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Spatial Simulation Models:
What? Why? How?

It is easy to see building and using models as a rather specialised process,
but models are not mysterious or unusual things. We routinely use models in
everyday life without giving them much thought, if any at all. Consider, for
example, the word ‘tree’. We may not exactly have a ‘picture in our heads’
when we use the word, but we could certainly oblige if we were asked to
draw a ‘tree’. The word is associated with some particular characteristics,
and we all have some notion of the intended meaning when it is used. In
effect, everyday language models the world, using concrete nouns, as a wide
variety of categories of thing: cats, dogs, buses, trains, chairs, toothbrushes
and so on. We do this because if we did not, the world would become an
unfathomable mess of sensory inputs that would have to be continually and
constantly untangled in order to accomplish even the most trivial tasks.

If you are reading this book, then you are already well-versed in using
models in the language that you use everyday. We define scientific models as
simplified representations of the world that are deliberately developed with
the particular purpose of exploring aspects of the world around us. We are
particularly concerned with spatial simulation models of real world systems
and phenomena. Our aim in this book is to help you become as comfortable
with consciously building and using such models as you are with the models
you use in everyday language and life.

This aim requires us to address some basic questions about simula-
tion models:

• What are they?
• Why do we need them and use them?
• How can (or should) we use them?
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2 CH 1 SPATIAL SIMULATION MODELS: WHAT? WHY? HOW?

It is clearly important in a book about simulation models and modelling to
address these questions at the outset, and that is the purpose of this chapter.

The views we espouse are not held by every scientist or researcher who uses
models in their work. In particular, we see models as primarily exploratory
or heuristic learning tools, which we can use to clarify our thinking about the
world, and to prompt further questions and further exploration. This view is
somewhat removed from a more traditional perspective that has tended to see
models as primarily predictive tools, although there is increasing realisation
of the power of models as heuristic devices. As we will explain, our view
is in large measure a product of the types of system and types of problem
encountered in the social and environmental sciences. Nevertheless, as should
become clear, this perspective is one that has relevance to simulation models
as they are used across all the sciences, and becomes especially important
when scientific models are used, as increasingly they are, to inform critical
decisions in the policy arena.

After dealing with these foundational issues, we briefly introduce probabil-
ity distributions. Our goal is to show that highly abstract models, which make
no claim to realism, may nevertheless still be useful. It is also instructive to
realise that probability distributions are actually models of a specific kind.
Understanding the strengths and weaknesses of such models makes it easier
to appreciate the role of more detailed models that take realism seriously and
also the costs borne by this increased realism. Finally, we end the chapter by
making a case for the more complicated dynamic, spatial simulation models
that are the primary focus of this book.

1.1 What are simulation models?
You may already have noticed that we are using the word ‘model’ a great
deal more than the word ‘simulation’. The reason for this will become clear
shortly, but in essence it is because models are a more generic concept
than simulations. We consider the specific notion of a simulation model in
Section 1.1.5, but focus for now on what models are.

The term model is a difficult one to pin down. For many, the most familiar
use of the word is probably with reference to architectural or engineering
models of a new building or product design. Until relatively recently, most
such models were three-dimensional representations constructed from paper,
wood, clay or some other material, and they allowed the designer to explore
the possibilities of a proposed new building or product before the expensive
business of creating the real thing began. Such ‘design models’ are often built
to scale, necessitating simplification of the full-size object so that the overall
effect can be appreciated without the finer details becoming too distracting.
Contemporary designers of all kinds generally build not only physical models
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Figure 1.1 Schematic illustration of the concept of models. Models simplify the real world,
enabling manipulation, exploration and experimentation, from which we aim to learn about the
real world. Photograph from authors’ collection.

but computer models, using computer-aided design (CAD) software to create
virtual models that can be manipulated and explored interactively on screen.
Design models then, are simplified representations of real objects that are used
to improve our understanding of the things they represent. The underlying
idea of model building of this kind is shown in Figure 1.1. An important idea
is that more than one model is likely to be useful.

Scientific models perform a similar function—and follow the same general
logic of Figure 1.1. Therefore, for our purposes, we define a scientific model as

a simplified representation of a system under study, which can be used to explore,
to understand better or to predict the behaviour of the system it represents

The key term in this definition is ‘simplified’. In most scientific studies
there are many details of the phenomena at hand that are irrelevant
from the particular perspective under consideration. When we are tackling
the transport problems of a city, we focus on aspects that matter, such as the
relative allocation of resources for building roads relative to those for public
transport infrastructure, the connectivity of the network and how to convince
more people to car-pool. We do not concern ourselves with the colours of
the cars, the logos on the buses or the upholstery on the subway seats. At the
level at which we are approaching the system under study some components
matter and others are irrelevant and may be safely ignored. The process of
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model development demands that we simplify from the often bewildering
complexity of the real world by deciding what matters (and what does not)
in the context of the current investigation. An important consequence of this
simplification process, as George Box succinctly points out, is that, ‘[m]odels,
of course, are never true’ (Box, 1979, page 2). Luckily, as Box goes on to say,
‘it is only necessary that they be useful’.

1.1.1 Conceptual models
The first step in any modelling exercise is the development of a conceptual
model. All scientific models are conceptual models, and a particular concep-
tual model can be given more concrete expression as any of the distinct types
discussed below. Thus, developing a conceptual model is fundamental to the
development of any scientific model. Approaching the phenomenon under
study from a particular theoretical perspective will bring a variety of abstract
concepts into play, and these will inform how the system is broken down into
its constituent elements in systems analysis.

In simple cases, a conceptual model might be expressible in words (‘if
parking costs more, fewer people will drive’), but usually things are more
complicated and we need to consider breaking the phenomenon down into
simpler elements. Systems analysis is a method by which we simplify a phe-
nomenon of interest by systematically breaking it down into more manageable
elements to develop a conceptual model (see Figure 1.2). A critical issue is the
desired level of detail. In the case shown, depending on our interests, a forest
might be simplified or abstracted to a single value, its total biomass. A more
detailed model might break this down into the biomass stored in trees and
other plant species, with a single submodel representing how both categories
function, the difference between trees and other plants being represented by
differences in attribute values. A still more detailed analysis might consider
individual species and develop submodels for each of them. The most appro-
priate model representation is not predetermined and will depend on the
goals of the model-building exercise. In this case, a focus on carbon budgets
may mean that the high-level ‘biomass only’ model is most appropriate. On
the other hand, if we are concerned about the fate of a particular plant species
faced with competition from invasive weeds, then a more detailed model may
be required.

