
1
Preliminaries: Computer Strategies

1.1 Introduction

Many textbooks exist which describe the principles of the finite element method of analysis
and the wide scope of its applications to the solution of practical engineering and scientific
problems. Usually, little attention is devoted to the construction of the computer programs
by which the numerical results are actually produced. It is presumed that readers have
access to pre-written programs (perhaps to rather complicated ‘packages’) or can write
their own. However, the gulf between understanding in principle what to do, and actually
doing it, can still be large for those without years of experience in this field.

The present book bridges this gulf. Its intention is to help readers assemble their
own computer programs to solve particular engineering and scientific problems by
using a ‘building block’ strategy specifically designed for computations via the finite
element technique. At the heart of what will be described is not a ‘program’ or a set
of programs but rather a collection (library) of procedures or subroutines which perform
certain functions analogous to the standard functions (SIN, SQRT, ABS, etc.) provided
in permanent library form in all useful scientific computer languages. Because of the
matrix structure of finite element formulations, most of the building block routines are
concerned with manipulation of matrices.

The building blocks are then assembled in different patterns to make test programs for
solving a variety of problems in engineering and science. The intention is that one of
these test programs then serves as a platform from which new applications programs are
developed by interested users.

The aim of the present book is to teach the reader to write intelligible programs and to
use them. Both serial and parallel computing environments are addressed and the building
block routines (numbering over 100) and all test programs (numbering over 70) have been
verified on a wide range of computers. Efficiency is considered.

The chosen programming language is FORTRAN which remains, overwhelmingly, the
most popular language for writing large engineering and scientific programs. Later in this
chapter a brief description of the features of FORTRAN which influence the programming
of the finite element method will be given. The most recent update of the language
was in 2008 (ISO/IEC 1539-1:2010). For parallel environments, MPI has been used,
although the programming strategy has also been tested with OpenMP, or a combination of
the two.

Programming the Finite Element Method, Fifth Edition. I. M. Smith, D. V. Griffiths and L. Margetts.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

CO
PYRIG

HTED
 M

ATERIA
L

2 Programming the Finite Element Method

1.2 Hardware

In principle, any computing machine capable of compiling and running FORTRAN
programs can execute the finite element analyses described in this book. In practice,
hardware will range from personal computers for more modest analyses and teaching
purposes to ‘super’ computers, usually with parallel processing capabilities, for very
large (especially non-linear 3D) analyses. For those who do not have access to the
latter and occasionally wish to run large analyses, it is possible to gain access to such
facilities on a pay-as-you-go basis through Cloud Computing (see Chapter 12). It is a
powerful feature of the programming strategy proposed that the same software will run
on all machine ranges. The special features of vector, multi-core, graphics and parallel
processors are described later (see Sections 1.4 to 1.7).

1.3 Memory Management

In the programs in this book it will be assumed that sufficient main random access memory
is available for the storage of data and the execution of programs. However, the arrays
processed in finite element calculations might be of size, say, 1,000,000 by 10,000. Thus
a computer would need to have a main memory of 1010 words (tens of Gigabytes) to
hold this information, and while some such computers exist, they are comparatively rare.
A more typical memory size is of the order of 109 words (a Gigabyte).

One strategy to get round this problem is for the programmer to write ‘out-of-memory’
or ‘out-of-core’ routines which arrange for the processing of chunks of arrays in memory
and the transfer of the appropriate chunks to and from back-up storage.

Alternatively, store management is removed from the user’s control and given to the
system hardware and software. The programmer sees only a single level of virtual memory
of very large capacity and information is moved from secondary memory to main memory
and out again by the supervisor or executive program which schedules the flow of work
through the machine. It is necessary for the system to be able to translate the virtual
address of variables into a real address in memory. This translation usually involves a
complicated bit-pattern matching called ‘paging’. The virtual store is split into segments
or pages of fixed or variable size referenced by page tables, and the supervisor program
tries to ‘learn’ from the way in which the user accesses data in order to manage the
store in a predictive way. However, memory management can never be totally removed
from the user’s control. It must always be assumed that the programmer is acting in a
reasonably logical manner, accessing array elements in sequence (by rows or columns as
organised by the compiler and the language). If the user accesses a virtual memory of
1010 words in a random fashion, the paging requests will ensure that very little execution
of the program can take place (see, e.g., Willé, 1995).

In the immediate future, ‘large’ finite element analyses, say involving more than
10 million unknowns, are likely to be processed by the vector and parallel processing
hardware described in the next sections. When using such hardware there is usually a
considerable time penalty if the programmer interrupts the flow of the computation to
perform out-of-memory transfers or if automatic paging occurs. Therefore, in Chapter 3
of this book, special strategies are described whereby large analyses can still be pro-
cessed ‘in-memory’. However, as problem sizes increase, there is always the risk that

Preliminaries: Computer Strategies 3

main memory, or fast subsidiary memory (‘cache’), will be exceeded with consequent
deterioration of performance on most machine architectures.

