1
General Probability Theory

Probability theory is a branch of mathematics that deals with mathematical models of trials
whose outcomes depend on chance. Within the context of mathematical finance, we will review
some basic concepts of probability theory that are needed to begin solving stochastic calculus
problems. The topics covered in this chapter are by no means exhaustive but are sufficient to
be utilised in the following chapters and in later volumes. However, in order to fully grasp the
concepts, an undergraduate level of mathematics and probability theory is generally required
from the reader (see Appendices A and B for a quick review of some basic mathematics and
probability theory). In addition, the reader is also advised to refer to the notation section (pages
369-372) on set theory, mathematical and probability symbols used in this book.

1.1 INTRODUCTION

We consider an experiment or a trial whose result (outcome) is not predictable with certainty.
The set of all possible outcomes of an experiment is called the sample space and we denote it
by Q. Any subset A of the sample space is known as an event, where an event is a set consisting
of possible outcomes of the experiment.

The collection of events can be defined as a subcollection F of the set of all subsets of Q
and we define any collection & of subsets of Q as a field if it satisfies the following.

Definition 1.1 The sample space Q is the set of all possible outcomes of an experiment
or random trial. A field is a collection (or family) F of subsets of Q with the following
conditions:

(a) @ € F where @ is the empty set;

(b) ifA € Fthen A° € F where A€ is the complement of A in Q;

(c) ifA,A,, ... A, €F n>72 then U?:l A; € F—that is to say, F is closed under finite
unions.

It should be noted in the definition of a field that & is closed under finite unions (as well
as under finite intersections). As for the case of a collection of events closed under countable
unions (as well as under countable intersections), any collection of subsets of Q with such
properties is called a o-algebra.

Definition 1.2 [f Q is a given sample space, then a o-algebra (or o-field) F on Q is a family
(or collection) F of subsets of Q with the following properties:

(a) D€ F
(b) ifA € Fthen A° € F where A€ is the complement of A in Q;
(c) ifA,A,, ... € Fthen|J2 | A; € F— that is to say, F is closed under countable unions.
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We next outline an approach to probability which is a branch of measure theory. The reason
for taking a measure-theoretic path is that it leads to a unified treatment of both discrete and
continuous random variables, as well as a general definition of conditional expectation.

Definition 1.3 The pair (Q, F) is called a measurable space. A probability measure P on a
measurable space (Q, F) is a function P . F > [0, 1] such that:

(a) P(@) =0;

(b) P(Q) =1,

(c) if A, Ay, ... € Fand (A} is disjoint such that A;NA; = @, i # j then P2, A) =
X2 P@).

The triple (Q, F,P) is called a probability space. It is called a complete probability space
if # also contains subsets B of Q with P-outer measure zero, that is P*(B) = inf{P(A) : A €
F,BC A} =0.

By treating c-algebras as a record of information, we have the following definition of a
filtration.

Definition 1.4 Let Q be a non-empty sample space and let T be a fixed positive number, and
assume for each t € [0, T] there is a c-algebra %,. In addition, we assume that if s < t, then
every set in F is also in &,. We call the collection of o-algebras %,, 0 <t < T, a filtration.

Below we look into the definition of a real-valued random variable, which is a function that
maps a probability space (2, #, [P) to a measurable space R.

Definition 1.5 Let Q be a non-empty sample space and let F be a o-algebra of subsets of Q.
A real-valued random variable X is a function X : Q +— R such that {w € Q : X(w) < x}
€ F for each x € R and we say X is & measurable.

In the study of stochastic processes, an adapted stochastic process is one that cannot “see
into the future” and in mathematical finance we assume that asset prices and portfolio positions
taken at time ¢ are all adapted to a filtration %,, which we regard as the flow of information
up to time z. Therefore, these values must be &, measurable (i.e., depend only on information
available to investors at time 7). The following is the precise definition of an adapted stochastic
process.

Definition 1.6 Let Q be a non-empty sample space with a filtration #,, t € [0, T] and let X,
be a collection of random variables indexed by t € [0, T]. We therefore say that this collection
of random variables is an adapted stochastic process if, for each t, the random variable X, is
F, measurable.

Finally, we consider the concept of conditional expectation, which is extremely important
in probability theory and also for its wide application in mathematical finance such as pricing
options and other derivative products. Conceptually, we consider a random variable X defined
on the probability space (Q, %, [P) and a sub-c-algebra & of F (i.e., sets in & are also in F).
Here X can represent a quantity we want to estimate, say the price of a stock in the future, while
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& contains limited information about X such as the stock price up to and including the current
time. Thus, E(X|€) constitutes the best estimation we can make about X given the limited
knowledge . The following is a formal definition of a conditional expectation.

Definition 1.7 (Conditional Expectation) Let (Q2, #, P) be a probability space and let & be
a sub-c-algebra of F (i.e., sets in G are also in ). Let X be an integrable (i.e., E(|X|) < o)
and non-negative random variable. Then the conditional expectation of X given G, denoted
E(X|¥9), is any random variable that satisfies:

(a) E(X|¥) is € measurable;
(b) for every set A € G, we have the partial averaging property

/[E(Xl?) dP = /x dP.
A A

From the above definition, we can list the following properties of conditional expectation.
Here (Q, #, P) is a probability space, & is a sub-c-algebra of % and X is an integrable random
variable.

e Conditional probability. If 1, is an indicator random variable for an event A then

E(I,]|%) = PA|D).

e Linearity. If X, X,, ..., X,, are integrable random variables and ¢, c,, ..., ¢, are con-
stants then

[E(CIXI +C2X2 + ...+ Can|?) = Cl[E(Xllg) + Cz[E(leg) + ...+ Cn[E(ang)

e Positivity. If X > 0 almost surely then E(X|€) > 0 almost surely.
e Monotonicity. If X and Y are integrable random variables and X < Y almost surely then

EX|%) < E(Y|9).
e Computing expectations by conditioning. E[E(X|€)] = E(X).
o Taking out what is known. If X and Y are integrable random variables and X is & measur-

able then
EXY|€) =X -E(Y|D).

o Tower property. If # is a sub-c-algebra of & then
E[EX|9)NZ] = EX|Z).

e Measurability. If X is &€ measurable then E(X|%) = X.

e [ndependence. If X is independent of & then E(X|%) = E(X).

e Conditional Jensen’s inequality. If ¢ : R — R is a convex function then

Elp(X)|€] = p[EX|D)].
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1.2 PROBLEMS AND SOLUTIONS
1.2.1 Probability Spaces

1. De Morgan’s Law. Let A;, i € I where I is some, possibly uncountable, indexing set.
Show that

@ (Uies Ai)i = Niar A;-
(b) (miel Ai) = Uiel Af-
Solution:

(@) Leta € (U,e; A;)" whichimplies a & | J;; A;, so thata € A¢ forall i € I. Therefore,

<UA,~>C c A

i€l i€l
On the contrary, if we let a € (),,AS thena & A, forall i € I ora € (|, A;)" and
hence .
(A¢ c (UA,-) :
iel iel

Therefore, ({J;g; A;)" = NicAS-
(b) From (a), we can write

(Un) ==

iel i€l i€l

Taking complements on both sides gives

<ﬂAi>C = A

i€l i€l
O

2. Let #be a o-algebra of subsets of the sample space Q. Show that if A}, A,, ... € Fthen
NiZ1Ai € F.

Solution: Given that # is a o-algebra then AC,AE, ... € #and U;’il Al? € %. Further-
more, the complement of [ J, A¢ is (L2, A¢) € .

Thus, from De Morgan’s law (see Problem 1.2.1.1, page 4) we have (UzlAf)L
Nizy (A,L-')C =2 A € F

3. Show that if Fis a o-algebra of subsets of Q then {@, Q} € F.

Solution: Fis a o-algebra of subsets of Q, hence if A € F then A° € F.
Since @ € Fthen @ = Q € & Thus, {@,Q} € F.
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4.

Show thatif A C Q then & = {@, Q, A, A°} is a o-algebra of subsets of Q.

Solution: F = {@,Q,A, A} is a o-algebra of subsets of Q since

() ope
(i) For @ € Fthen @° = Q € #. For Q € Fthen Q° = @ € %. In addition, forA € #
then A° € #. Finally, for A € Fthen (A°)° =A € #.
(1) gUQ=QeF QUA=AEF QUA=A€eF QUA=QeF QU
A=QeF,UQUA=QeF QUQUA =Qe Fand QUAUA  =Q e F.
]

. Let {%,;},c;, I # @ be a family of o-algebras of subsets of the sample space €. Show that

F = (e F is also a o-algebra of subsets of Q.

Solution: & = (),; #; is a o-algebra by taking note that

(a) Since @ € &, i € I therefore @ € F as well.

(b) If A € & foralli €l then A° € %, i € I. Therefore, A € % and hence A° € Z.

(c) IfA,A,, ... € F foralli el then |J;o, Ay € F;, i €land hence A,A,, ... €EF

and | J,2, Ay € F.