In the systems analysis process, we typically break a real-world phenomenon
or system down into general elements, as follows:

Components are the distinct parts or entities that make up the system. While
it is easy to say that a phenomenon can be broken down into components,
this step is critical and typically difficult. The components chosen will have
an impact on the resulting model’s behaviour so that these basic decisions
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Figure 1.2 The systems analysis process. A real-world phenomenon is broken down into
components, their attributes, how they interact with one another and how they change via
process relationships. A particular phenomenon might be represented and analysed in a variety
of ways, with the desired level of realism or, conversely, abstraction a key issue.

are of fundamental importance to how adequate a given representation will
be. An important assumption of the systems approach is that the behaviour
of the components in isolation is easier to understand than that of the
system as a whole.

State variables are individual component or whole-system level measures or
attributes that enable us to describe the overall condition of the system at
a particular point in space or moment in time. Total forest biomass might
be such a variable in Figure 1.2.

Processes are the mechanisms by which the system and its components make
the transition from one state to another over time. Processes dictate how
the values of the involved components’ state variables change over time.

Interactions between the system components. In most systems not all com-
ponents interact with each other, and how component interactions are
organised is an important aspect of a system’s structure. In many of the
systems which interest us in this book, interactions are more likely and/or
stronger between components that are near one another in space, making
a spatially explicit model desirable.

Thus, a conceptual model of a system will consist of components, state
variables, processes and interactions, and taken together these provide a
simplified description of the phenomenon that the model represents.
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A common way to represent a model is using ‘box and arrow’ diagrams, a
format that will be familiar from numerous textbooks. Interactions between
system components are represented as arrows linking boxes. We might add
+ or − signs to arrows to show whether the relationship between two
components is positive or negative (as has been done in Figure 1.2). It is then
only a short step from the conceptual model to a mathematical model where
component states are represented by variables and the relationships between
them by mathematical equations. As with design models, the advent of widely
available and cheap computing has seen the migration of such mathematical
models onto computers. The relationships and equations governing the
behaviour of a model are captured in a computer model or simulation model.
The simulation model can then be used to explore how the system changes
when assumptions about how it works or the conditions in which it is set
are altered. In practice the most appropriate way to represent a system will
depend on the purpose of the modelling activity, and so there are many
different model types. Although this book’s focus is on spatially explicit
mathematical and simulation models, it is important to recognise that many
different approaches to modelling are possible. We consider a few of these in
more detail in the sections that follow.

As we have already suggested, conceptual models can be represented in a
variety of ways. Simple models may be described in words perfectly satisfacto-
rily. Newton’s three laws of motion provide a good example. The third law, for
example, can be stated as: ‘for every action there is an equal and opposite reac-
tion’. Even very complicated models can be described in words, although their
interpretation may then become problematic, and it is debatable how sensible
it is for such models to remain as solely verbal descriptions. Nevertheless, in
many areas of the social sciences, verbal descriptions remain the primary mode
of representation, and extremely elaborate conceptual models are routinely
presented in words alone (give or take the occasional diagram), at book length.
The work of political economists such as Karl Marx and Adam Smith provides
good examples. Partly as a consequence, the interpretation of these theories
remains in dispute, although it is important to acknowledge that the subse-
quent mathematisation of economic theory through the twentieth century
has not greatly reduced the interpretative difficulties: however we represent
them, complicated models remain complicated and open to interpretation.

Even so, verbal descriptions of complicated conceptual models have evident
limitations. As a result many conceptual models are presented in graphical
form, with accompanying explanation. As we have noted, it is a short step
from graphical representation to the development of mathematical models,
and the success since Newton’s time of those physical sciences which adopted
mathematical modelling as a tool has been a persuasive argument in other
disciplines for the adoption of the approach.
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1.1.2 Physical models
We began by briefly touching on the three-dimensional scale models often
used by design professionals. Physical or hardware models are also occasion-
ally used in the sciences, and in engineering. Wave tanks can be used to
simulate coastal erosion and wind tunnels to investigate turbulence around
aerofoils or the aerodynamics of vehicles. Hardware models can provide
guidance about a system’s behaviour when that system is not sufficiently
understood for mathematical or computational models to provide reliable
guidance. Careful scaling of the model system’s properties or extrapolation
from the model to the target system is necessary for this approach to work
well. For example, the grain size of sand in a hardware model of a beach must
be carefully considered in combination with the wave heights and speeds if
the results from a flume are to be applicable to real beaches. Rice et al. (2010)
provide a good summary of the potential value of this approach in the specific
context of river science, where they show how it can be used to relate stream
hydraulics to stream ecology.

A highly specific kind of ‘hardware’ model is the use of laboratory animals
in medical research, where mice or rats or fruit flies are considered ‘model’
organisms for aspects of animal biology in general. Similar to flumes or wind
tunnels, this use of models recognises that our ability to mathematically
model whole organisms remains limited at present, and for the foreseeable
future, and these models provide an alternative. Even setting ethical issues to
one side, the difficulties of generalising from findings based on such models
are apparent.

An interesting hardware model of a different kind is provided by the
hydraulic model of a national economy built by the economist Bill Phillips
while he was a student at the London School of Economics (Fortune Staff,
1952). The so-called MONIAC (MOnetary National Income Analogue Com-
puter) used a system of reservoirs and pipes to represent flows of money
circulating in a national economy. Flow rates in different pipes in the system
were adjusted to represent factors such as the rate of income tax. Several
MONIAC machines were built and working examples are maintained by
the Science Museum in London and by the Reserve Bank of New Zealand
(Phillips was a New Zealander). While this may seem a strange way to model
an economy, Phillips would have been well aware that his hydraulic model
was a representation of an underlying conceptual and mathematical model.

1.1.3 Mathematical models
The MONIAC example points us towards mathematical models, the most
widely adopted approach to scientific modelling. In a mathematical model,



8 CH 1 SPATIAL SIMULATION MODELS: WHAT? WHY? HOW?

the state of the system components is represented by the values of state
variables with equations describing how the state variables change over time.
Newton’s Second Law of Motion is a straightforward example, where the
equation

F = m
dv

dt
(1.1)

tells us that the velocity v of an object changes at a rate proportional to the net
force on it, F, and in inverse proportion to its mass, m. Since Newton’s time,
many laws of physics governing the basic behaviour and structure of matter
have been found to be well approximated by relatively simple mathematical
equations not much more complicated than Newton’s Second Law. Perhaps
the best-known example is Einstein’s celebrated E = mc2 concerning the
relationship between energy, E, mass, m, and the speed of light, c.