1.4 Vector Processors

Early digital computers performed calculations ‘serially’, that is, if a thousand operations
were to be carried out, the second could not be initiated until the first had been completed
and so on. When operations are being carried out on arrays of numbers, however, it is
perfectly possible to imagine that computations in which the result of an operation on
two array elements has no effect on an operation on another two array elements, can be
carried out simultaneously. The hardware feature by means of which this is realised in a
computer is called a ‘pipeline’ and in general all modern computers use this feature to a
greater or lesser degree. Computers which consist of specialised hardware for pipelining
are called ‘vector’ computers. The ‘pipelines’ are of limited length and so for operations
to be carried out simultaneously it must be arranged that the relevant operands are actually
in the pipeline at the right time. Furthermore, the condition that one operation does not
depend on another must be respected. These two requirements (amongst others) mean
that some care must be taken in writing programs so that best use is made of the vector
processing capacity of many machines. It is, moreover, an interesting side-effect that
programs well structured for vector machines will tend to run better on any machine
because information tends to be in the right place at the right time (in a special cache
memory, for example).

True vector hardware tends to be expensive and, at the time of writing, a much more
common way of increasing processing speed is to execute programs in parallel on many
processors. The motivation here is that the individual processors are then ‘standard’ and
therefore cheap. However, for really intensive computations, it is likely that an amalga-
mation of vector and parallel hardware is ideal.

1.5 Multi-core Processors

Personal computers from the 1980s onwards originally had one processor with a single
central processing unit. Every 18 months or so, manufacturers were able to double the
number of transistors on the processor and increase the number of operations that could
be performed each second (the clock speed). By the 2000s, miniaturisation of the circuits
reached a physical limit in terms of what could be reliably manufactured. Another prob-
lem was that it was becoming increasingly difficult to keep these processors cool and
energy efficient. These design issues were side-stepped with the development of multi-
core processors. Instead of increasing transistor counts and clock speeds, manufacturers
began to integrate two or more independent central processing units (cores) onto the same
single silicon die or multiple dies in a single chip package. Multi-core processors have
gradually replaced single-core processors on all computers over the past 10 years.

The performance gains of multi-core processing depend on the ability of the application
to use more than one core at the same time. The programmer needs to write software to
execute in parallel, and this is covered later. These modern so-called ‘scalar’ computers
also tend to contain some vector-type hardware. The latest Intel processor has 256-bit
vector units on each core, enough to compute four 64-bit floating point operations at

4 Programming the Finite Element Method

the same time (modest compared with true vector processors). In this book, beginning at
Chapter 5, programs which ‘vectorise’ well will be illustrated.

1.6 Co-processors

Co-processors are secondary processors, designed to work alongside the main processor,
that perform a specific task, such as manipulating graphics, much faster than the host
‘general-purpose’ processor. The principle of specialisation is similar to vector processing
described earlier. Historically, the inclusion of co-processors in computers has come and
gone in cycles.

At the time of writing, graphics processing units (GPUs) are a popular way of accel-
erating numerical computations. GPUs are essentially highly specialised processors with
hundreds of cores. They are supplied as plug-in boards that can be added to standard
computers. One of the major issues with this type of co-processor is that data needs to
be transferred back and forth between the computer’s main memory and the GPU board.
The gains in processing speed are therefore greatly reduced if the software implementa-
tion cannot minimise or hide memory transfer times. To overcome this, processors are
beginning to emerge which bring the graphics processor onto the same silicon die. With
multiple cores, a hierarchical memory and special GPU units, these processors are referred
to as a ‘system on a chip’ and are the next step in the evolution of modern computers.

There are two main approaches to writing scientific software for graphics processing
units: (1) the Open Computing Language (OpenCL) and (2) the Compute Unified
Device Architecture (CUDA). OpenCL (http://www.khronos.org/opencl)
is an open framework for writing software that gives any application access to
any vendor’s graphics processing unit, as well as other types of processor. CUDA
(http://developer.nvidia.com/category/zone/cuda-zone) is a propri-
etary architecture that gives applications access to NVIDIA hardware only. The use of
graphics processing units is covered further in Chapter 12.

1.7 Parallel Processors

In this concept (of which there are many variants) there are several physically distinct
processing elements (a few cores in a processor or a lot of multi-core processors in a com-
puter, for example). These processors may also have access to co-processors. Programs
and/or data can reside on different processing elements which have to communicate with
one another.

There are two foreseeable ways in which this communication can be organised (rather
like memory management which was described earlier). Either the programmer takes
control of the communication process, using a programming feature called ‘message
passing’, or it is done automatically, without user control. The second strategy is of
course appealing but has not so far been implemented successfully.

For some specific hardware, manufacturers provide ‘directives’ which can be inserted
by users in programs and implemented by the compiler to parallelise sections of the
code (usually associated with DO-loops). Smith (2000) shows that this approach can be
quite effective for up to a modest number of parallel processors (say 10). However, such
programs are not portable to other machines.

A further alternative is to use OpenMP, a portable set of directives limited to a class
of parallel machines with so-called ‘shared memory’. Although the codes in this book

Preliminaries: Computer Strategies 5

have been rather successfully adapted for parallel processing using OpenMP (Pettipher
and Smith, 1997), the most popular strategy applicable equally to ‘shared memory’ and
‘distributed memory’ systems is described in Chapter 12. The programs therein have been
run successfully on multi-core processors, clusters of PCs communicating via ethernet
and on shared and distributed memory supercomputers with their much more expensive
communication systems. This strategy of message passing under programmer control
is realised by MPI (‘message passing interface’) which is a de facto standard, thereby
ensuring portability (MPI Web reference, 2003).

The smallest example of a shared memory machine is a multi-core processor which typ-
ically has access to a single bank of main memory. In parallel computers comprising many
multi-core processors, it is sometimes advantageous to use a hybrid programming strategy
whereby OpenMP is used to facilitate communication between local cores (within a single
processor) and MPI is used to communicate with remote cores (on other processors).