From the results of (a)—(c) we have shown & = ., %; is a o-algebra of Q.

i€l

Let Q= {a,p,y} and let

gl:{®’99{a}’{ﬁ’y}} and g2:{®’99{a’ﬁ}9{y}}'

Show that &, and %, are c-algebras of subsets of Q.
Is ¥ = % U F, also a c-algebra of subsets of Q7

Solution: Following the steps given in Problem 1.2.1.4 (page 5) we can easily show &,
and %, are c-algebras of subsets of Q.
Bysetting = #, U %, = {@,Q,{a}, {r},{a. f}.{f.y}}, andsince {a} € Fand {y} €
Fbut {a} U{y} ={a, v} &€ F then F = F, U F, is not a o-algebra of subsets of Q.

O

Let Fbe a o-algebra of subsets of Q and suppose P : & — [0, 1] so that P(Q2) = 1. Show
that P(@) = 0.

Solution: Given that @ and Q are mutually exclusive we therefore have
ZNQ=gand gUQ = Q.
Thus, we can express
P@uUuQ) =P@)+PQ)-P(@nQ)=1.

Since P(Q2) = 1 and P(@ N Q) = 0 therefore P(@) = 0.
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8. Let (Q, #, ) be a probability space and let Q : F — [0, 1] be defined by Q(A) = P(A|B)
where B € & such that P(B) > 0. Show that (Q, %, Q) is also a probability space.

Solution: To show that (€2, %, Q) is a probability space we note that

P(@nB) P(@)
(a) Q@) =P(@|B) = PGB PB) 0.
PQnB) PB)
PB) PGB
(c) LetA;,A,, ... be disjoint members of # and hence we canimply A N B,A, N B, ...
are also disjoint members of &. Therefore,

@(L:J]A,) <UA > (U= @inB) =;P(A"”B)=;@(A,-).

P(B) P(B)
Based on the results of (a)—(c), we have shown that (2, %, Q) is also a probability space.

(b) Q) =P(QB) =

O

9. Boole’s Inequality. Suppose {A;},c; is a countable collection of events. Show that

P<UA,.> <Y P(A)

i€l i€l

Solution: Without loss of generality we assume that / = {1,2, ...} and define B; = A,
B, =ANA,UA,U ... UA,_|), i€ (2,3, ...} such that {B,B,, ...} are pairwise dis-

joint and
Ua=Us.

i€l i€l

Because B; N Bj =@,i#Jj,i,j €I we have

P(QA,) =IP<1LJBI-)

= P(B)

i€l
=Y PANA UA U ... UA )
i€l
=Y {P@A)-P(ANnA UAU ... UA_)}

i€l

< 2 P(A)).

i€l
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10.

11.

12.

Bonferroni’s Inequality. Suppose {A;};c; is a countable collection of events. Show that
P(ﬂAl) >1- ) P(A).
iel iel

Solution: From De Morgan’s law (see Problem 1.2.1.1, page 4) we can write

P(QA,) = P<(IL€J]A5>C> =1- P(Q{A;).

By applying Boole’s inequality (see Problem 1.2.1.9, page 6) we will have

P(ﬂA,) >1- ) P(A)

i€l i€l

since P (U;/4f) < ZiesP (A7)

O
Bayes’ Formula. Let A, A,, .. » be a partition of Q, where U A =Q, A nA a,
i#jandeach A, i,j=1,2, ... ,n has positive probability. Show that
P(B|IA)P(A))
PA;|B) = —; .
Y P(BIA)PA)
Solution: From the definition of conditional probability, fori = 1,2, ... ,n
P(A|B) P(A; N B) P(BJA)P(A;) P(B|A)P(A;) P(B|A)P(A;)
i = = = = .
P(B) P <U}'=1 (Bn Aj)> Yo PBNA) XL PBIA)PA)
]

Principle of Inclusion and Exclusion for Probability. Let A|,A,, ... ,A,, n > 2 be a col-
lection of events. Show that

PA, UAy) =PA,)) +PA,) —PA, NnA,).
From the above result show that

P(A; UA, UAy) =P(A)) + P(A,) + P(A;) — P(A, NA,) — P(A, NA3)
— P(A4, NA3) + P(A, NAy NAS).

Hence, using mathematical induction show that

n n—-2 n—1 n
P(UA,) Z[P’(A)—ZZ[P’(A NAY+ Y D D P@A,;NANAY
i=1

i=1 j=i+l i=1 j=i+1 k=j+1
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A+ EDPA NA N L NAY.

Finally, deduce that

n n-2 n-1 n
P(QA,) ZP(A)—ZZP(A UAY+ D D D P UAUAY
i=1 i=1 j=i+1 i=1 j=i+l1 k=j+1

A+ (=D"PAUA U L UA)Y.
Solution: Forn =2, A; UA, can be written as a union of two disjoint sets
AjUA, =A UA\A) =AU A, NA)).

Therefore,
PA, UAy)) =P@A,)) +P@A, nAi)

and since P(4,) = P(A; NA)) + P(A, N A7) we will have
PA;UA) =P@A)+ P, —PA, NnA,).
For n = 3, and using the above results, we can write

=PA)) +P@A,) + PA3;) —PA;nA,) — P[(A; UA,) NAz].

Since (A} UA,) N A3y = (A NA3z) U (A, N Ajy) therefore

=P(A, NA;) + P4, NAy) — P[(A; NA3) N (A NA3)]
=P(A,; NA3) +P(A, NA;) — P(A, N4, NA;).

Thus,

P(A, UA, UA;) = P(A)) + P(A,) + P(A4;) — P(4, NA,) — P(A, N A3)
—P(A, NAy) + P(A; NA, NA,).

Suppose the result is true for n = m, where m > 2. For n = m + 1, we have

o (ST I P PO (V79 PO

=|]3><LmJAi) +P (A1) - P(LmJ (AinAmH)).

i=1 i=1
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By expanding the terms we have

m+1 m=2 m—1 m
<U ) ZP(A)—ZZP(AOA)+ZZ D P(A;nA;NAY

i=1 i=1 j=i+1 i=1 j=i+1 k=j+1
A+ (=D"IPA NAYN L NA,)
+P (A1) =P (A NA,.DUMANA,LD) ... UA,NA,.))

m+l1 m—=2 m—1 m
—ZIP’(A)—Z ZP(A NA) + D P(A;NA;NAY
i=1 j=i+1 i=1 j=i+1 k=j+1

A+ ED"IPA NAYN L NA,)

m—1 m

—ZIP(A NA)+ D D PANANA,,)
i=1 j=i+1

—(=)"P@A, NnAN L mAm+1)
m+1 m m+l m  m+l
=Y PA)-Y Y P&, nA)+Z DD P@A;NANAY
i=1 i=1 j=i+1 i=1 j=i+1 k=j+1

A ED"PPA NA N L NA,L).

Therefore, the result is also true for n = m + 1. Thus, from mathematical induction we
have shown for n > 2,

n n n—2 n—1
P(UA):ZIP(A,)—Z D PANAN+ YD Z P(A; NA;NAY)
i=1 i=1 i=1 j=i+l1 i=1 j=i+l1 k=j+1

A+ EDPA NA N L NAY.

From Problem 1.2.1.1 (page 4) we can write

(00)-#((Ge) )1+

A;) |
Thus, we can expand

n—-2 n—1 n
<ﬂA>—1—ZP(A)+Z Z [P’(A‘nA)—Z Z Z P(AS N AS N AD)

iC-

i=1 j=i+1 i=1 j=i+1 k=j+1
.. = (EDMPASNASN L NAY
n—-1 n
_I—Z(I—P(A))+z D (1-P(4;UA))
i=1 j=i+l
n-2 n—1 n

‘Z Z Z (1 -PA;UA; UAY)

i=1 j=i+1 k=j+1
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— (=11 =P, UA,U ... UA,))

n 2 1
—Z[P’(A)—Z Z P4, uA)+nZ nZ Zn: P(A; UA; UA))
i=1 j=i+1 i=1 j=i+1 k=j+1

A+ (ED"IPA VA U L UA)).
O

13. Borel—Cantelli Lemma. Let (Q, #, P) be a probability space and let A, A,, ... be sets in

. Show that o
N Uac

m=1k=m k

Cs

Ay

Il
3

and hence prove that

1 if A;NA;=@.i#jand kZ:l[F"(Ak)zoo

0 if Y P(A) < .
k=1

Solution: Let B,, U A, and since ﬂ B,, C B, therefore we have

m=1

||C8

NU*

From Problem 1.2.1.9 (page 6) we can deduce that

[P’<ﬁ GAk> < [P’([]Ak> sgP(Ak)-

m=1k=m k=m

ng
”.