Such equations are simple mathematical models but taken in isolation they
do not tell us much about the dynamic behaviour of systems. If we decompose
a system into a number of interacting components, and equations represent-
ing the interactions can be established, then we have a mathematical model
in the form of a system of simultaneous equations describing the system’s
state variables. This mathematical model can be used to explore how the
state variables will change over time and through space, and how differ-
ent factors affect overall system behaviour. How the necessary equations
are determined depends on the nature of the system. The most productive
approach over time has usually been the experimental method, where the rela-
tionships between different variables are determined by setting up laboratory
experiments in which key system variables are carefully manipulated while
others are held fixed, so that the independent effects of each can be deter-
mined. Experiments can be deliberately constructed to explore expected or
hypothesised relationships between system variables. When the expected rela-
tionships are found not to hold, hypotheses are adjusted and new experiments
designed, and over time a clear picture of the relationships between system
variables emerges.

1.1.4 Empirical models
In an experiment, we artificially close the system under study so that only the
single effect of interest is ‘in play’. However, many systems, such as ecosystems
or social systems, cannot be experimentally closed. In these situations, classic
experimental methods are problematic. An alternative approach is to make
empirical observations of such systems and to use quantitative methods to
construct an empirical model of the relationships among the system variables.
Such models are generally statistical in nature, with regression models the
most widely used technique. An example of this approach is hedonic price
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modelling of real estate markets, where the sale price of housing is modelled
as an outcome of a collection of other variables, such as floor area, date
of construction, number of bedrooms and so on (Malpezzi 2008, provides a
review of the approach). A statistical empirical model might show that other
things being equal the sale price of larger houses is higher than that of smaller
houses.

In empirical models, meaningful interpretation of observed statistical rela-
tionships can be challenging. In some cases, interpretations will be obvious
and well-founded (for example larger houses attract higher prices because
people are happy to pay more for extra space) but in others the mechanisms
will be less obvious and interpretation may be controversial. It is particularly
challenging to handle interaction effects among variables. In the case of house
prices, an interaction effect would be an association between proximity to the
central city and land parcel sizes. This might make it appear that small parcels
are more expensive than larger parcels, when it is actually the more central
location of smaller parcels that leads to the observed relationship between
parcel size and price.

There are many examples of empirical models where interpretation is
problematic, particularly in the social sciences. For example, what are we
to make of findings relating different rates of gun-ownership in various US
states to crime rates? Many interpretations are possible (and are offered), and
the observed empirical relationships can only be linked back to underlying
processes via long chains of argument and inference, which are not as readily
tested as is possible in the experimental sciences. Such concerns have led to
considerable dissatisfaction with empirical models (see, for example, Sayer,
1992, pages 175–203). The root of the problem is that empirical models do
not consider the mechanisms that give rise to the observed relationships.

Nevertheless, in cases where the causal mechanisms remain poorly under-
stood, empirical models can provide useful starting points for the development
of ideas. We have a more or less stable empirical relationship: the question
is why? As a result, and also due to the numerous statistical tools available
for their development, empirical models are the most common type of model
across the sciences, other than the ubiquitous conceptual model.

1.1.5 Simulation models
Whether experimentally, empirically or theoretically derived, quantitative
relationships among the state variables in a system can be used to build
a simulation model. In a simulation model, a computer is programmed to
iteratively recalculate the modelled system state as it changes over time in
accordance with the relationships represented by the mathematical and other
relationships that describe the system.
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The most widely used simulation models are systems dynamics models.
Systems dynamics models consist of essentially three types of variable: stocks,
flows and parameters:

Stocks are system variables that represent quantities stored in the system over
time. Examples are the energy in a system, carbon in storage pools in the
carbon cycle, money in the economy, population in a demographic model
(as in Figure 1.3, which consists of linked population models) or workers
in an international labour market.

Flows represent the movement of stock variables among different parts of
the system. In a model of the carbon cycle, carbon moves from being
stored in the ground into the atmosphere dependent on the rate at which
fossil fuels are being used, among other pathways. In a population model,
flows represent births ‘flowing’ into the population or deaths leaving the
population.

Parameters (also called auxiliary variables) describe the overall state of the
system and govern the relationships among stocks and flows, sometimes
via several intervening parameters. In a carbon cycle model, the price of
petrol, the propensity of consumers to drive and the rate of carbon taxation
might be model parameters.
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Figure 1.3 A simple systems dynamics model of the interaction between predator and prey
species. Boxed variables are stocks, double-width arrows with ‘valve’ symbols are flows, clouds
represent everything outside the system, and other named items are parameters. Arrows indicate
where a relationship exists between variables.
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Systems dynamics models are effectively computer simulations of mathe-
matical models consisting of interrelated differential equations, although they
often also include empirically derived relationships and semi-quantitative
‘rules’. The predator–prey model in Figure 1.3 is a typical, albeit simple,
example. Note that many of the probable relationships in a real predator–prey
system are deliberately omitted from the model, for example the predator
might have other potential food sources whose availability affects the level
of predation. Phillips’s MONIAC model referred to in Section 1.1.3 was a
systems dynamics model of a national economy simulated using reservoirs
and plumbing rather than a computer. The diagrammatic representation of
systems dynamics models (see Figure 1.3) closely reflects the basis of such
models in mathematical models of physical systems.

While systems dynamic models are among the most widely used type
of simulation model, many other model types and variations are possi-
ble. Of particular interest in this book are spatially explicit models, where
we decide that representing distinct spatial elements and their relation-
ships is important for a full understanding of the system. Thus, a spatially
explicit model has elements representing individual regions of geograph-
ical space or individual enities located in space (such as trees, animals,
humans, cities and so on). Each region and entity has its own set of state
variables and interacts continuously through time with other regions and
entities, typically interacting more strongly with those objects that are nearest
to it. These interactions may be governed by mathematical equations, by
logical rules or by other mechanisms, and they directly represent mecha-
nisms that are thought to operate in the real-world system represented by
the simulation.

The simplest way to think of the relationship between models and simu-
lations is that simulations are implementations, usually in a computational
setting, of an underlying conceptual or mathematical model. Simulation is
often necessary because detailed analysis of the model is difficult or impossi-
ble, or because simulation allows convenient exploration of the implications
of the model. Because any simulation implements an underlying model,
most of the time in this book we discuss models rather than simulations. In
each case discussion of the models and understanding of their properties is
only possible because we have built a simulation of the model.* Winsberg
(2009a) provides a useful account of the role of simulation in science that
clarifies both the distinction and the close relationship between models and
simulations.