1.8 Applications Software

Since all computers have different hardware (instruction formats, vector capability, etc.)
and different store management strategies, programs which would make the most effec-
tive use of these varying facilities would of course differ in structure from machine to
machine. However, for excellent reasons of program portability and programmer training,
engineering and scientific computations on all machines are usually programmed in ‘high-
level’ languages which are intended to be machine-independent. FORTRAN is by far the
most widely used language for programming engineering and scientific calculations and
in this section a brief overview of FORTRAN will be given with particular reference to
features of the language which are useful in finite element computations.

Figure 1.1 shows a typical simple program written in FORTRAN (Smith, 1995).
It concerns an opinion poll survey and serves to illustrate the basic structure of the
language for those used to other languages.

It can be seen that programs are written in ‘free source’ form. That is, statements can
be arranged on the page or screen at the user’s discretion. Other features to note are:

• Upper- and lower-case characters may be mixed at will. In the present book, upper
case is used to signify intrinsic routines and ‘key words’ of FORTRAN.

• Multiple statements can be placed on one line, separated by ;.
• Long lines can be extended by & at the end of the line, and optionally another & at the

start of the continuation line(s).
• Comments placed after ! are ignored.
• Long names (up to 31 characters, including the underscore) allow meaningful identifiers.
• The IMPLICIT NONE statement forces the declaration of all variable and constant

names. This is a great help in debugging programs.
• Declarations involve the :: double colon convention.
• There are no labelled statements.

1.8.1 Compilers

The human-readable text in Figure 1.1 is turned into computer instructions using
a program called a ‘compiler’. There are a number of free compilers available

6 Programming the Finite Element Method

Figure 1.1 A typical program written in FORTRAN

that are suitable for students, such as G95 (www.g95.org) and GFORTRAN
(http://gcc.gnu.org/fortran/). Commercial FORTRAN compilers used in
the book include those supplied by Intel, Cray, NAG and the Portland Group. When
building an application on a supercomputer, use of the compiler provided by the vendor
is highly recommended. These typically generate programs that make better use of the
target hardware than free versions.

Figure 1.1 shows a Windows-based programming environment in which FORTRAN
programs can be written, compiled and executed with the help of an intuitive graphical
user interface. FORTRAN programs can also be written using a text editor and compiled
using simple commands in a Windows or Linux terminal. An example of how to compile
at the ‘command line’ is shown below. The compiler used is G95.

g95 –c hello.f90 Creates an object file named hello.o
g95 –o hello hello.f90 Compiles and links to create the executable hello

1.8.2 Arithmetic

Finite element processing is computationally intensive (see, e.g., Chapters 6 and 10) and
a reasonably safe numerical precision to aim for is that provided by a 64-bit machine

Preliminaries: Computer Strategies 7

word length. FORTRAN contains some useful intrinsic procedures for determining, and
changing, processor precision. For example, the statement

iwp = SELECTED_REAL_KIND(15)

would return an integer iwp which is the KIND of variable on a particular processor
which is necessary to achieve 15 decimal places of precision. If the processor cannot
achieve this order of accuracy, iwp would be returned as negative.

Having established the necessary value of iwp, FORTRAN declarations of REAL
quantities then take the form

REAL(iwp)::a,b,c

and assignments the form

a=1.0_iwp; b=2.0_iwp; c=3.0_iwp

and so on.
In most of the programs in this book, constants are assigned at the time of declaration,

for example,

REAL(iwp)::zero=0.0_iwp,d4=4.0_iwp,penalty=1.0E20_iwp

so that the rather cumbersome _iwp extension does not appear in the main program
assignment statements.

1.8.3 Conditions

There are two basic structures for conditional statements in FORTRAN which are both
shown in Figure 1.1. The first corresponds to the classical IF ... THEN ... ELSE
structure found in most high-level languages. It can take the form:

name_of_clause: IF(logical expression 1)THEN
. first block
. of statements
.

ELSE IF(logical expression 2)THEN
. second block
. of statements
.

ELSE
. third block
. of statements
.

END IF name_of_clause

For example,

change_sign: IF(a/=b)THEN
a=-a

ELSE
b=-b

END IF change_sign

8 Programming the Finite Element Method

The name of the conditional statement, name_of_clause: or change_sign:
in the above examples, is optional and can be left out.

The second conditional structure involves the SELECT CASE construct. If choices are
to be made in particularly simple circumstances, for example, an INTEGER, LOGICAL
or CHARACTER scalar has a given value then the form below can be used:

select_case_name: SELECT CASE(variable or expression)
CASE(selector)

. first block

. of statements

.
CASE(selector)

. second block

. of statements

.
CASE DEFAULT

. default block

. of statements

.
END select_case_name

1.8.4 Loops

There are two constructs in FORTRAN for repeating blocks of instructions. In the first,
the block is repeated a fixed number of times, for example

fixed_iterations: DO i=1,n
. block
. of statements
.

END DO fixed_iterations

In the second, the loop is left or continued depending on the result of some condition.
For example,

exit_type: DO
. block
. of statements
.
IF(conditional statement)EXIT
. block
. of statements
.

END DO exit_type

or

cycle_type: DO
. block
. of statements
.
IF(conditional statement)CYCLE
. block
. of statements
.

END DO cycle_type

Preliminaries: Computer Strategies 9

The first variant transfers control out of the loop to the first statement after END DO.
The second variant transfers control to the beginning of the loop, skipping the remaining
statements between CYCLE and END DO.