(5] 53

For the case ), P(4;) < oo and given it is a convergent series, then lim ) P(A4;) =0

k=1 m—>ook =m

P<QQ1A,€> =0

and hence

it Y P(A) < 0.
k=1

For the case A, N A; = @, i ;éjandkgl P(A;) = oo, since IP( U Ak> + I]3’<< U Ak>L> =
1 therefore from Problem 1.2.1.1 (page 4)
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(S

From independence and because Y| P(4;) = co we can express
k=1

P(ﬂAz) =TT (a5) =TT (1 -P (40) < [T = Bt =0
k=m k=m k=m k=m

for all m and hence

P(}QAk) =1—P<QA;> =1

for all m. Taking the limit m — oo,

P(ﬁ OAk> =J%P<GA,€>=1

m=1 k=m k=m

(6]
for the case A;NA; = @,i # jand ) P(A;) = co.
k=1

1.2.2 Discrete and Continuous Random Variables

1. Bernoulli Distribution. Let X be a Bernoulli random variable, X ~ Bernoulli(p), p € [0, 1]
with probability mass function

PX=1)=p, PX=0=1-p.
Show that E(X) = p and Var(X) = p(1 — p).
Solution: If X ~ Bernoulli(p) then we can write
PX =x)=p'(1-p)'™, x€{0,1}
and by definition
1

EX) =Y PX=x)=0-(1-p)+1-p=p
x=0

1

[E(X2)=ZX2P(X=x)=0-(1—p)+1.p=p
x=0

and hence

EX)=p, Var(X)=EX?) -EX)*=p( -p).
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2. Binomial Distribution. Let {X;}_, be a sequence of independent Bernoulli random vari-

ables each with probability mass function
PX,=1)=p, PX,=0)=1-p, pel0,1]

and let

Show that X follows a binomial distribution, X ~ Binomial(n, p) with probability mass
function

PX =k) = (Z) PFA—=py* k=0,1,2,...,n

such that E(X) = np and Var(X) = np(1 — p).
Using the central limit theorem show that X is approximately normally distributed, X +
N (np,np(1 —p)) asn — oo.

Solution: The random variable X counts the number of Bernoulli variables X, ... , X,
that are equal to 1, i.e., the number of successes in the n independent trials. Clearly X takes
valuesintheset N = {0, 1,2, ... ,n}. To calculate the probability that X = k, where k € N
is the number of successes we let E be the event such that X; =X; = ... =X; =l and
Xj =0 for all j € N\S where S = {i},i,, ... .i;}. Then, because the Bernoulli variables
are independent and identically distributed,

PE) =[P =1 [ P& =0)=pa -py™.

JES jeN\s

Howeyver, as there are combinations to select sets of indices iy, ... , i, from N, which

n
k
are mutually exclusive events, so

PX =k) = <Z>pk(1 -p) % k=0,1,2,...,n

From the definition of the moment generating function of discrete random variables (see
Appendix B),

My() =E (%) = ) e"P(X =)

X

where ¢ € R and substituting P(X = x) = <Z> p*(1 — p)"— we have

n n

My(t) = ) " <Z> pPa=-pyr=) (Z) (pe'y' (1 =p)"™* =1 ~p+pe)'.

x=0 x=0
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By differentiating My (¢) with respect to ¢ twice we have

M (0) = npe'(1 = p + pe')'™!
M\ () =npe'(1 — p + pe'Y"™" + n(n — Dp*e* (1 — p + pe')" >

and hence
EX) =M}(0) = np
Var(X) = E(X?) — E(X)* = M"},(0) — M}(0)* = np(1 — p).
Given the sequence X; ~ Bernoulli(p),i = 1,2, ... ,nare independent and identically dis-

tributed, each having expectation y = p and variance 6 = p(1 — p), then as n — oo, from
the central limit theorem R
i1 X —np

oy
X —np
Vnp(l —p)

Thus, as n — o0, X % N (np, np(1 — p)).

D
— (0, 1)

or
D
— (0, 1).

O

3. Poisson Distribution. A discrete Poisson distribution, Poisson(1) with parameter 4 > 0
has the following probability mass function:
ﬂk
PX =0 =7 et k=0,1,2,...
Show that E(X) = A and Var(X) = A.
For a random variable following a binomial distribution, Binomial(n, p), 0 < p < 1 show
thatasn — oo and with p = A/n, the binomial distribution tends to the Poisson distribution
with parameter A.

Solution: From the definition of the moment generating function
My() = E (%) = Z & PX = x)
X

X
where ¢ € R and substituting P(X = x) = /1—‘ ¢~ we have
x!

< aA 4 -2 - (/let)x Ae'—1)
MX(t)zz:ex—'e =e Z—'zee .
~ x! = x!

By differentiating My (¢) with respect to ¢ twice

/ _ Ae'—1 " _ Aef—1
M(t) = 2e'e® @D, M (1) = (Ae' + DAe'e’ ™D
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we have
EQX) = M/ (0) = 4
Var(X) = E(X?) — E(X)? = My (0) = M (0) = A.

If X ~ Binomial(n, p) then we can write
n! k n—k
PX =k =—p"(1 -
( ) o=’ (I-p)
_nn=1)...(n—k+1)(n-k)!
B k!(n — k)!

ka<1_(n_k)p+wpz+ )

2!
_nn=1)...(n—k+1) ,
- k! P

<1—(n—k)p+wp2+ )

2!

For the case when n — oo so that n > k we have

k 2
P(X:k)z%pk<1—np+(n5) + )

k
nk_—np
= —pte™.
xt?

k
By setting p = A/n, we have P(X = k) ~ % e,
' O

. Exponential Distribution. Consider a continuous random variable X following an expo-
nential distribution, X ~ Exp(4) with probability density function

fr@) =4, x>0

where the parameter A > 0. Show that E(X) = % and Var(X) = %

Prove that X ~ Exp(4) has a memory less property given as
PX>s+xX>s)=PX>x)=e*, x,5>0.

For a sequence of Bernoulli trials drawn from a Bernoulli distribution, Bernoulli(p), 0 <

p < 1 performed at time Az, 2A¢, ... where At > 0 and if Y is the waiting time for the

first success, show that as A7 — 0 and p — 0 such that p/At approaches a constant A > 0,

then Y ~ Exp(A).

Solution: For? < 4, the moment generating function for a random variable X ~ Exp(4)is

My (1) = E (¢) = / e pe Mgy = ) / eGtugy = A
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Differentiation of My (f) with respect to ¢ twice yields

_ A
(A=0%

’ _ " _ 24
M (1) = M=

Therefore,

E(X) = My(0) = % E(X) = My (0) = %

and the variance of X is ]
Var(X) = E(X?) — [EX))? = =
By definition

PX >x) = / e Mdu = e
X

and

o 4 -
[P’(X>S+x,X>s)_[P’(X>s+x)_/x+x/1€ “du ax

PX>s+x|X>5s5)= = = =
K> 542X > ) P(X > 5) PX>5) [ deido

Thus,
PX > s+x|X > s) =PX > x).

If Y is the waiting time for the first success then fork = 1,2, ...
P(Y > kAf) = (1 — p)k.

By setting y = kAt, and in the limit A7 — 0 and assuming that p — 0 so that p/Ar — A,
for some positive constant 4,

[P’(Y>y):[P’<Y> (i)m)

~ (1 — AAp)Y/A

(3)(z-1)

=1-Ay+ 5 (AAD? + ...
(Ay)*

r1l-Ay+ o0 + ...

:e—/lx.

In the limit At > O and p — 0,
PY<y)=1-P¥>y~l-e?

and the probability density function is therefore

H0) =Sy <y~ de,y 20
Yy
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5. Gamma Distribution. Let U and V be continuous independent random variables and let
W = U + V. Show that the probability density function of W can be written as

Sww) = / Sy(w —uw)fy(u) du = / Ju(w = v)fy(v) dv

where f;;(1) and fy,(v) are the density functions of U and V, respectively.
Let X, X,, ..., X, ~ Exp(4) be asequence of independent and identically distributed ran-
dom variables, each following an exponential distribution with common parameter A > 0.

Prove that if )
Y=)'X
i=1

then Y follows a gamma distribution, ¥ ~ Gamma (n, A) with the following probability
density function:

A n—1
LM—M, y > 0.

fy()’)= n—1)! 2

Show also that E(Y) = % and Var(Y) = %

Solution: From the definition of the cumulative distribution function of W = U + V we
obtain

Fyw)=PW <w)=PU+V < w) = / /fUV(u, v) dudv

ut+vw
where f;;y, (1, v) is the joint probability density function of (U, V). Since U L V therefore
Juv(u, v) = fy(w)fy,(v) and hence

FW(w)=//fUV(u, v) dudv

u+v<w

://fU(u)fV(v) dudv

u+v<w

=/ { i) dv} Sfu(u) du

= / Fy(w — w)fy(u) du.

[Se]

By differentiating Fy,(w) with respect to w, we have the probability density function
Jw(w) given as

Jww) = ﬁ / Fy(w — w)fy(u) du = / Jy(w —w)fy(w) du.
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Using the same steps we can also obtain

fw(w) = / fu(w = v)fy () dv.

To show that Y = Z?:l X; ~ Gamma (n, A) where X, X,, ... ,X, ~ Exp(4), we will prove
the result via mathematical induction.
Forn =1, we have Y = X ~ Exp(4) and the gamma density fy(y) becomes

) =24, y>0.

Therefore, the result is true for n = 1.