*Where the marginal turtle icon appears, as shown here, we have provided simulations of most of the
models discussed in the text for readers to explore at http://patternandprocess.org
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1.2 How do we use simulation models?
Some of the reasons for using simulation models have already been mentioned
in passing. Here we expand on these ideas and present the perspective on
the role of simulation models in research in which this book is grounded.
The critical issue is that not all models are created equal. Figure 1.4 shows in
schematic form how two critical aspects of any phenomenon, the data we have
available and how well we understand it, affect our ability to use simulation
models for different purposes.

Systems for which we have reliable, detailed data and whose underlying
mechanisms we understand well are the ones most suitable for predictive
modelling. Engineered systems such as bridges, cars, telephones and so on
are good examples. We have a thorough understanding of how they work,
and we have abundant and reliable data based on previous experience with
using such systems. In this context, using models for prediction is worthwhile.
However, in many cases we lack reliable, detailed observational data, even if
we have a reasonable grasp of the underlying processes. For example, animal
population dynamics are relatively well understood in general terms, but
detailed rich datasets are scarce, especially for long-lived organisms. In this
context, prediction is more problematic, and the best use for models may be
to inform us about where critical data shortages lie. On the other hand, there
are an increasing number of areas where we now have access to detailed data,
but still have a poor understanding of how the system works, global financial
markets being a prime example (May et al., 2008). Here, using models to
help in developing theories may be appropriate. Finally, there are many fields
where both the available data and current levels of understanding are poor.
Here, the best prospect may be to use models as devices for learning, which
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Figure 1.4 How data and understanding affect the use of models, with indicative fields of
study (after Starfield and Bleloch, 1986). Note that the locations of different fields in the figure
are suggestive only. See text for details.
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may inform the development of theory and also steer us towards the areas of
most pressing need for better data.

1.2.1 Using models for prediction
It is generally not long after a simulation model is presented to an interested
audience before someone asks something like: ‘So what is Auckland going
to look like 25 years from now?’ or ‘So are polar bears going to survive
climate change?’ or any number of other questions about the future that are
of interest. It is understandable that researchers, policy-makers and the public
in general are interested in using simulation models to predict the future.
After all, ‘real’ sciences make reliable predictions. Arguably, it was the advent
of reliable predictions of the tides, seasons and planetary motion that began
the human species’ rise to dominance of life on Earth. Added to this, the
ability of engineers to confidently predict the behaviour of the systems they
design has enabled rapid technological progress over the last few centuries.
Both kinds of prediction ultimately rely on scientific models. But there are
good reasons to be wary of seeing models primarily as predictive tools.

We have already suggested that lack of data or of good understanding of
the field in question are reasons for being cautious about prediction. If there
are deficits in either dimension, it is quite likely that prediction will do more
harm than good, although in such cases, it may not be prediction per se that
is the problem. Placing unwarranted faith in inherently uncertain predictions
is as likely to lead to ill-founded decision-making as having no predictive
tools available at all. More circumspect approaches that consider alternative
scenarios and possible responses to allow better-informed decision-making
are usually a more appropriate way forward than blind faith in predictive
models (see Coreau et al., 2009, Thompson et al., 2012). We consider aspects
of the uncertainty around model outcomes in more detail in Chapter 7.

It is also important to be wary of the prospects for prediction in contexts
where although individual elements are well understood, the aggregation of
many interacting elements can lead to unexpected nonlinear effects. Perhaps
the most important examples in this context are technological networks of
various kinds. Here, individual system elements are designed objects, whose
individual behaviour is well known. In many such networks, we also have
good data on overall system usage and patterns. Nevertheless the nonlinear
systems effects discussed in Section 1.3.2 have the capacity to surprise us, and
there is an important role for modelling in improving our understanding of
such systems (see, for example, O’Kelly et al., 2006).

1.2.2 Models as guides to data collection
Where the most pressing deficits in our knowledge of systems are empirical,
so that we lack good observational data about actual behaviour, the most
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important role for models may be to help us decide which data are most
critical to improving our understanding. Assuming that adequate models of
the underlying processes in such situations can be developed, then we can
perform sensitivity analysis (see Section 7.3.2) on the models to find out which
parameters have the strongest effect on the likely outcomes. Once we know
which data are most essential to improving our ability to forecast outcomes
more reliably, we can direct our data collection energies more effectively.

Good examples of this sort of application of models are provided by animal
conservation efforts. For endangered animals we may not have reliable data
on their populations, but we do have good general frameworks for modelling
population dynamics (for example Lande et al., 2003). Applying such models
to endangered species with best guess estimates of critical parameters and the
associated uncertainties may help conservation workers to target future data
collection on the critical features of the system, and also to design improved
management schemes. Unfortunately, population models applied to fisheries
over recent decades provide depressing evidence of how important this is:
arguably too much faith in the predictive capacity of models, and ignoring
uncertainties in the models and the data used to inform them, has left many
fisheries in a worse state than they may otherwise have been (see Clover,
2004, Pilkey and Pilkey-Jarvis, 2007).

1.2.3 Models as ‘tools to think with’
In some cases there is no shortage of empirical data, but we have limited
understanding of how a system works. The advent of sensor technologies of
various kinds—remote-sensing platforms being the most obvious, but more
recently including phenomena such as volunteered geographic information
(Haklay et al., 2008)—has created a situation where we may have vast
amounts of empirical data (Hilbert and López, 2011), but no clear idea of
what it tells us. While data-mining methods may offer some relief in these
situations (Hilbert and López, 2011) and provide at least candidate ideas
about what is going on, science without theory is an unsatisfactory approach.

In this situation, simulation models can become ‘tools for thought’
(Waddington, 1977). In this approach we use simulation models that
represent whatever working hypotheses we have about the target system and
then experiment on the model to see what the implications of those theories
and hypotheses might be in the real world (see Dowling, 1999, Edmonds
and Hales, 2005 and Morrison, 2009). This turns the traditional hypothetico-
deductive approach to science on its head. In deductive science, we make
observations of the world and then evaluate hypotheses that could explain
those observations. We then make controlled experimental observations to
decide if our hypotheses provide adequate explanations of the observations.
When we experiment on models by simulation, we effectively explore what
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the implications of various possible hypotheses would be. Observation of
model behaviours and comparison of those behaviours with real-world obser-
vations of the target system may then allow us to dismiss some hypotheses as
implausible and so refine our theories. Some authors refer to this approach
as science in silico (see, for example, Epstein and Axtell, 1996, Casti, 1997).