In the above examples, as was the case for conditions, the naming of the loops is
optional. In the programs in this book, loops and conditions of major significance tend to
be named and simpler ones not.

1.9 Array Features

1.9.1 Dynamic Arrays

Since the 1990 revision, FORTRAN has allowed ‘dynamic’ declaration of arrays. That is,
array sizes do not have to be specified at program compilation time but can be ALLO-
CATEd after some data has been read into the program, or some intermediate results
computed. A simple illustration is given below:

PROGRAM dynamic
! just to illustrate dynamic array allocation
IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)
! declare variable space for two dimensional array a
REAL(iwp),ALLOCATABLE::a(:,:)
REAL(iwp)::two=2.0_iwp,d3=3.0_iwp
INTEGER::m,n
! now read in the bounds for a
READ*,m,n
! allocate actual space for a
ALLOCATE(a(m,n))
READ*,a ! reads array a column by column
PRINT*,two*SQRT(a)+d3
DEALLOCATE(a)! a no longer needed
STOP
END PROGRAM dynamic

This simple program also illustrates some other very useful features of the language.
Whole-array operations are permissible, so that the whole of an array is read in, or the
square root of all its elements computed, by a single statement. The efficiency with which
these features are implemented by practical compilers is variable.

1.9.2 Broadcasting

A feature called ‘broadcasting’ enables operations on whole arrays by scalars such as two
or d3 in the above example. These scalars are said to be ‘broadcast’ to all the elements
of the array so that what will be printed out are the square roots of all the elements of
the array having been multiplied by 2.0 and added to 3.0.

1.9.3 Constructors

Array elements can be assigned values in the normal way but FORTRAN also permits
the ‘construction’ of one-dimensional arrays, or vectors, such as the following:

v = (/1.0,2.0,3.0,4.0,5.0/)

10 Programming the Finite Element Method

which is equivalent to

v(1)=1.0; v(2)=2.0; v(3)=3.0; v(4)=4.0; v(5)=5.0

Array constructors can themselves be arrays, for example

w = (/v, v/)

would have the obvious result for the 10 numbers in w.

1.9.4 Vector Subscripts

Integer vectors can be used to define subscripts of arrays, and this is very useful in
the ‘gather’ and ‘scatter’ operations involved in the finite element method and other
numerical methods such as the boundary element method (Beer et al., 2008). Figure 1.2
shows a portion of a finite element mesh of 8-node quadrilaterals with its nodes numbered
‘globally’ at least up to 106 in the example shown. When ‘local’ calculations have to be
done involving individual elements, for example to determine element strains or fluxes,
a local index vector could hold the node numbers of each element, that is:

82 76 71 72 73 77 84 83 for element 65
93 87 82 83 84 88 95 94 for element 73

56

62

69

70

74

75

76 77

78 81

82

84

85 86
87

89

90

91

92
93

94
95

96 97

 99

100 104

105 106

element
65

element
73

102

73
67

57 58 59 60

65

61

66

71

64

63

68

80

79

83

88

98

103101

72

Figure 1.2 Portion of a finite element mesh with node and element numbers

Preliminaries: Computer Strategies 11

and so on. This index or ‘steering’ vector could be called g. When a local vector has to
be gathered from a global one,

local = global(g)

is valid, and for scattering

global(g) = local

In this example local and g would be 8-long vectors, whereas global could have
a length of thousands or millions.

1.9.5 Array Sections

Parts of arrays or ‘subarrays’ can be referenced by giving an integer range for one or
more of their subscripts. If the range is missing for any subscript, the whole extent of
that dimension is implied. Thus if a and b are two-dimensional arrays, a(:,1:3) and
b(11:13,:) refer to all the terms in the first three columns of a, and all the terms in
rows eleven through thirteen of b, respectively. If array sections ‘conform’, that is, have
the right number of rows and columns, they can be manipulated just like ‘whole’ arrays.

1.9.6 Whole-array Manipulations

Whilst simple operations on whole arrays such as addition, multiplication by a scalar
and so on are easily carried out in FORTRAN it must be noted that although a = b*c
has a meaning for conforming arrays a, b and c, its consequence is the computation of
the ‘element-by-element’ products of b and c and is not to be confused with the matrix
multiply described in the next subsection.

1.9.7 Intrinsic Procedures for Arrays

To supplement whole-array arithmetic operations, FORTRAN provides a few intrinsic pro-
cedures (functions) which are very useful in finite element work. These can be grouped
conveniently into those involving array computations, and those involving array inspec-
tion. The array computation functions are:

FUNCTION MATMUL(a,b) ! returns matrix product of
! a and b

FUNCTION DOT_PRODUCT(v1,v2) ! returns dot product of
! v1 and v2

FUNCTION TRANSPOSE(a) ! returns transpose of a

All three are heavily used in the programs in this book. The array inspection functions
include:

FUNCTION MAXVAL(a) ! returns the element of an array a of
! maximum value (not absolute maximum)

FUNCTION MINVAL(a) ! returns the element of an array a of
! minimum value (not absolute minimum)

FUNCTION MAXLOC(a) ! returns the location of the maximum
! element of array a

12 Programming the Finite Element Method

FUNCTION MINLOC(a) ! returns the location of the minimum
! element of array a

FUNCTION PRODUCT(a) ! returns the product of all the
! elements of a

FUNCTION SUM(a) ! returns the sum of all the
! elements of a

FUNCTION LBOUND(a,1) ! returns the first lower bound of a, etc.
FUNCTION UBOUND(a,1) ! returns the first upper bound of a, etc.