Let us assume that the result holds for n = k and we now wish to compute the density for
the case n = k+ 1. Since X, X,, ... , X, are all mutually independent and identically
distriblited, by setting U = Zle X;and V = X, and since U > 0, V > 0, the density of
Y =Y., X;+ X, can be expressed as

y
fy(y)=/0 Fv O — w)fy () du

y k—1
:/ Ae~ A0 Gy Ae™M du
0

(k—=1)!
k+1 ,—Ay y
=—/1 ¢ / u* du
*=D! /o
_ (/1)’)1( 2N
k!

which shows the result is also true forn = k + 1. Thus, Y = E?:l X; ~ Gamma (n, A).
Given that X;, X5, ... , X, ~ Exp(4) are independent and identically distributed with com-

mon mean 7 and variance ﬁ therefore

~ n N\ n | =2
[E(Y)_[E<;X,> ;IE(X,) -

and

n
Var(Y) = Var( 2 x,.> = Z{ Var(X,) = =

1

O

6. Normal Distribution Property I. Show that for constants a, L and U such that r > 0 and

L<U,
2
[ o () o132
2rt JL \/; \/;

where ®(-) is the cumulative distribution function of a standard normal.

0=
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Solution: Simplifying the integrand we have

1 /Ueaw—%<%>2 dw =
L

2rt

U _l(u7272awt>
2
/ e ! dw
L

\ 2rt

w —at

\/;

Vo —l<w_m>2 U\_/m 1 1.2 U - at L—at
e *\ Vi) du= ! e dx=® -® .
L A2t L\}f’ \V2rx Vi Vi

U _1(w :
Thus,L/ e 2<¢?> dw=e1"" o Y4 ) _o L= )|
\V2rt JL \/; \/;

7. Normal Distribution Property II. Show that if X ~ A (u, 62) thenforé € { — 1,1},

By setting x = we can write

1 2 _ _
Hmm&J—Mﬂn=&“f%<ﬂiii_Egg>—%@(ﬁiJ%K»
c c

where K > 0 and ®(-) denotes the cumulative standard normal distribution function.
Solution: We firstlet 6 = 1,

[E[max{eX—K,O}]z/oo (€' — K) fy(x) dx

log K

=/w 1 g%%fﬂﬂ_K/w L=
logK o\/21 logK ov/2x

K and z = w — o we have

By setting w = al

© 1 © 1
Efmax{¢X — K,0}] = ‘5w2+"“’+“dw—1</ L 3% g

1
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=eu+lgz i 1 37 dr - 1 e'lwzdw
log K—u—o 271_ l°gf—ﬂ 2”

2
=e;4+%g2¢)<u+a —logK) —K<I><’u_10gK>'

o c

Using similar steps for the case 6 = —1 we can also show that
logK — 1 logK — (u + o2
Efmax{K — ¢,0}] = K® <M> _ i (M) |
o o

8. For x > 0 show that

(1—l) ! e_%sz/ ! 37 dr < L 32
X

x X \V2r \2x x\/2n
, . R . . 1 dv
Solution: Solving e 2% dz using integration by parts, we let u = —, — =
x A\ 2rx 7 dz
1 1
2 5% 50 that du _ —lz and v = — | i Therefore,
\2r dz z \2r
v e_%ZQ dz =— 1 -32

/°° 1 _l2
- e 2" dz
N x 22\ 2%

1 1o R | 12
= e 2% — e 2% dz
x\/ 2« x 722\ 2r;

A 1
since / ! Pt dz > 0.
x 22\ 2rx

o0
To obtain the lower bound, we integrate / e 2¥ dz by parts where we let u =
x 72\ 2x
1 1
%, dv__z_ ¢3% 50 that du_ —% and v = — | ¢"3% and hence
2 dz \2r dz z \2r
o0

/ L de=m ‘/ 357 g
x 724/ 2r% V2 . x 7\ 2rx

1 _1la2 /°° 3 _la
e — e 2° dz.
x3\2n x4\ 2«
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Therefore,

[es] o0
1 _12 1 _12 1 _Lle 3 _L12
e 2% dz= e 2Y — e 7" + e 2% dz
X

(s
1
since / 3 e_izz dz > 0. By taking into account both the lower and upper bounds
x M 2rx

we have

O

Lognormal Distribution I. Let Z ~ /0, 1), show that the moment generating function of
a standard normal distribution is

for a constant 6.
Show that if X ~ //(u,0?) then Y = X follows a lognormal distribution, ¥ = ¥ ~
log-# (1, 6) with probability density function

og y—u \ 2
Fo) = 1 e_%(lbgu)
yo/2x

. il .
with mean E(Y) = ¢ 2° and variance Var(Y) =

S

e — 1>e2“+"2.

Solution: By definition

For y > 0, by definition

logy 1 1 (x—y
P@X<ﬂ=P@<kgw=/ e 2

~o  o\2x
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and hence

log y—p \ 2
A= Lp (¥ <y = Lo )
o yo/2x

Given that log Y ~ /' (u, 62) we can write log Y=u+oZ Z~ #(Q0,1) and hence

E(Y) = E (e/*77) = ¢"E (¢7) = 3

. Loz, . . T
since E (eez ) = 2% is the moment generating function of a standard normal distribution.

Taking second moments,
E (Yz) —F (62,4+2¢;Z) — HE (ezaZ) _ ezﬂ+2az'

Therefore,

1 an2
Var(Y) = E(Y2) — [E(V)]2 = e#+2” _ (g“i"z) = <e"2 - 1) o2+o?.
10. Lognormal Distribution II. Let X ~ log-/4(u, ¢%), show that for n € N
[E( n) — enu+%nzo‘2.
Solution: Given X ~ log-//(u, 6%) the density function is

OX—Z
fy=—L 1) s

xo\/ 2«

and forn € N,

E(XX") = / oox”fx(x) dx
0

[ 1 _l(logx—u)z
:/ x'e 2\ o dx.
0

xo\/2x
log x —
By substituting z = D8XTH o that x = e and dz _ L,
dx xo

R | 12
EX") = — M g dg

© xo\/27

® 1 —lzz+n(¢rz+ )
= — e 2 # dZ
-0 \/21

[So]
=enu+%n262/ 1 e—%(z—na)z dz
- /271
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:enﬂ+%nzaz
0 1 )
since / L e 2O g = 1.
-0 \/21
O
11. Folded Normal Distribution. Show that if X ~ /#(u,c?) then Y = |X| follows a folded

normal distribution, ¥ = |X| ~ #;(u, 62) with probability density function

Fr) = \/%e_% (%) comn ()
S e —

with mean

and variance
1 2 2

_l(n
Var(Y)=u2+az—{a 2 (8 +ﬂ[1-ch<_ﬁ)]}

where ®(+) is the cumulative distribution function of a standard normal.

Solution: Fory > 0, by definition

y 1 1 ( x— 2
P(|X|<y)=P(—y<X<y)=/ )

-y o\ 27
and hence 2 2

_Ll(ytu _L(y-m

.E00=;§PQX|<yy= [ez(a> +ez(g>]
Y o\2x
1 P
= ie 2 ( o ) cosh (ﬂ )
V 702 o

By definition

E@=/)ﬁ®@
o0 vhu )2 IS y—\2
=/ Y e_%<7) dy+/ Y e_%(T) dy.
0 0

o\ 2x o\ 2

By setting 7z = (y + u)/o and w = (y — u) /o we have

® _1p ® 12
EX)= ——(oz—p)e 2" dz + ——(ow+ we 2V dw
uloc \ 2w ~-ulc \/2x
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To evaluate E (Yz) by definition,

E(Y?)= / Y2y ) dy
oo N 2 ) y—p \2
=/ Y e_%<%) dy+/ Y e_%(TM) dy.
0

o\ 2x 0 o\ 27

By setting z = (y+ u)/o and w = (y — u) /o we have

(5]

< _la 1 12
E (Y2 =/ —— (67— p)*e 2° dz+/ (cw + p)?e 2" dw
( ) ulo \2m —ufo \2x

_12 Que [® _1. o1 _ip
Ze 2Zdz—L ze 2Zdz+/42/ e 2% dz

62
_\/2_” /"Z \/Z_JF ulo
\/ﬂ/ﬂ/v \/Z [4/0‘
+p¢/ 1 du
M/G\/Z_ﬂ
_o [<ﬁ>e—%<%>2+ zﬂ(l_q)(ﬁ))]_zﬂ_ve—%
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Therefore,
1 2 2
_l(n
vmau=Eoﬂy-mam2=M2+a?-{a 2 . Av)+y[1—2¢(—ﬁ>y}.
T o
]
. . . 2 X—u
12. Chi-Square Distribution. Show that if X ~ A4 (u,0%) then Y = —— ~ 40, 1).
o

LetZ,,2,, ...,Z,~ /0, 1) be a sequence of independent and identically distributed ran-
dom variables each following a standard normal distribution. Using mathematical induc-
tion show that

Z=Z:+Z3+ ...+ Zy ~ y*(n)
where Z has a probability density function

1 n_y o_z
f7(0) = ———z2"€¢2, 220

()

such that

Finally, show that E(Z) = n and Var(Z) = 2n.

X —
K then

Solution: By setting ¥ =

X—p

P(YSy)=|P’< Sy>=[P’(XSM+6y)-

Differentiating with respect to y,

d
Sy = d_yP(Y <y

d [ _l(x;
= — e 2
& J-w  oy\2z

1 1 ( proy—p )2
= e 2\ ¢ c

Vox

which is a probability density function of /(0, 1).
For Z = Z? and given Z > 0, by definition

<,

Z

P(23z)=P(Zf3z)=P(—\/Z<Zl<\/2>=2/0
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and hence

Lz
e 21dz1] =——z22, z20

pom i [

which is the probability density function of y2(1).
For Z = Z? + Z; such that Z > 0 we have

P(ZSZ)=P(212+Z§SZ)=//$

2.2
2 +25<2

L2z
e 2GM) gz dz,.