This is not an easy approach. In particular, it is beset by the equifinality
problem, which refers to the fact that large numbers (in fact an infinite
number) of possible models, including the same model with different input
data, could produce behaviour consistent with observational data. In other
words identifying the processes responsible for a given pattern, on the
basis of that pattern alone, is problematic. This makes problems of model
selection and inference acute for anyone adopting this approach. We consider
some of these issues in more detail in Section 7.6, where we consider pattern-
oriented modelling, which may be particularly suited to making inferences with
spatially explicit models (Grimm et al., 2005, Grimm and Railsback, 2012).

In sum, the proper role of simulation models in advancing our understanding
of the world and the consequent variety of their uses is complicated and heavily
dependent on the nature of the systems under study and on the current state
of empirical and theoretical knowledge about them. As is often the case, it
is sensible to be flexible and pluralistic in outlook, using models as one tool
among many in a mixed methods approach.

1.3 Why do we use simulation models?
Simulation models are a relatively recent addition to the scientific toolbox,
and the reasons for their widespread adoption call for some explanation.
Broadly speaking, we believe there are three reasons that scientific research
based on simulation modelling has become so prevalent in recent decades.
The first is obvious and quickly dealt with: simply that this approach has now
become possible. Cheap, widely available computing, although it appears
commonplace from the vantage point of the early twenty-first century, is
a historically recent development. The electronic computer was invented
towards the end of the Second World War, and the desktop personal com-
puter only appeared towards the end of the 1970s, and was not widely
available until a decade after that. In the same way that widely available
computing power has changed society generally, we might also expect it to
have changed aspects of scientific practice, and simulation modelling is an
example of such change.

However, given the success of science before simulation models, a better
answer to the question ‘Why use simulation models?’ than ‘Because we can!’
is surely necessary. This leads us to two further reasons: the difficulty of
experimental science in many fields of enquiry and the realisation that many
systems are nonlinear.
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1.3.1 When experimental science is difficult
(or impossible)

The experimental method of science has proved to be extremely successful
at systematically extending our understanding of the world. However, it is
not always recognised that the success of the experimental method relies on
certain features of the systems under study.

Some systems of interest to social and environmental scientists are not
amenable to experiment for rather prosaic reasons. Archaeologists, anthro-
pologists and palaeontologists are interested in systems that no longer exist.
Climate scientists are interested in a system that is effectively the whole of
the terrestrial, atmospheric and oceanic system, and hence not controllable
in any meaningful sense. In many fields, such as forest ecology or geology,
the time horizons of interest are too long for experiments to be practical.

Other limitations to experiment relate to the nature of the systems them-
selves. The most obvious consideration is that experiments only produce
conclusive evidence when they are closed systems. Laboratory experiments
go to great lengths to control all the factors that might have an effect on the
phenomenon under study. For example, chemistry experiments must strictly
control the temperature and pressure at which reactions are carried out, as
either is likely to affect the outcome of any chemical reaction. In specific
cases, many other factors will have to be controlled, such as the concentra-
tions of the various reagents and the presence of even trace amounts of any
impurities. The benefit of these efforts in experimental set-up is that it is clear
when the experimenter varies a particular system input of interest that any
response from the system is a result of that change. A laboratory experiment
is thus a tightly controlled way to investigate the mechanisms in a system.

Such tight control is only possible for certain kinds of science. In many
systems of interest in the environmental and social sciences system closure
is impossible, impractical or unethical. A fragile ecosystem cannot easily be
sealed off from external influences and have its climate controlled so that we
can investigate the effects of a pesticide. It is generally not considered ethical
to experiment with different education policies in different parts of a city to
see which works, because the impact of potentially poor policy will have to be
borne by some of the children going through the school system at that time.
Even if such experiments were considered ethical, it is impossible to close
off the education system from external variables such as the degree of home
involvement in education or differences in the income, culture, language and
ethnicity of the households in each school, any of which might have an equal
or greater effect on outcomes than the policies being tested.

Drug trials are among the most carefully designed and constructed obser-
vational studies in the non-experimental sciences. Properly conducted trials
involve an elaborate double-blind case-control methodology where a control
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group of patients are administered with placebo or ‘sugar pill’ treatment
rather than the treatment under investigation. Neither the patients nor those
administering the treatment know if they are part of the control group or
the treatment group. Control and treatment groups are carefully selected to
balance their characteristics in terms of the many demographic and physio-
logical factors that might affect the outcome. Even so, interpretation of the
results of such trials remains difficult and controversial.

It is rarely possible for field-based scientists to control the observational
setting as closely as in medical trials. A fire ecologist may be able to set up
(at great expense and with considerable difficulty) a study where control and
treatment sites are matched and subjected to prescribed burns in order to
investigate the effects of wildland fires (one example is the Kapalga savanna
fire experiment in northern Australia described by Andersen et al., 2003).
However, the number of observations that can be made in this way is severely
limited, and the control and treatment sites are not identical—they are, after
all different sites!—so that determining which differences in outcome are
attributable to the treatment and which are variation in the outcomes that
might have occurred anyway is extremely difficult. This is not to say that such
experiments are not valuable, but that they are limited in fundamental ways
that model-based approaches can possibly circumvent.

Occasionally natural experiments arise that provide brief windows when
something like experimental results can be obtained for environmental sys-
tems. For example, when all air traffic over the United States was suspended
for a period after the events of 11 September 2001, it provided an opportunity
for climate scientists to collect data on the effect of aircraft contrails on the
daily temperature ranges (Travis et al., 2002). But such opportunities are rare,
they are not truly controlled and the observational sciences would make slow
progress indeed if they relied solely on this approach.

Another possibility, rather than hoping to get lucky or trying to control the
field in situ, is to deliberately set up laboratory experiments in the social or
environmental sciences. The difficulty then becomes deciding how relevant
to real systems are the findings from such artificial settings. Indeed, it can be
readily argued that laboratory experiments in such cases are best understood
as simplified models of the real world (see, for example, Diamond, 1983,
Carpenter, 1996), so that the findings must be treated with caution.