In the event of array a having more than one dimension, MAXLOC and MINLOC return
the appropriate number of integers (row, column, etc.) pointing to the required location.

The first six of these procedures allow an optional argument called a ‘masking’ argu-
ment. For example, the statement

asum=SUM(column,MASK=column>=0.0)

will result in asum containing the sum of the positive elements of array column.
Useful procedures whose only argument is a MASK are:

ALL(MASK=column>0.0) ! true if all elements of column
! are positive

ANY(MASK=column>0.0) ! true if any elements of column
! are positive

COUNT(MASK=column<0.0) ! number of elements of column
! which are negative

For multi-dimensional arrays, operations such as SUM can be carried out on a particular
dimension of the array. When a mask is used, the dimension argument must be specified
even if the array is one-dimensional. Referring to Figure 1.2, the ‘half-bandwidth’ of
a particular element could be found from the element freedom steering vectors, g, by
the statement

nband = MAXVAL(g) – MINVAL(g,1,g>0)

allowing for the possibility of zero entries in g. Note that the argument MASK= is optional.
The global ‘half-bandwidth’ of an assembled system of equation coefficients would

then be the maximum value of nband after scanning all the elements in the mesh.

1.9.8 Modules

A module is a program unit separate from the main program unit in the way that sub-
routines and functions are. However, in its simplest form, it may contain no executable
statements at all and just be a list or collection of declarations or data which is globally
accessible to the program unit which invokes it by a USE statement. Its main employment
later in the book will be to contain either a collection of subroutines and functions which
constitute a ‘library’ or to contain the ‘interfaces’ between such a library and a program
which uses it.

Support for mixed-language programming has been added to the latest versions of
FORTRAN (2003 onwards), enabling interoperability between FORTRAN and C. This has
been made easier by the introduction of an intrinsic module that helps programmers ensure
that a variable of particular type and kind used in FORTRAN maps to a variable of the

Preliminaries: Computer Strategies 13

same type and kind in C. This is invoked by adding the following to the FORTRAN
program and declaring the variables as specified by the ISO standard:

USE,INTRINSIC::ISO_C_BINDING

1.9.9 Subprogram Libraries

It was stated in the Introduction to this chapter that what will be presented in Chapter 4
onwards is not a monolithic program but rather a collection of test programs which all
access one or two common subroutine libraries which contain subroutines and functions. In
the simplest implementation of FORTRAN the library routines could simply be appended
to the main program after a CONTAINS statement as follows:

PROGRAM test_one
.
.
.
.

CONTAINS
SUBROUTINE one(p1,p2,p3)

.

.

.
END SUBROUTINE one
SUBROUTINE two(p4,p5,p6)

.

.

.
END SUBROUTINE two

.
etc.

END PROGRAM test_one

This would be tedious because a sublibrary would really be required for each test
program, containing only the needed subroutines. Secondly, compilation of the library
routines with each test program compilation is wasteful.

What is required, therefore, is for the whole subroutine library to be precompiled and
for the test programs to link only to the parts of the library which are needed.

The designers of FORTRAN seem to have intended this to be done in the following
way. The subroutines would be placed in a file:

SUBROUTINE one(args1)
.
.
.

END SUBROUTINE one
SUBROUTINE two(args2)

.

.
etc.

SUBROUTINE ninety_nine(args99)
.
.
.

END SUBROUTINE ninety_nine

and compiled.

14 Programming the Finite Element Method

A ‘module’ would constitute the interface between library and calling program. It would
take the form

MODULE main
INTERFACE
SUBROUTINE one(args1)

(Parameter declarations)
END SUBROUTINE one
SUBROUTINE two(args2)

(Parameter declarations)
.
.

etc.
SUBROUTINE ninety_nine(args99)

(Parameter declarations)
END SUBROUTINE ninety_nine

END INTERFACE
END MODULE main

Thus the interface module would contain only the subroutine ‘headers’, that is the
subroutine’s name, argument list, and declaration of argument types. This is deemed
to be safe because the compiler can check the number and type of arguments in
each call.

The libraries would be interfaced by a statement USE main at the beginning of each
test program. For example,

PROGRAM test_program1
USE main

.

.

.
END PROGRAM test_program1

However, it is still quite tedious to keep updating two files when making changes to
a library (the library and the interface module). Users with straightforward FORTRAN
libraries may well prefer to omit the interface stage altogether and just create a module
containing the subroutines themselves. These would then be accessed by

USE library_routines

in the example shown below. This still allows the compiler to check the numbers and
types of subroutine arguments when the test programs are compiled. For example,

MODULE library_routines
CONTAINS
SUBROUTINE one(args1)

.

.

.
END SUBROUTINE one
SUBROUTINE two(args2)

.

.
etc.

Preliminaries: Computer Strategies 15

SUBROUTINE ninety_nine(args99)
.
.
.

END SUBROUTINE ninety_nine
END MODULE library_routines

and then

PROGRAM test_program_2
USE library_routines

.

.

.
END PROGRAM test_program_2

1.9.10 Structured Programming

The finite element programs which will be described are strongly ‘structured’ in the sense
of Dijkstra (1976). The main feature exhibited by our programs will be seen to be a nested
structure and we will use representations called ‘structure charts’ (Lindsey, 1977) rather
than flow charts to describe their actions.