Changing to polar coordinates (r, @) such that z; = rcos 0 and z, = rsin 6 with the Jaco-
bian determinant

()Zl aZl
] = ‘O(Zl,Zz) |97 99| cos@ —rsinf|
o(r,0) % % sin@ rcosf
or 00
then /:
1 2z < 1 1
//i 2@+ dzdz, =/ / L 3 dre =1 - 7.
2z 0=0 Jr=0 27
d4d<z
Thus,
f2(2) = // e —3@+3) dz,dz,
z +zz<7
=Ll o0

which is the probability density function of y2(2).
Assume the result is true for n = k such that

U=Z+Z3+ ... +Z ~ 7*(0)
and knowing that
V=7~ 2’

then, because U > 0 and V > 0 are independent, using the convolution formula the density
of Z=U+V = Y% Z? can be written as

£ = /O Sole = wfy () du

< 1 1 1 1
= ——(z—u)" 2e 2(Z u) —uik_le_fu
Z X .
0 V2r 221“(5)
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= /(z—u) 2u2 " du.
27[22F

. u
By setting v = — we have
Z

le-

: _Lok ! Sl kg
/(z—u) 2y2 du=/ (z—v2) 2(v2)2” zdv
0 0
iy ! _Loky
=72 /(l—v) 2p27 dv
0
Ve (3)
ket 1
r(4)

ML -2
f2(2) = i e %, 7220
+

1 1k
and because / (1-v)2 vV dv=8B (l E) = (see Appendix A) there-
0

fore

which is the probability density function of y2(k + 1) and hence the result is also true for
n =k + 1. By mathematical induction we have shown

Z=Z'+Z;+ ... + Zy ~ y*(n).

By computing the moment generation of Z,

e ® n 1
M () =E () = / €f,(2) dz = ——— ! / 22 e 2720 g,
0 25r< ) 0

and by setting w = %(1 — 2t)z we have

1 2 0N\: [ ny _n 11
M t=—< ) Ydw=(1-20"12, te(——,—).
7(1) p )1_2t /sz e Ydw = ( ) 2 )

NS

2zr<g
Thus,
My =ntt 207G, M) =2 (5+1)a 2y (5%)
such that
E(2) = M,(0) = n, [E(zz)=M’Z’<0)=zn(§+1)
and

Var (Z) = E (Z*) — [E(2))* = 2n
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13. Marginal Distributions of Bivariate Normal Distribution. Let X and Y be jointly normally

distributed with means y,, u,, variances af, 63, and correlation coefficient p,, € (=1,1)

such that the joint density function is

> _ _ 2
_ 1 X—Hy ) X—py Y—Hy Y=Hy
1 e 2(1—p§},) [( Ox ) pr( Ox )( Oy >+< Oy > :|
2
2ro.oyq/1 = pyy

Show that X ~ A (u,, o-%) and Y ~ A (py, O'yz).

fXY(x’ Y) =

Solution: By definition,
fx(x)=/ Sxy(x,y) dy

2

L (e ) o () (St ) (2

:/oo 1 e_2(1_p§y) [( oy ) sz)’( oy )( ay}>+< 6y)’> :| dy
“® 2ro.0,4/1 - pjzcy

/°° 1
~® 216.6,4/1 = p>
X7y xy
2
1 (=i \ o (amm ) Xy (~"‘/‘y> (y“‘,v)]
- A=p I\ =) +ru\ -2p = vl Rl G
¢ 2(1—,%,)[ 2 < ¥ ) >( ¥ ) "-V( x ) y y dy

X—ply 2 (o]
— e_%< #>/ g(x,y) dy

[Se]

where

2
1 o X—Hyx
S -

; e_Z(]—p)zc}
\/1- p)%yay\/ 2n

is the probability density function for J (u, +p,0, (x—p,) /0. (1= ph)o}).

Therefore,
/ glx,y)dy=1

(5]

glx,y) =

and hence

X—ﬂxz
S = —— 7305

o.\2rx

Thus, X ~ A (u,, 7). Using the same steps we can also show that Y ~ A (u,, 67).
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14. Covariance of Bivariate Normal Distribution Let X and Y be jointly normally distributed

with means y, Hys variances 0'2

joint density function is

0' and correlation coefficient p,, € (=1, 1) such that the

) _ N2
- i), (Aot ) () g (2
1 B 2(1-p3) [( oy ) /’xy( oy )( oy >+< oy ) ]
2
2ro0\/ 1 = pyy

Show that the covariance of X and Y, Cov(X,Y) = Pry0Oy, and hence show that X and Y
are independent if and only if p,, = 0.

fXY(x’ )’) =

Solution: By definition, the covariance of X and Y is

Cov(X,Y) =E[(X — u )Y — )]

/ / (= 1)y = i) fiy (. y) ddy

/ / xyfxy(x,y) dxdy — p, / / Xfyy(x,y) dxdy
—H, /_ . /_ . Yfxy (%, y) dxdy + pp, /_ ) /_ ) Foy (6, y) dxdy

= /_: /_: xyfxy(x,y) dxdy — p, /_:x [/_:fxy(x,y) dy] dx
—Hy /_ :y [ [ :fxy(x,y) dx] dy + [ : [ : Moty fy (X, y) dxdy

- / / Xy fiy (o) dxdy — p, / ) dx— / Vo) dy

+ / / oy fxy(x,y) dxdy

(o] (o]
= / / Xyfxy (X, y) dxdy — popy, — popty, + pophy,
—00 —00

_ / / *ficre,3) dedy = pop,

where fy(x) = [% fiy(,y) dy and fy(y) = [ fyy(x,y) dx. Using the result of
Problem 1.2.2.13 (page 27) we can deduce that

0 0 0 X _l(x—ﬂx )2 00
/ / xSy (x.) ddy = / it ( / Ye(r.) dy) dx
-0 J - - o, 2w -0

where

—1 e ﬁ[ (”V+p’w6( Gfr))]z
V1 - rhoV2n

glx,y) =
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15.

is the probability density function for . (u,+p,0, (x—p,) /o, (1= p3)o7).

Therefore,
o X = fy
[ rnmn o (2.

(e8] X

Thus,

%0 _1 () -
Cov(X, Y)=/ *_ o35 [ﬂyﬂ’xy"y(M)]dx—#xm
— O-x

© o\ 27
[+ _ 2 2
POy 2 _%(x m) PxyOyHy
= luxl’ly + e %x dx - - I’lx,uy
Oy - o, 2 Oy
2
POy 5 oy PoOyHx
= Uy + (o7 +u3) - —
X X
= Pxy0x0y

where

© 2 (=)
[E(X2)=/ . 2<ax>dx=a§+yf,.
- ¢\ 2%

To show that X and Y are independent if and only if p,, = 0 we note that if X L ¥ then
Cov(X, Y) = 0, which implies p,, = 0. On the contrary, if p,,, = 0 then from the joint den-
sity of (X, Y) we can express it as

Jxr (e ¥) = fx (o) fy(»)

o 1 J(m

2 o0 1 ymy
e 2\ o ) dxande(y)z/ ! e 2< o ) dy and so

—00
o, 2r

where fy(x) = /
- g .\ 271
XL1Y.
Thus, if the pair X and Y has a bivariate normal distribution with means .., Hys variances
o7, o7 and correlation p,, then X L Y if and only if p,, = 0.
|

Minimum and Maximum of Two Correlated Normal Distributions. Let X and Y be jointly
normally distributed with means ., Hys variances a?, yz and correlation coefficient Pyy €

(—1, 1) such that the joint density function is

2 - iy \ 2
L (e, ()2 (2
1 Z(I—p)%y) [( ox ) sz".( Ox ) < oy >+ < Oy > :|

Sy y) = ————=e¢
2ro0p4/1 - p)z(y

Show that the distribution of U = min{X, Y} is

Uy = ) —U+ g+ P (= )
fyw) = . fx(w) + @ : frw.

O'y\/l—p)zcy o-x\/I—piy
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and deduce that the distribution of V = max{X, Y} is

U— My — Px(;v"\ V= u,) U= fy— 2z Y(“_”y)
fr(v) =@ = Jx(0)+ @ Jy(v)
o,\/1-p% o1 -r

1 _1 < hx )2
where fy(z) = e 2\ o Jr@ =
27 o,V2r
cumulative standard normal distribution function (cdf).

Solution: From Problems 1.2.2.13 (page 27) and 1.2.2.14 (page 28) we can show that
X ~ Ny, 00), Y ~ Ny, 03), Cov(X, Y) = p, 6,0, such that p, € (—1,1).
For U = min{X, Y} then by definition the cumulative distribution function (cdf) of U is

P(U <u)=Pmin{X,Y} < u)
=1—-P@min{X,Y} > u)
=1-PX>uY>u.