In short, the inferential lot of observational field scientists compared with
their laboratory colleagues is not a happy one. One option that simulation
modelling opens up is to experiment not on real systems, but on virtual ones.
If an adequate simulation model of the system of interest can be developed,
then hypotheses about how the system behaves in different circumstances can
potentially be investigated in a controlled manner. This approach is sometimes
referred to as surrogative reasoning because the model is a surrogate for the
real-world system. Of course, there are serious difficulties with this approach.
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How can we know if the model is an adequate representation of the system?
How can we map findings from experimenting with a model to conclusions
about the real world? These are certainly not trivial considerations, and we
consider them in more detail in Chapters 2 and 7. For now, it is sufficient to
note that the potential of this approach is a major impetus for the growth of
simulation modelling across various fields.

1.3.2 Complexity and nonlinear dynamics
The ‘game of life’ automaton An informative way to approach complex
systems and complexity is by means of one of the most celebrated examples:
John Conway’s ‘game of life’ cellular automaton. Cellular automata (CA) are
a standard type of spatially explicit simulation model, and we will encounter
many examples in this book (see particularly Chapter 3). A CA consists of
a lattice of cells, which defines for each cell those other cells that are its
neighbours. The most obvious spatial lattice is a two-dimensional grid of
square cells, with neighbours defined either as the four immediately adjacent
orthogonal neighbours or as the eight immediately adjacent neighbours,
including the diagonals. Given the lattice structure, the full CA definition
includes a set of states for each cell—most simply ‘on’ or ‘off’—and a set of
transition rules that determine how the state of each cell changes from one time
step to the next, based on the current state of a cell and those of its neighbours.

A brief history of cellular automata is presented by Chopard and Droz
(1998). CAs were proposed in the 1940s by John von Neumann in an attempt
to devise a self-replicating machine—that is, a machine capable of creating
copies of itself. Von Neumann’s solution (described by Burks, 1970) was
an elaborate CA with a lattice of around 200 000 cells, and 29 distinct cell
states. Although von Neumann proved that a self-replicating machine was
possible, his solution is so complicated that even up to the present it remains
a historical curiosity that has not been implemented (although Pesavento,
1995, describes a partial implementation).

These unpromising beginnings changed dramatically with the advent of
John Conway’s game of life (as described in Gardner, 1970). Conway was
intrigued by the question of how simple he could make the rules of a CA
and still get ‘interesting’ behaviour. Thus, unlike the examples we consider
in later chapters, the game of life is not a model of any specific system or
entity. Rather, it is a mathematical system whose purely theoretical interest
lies in the relationship between the intricacy of the rules that define a system’s
behaviour and the richness of that behaviour. The game of life CA is defined
as follows:

• The lattice is a two-dimensional grid, theoretically infinite but in practice
as large as needed.
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• Cell neighbours are the eight immediately adjacent orthogonal and diagonal
grid cells.

• Cell states are ‘alive’ or ‘dead’.
• There are two transition rules:

birth a dead cell is born if it has three live neighbours, otherwise it remains
dead

survival a live cell survives if it has two or three live neighbours, otherwise
it dies.

The best way to appreciate the game of life CA is to experiment with a
computer simulation. It does not take long to discover that the simplicity of 1.1
the rules belies a rich array of dynamic behaviour. A flavour of this is provided
by examining the small patterns in Figure 1.5 (see also Gardner, 1970, who
presents a similar diagram). The smallest patterns, (a) and (b), unsurprisingly
die immediately. Adding another live cell to produce the ‘corner’ pattern (c)
results in a four cell block of live cells that is stable. Three live cells in a line
(d) is a blinking pattern that switches each time step between a horizontal and
vertical line. Adding one more cell to (d) to give the ‘T’-shaped pattern (e)
produces a sequence of nine time steps resulting in four copies of the three
cell blinker pattern (d).

dies

dies

stable

blinker

(a)

(b)

(c)

(d)

(e)

t = 0 t = 0

t = 0

t = 5

t = 1

t = 6

t = 2

t = 7

t = 3

t = 8

t = 4

t = 9

t = 1 t = 1 t = 2

Figure 1.5 Some simple life patterns. Patterns (a) and (b) die immediately, pattern
(c) produces a stable ‘block’, pattern (d) results in a ‘blinker’ that switches indefinitely
every time step between two configurations and pattern (e) results in four copies of pattern
(d) which blink in the same way.
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t = 0
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t = 40
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Figure 1.6 The first 80 time steps of the R pentonomino. The highlighted five cell pattern in
the t = 80 snapshot is a glider which moves one grid cell diagonally in the direction shown
every four time steps.

The addition of just one further live cell to pattern (e) produces the ‘R
pentomino’ (see Figure 1.6), which has been shown to persist for 1103 time
steps before the region near its origin stabilises. By that time, the glider
released at t = 69 (highlighted in the image at t = 80), which travels one cell
south and west every four time steps, will have travelled around 280 cells away
from the origin of the pattern. Meanwhile the pattern has produced five other
gliders. This means that the R pentomino effectively persists indefinitely and
extends infinitely across space, since the gliders will continue to move away
from the origin.

Conway’s invention (or discovery, depending on your point of view) led to
an explosion of interest in cellular automata. That such simple rules can yield
such unexpectedly rich behaviour led to considerable interest in the life CA
from the recreational mathematics and amateur programmer communities.
From an academic perspective, renewed interest in CA in statistical physics
soon led to the discovery of even simpler examples, which also yield rich
dynamic behaviour, with the contributions of Stephen Wolfram especially
significant (see Wolfram, 1986).

In Chapter 3 we describe other examples of the general category of
totalistic automata of which Conway’s life is an example. These examples
further reinforce the important lesson of this case, that the behaviour of
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even simple deterministic systems can be unpredictable. In fact, it has been
demonstrated that for life (see Berlekamp et al., 2004, pages 940–957) and
other even simpler cases (see Cook, 2004) the only way to find out what state
a particular system will be in after a specified number of time steps is to set
up a simulation and run it!