The main features of these charts are:

(i) The block

This will be used for the outermost level of each structure chart. Within a block as shown
in Figure 1.3, the indicated actions are to be performed sequentially.

(ii) The choice

This corresponds to the IF...THEN...ELSE IF...THEN....END IF or SELECT
CASE type of construct as shown in Figure 1.4.

(iii) The loop

This comes in various forms, but we shall usually be concerned with DO-loops, either for
a fixed number of repetitions or ‘forever’ (so-called because of the danger of the loop
never being completed) as shown in Figure 1.5.

Using this notation, a matrix multiplication program would be represented as shown in
Figure 1.6. The nested nature of a typical program can be seen quite clearly.

Do this

Do that

Do the other

Figure 1.3 The block

16 Programming the Finite Element Method

QUESTION?

Answer 1

ACTION 1

Answer 2

ACTION 2

Answer 3

ACTION 3

Figure 1.4 The choice

Until some
condition is satisfied

ACTION
TO BE

REPEATED

or

FOR i TO n

ACTION
TO BE

REPEATED
n TIMES

Figure 1.5 The loop

Initialise variables and
arrays a(l,m), b(m,n) and c(l,n)

FOR i TO l

FOR k TO n

sum = 0.0

FOR j TO m

sum = sum + a(i,j)*b(j,k)

Set c(i,k) = sum

Do something with c

Figure 1.6 Structure chart for matrix multiplication

Preliminaries: Computer Strategies 17

1.10 Third-party Libraries

The programs and libraries provided in this book are mostly self-contained and have been
written by the authors. This philosophy clarifies the book as a teaching text and simplifies
the learning process. However, there are many third-party libraries that can be used either
to extend the capabilities of the software provided or to improve its execution speed.
Some examples are provided in the following sections. External subprograms used in the
book are listed in Appendix G.

1.10.1 BLAS Libraries

As was mentioned earlier, programs implementing the finite element method make inten-
sive use of matrix or array structures. For example, a study of any of the programs in
the succeeding chapters will reveal repeated use of the subroutine MATMUL to multiply
two matrices together as described in Figure 1.6. While one might hope that the writers
of compilers would implement calls to MATMUL efficiently, this turns out in practice not
always to be so.

An alternative is to use ‘BLAS’ or Basic Linear Algebra Subroutine Libraries (e.g.,
Dongarra and Walker, 1995). Most vendors provide a BLAS maths library tuned
for their hardware. Special versions for graphics processing units, such as CUBLAS
(www.developer.nvidia.com/cublas) and MAGMA (Agullo et al., 2009), are
also available.

There are three ‘levels’ of BLAS subroutines involving vector–vector, matrix–vector
and matrix–matrix operations, respectively. To improve efficiency in large calculations it
is always worth experimenting with BLAS routines if available. The calling sequence is
rather cumbersome, for example the FORTRAN

utemp=MATMUL(km,pmul)

has to be replaced by

CALL dgemv(′n′,ntot,ntot,1.0,km,ntot,pmul,1,0.0,utemp,1)

as will be shown in Program 12.1. However, very significant gains in processing speed
can be achieved as reported in Chapters 5 and 12.

1.10.2 Maths Libraries

There are a large number of commercial and freely available libraries which contain
mathematical and statistical algorithms. NAG Ltd. provides a library with over 1,700
fully documented and tested routines (www.nag.co.uk). The UK Rutherford Apple-
ton Laboratory develops the Harwell Scientific Library (www.hsl.rl.ac.uk), a col-
lection of packages for large-scale scientific computation that have been continually
updated and improved since 1963. For eigenvalue problems, an excellent resource is
the ARPACK library that is used in Chapter 10 (www.caam.rice.edu/software/
ARPACK).

18 Programming the Finite Element Method

1.10.3 User Subroutines

Most commercial finite element packages provide interfaces for users to incorporate
subroutines they have written themselves. ‘User subroutine’ interfaces are provided for
features that are not yet implemented in the package, such as special element types, new
models of material behaviour and faster equation solvers. It is very straightforward to
use these subroutines to extend the capabilities of the programs described in this book.
A simple example of using an ABAQUS (www.3ds.com) umat (User MATerial) is
shown in Chapter 5. In this case, the umat is written in an old version of FORTRAN, a
specific requirement for its use in ABAQUS.

1.10.4 MPI Libraries

MPI (MPI Web reference, 2003) is itself essentially a library of routines for communica-
tion callable from FORTRAN. For example,

CALL MPI_BCAST(rest,buf,MPI_INTEGER,npes-1,MPI_COMM_WORLD,ier)

‘broadcasts’ the array rest of size buf (number of restraints nr multiplied by degrees
of freedom nodof+1) to the remaining npes-1 processors on a parallel system.

In the parallel programs in this book (Chapter 12), these MPI routines are mainly
hidden from the user and contained within routines collected in library modules such
as gather_scatter. In this way, the parallel programs can be seen to be readily
derived from their serial counterparts. The detail of the MPI library is left to Chapter 12.
A recommended implementation of MPI, needed to run MPI-based programs, is OpenMPI
(www.open-mpi.org).