To derive the probability density function (pdf) of U we have
Jo(u) = —P(U <u)

=—i[FD(X>u Y >u)

du/x“[”2ﬂ06 l—pxy

2 _ - 2
1 X—py X—H Y—Hy Y—Hy
B 2(1—p2, ) [( (’xl ) _2pxy( "xX ) ( oy >+< Oy ) :|
X e o : ’ dydx

= g(u) + h(u)

where

u=py \? u—piy _— Yty 2
g(“)‘/m . e‘m[( e om0 ) (52 )+ (52 ] dy
Y= 2ro.0 \/1_—

and

iy g \ f =ty ey 2
h(u):/oo IS e_2<1—1ﬂ§y) [( o ) sz< s )(?M))Jr(o_:l) ]dx.
=U oo Gy\/ 1- p/%y



1.2.2 Discrete and Continuous Random Variables

31

By focusing on

2
1 u—pry \? u—piy Y=Hy y—Hy
/DO L oy [(?) 20 (3 ><T>+<T> ] dy
y=u 27‘[0’x6y\ /11— p)%y

. 2 )
" _— Ty { |i<ﬂ>_p o ] i s (1_p2 )}
—p2 oy Y\ oy oy Xy
[ el
= 2ro0pn /1 - p)zcy

2
u—py \2 oo 1 Yoty \ _ (umpy

= 1 E_%< 5?‘) / ; e 2(|—p%y) [( Oy > pxy( Ox )]

o, V2r y=u oy [27x(1 — pgy)

y_l'{y u—p,
_pxy
O'y GX

l—p)%y

g(u)

and letting w =

we have

1 J(m)z © 1 1
gu) = e 2\ o / gy (M) e 2 dw
o, \V2rn =% \V2rx

1- Py

—t+ 1y, + 22— )
X

/ 2
O'y - pxy

In a similar vein we can also show

o I R R e AN A
h(u)=/ R [( et) 2o (5 >< i >+< % ) ]dx
= 2n6.0,4/1 = piy

2
1 [ u=py %
= 1 e_i (U_v)> / M;A_I’xv(u;ﬂy ) 1 e—%uﬂ dw
o\ 21 w=—>> "\ Y/ \/Z
\V2r -

=

Sx(u).

I_ny
PxyOx
U+ p+ —— W= py)
y
=0 Sfy(u).
o/1— pfy
Therefore,
—u+uy+%(u—ﬂx) —u+ﬂx+p"t’,—'f"(u—ﬂy)
fou) = . f) + @ - Fy(u).

O-Y\/l_p)zfy O-xvl_p)zcy
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As for the case V = max{X, Y}, then by definition the cdf of V is

P(V <v)y=P(@max{X,Y} <v)
=PX<v,Y<v).

The pdf of V is
fy(v) = —[P’(V <v)

=i|p(x<uy<u)

L —
dU © 2ro, o, 1 — px)
— ity — iy 2
sl e,

2
- 1 oo \? Ly (oo Y (2 ) (M
/y v 1 . 2(1_,}%}') [( ox ) 2/Ixy( oy )( o >+< oy > ] dy
~* 2rmo.0,4/1 - p]%y
2
=0 o [ X— iy 2_2,;_, X—Hy <ﬂ)+<ﬂ>]
2 oy Y\ oy 0, oy
e,
® 2ro0p4/1 - pxy

Following the same steps as described above we can write

xyCy PxyOx
U—M),—%(U—/lx) v—p— —= (U—M})

- (@) + @ fy(v).

O'y\/l—p)%y Uﬂll—piy

16. Bivariate Standard Normal Distribution. Let X ~ #(0,1)and Y ~ /(0 1) be jointly nor-
mally distributed with correlation coefficient p,, € (—1,1) where the joint cumulative
distribution function is

fy() =

]

x2-2 PxyXy+y

2
b ¢ 1 B % ( lfp2 | >
®(a, f, p,,) = — o > dudy.
oS 07 J1- 2

By using the change of variables Y = p, X + /1 — p)%yZ, Z ~ N0,1),X L Z show that

B — pyx

\1-0%

@@, p,,) = / Fr)® dx



1.2.2 Discrete and Continuous Random Variables 33

_12 . . e .
e 2" and ®(-) is the cumulative distribution function of a standard

where fy(x) =
2r
normal.

Finally, deduce that ®(a, f, p,,) + ®(a, =, —p,,) = D(a).

d
Solution: Let y = p, . x+4/1 - p)%yz. Differentiating y with respect to z we have d_y =

v4
\/1- p)zcy, and hence

1 .xz—Zprxy+y2
2 l_p%v
D(a, B, pyy) e ~« dx dy

L=
S0y 1= 3,

p- PxyX*

[

1 [XZ—Zprx(p”x+\/ I—P)%yf)'*'(ﬂxyx-#\/ l—/J)zcyZ)2
-3 l_p%
y 2
X e \/1—py dxdz
ﬂ*ﬂxyx

z/\/lfp,%)- /a L e—%(x2+zz)dx dz
—o —wo 2T

p- PxyX

(14
=/ L eéz/\/”” e_izdzdx
-0 \/ 21
B—»p
/ fr@ TP
— Pxy
Finally,
« P = pyx
(I)((Z, ﬂ’ pxy) + (I)(a, _ﬁa _pxy) = fX(x)(D y— dx
—o0 1— p)z{y

« -+ py
+/fX(x)CDde

\/ 1 _p)zcy

a ﬂ_p 7x _ﬂ+p X
— fr@| @ Y |yl —2=
e l_p,%y 1_p)2cy
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= / Jx(x) dx

= d(a)

— PyX Lo =B+ pyx

p
\ll_p,%y \ll_p)zcy

N.B. Similarly we can also show that

since ®

a =Py
V 1 - pjzcy

¢~ and D(a, f, pyy) + P(=a, B, —p,,) = D).

B
d)(a’ ﬂ’ pxy) = / fY(Y)‘D dy

where fy(y) =

2r
O

17. Bivariate Normal Distribution Property. Let X and Y be jointly normally distributed with
means y,, j,, variances o2, avz. and correlation coefficient p,, € (=1, 1) such that the joint
density function is

) - N2
_ 1 YHe )\ o X—Hy Y—Hy T Y—Hy
1 v 2(1-p3,) [( oy ) /’xy( oy )( oy ) oy .
2
2rooyq/1 = pyy

fXY(x9 y) =

Show that

My — Hy +0,(0, — pyy0y)

2 2
\/O‘x - 2p,,0,0,+ 0y

1
E [max{e* —¢",0}] = MR D

He = Hy = 0,(0, = py,0y)

2 2
\/ax - 2p,,0,0, + 0y

12
—MT%

Solution: By definition

E [max{ex - eY,O}] = />‘=°° /x_oo(e" — &) fyy(x,y) dxdy

y=00 x=00 y=00 =00
where I = / e fyy(x,y) dxdy and I, = / / Efxy(x,y) dxdy.
y X;

=—00 Jx=y y=—00 =y
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0

y= X=00
For the case /|, = / / " fyy(x,y) dxdy we have
y==co Jx=y

[Se]

o0 pameo L [y, () () ()
Il =/y /X e* ¢ 2(|_,,%y) [( ox ) 2ny< O >< 5 >+< o > ]
YETR S 276,04/ 1 - 2,
— 1 y—n 2
/y—oo 1 ‘E(Q(V)
= e y
y=—= o, \/2x
1 Y—H- 2
b ()
x / Y [X <” RN dx| dy
= gq/27(1 - pd)
2
(Y
=/ e 2\ o [/ e“g(x,y) dx] dy
y==® 0O 2 x=y
y
1 Y—Hy 2
1 _2(1—p2 ) [X_ <”x+px)'5x<T>)] . . .
where g(x,y) = ———— ¢ Xy ; which is the probability

o/ 2n(1 — p)zry)
y—u
density function of 4’ [yx + Py 0y < y) (1 - pxy)zaf] . Thus, from Problem 1.2.2.7
: -
y

(page 18) we can deduce

= y—p 1
e'glx,y)dx=e Y
X=y

y—ty
Myt PryOyx <T)> + - /)Xy)ZO')% -y

o/ 1 —p)zcy

X ®©

Thus, we can write

1
I = Hrta(=n)o]

Y—Hy
Hy + PO, <—6 . ) +( - ny)zd)% -y
y
X ® dy

o/1 —p)zcy
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2
| o [Y= 1 _1<”“‘>""X.V"X">'>
:e”x+fax/ e 2 oy
y== ¢ /21

Y—Hy
Hy F PryO <—6 : ) +(1- /’xy)z"»% _
)
X @ dy.

o1/ 1 —pfy

Letu = then from the change of variables
Oy
L2 [1E® e | e —uy + oo —py0y) —ulo, - pyo,)
I, = 3 1 it T T O T POy y T PO
= Y2z Oy V 1- p)%v
llx f‘v+5x(ax p\,)rr‘) u({fy—p”zrx)
= e”"+ o e\ /iy L e_%(uzﬂz) dvdu.
u=—co J v=—c0 2z
u(oy, = pry0y)
; _ ) 2 _ 2 2
By setting w = v + —2 and 6 = oy —2p, 0,0, + 0y,
o/ 1—py
Il == e” +30

Hx—Hy+ox(ox— l’xv"y)

u=co w=
T
u=—oco J w=— 2z

(
_% w2—2uw _OyTPxyOx Oy~ Px)“x) u
ox4/ 1 /’w ‘T)L(l ﬂ)L)
X e dwdu
1
— e”t"'ia

_ Hx—Hy+ox(ox—pxyoy)

u=co w=
X / / xy 1%y L
u=—co J w=—oco0 2z

o2 w? ox(0y—pxyoy) lfp'%), 5
5 > —2uw 5 +u
ox(l-p xy) o2 o
2

dwdu.
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Finally, by setting w = — L

o

2
Oxy\/ I Pxy
Hx—Hy+0x(0x—PxyOy)

L 1 ~ s @ 2 )
——— x dwdu
wm—oo J =0

274/ 1 — 5)20,

_ Gy - pxyo-x
where p,, = .