Complexity science It is tempting to see the game of life as little more than
an obscure amusement. In fact, it is an exemplar of the sorts of systems studied
in complexity science. Complexity science is unfortunately rather ill-defined,
but roughly speaking it encompasses the study of systems composed of many
basic and interacting elements (see Coveney and Highfield, 1995, page 7). On
this loose definition a gas might be a complex system, so we need something
more distinctive than this. In an early paper, Warren Weaver (1948) argued
that the systems successfully studied by classical science were composed of
either very few or very many elements. The former are usually analytically
tractable, while the latter can be successfully studied using statistical methods,
the statistical mechanics derivation of the gas laws being the most compelling
example. Unfortunately for classical science, many real-world phenomena
are ‘middle-numbered’ systems somewhere between these two extremes.
Weaver calls these ‘systems of organised complexity’ (1948, page 539) where
interaction effects are important—they don’t simply average out as happens to
molecules in a gas—and individual interactions between particular elements
in one part of the system can unexpectedly scale-up to cause system-wide
transitions. Weaver perceptively (and prophetically) suggested that the study
of these systems would involve the use of the then recently developed
electronic computers:

[it seems] likely that such devices will have a tremendous impact on science.
They will make it possible to deal with problems which previously were too
complicated, and, more importantly, they will justify and inspire the development
of new methods of analysis applicable to these new problems of organised
complexity. (Weaver 1948, page 541)

Complexity science is a research programme along the lines envisaged
by Weaver—a diverse one extending across many disciplines—which, as
he anticipated, makes extensive use of computer models to understand
otherwise intractable systems. It is impossible here to give a thorough account
of the disparate findings of complexity science. General features of the
structure and dynamics of complex systems have been characterised, including
path dependence, positive feedback, self-organisation and emergence. Readers
interested in learning more about complexity science should consult any of
the large numbers of general and popular introductions to the field (see, for
example, Waldrop, 1992, Coveney and Highfield, 1995, Buchanan, 2000, Solé
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and Goodwin, 2000) or more formal treatments in the academic literature
(Simon, 1996, Allen, 1997, Byrne, 1998, Cilliers, 1998, Holland, 1998, Manson,
2001, O’Sullivan, 2004, Batty, 2005, Solé and Bascompte, 2006, Érdi, 2008,
and Mitchell, 2008).

Nonlinear dynamics The complexity of the life CA is an example of the broad
category of nonlinear dynamics. Like the game of life, many nonlinear systems
exhibit surprising shifts in behaviour in response to seemingly minor changes
in their initial states. Linear systems, by contrast, behave more predictably,
with small changes in inputs producing small changes in the response, and
large changes in inputs required before large changes in the response will
occur. While the systems studied in what Weaver (1948) dubbed classical
science were linear, those that have increasingly come to preoccupy scientists
are nonlinear. In fact, we now recognise that linear systems are a convenient
idealisation of the real world that enables us to build mathematical models.
In many situations, linearisation is a good approximation and a useful one
(remember: models are never true . . . ), but this is not always the case, and
many systems require nonlinear models to represent them adequately. The
key point to note is that nonlinear systems, because of their structure, are
often more conveniently analysed by means of computer simulation models
than by more traditional mathematical methods.

Chaotic systems provide another example of nonlinear behaviour and
demonstrate that deterministic systems need not consist of large numbers
of elements for unpredictability to emerge; deterministic systems with only
a few elements can also be mathematically intractable and unpredictable
(Gleick, 1987, Schroeder, 1991). Given perfect information about the current
state of a deterministic system, in principle its state at any particular future
time is calculable and knowable. In practice, however, chaos and complexity
prevent such predictability. In chaotic systems the difficulty is that even
minor perturbations—or minor inaccuracies in the data recording the initial
state—can lead to arbitrarily large differences in the outcome at some later
time, rendering them unpredictable for practical purposes. In fact a commonly
used definition of a chaotic system is one that shows extreme sensitivity to
initial conditions. In a complex system the lack of predictability arises from
the unexpected ways in which, via positive feedbacks, self-organisation, lock-
in and other mechanisms, local interactions among system elements scale up
to cause system-wide outcomes and effects.

Beckage et al. (2011) expand on the implications of these characteristics
in ecology, and similar conclusions are warranted for social, economic and
cultural systems. The essence of their argument is that such systems are
irreducible, that is, we cannot easily reduce their behaviour to aggregate rules
of thumb or predict the precise outcome of a given starting configuration even
if the systems are completely deterministic. The easiest way to think of this is
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that many nonlinear systems lack the quality of ‘predictability’. This makes
simulation an essential tool for understanding and exploring their behaviour.

1.4 Why dynamic and spatial models?
1.4.1 The strengths and weaknesses of highly general

models
Many typologies of models have been developed and these tend to emphasise
dichotomies, such as ‘complicated’ versus ‘simple’, in model design. Although
such black and white dichotomies are invariably simplistic, they provide
a useful way of thinking about the trade-offs that must be made when
developing appropriate and manageable abstractions or representations of
real-world phenomena. In a classic paper on the strategy of model building,
Levins (1966) argues that model building requires the modeller to make
trade-offs between generality, precision and realism. A single model cannot
have all three and so the modeller has to sacrifice generality for realism and
precision, precision for generality and realism, or realism for generality and
precision (Perry, 2009, provides a schematic illustration of these trade-offs).
In other words, a highly detailed simulation model of a specific system at
a specific place and time may be realistic and useful for understanding that
particular system, but will be difficult to transfer to other systems and so it is
not general. On the other hand, a general framework, such as von Thünen’s
land-use model of urban spatial structure, may lack realism when applied to
specific city systems because it glosses over the geohistorical details of the
growth of particular cities, but it can inform us about the behaviour of cities
in general terms.

To explore the idea of trade-offs between generality and realism more
closely, in this section we discuss how we might model observational data
using probability distributions such as the normal or lognormal and the highly
general mechanisms that underpin them.

An additive process: the normal (Gaussian) distribution A familiar way to
1.2model observed data is to use the Gaussian (or normal) distribution, the

‘bell-shaped’ curve that underpins many data analysis methods (Figure 1.7).
In many systems approximately Gaussian distributions arise as the result of
a series of independent additive processes, as explained by the (additive)
central limit theorem. The statistician Sir Francis Galton described a machine
called a ‘Galton board’ or quincunx, which demonstrates how Gaussian
distributions arise from repeated additive processes (see Figure 1.8). On the
Galton board a ball is dropped from the top and on hitting a pin moves,
with equal probability, either a unit to the left or a unit to the right before
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Figure 1.7 Normal and lognormal probability distributions. The symmetrical normal distribu-
tion arises from multiple independent additive processes, whereas the right-skewed lognormal
distribution arises from multiple independent multiplicative processes. The normal (or Gaussian)
distribution is defined by the mean (μ—the location parameter) and the standard deviation
(σ—the scale parameter).
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One row of a multiplicative Galton board
showing distortion in triangles (left to right)
in this case c ≈ 0.8 

Figure 1.8 (a) The Galton board described by Sir Francis Galton. Balls are dropped and move
through the system additively, eventually being collected. The heights of the piles of balls
in each unit at the bottom of the board follow a Gaussian distribution. (b) One row of the
hypothetical multiplicative Galton board described by Limpert et al. (2001).
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eventually being collected at the bottom. The sequence of movements that
each ball makes constitutes an independent additive process (there is a direct
relationship between this model and a random walk in one dimension—see
Chapter 4). Our interest here is in the distribution of the final position of
the balls on the board, that is, the relative sizes of the piles that collect
below the board. After many balls have been dropped, the size of the piles
under the board approximates a binomial distribution, which, according to
the central limit theorem, will tend to a normal distribution if a sufficiently
large number of balls are dropped, as shown in Figure 1.9(a).