1.11 Visualisation

It is good practice to inspect finite element models before analysis using a visualisation
tool in order to check the quality of the mesh and ensure that the loading and boundary
conditions have been correctly applied. The same tool can be used after the analysis to
plot, for example, the deformed mesh and contours of derived quantities such as stress
and strain. Two visualisation strategies are adopted here. The first uses subroutines to
conveniently generate PostScript images as direct output from the programs:

SUBROUTINE mesh ! Image of undeformed mesh
SUBROUTINE dismsh ! Image of deformed mesh
SUBROUTINE vecmsh ! Image of nodal displacement vectors
SUBROUTINE contour ! Image of contours of nodal values

The second uses a third-party visualisation tool, ParaView, that can be freely down-
loaded (www.paraview.org). To use ParaView, the finite element programs need
to output data in a format that ParaView supports. Here the following subroutines are
provided that output geometry and results in the Ensight Gold format:

SUBROUTINE mesh_ensi ! Undeformed mesh files
SUBROUTINE dismsh_ensi ! Displacement file(s)

Preliminaries: Computer Strategies 19

For Program 5.6, say, a typical set of output files generated by these two subroutines
will contain

p56.ensi.case ! a descriptive control file
p56.ensi.geo ! geometry and element steering array
p56.ensi.ndlds ! nodal loads
p56.ensi.ndbnd ! restrained loads
p56.ensi.dis***** ! nodal displacements,

! where ***** is the step number

Basic instructions for using ParaView, in Windows, to create typical plots are provided
in the following sections. ParaView is a very powerful visualisation tool and for more
advanced usage, it is recommended that the reader consults the ParaView documentation.
For very large data sets (e.g., Chapter 12), ParaView can be run in parallel mode. These
instructions are for ParaView version 3.98.0.

1.11.1 Starting ParaView

After downloading from the website and following the installation instructions, the
ParaView application should appear in the Start menu. When launched, the ParaView
display is initially split into four main areas as shown in Figure 1.7. Across the top are
the menus and toolbars. On the left is the Pipeline Browser, which shows the
loaded model and any objects derived from the model. Below that are the Properties

Figure 1.7 Undeformed mesh loaded into ParaView

20 Programming the Finite Element Method

and Information tabs, which show details about the model and a list of parameters
the user can modify. Finally, the main area is the Viewer Window that shows the
current view of the model.

To load a finite element model, use File > Open, navigate to the directory where the
data set is located and select the case file (e.g., p56.ensi.case). Some information
will appear in the Pipeline Browser and Properties tab. In the Properties
tab, there will be a number of named variables that belong to the data set. At this stage, all
of these should be checked and the Apply button should be applied. The model should
now appear in the main viewer window. To view the undeformed mesh, click on the
Representation dropdown box at the bottom of the Properties tab and select
Surface with Edges. There is also a dropdown box that performs the same action
in the toolbars that appear at the top of the ParaView display.

The model can be rotated by clicking, holding and dragging the mouse. Zooming in
and out is done by holding down the control (ctrl) button on the keyboard and the left
mouse button at the same time.

1.11.2 Display Restrained Nodes

The scalar value in the EnSight file p56.ensi.NDBND is derived from the following
bitwise function: value = !z*4 + !y*2 + !x, where x, y and z are either 1 –
the node is constrained in that axis, or 0 – the node is free to move in that axis (note
this is the opposite of the convention used in the book). A bound node of 0 0 0 (book
convention) or 1 1 1 (EnSight convention) will result in a value of 7 (1*4 + 1*2
+ 1*1) in the EnSight file, denoting that the node is restrained in all three axes. Further
examples of this coding convention for restraints are given below:

Book (EnSight) ! Integer restraint code in p56.ensi.NDBND
0 0 0 (1 1 1) ! 1*4 + 1*2 + 1*1 = 7
1 0 0 (0 1 1) ! 0*4 + 1*2 + 1*1 = 3
0 1 0 (1 0 1) ! 1*4 + 0*2 + 1*1 = 5

To view the restrained nodes as shown in Figure 1.8, first select the p56.ensi.case
object in the Pipeline Browser. Now add a Calculator filter by selecting the cal-
culator icon. In the Properties tab, change the Result Array Name to isCon-
strained. Just below that is a type-in area where a calculator function can be entered.
Type if(restraint>6,1,0) and press Apply. This simply generates a 0 or 1 value
to denote if the constraint 0 0 0 (book convention) is present. A similar strategy is
taken to view other types of restraint. The if syntax is (condition, true-value,
false-value). With the Calculator object selected in the Pipeline Browser,
apply a glyph filter using the Glyph icon. In the Properties tab, change the Scale
Mode to scalar, select the Scalars dropdown to be isConstrained, select Glyph
Type as Sphere and press Apply.

Some sphere glyphs should now appear but they may be too large. The size can be
changed by entering a new value in the Radius box in the Sphere panel on the
Properties tab. To accept the changes, press Apply. In the Properties tab of
the Glyph object, set Color to restraint, then press the Edit colour map button
immediately below. Choose a colour scheme. In Figure 1.8, a greyscale colour scheme
has been selected.

Preliminaries: Computer Strategies 21

Figure 1.8 Restrained nodes

1.11.3 Display Applied Loads

To view the applied loads, as shown in Figure 1.9, click on the p56.ensi.case file
in the Pipeline Browser and then select a glyph filter using the Glyph icon. In
the Properties tab, change the Scale Mode to Vector, set Vectors to load,
select Glyph Type as Arrow and press Apply. Some arrows should appear in the
Viewer Window. The arrows are scaled by the magnitude of the vector, so zero and
low-magnitude glyphs may not be visible. It can be difficult to see arrows clearly when the
model is obscuring them. In the Pipeline Browser, click on the eye icon to the left
of the Calculator1 object to ensure it is greyed out. Now select the p56.ensi.case
file and ensure the eye icon is darkened (the icon toggles between light and dark to indi-
cate whether that object is displayed in the Viewer Window). In the Properties
tab, modify the Representation settings so that the model is represented as a Wire-
frame. Another option is to select Surface and set the Opacity to 0.10 to make
the model semi-transparent.

