 72, thereby illustrating the relative importance of ghost
tones in this particular example of a helical gear-pair transmitting substantial loading.

Figure 1.5 also shows good (but imperfect) correlation between computed and
acoustically measured sideband rotational harmonics n = 68–76 in the immediate
neighborhood of n = 72. Considering that the computed rms amplitude of the trans-
mission error causing n = 72 is about 0.1 μm (4 μin.), it is truly remarkable that it
had been possible to compute with some success these much smaller amplitude
‘‘sideband’’ harmonics. An explanation of how such sideband harmonics of ghost
tones can be generated is found in Mark (1992a, p. 175 Case III).

1.8 Gear Measurement Capabilities

The discussion and examples provided in Chapter 6 illustrate that ‘‘ghost tones’’
typically are caused by periodic sinusoidal-like manufacturing errors on gear-tooth
working-surfaces that are almost entirely unattenuated by the meshing action with a
mating gear. In other words, such a sinusoidal (undulation) error of amplitude ‘‘a’’
will result in a kinematic transmission-error contribution of about the same amplitude
‘‘a.’’ (A reasonably complete mathematical discussion explaining this can be found
in Mark (1992a), which is summarized in Section 6.6.) The above-discussed example,
illustrated in Figure 1.5, therefore suggests a requirement to be able to successfully
measure an undulation error with rms amplitude of about 0.1 μm. Is this requirement
reasonable? Houser (2007) shows results for a helical gear with axial and transverse
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contact ratios both modestly over 2.0 yielding a peak-to-peak transmission-error
amplitude at design torque of slightly under 0.1 μm (4 μin.). This result implies one-
sided transmission-error amplitude of about 0.05 μm (2 μin.), and an even smaller rms
value of 0.035 μm (1.4 μin.). Hence, a ‘‘ghost-tone’’ transmission-error contribution
with rms value of 0.1 μm (4 μin.) would exceed the above-mentioned amplitude,
indicating that a requirement to be able to satisfactorily measure an undulation-error
amplitude of about 0.1 μm (4 μin.), or even smaller, to be entirely reasonable. In
repeated cases involving sinusoidal-like undulation errors causing ‘‘ghost tones,’’
we have successfully measured the gears, computed the ‘‘ghost-tone’’ transmission-
error contributions, and the sinusoidal errors on the working-surfaces causing these
ghost tones, with typical rms sinusoidal errors and transmission-error amplitudes
of about 0.1 μm (4 μin.). Independent gear measurements made on the same gears,
using different CNC gear-measurement machines, have yielded almost exactly the
same amplitudes. Yet, the generally accepted absolute accuracy of gear metrology
equipment is considered to be about 1 μm (39.37 μin.). A partial explanation of how
the above-described ‘‘ghost-tone’’ measurements and computations are possible is
provided below.

It was described above that the transmission-error contributions of the tooth-
meshing-harmonics, labeled A in Figure 1.1, are caused by the mean deviation of
the elastically deformed working-surfaces from equispaced perfect involute surfaces,
which includes the mean geometric working-surface-deviations and tooth elastic
deformations. The remaining rotational-harmonic contributions labeled B, C, and
D are caused by geometric deviations of the individual tooth-working-surfaces
from the mean-working-surface – that is, geometric tooth-to-tooth variations in the
working-surfaces, including tooth-spacing errors.

Contributions of Linear-Axis Errors

The typical dedicated CNC gear-measurement machine has three linear axes, and
a rotary axis on which the gear to be measured is mounted. At any fixed location
y, z (Figure 1.4), each of the linear axes is in the same position when every tooth is
measured. Therefore, a consistent position error in any linear axis will be the same for
every measured tooth on a gear at each tooth location y, z in Figure 1.4. Consequently,
consistent linear-axis errors provide errors in the measurement of the geometric
deviation of the mean (average) working-surface-deviations, which therefore will
contribute only to errors in the computed tooth-meshing-harmonic contributions of
the transmission error, but will not contribute errors to the remaining computed
rotational-harmonic contributions, B, C, and D in Figure 1.1.