Multiplicative processes: various skewed distributions We might expect
1.3that a different distribution will arise in systems dominated by multiplicative

processes, and this is indeed the case. For processes comprising many inde-
pendent but multiplicative events, a right-skewed approximately lognormal
distribution can arise (also known as the Galton–McAlister, Kapteyn or
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Figure 1.9 Outcomes of simulations of (a) additive and (b)–(d) multiplicative in silico Galton
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Gibrat distribution, see Koch, 1966). Thus, while the Gaussian distribution
is widely used, many (perhaps most) processes in environmental and social
systems are multiplicative rather than additive and so, as Heath (1967), Koch
(1966), Limpert and Stahel (2011), Limpert et al. (2001), and others have
argued, in many cases a right-skewed distribution, such as the lognormal,
is a more appropriate model. For example, population growth is typically
multiplicative (Limpert and Stahel, 2011), as is the growth of firms (Simon
and Bonini, 1958) and many other things besides.

Limpert et al. (2001) describe a modification to the Galton board
(Figure 1.8) that demonstrates the outcome of multiple independent multi-
plicative processes. In their modified Galton board, shown in Figure 1.8(b),
the isosceles triangles are replaced by scalene triangles. Each triangle has a
skew to the right such that at each successive level the ball moves to either
x × c or x/c, where x is the current position on the horizontal axis and c is
the skew to the right in the relevant triangle. This modified process is multi-
plicative rather than additive, but it is still independent from move to move.
Under these conditions the distribution of the heights of the piles of balls
follows a skewed distribution similar to the lognormal, as shown in Figure
1.9(b)–(d). This is an example of the multiplicative central limit theorem.

It is worth noting that the lognormal is not the only distribution generated
by multiplicative processes. Mitzenmacher (2004) describes how Zipf, Pareto
and power-law distributions, among others, can arise from multiplicative
processes, and there has been considerable debate over which of these best
describe various datasets. The point here—echoing the comments on equifi-
nality on page 15—is that snapshot data, such as the frequency distribution of
the heights of the piles of the balls under the Galton board, may be adequately
described by more than one model, and the data themselves do not provide
sufficient evidence to accept or reject a specific model (a general problem
called under-determination, Oreskes et al., 1994, Stanford, 2009).

In spite of the high level of generality involved in both models, the contrast
between the normal and lognormal distributions is sufficient that in most
situations we can use observational data to at least say whether plausible
generating mechanisms are broadly speaking additive or multiplicative in
nature. However, there are limits to our ability to use distributional pat-
terns in this way. As discussed, many different mechanisms can be shown
to generate heavy-tailed distributions (see Mitzenmacher, 2004), so that dis-
tinguishing between particular processes based on observational data alone
may be technically challenging and perhaps untenable (Clauset et al., 2009,
Stumpf and Porter, 2012). Thus appeals to the highly generalised mechanisms
that underlie probability distributions are problematic. Many different mech-
anisms yield similar distributional outcomes. Furthermore, the mechanisms
themselves are so generalised that determining the most suitable distribution
to describe a particular case can provide only limited information about
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systems and the processes driving them. This points to the potential value
of more detailed models incorporating more specific mechanisms, although,
keeping in mind Levins’s (1966) trade-off, we might expect any advantages in
specificity to come at a cost in generality and precision.

1.4.2 From abstract to more realistic models:
controlling the cost

As we have seen, probability distribution functions are highly abstract and
highly general—if we have right-skewed data, with all values greater than
zero, then the lognormal distribution is (possibly) an adequate description of
those data regardless of context, and we should consider how multiplicative
processes might drive the system. If, however, we are considering specific
patterns in specific environmental or social systems and want models that
represent in more detail the processes that determine and are influenced by
those patterns, such generality will be lost. Does this mean that more detailed
models of particular systems cannot also teach us more general lessons about
how the world works?

The key idea behind this book is that if we are alert to the similarities
between patterns across diverse domains then perhaps the loss of generality
as we move from abstract to more specific models can be mitigated to a
degree. As an example, in many cities populations with different socio-
economic characteristics are segregated with respect to each other, and
conversely aggregated with respect to themselves. Likewise in temperate
forests competitive interactions often result in individuals of different species
being segregated from each other, and conversely they show strong conspecific
aggregation. No one would suggest that the same causal mechanisms are
driving these patterns, but is it really the case that there are no general ways
of thinking about the processes that produce ‘segregation’ across the very
different contexts in which it appears? Likewise, visitors to an art gallery
looking for a celebrated work of art and caribou searching for food in the
tundra are clearly very different, but is there any commonality in these
‘foraging’ processes that means we can, at least in the first instance, think
about their representation in the same way?

We believe that many ostensibly different spatial patterns, arising in very
different systems, can usefully be represented using similar frameworks (see
also Ball, 2009). This does not mean that the processes are the same (of
course they are not!) but rather that it may be useful to use similar models
to understand the ways in which very different processes can produce similar
patterns. Our goal is to make building and interpreting spatial models easier
by showing how a relatively small number of models of spatial processes can
generate many of the types of patterns seen across a wide range of social and
environmental systems. Such models will not be as general as the independent
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additive and multiplicative processes that underlie the normal and lognormal
distributions, but, with some care, we can identify more specific spatial
processes that can account for diverse spatial patterns commonly observed in
a wide variety of systems.

Central to our approach is the view that some broad categories of spatial
outcomes, namely aggregation, movement and spread, can be accounted for
by a relatively small range of relatively simple dynamic spatial models. These
‘building-block’ models, which are covered in Chapters 3, 4 and 5, can in turn
be combined to create more complicated, detailed and realistic models of
particular real-world systems (see Chapter 8).

Developing detailed, dynamic, spatial models comes at some cost in gen-
erality and interpretability, but buys us realism and the ability to represent
specific processes in specific contexts. If we are willing to see the similarities
in patterns and processes across many different domains, then some of those
costs are offset by making the models themselves easier to understand and
less daunting to work with. But before we tackle the building-block models
themselves, we must first consider more closely two key concepts: pattern and
process, and these form the subject matter of the next chapter.