Therefore,

[ N S N
I] =€”"‘+26xq) l ) i R ,00,pr

2 2
\/O’X —2p,,0,0, + 0y

\/ - 2p,,0,0, +0'

12
= eﬂ"+26x(b

Yii a 1 _1( 2 2ﬂX.\+.v2>
where ®(a, g, p) = / / — ¢’ 1= dxdy is the cumulative distri-
o 27\ 1 —
bution function of a standard bivariate normal.

y=00
Using similar steps for the case I, = / / e fxy(x,y) dxdy we have
y=— xX=

2 - - 2
1 X—Hy X—py Y—Hy Y=Hy
X=00 7 - -2, — |+ —
]2=/ / - ¢ 21-p3y) [( o ) pxy( ox >< % ) ( oy ) ]
y =y

2

2ro,0) l—pxy

2
y=c0 B
_ / ey e 2( oy
y

o o2

2
= __ 1 _ YHy
8 /x Y ; . 2(1—p)2(y) [x (Mx+/’)qv0'x< oy >)] dx dy
X:

= o, Zﬂ(l—p%y)

y=00 v _1 <y_”." >2 x=00
= / AN [ / g(x,y) dx] d
y=—c g,y 2 x=y
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where g(x,y) = !

0/ 27(1 = py)

1
5 [x_ <ﬂx+ﬂxy0'x(
Piy)

T 2a-
e (

y=hy
Oy

’ >>] which is the probability

. . YT Hy 22
density function of #" |y, + pyyo, (| —— ), (1 — py)705 |-
O'y

Thus,

2
()
2 oy /
X=y

(

X = Hy = PxyOyx o

X=00

2

Y= Hy
X=Hx—PxyOx oy

oor 1,2
Vi dx | dy

_1
| 2

Ox \/ 27[(1 - p)zc_v)

e

V—Hy

‘)

and by setting z =

o4/ 1 —p)zcy

[ A=
= e -
y=— ¢,\/2x
_ YT Hy
By setting z = Y therefore
o
¥

1

1 > =00
12 = e'u}'+50-)' / _—
{=—

Vor

.

and substituting u =7 — oy

2 [ 1 _1p
[2:e”y+20'y e 2V d
U=—00 2
1, [u=e 1,
= MT2% ! e 2
u=—co \/27

;

bl

/ - n) 7 dz|
Y=Hx—PxyOx y; 2 e 27 az| ay
7= Y ( Y > 2 pa
oy l—p%y
y—Hy
) it ()
(o} dy.
oy/1-— p)zcy

My — /’ty - E(Uy - pxydx)

o/1— p)%y

3G

My — My - (I/[ + O-y)(o-y - pxyax)
o/l - p)%y
Hy — Hy - O’y(ay - pxydx) u((fy - pxyo-x) d
- u
o, l—pi\, o/ 1 —p)zcy
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39

le Hy—oy(oy— PV)U)L) u(oy—pyyoyx)

[ Iy 2 i
=M% VAN m/1-iy L 3 o,
ve—oo 2n

u(oy, = pyy0,)

Using the same steps as described before, we let w = v + ———— and ¢

1_/7,%)1

an,

2
0,0, + oy so that
I _ eu‘+ O'

Hx—Hy—0y (D') —Pxyox)

=00 w=
R
u=—co J w=— 2r

_% Wl 2uw Oy —PxyOx < (G}Z(i’xvox) )uz
1— !7
X e V10 Y dwdu
=00
= e”}+ 62 /
u=—00
w= Hx— ﬂ\*o'\(ax /’xv"r)
X oxy/ 1= ﬂ’f,v L
2z
B 1 5 ax(ay—pxya;> 1=y »
2 ax(l /’xv) o
X e ” (' ”0) dwdu.
. — w
By setting w = ——m,
o

o/ 1 —p)zcy

Hx—Hy—0y(0y—pxy0Ox)
| 5 U=00 w—% 1 —_2 (w 2px\uw+u)
I =e”y+76-"‘/ / — ¢ W)
= =— / -2
u=—0co0 J w=—o0 274/ 1 = ny

Oy = PyyOy

(o2

where Exy = , thus

152 Hy — Hy — O-v(o-y - pxyo-x) —
12=e’4y+26)‘(1) . 500, Py

2 2
\/ax - 2p,,0,0, + 0y

Hy — luy - O-y(o-y - pxyG)c)

2 2
\/ax - 2p,,0,0, + 0y

1.2
= e”y+26y(1)

:UX—

dwdu
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By substituting 7, and I, back into E[max{e* — e¥,0}] we have

Uy — Hy +0,(0, — pyy0,)

E [max {ex - ey,O}] = e”~”+%axzdb
\/0',% —2p,,0,0, + 0')2,

1 o | #y— py—0,(0, = p,0,)
—e”y+§6}'q> X Y y Ty XY~y

2 2
\/Gx —2p,,0,0, + 0y
]

18. Markov’s Inequality. Let X be a non-negative random variable with mean u. For a > 0,

19.

show that
PX>a) <k
a
Solution: Since @ > 0, we can write
1 X>a

T =
(Xza}) 0 otherwise

and since X > 0, we can deduce that

Taking expectations

and since E(Ijysy)=1"PX20)+0-PX<a)=P(X>a) and EX)=p,
we have

PX>a) <X
a

N.B. Alternatively, we can also show the result as

[E(X):/oo(l—Fx(u)) duz/a(l—FX(u)) du>a (1= F(a))
0 0

EX
and hence it follows that P(X > a) = 1 — F (a) < L
a

O
Chebyshev’s Inequality. Let X be a random variable with mean y and variance 2. Then
for k > 0, show that )
(o2
PAX —ul =2k < a2

Solution: Take note that | X — u| > kif and only if (X — u)> > k2. Because (X — u)* > 0,
and by applying Markov’s inequality (see Problem 1.2.2.18, page 40) we have

E[X-w’] o

P(X—p’2k)< 5 =
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and hence the above inequality is equivalent to

2
(o2
PUX —ul 2 k) < 2

1.2.3 Properties of Expectations

1. Show that if X is a random variable taking non-negative values then

Z PX > x) if X is a discrete random variable

E (X) — x=0

o0
/ P(X > x) dx if X is a continuous random variable.
0

Solution: We first show the result when X takes non-negative integer values only. By
definition

E(X) = ) yP(X =)
y=0

=Y Y rx=y

y=0 x=0

=) D PX=y)

x=0 y=x+1
(o)
= Z PX > x).
x=0
For the case when X is a continuous random variable taking non-negative values we have

EX) = /0 Yx () dy

- [ {/Oyfx(y) dx} dy
_ /Om {/xmfm) dy}dx

=/ P(X > x) dx.
0

O
2. Hélder’s Inequality. Let a, § > 0 and for p, g > 1 such that 1 + 1 = 1 show that the fol-
P 49

lowing inequality:

P
af < —+ —
4 q
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holds. Finally, if X and Y are a pair of jointly continuous variables, show that
E(IXY]) < (E(XPD}/P(E(YD)1/e.

Solution: The inequality certainly holds for « = 0 and f = 0. Let a = ¢*/7 and § = /4
where x,y € R. By substituting A = 1/pand 1 — A =1/gq,

PHI=AY < 26X 4 (1 = A)e

holds true since the exponential function is a convex function and hence

P q
af < L + ﬁ—
q
By setting
I po ¥
{E(XPY/P° {E(Ya])}i/a
hence
XY o )¢

(EQXPDYP{E(IYaD)/e = pE(XP]) — qE(IY4])
Taking expectations we obtain

E(IXY]) < (E(IXPD}/P{E (Y]}
O

. Minkowski’s Inequality. Let X and Y be a pair of jointly continuous variables, show that

if p > 1 then
(E(IX+YP)7 < (EQXPDYP + {(E(¥P )} /7.