Contributions of Rotary-Axis Errors

Now consider rotary-axis errors. In making scanning profile measurements and
scanning lead measurements on a single tooth of either a spur or helical gear, the
rotary-axis position will vary from a minimum to a maximum rotational position.
The rotary-axis error at the average rotary-axis position during these measurements
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can be regarded as contributing an error to the measured absolute spacing error
of that tooth. Differential rotary-axis errors from this average rotary-axis position
on each tooth will contribute to the above-described errors in the working-surface
measurements from the mean (average) working-surface. That is, these differential
rotary-axis errors can contribute to the computed transmission-error non-tooth-
meshing rotational harmonics. But the maximum rotary-axis motion in measuring
any single tooth is only a very small fraction of 360◦. Consequently, only very short-
span rotary-axis differential errors can contribute errors in computation of ghost-tone
rotational harmonics. The longer span rotary-axis errors will contribute primarily to
errors in (accumulated) tooth-spacing error computations.

Because a rotary scale is circular, it is useful to describe its errors using Fourier
series. This decomposes its errors into a superposition of sinusoidal rotational-
harmonic contributions. The effects of these rotational-harmonic rotary-axis error
contributions on spur-gear transmission-error computations differs from their effects
on helical-gear computations.

Consider their effects on spur-gear computations first. It can be seen directly
from the involute construction described in Chapter 2, illustrated in Figure 2.3,
and from the definition of transmission error given by Equation (3.2), that each
rotational-harmonic amplitude of rotary-axis errors will be superimposed on the
same rotational harmonic of the computed transmission error of a spur gear (with
rotary-axis error amplitude proportional to base-circle radius), but with unknown
phase. Hence, for successful transmission-error computations of spur gears, the
higher harmonic rotary-axis errors must be minimized.

Fortunately, the effects of such rotary-axis errors are smaller on helical-gear
transmission-error computations. This can be seen most easily from the stepped-gear
analogy to helical gears illustrated in Figure 2.4. Because the root location of each step
on the base cylinder occurs at a different cylinder rotational position, the rotary-axis
higher-order rotational-harmonic error components will tend to be averaged out
along the lines of tooth contact illustrated in Figures 1.2 and 3.2 in transmission-error
computations. This averaging effect is likely at least partially responsible for the capa-
bility, shown herein, for successful computation of very small amplitude high order
‘‘ghost-tone’’ rotational-harmonic transmission-error contributions (D in Figure 1.1).

Contributions of Probe Errors

As in the case of linear-axis errors, in the case of probe errors it is convenient
to distinguish consistent errors (i.e., bias errors and offset errors) from differential
errors (errors in probe difference readings). Because the non-tooth-meshing rotational
harmonic contributions to the transmission error are caused by geometric differences
of the individual tooth-working-surfaces from the mean (average) working-surface
on a gear, consistent probe errors will provide errors only to the mean-working-
surface measurements, and therefore, errors only to the tooth-meshing-harmonic
contributions A in Figure 1.1. Differential probe errors (errors in measurements
of differences in amplitude) will provide errors to computed non-tooth-meshing
rotational-harmonic amplitudes B, C, and D in Figure 1.1. Fortunately, very high
quality probes are available.
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Effects of Statistical Averaging

An enormous number of individual measurement samples (data values) are utilized
in the computation of any transmission-error rotational-harmonic amplitude, and
in computation of the working-surface-deviations that are the cause of any partic-
ular rotational harmonic. Very-short-wavelength surface-roughness characteristics
and random measurement errors are averaged out in carrying out the required
computations.

Summary of Required Measurement Capabilities

To be able to accurately measure and compute kinematic-transmission-error
rotational-harmonic amplitudes, including ‘‘ghost-tone’’ amplitudes, and working-
surface-deviations causing individual rotational harmonics, requirements on
gear-measurement machines are:

• Linear-axis consistency (repeatability).
• Rotary-axis absolute accuracy (especially short-span high-harmonic accuracy).
• Measurement-probe consistency of bias errors and accuracy in differential mea-

surements (measurement of differences).

Role of Working-Surface-Deviation Representation Method

Two-dimensional normalized Legendre polynomials are used in Chapter 3, and
beyond, for representation of tooth-working-surface-deviations. The orthogonal
property of this representation method guarantees that constant and long-wavelength
measurement errors will provide no contribution to measured short-wavelength
working-surface-deviations.

How Small is 0.1 μm (4 μin.)?

A tightly packed package of 500 sheets of copier paper is 2 in. thick. One-thousand
sheets therefore is 4 in. thick, and one sheet is 4 × 10−3 in. thick. Therefore, 4 × 10−6 in.
is 1/1000 of thickness of a sheet of copier paper, which is 4 μin. (0.1 μm). Such
manufacturing accuracies are at the high-end of precision grinding (Nakazawa, 1994,
p. 12). The wavelength of the center of the visible spectrum of light is about 0.5 μm
(20 μin.).
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