Solution: Since E(|X + Y|) < E(|X]|) + E(|Y]) and using Holder’s inequality we can
write

E(X+YP)=E(IX+YIX+YP")
<SE(IXIX+ YY) +E(IYIX + Y[~
<{EQXPDYPLE(1X + Y|P D9) Y9 1 {E(YP DY P(E (IX + Y|@~D4)}1/a
={E(X"DYPLEX + YD)} + (E(YPDY/PLE (X + Y|)} /e

11
since — + — = 1.

p
Dividing the inequality by {E (|X + Y|?)}'/4 we get

(E(IX+YPP) )P < {EXPDI/P + {E(YP}P.
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4. Change of Measure. Let Q be a probability space and let ° and Q be two probability
measures on Q. Let Z(w) be the Radon—Nikodym derivative defined as

_ 2w

2@ = 50

such that P(Z > 0) = 1. By denoting E” and E? as expectations under the measure P and
Q, respectively, show that for any random variable X,

Qyy _ P Py _ 0 (X
EQX) = E*(XZ), EP(X)=E (z)

Solution: By definition

EAX) = ) X(@)Q0) = ) X(@)Z(@)P(@) = E*(XZ).

weQR weQ
Similarly
E°0 = Y X@P@) = Y X@ @) = E2 <§>
we weQ Z(CO) z

]

5. Conditional Probability. Let (2, #, P) be a probability space and let & be a sub-c-algebra
of # (i.e., sets in & are also in ). If 1, is an indicator random variable for an event A

defined as
1 fweA
I =
4(@) {O otherwise

show that
E(,|2) = PA|9).

Solution: Since E(1l,|€) is & measurable we need to show that the following partial
averaging property:

/[E(]IA|?) le:/]IA d[P:/[P’(AlS@) dpP
B B B

is satisfied for B € &. Setting

1 fweB 1 fweANnB
Ix(w) = and 1 w) =
5(®) {0 otherwise ans(@) {0 otherwise

and expanding / P(A|Z€) dP we have
B

/P(A|?)dP=[P’(AnB)=/]IAnB le:/]IA-]IB le:/]IA dp.
B Q Q B
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Since E(14|€) is &€ measurable we have

/[E(]IAlf) dP = /11A dp
B B

and hence E(I4|9) = P(A|9).
O

. Linearity. Let (Q, %, P) be a probability space and let & be a sub-c-algebra of & (i.e., sets

in & are also in &). If X, X,, ..., X, are integrable random variables and ¢, ¢,, ... ,c
are constants, show that

n

n“n

Solution: Given E (¢, X, + c;,X; + ... +¢,X,|%) is € measurable, and for any A € &,

/[E (X, + Xy + ... +¢,X,|%) dP = /(chl + X, + ...+, X,) dP
A A

:cl/Xl dI]:D+C2/X2 dP
A A
+ ... +cn/X,l dP.
A

Since /x dp = /[E(XW) dP for i=1,2, ... ,n therefore E (¢ X; + X, + ... +

X,18) = c|EX||9) + EX|9) + ... +¢,E(X,]9).
O

. Positivity. Let (Q, #, P) be a probability space and let & be a sub-c-algebra of # (i.e., sets

in @ are also in ). If X is an integrable random variable such that X > 0 almost surely
then show that

EX|©) >0
almost surely.

Solution: Let A = {w € Q : E(X|%) < 0} and since E(X|¥) is € measurable therefore
A € &. Thus, from the partial averaging property we have

/[E(Xl?) dP = /X dP.
A A

Since X > 0 almost surely therefore /X dP > 0 but /[E(X|?) dP < 0, which is a con-

A A
tradiction. Thus, [P(A) = 0, which implies E(X|€) > 0 almost surely.
O

. Monotonicity. Let (Q, &, P) be a probability space and let & be a sub-c-algebra of F (i.e.,

sets in & are also in &). If X and Y are integrable random variables such that X < Y almost
surely then show that
EX|%) <EXY|9).
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10.

Solution: Since E(X — Y|¥) is € measurable, for A € € we can write
/[E(X—Y|?) dP = /(X—Y) dP
A A
and since X < Y, from Problem 1.2.3.7 (page 44) we can deduce that
/[E(X—Y|?) dP <0
A

and hence
EX-Y|¥)<O0.

Using the linearity of conditional expectation (see Problem 1.2.3.6, page 44)
EX-YI9)=EX|9)-EX|¥)<0

and therefore E(X|%) < E(Y|9).
m|

Computing Expectations by Conditioning. Let (Q, %, P) be a probability space and let &
be a sub-c-algebra of # (i.e., sets in & are also in &). Show that

E[E(X|9)] = E(X).

Solution: From the partial averaging property we have, for A € &,

/[E(X|?) dP = /X dpP
A A

E[L, - EX|¥)] = E(I, - X)

or

where

0 otherwise

1 foeA
IIA(CO)={

is a & measurable random variable. By setting A = Q we obtain E[E(X|€)] = E(X).
m}

Taking Out What is Known. Let (Q,%,[P) be a probability space and let & be a
sub-c-algebra of F (i.e., sets in & are also in &%). If X and Y are integrable random
variables and if X is & measurable show that

E(XXY|%) = X - E(Y|9).
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11.

12.

Solution: Since X and E(Y|€) are € measurable therefore X - E(Y|¥) is also & measur-
able and it satisfies the first property of conditional expectation. By calculating the partial
averaging of X - E(Y|%) over a set A € & and by defining

1 ifweA
IIA(w)={

0 otherwise

such that 1, is a & measurable random variable we have

/X -E(Y|%) dP = E[1, - XE(Y|%)]
A

=E[1, - XY]

=/XY dP.
A

Thus, X -E(Y|9) satisfies the partial averaging property by setting / XY dP =
A

/[E(XYI?) dP. Therefore, E(XY|%) = X - E(Y|9).

A
O

Tower Property. Let (Q, #, [P) be a probability space and let & be a sub-c-algebra of &
(i.e., sets in & are also in &). If # is a sub-c-algebra of & (i.e., sets in Z are also in &)
and X is an integrable random variable, show that

E[E X|9)|#] = EX|Z).
Solution: For an integrable random variable Y, by definition we know that E(Y|%) is

Z measurable, and hence by setting ¥ = E (X|%), and for A € 7, the partial averaging
property of E[E (X|2)|#] is

/[E[[E(X|<y)|%] dP = /[E(Xl?) dP.
A A

Since A € # and # is a sub-c-algebra of &, A € G. Therefore,

/[E(X|%) dP = /x dP = /[E(Xl?) dp.
A A A

This shows that E(X|#’) satisfies the partial averaging property of E[E (X|€)|#], and
hence E[E (X|€)|#] = E(X|%).
O

Measurability. Let (Q, &, P) be a probability space and let €be a sub-c-algebra of & (i.e.,
sets in & are also in &). If the random variable X is & measurable then show that

E(XX|%) = X.
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Solution: From the partial averaging property, for A € Q,

/[E(X|?) dP = /x dP
A A

and if X is &€ measurable then it satisfies
EX|%) =X.
O

13. Independence. Let (Q, F, P) be a probability space and let & be a sub-c-algebra of F (i.e.,
sets in & are also in &). If X = 1 such that

1 fweB
%w={

0 otherwise
and I, is independent of & show that
EX|%) = EX).

Solution: Since E(X) is non-random then E(X) is & measurable. Therefore, we now need
to check that the following partial averaging property:

/[E(X) dP = /X dP = /[E(leé’) dP
A A A

is satisfied forA € @.

Let X = I such that
0 otherwise

1 fwoeB
113(60)={

and the random variable 1I; is independent of &. In addition, we also define

1 fweA
mw={

0 otherwise

where 1, is & measurable. For all A € & we have

/X dP = /I[B dP = /P(B) dP = P(A)P(B).
A A A

Furthermore, since the sets A and B are independent we can also write

/Xle:/]IB dP:/]IA]IB le:/]IAnB dP = P(AN B)
A A Q Q
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14.

where

I (@) 1 fweAnB
W) =
AnB 0 otherwise

and hence

/ X dP = P(A N B) = P(A)P(B) = P(A)E(X) = / E(X) dP.
A A

Thus, we have E(X|€) = E(X).
]

Conditional Jensen’s Inequality. Let (Q, #, P) be a probability space and let & be a
sub-c-algebra of # (i.e., sets in & are also in &). If @ : R — R is a convex function and
X is an integrable random variable show that

Elp(X)]€] = o[EX|9)].

Deduce that if X is independent of & then the above inequality becomes
Ele(X)] = @[EX)].
Solution: Given that ¢ is a convex function,
@) 2 () + @' (M = x).
By setting x = X and y = E(X|%) we have
P(X) 2 [EX|D)] + ¢'[EX|D]EX|Z) — X]

and taking conditional expectations,

ElpX)|¥] = o[EX|Z)].

If X is independent of & then from Problem 1.2.3.13 (page 47) we can set y = E(X|€) =
E(X). Using the same steps as described above we have

@(X) 2 P[ECO] + @' [EX)IEX) — X]
and taking expectations we finally have

Ele(X)] = @[EX)].
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15. Let (Q, # P) be a probability space and let & be a sub-c-algebra of F (i.e., sets in & are
also in &). If X is an integrable random variable and E(X?) < oo show that

E [EX|9)?] <E(X?).

Solution: From the conditional Jensen’s inequality (see Problem 1.2.3.14, page 48) we
set @(x) = x> which is a convex function. By substituting x = E (X|€) we have

EX|%)* <E(X*9).
Taking expectations
E [EX19)] <E [E (X?9)]
and from the tower property (see Problem 1.2.3.11, page 46)
E[E(X*|9)] =E (X?).

Thus, E [E(X|%)°] < E (X?).