1.11.4 Display Deformed Mesh

The results of p56 include a set of nodal displacements. This deformation can be applied
and visualised directly as shown in Figure 1.10. With the p56.ensi.case file selected
in the Pipeline Browser, click on the Warp By Vector icon (bendy green bar).
This is situated above the Pipeline Browser. A new object will now appear in the
Pipeline Browser, called WarpByVector1. Select the new WarpByVector1

22 Programming the Finite Element Method

Figure 1.9 Nodal force vectors

Figure 1.10 Deformed mesh

Preliminaries: Computer Strategies 23

object in the Pipeline Browser. In its Properties tab, check that the
displacement variable is selected in the Vectors dropdown menu and then press
the green Apply button. If the displacement is very small and the deformation is hardly
noticeable, the Scale Factor can be modified to exaggerate the displacements.

1.12 Conclusions

Computers on which finite element computations can be done vary widely in their
capabilities and architecture. Because of its entrenched position, FORTRAN is the lan-
guage in which computer programs for engineering applications had best be written in
order to assure maximum readership and portability. A library of subroutines can be cre-
ated which is held in compiled form and accessed by programs in just the way that a man-
ufacturer’s permanent library is. For parallel implementations a similar strategy is adopted
using MPI. Further information on parallel implementations is at http://parafem.
org.uk.

Using this philosophy, user libraries containing over 100 subroutines and functions
have been assembled, together with over 70 example programs which access them. These
programs and subroutines are written in a reasonably ‘structured’ style, and can be down-
loaded from the internet at www.mines.edu/∼vgriffit/5th_ed. Versions are at
present available for all the common machine ranges and FORTRAN compilers listed
in Section 1.8.1. The downloadable software includes the parallel library, which con-
sists of more than 20 subroutines, and the 10 example programs from Chapter 12 which
use them.

The structure of the remainder of the book is as follows. Chapter 2 shows how the
differential equations governing the behaviour of solids and fluids are semi-discretised in
space using finite elements.

Chapter 3 describes the subprogram libraries and the basic techniques by which main
programs are constructed to solve the equations listed in Chapter 2. Two basic solution
strategies are described, one involving element matrix assembly to form global matrices,
which can be used for small to medium-sized problems and the other using ‘element-by-
element’ matrix techniques to avoid assembly and therefore permit the solution of very
large problems.

Chapters 4 to 11 are concerned with applications, partly in the authors’ field of geome-
chanics. However, the methods and programs described are equally applicable in many
other fields of engineering and science such as structural mechanics, fluid dynamics,
bioengineering, electromagnetics and so on. Chapter 4 leads off with static analysis of
skeletal structures. Chapter 5 deals with static analysis of linear solids, while Chapter 6 dis-
cusses extensions to deal with material non-linearity. Programs dealing with the common
geotechnical process of construction (element addition during the analysis) and excavation
(element removal during the analysis) are given. Chapter 7 is concerned with steady-state
field problems (e.g., fluid or heat flow), while transient states with inclusion of transport
phenomena (diffusion with convection) are treated in Chapter 8. In Chapter 9, coupling
between solid and fluid phases is treated, with applications to ‘consolidation’ processes in
geomechanics. A second type of ‘coupling’ which is treated involves the Navier–Stokes
equations. Chapter 10 contains programs for the solution of eigenvalue problems (e.g.,
steady-state vibration), involving the determination of natural modes by various methods.
Integration of the equations of motion in time is described in Chapter 11. Chapter 12

24 Programming the Finite Element Method

takes 10 example programs from earlier chapters and shows how these may be paral-
lelised using the MPI library. Since only ‘large’ problems benefit from parallelisation, all
of these examples employ three-dimensional geometries. A final program in Chapter 12
illustrates the use of GPUs.

In every applications chapter, test programs are listed and described, together with
specimen input and output. At the conclusion of most chapters, exercise questions are
included, with solutions.

References

Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J, et al. 2009 Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects. Physics: Conference Series 180.

Beer G, Smith IM and Duenser C 2008 The Boundary Element Method with Programming . Springer, London.
Dijkstra EW 1976 A Discipline of Programming . Prentice-Hall, Englewood Cliffs, NJ.
Dongarra JJ and Walker DW 1995 Software libraries for linear algebra computations on high performance

computers. Siam Rev 37(2), 151–180.
Lindsey CH 1977 Structure charts: A structured alternative to flow charts. SIGPLAN Notices 12(11), 36–49.
MPI Web reference 2003 http://www-unix.mcs.anl.gov/mpi/.
Pettipher MA and Smith IM 1997 The development of an MPP implementation of a suite of finite element

codes. High-Performance Computing and Networking: Lecture Notes in Computer Science. Springer-Verlag,
Berlin, pp. 400–409.

Smith IM 1995 Programming in Fortran 90 . John Wiley & Sons, Chichester.
Smith IM 2000 A general purpose system for finite element analyses in parallel. Eng Comput 17(1), 75–91.
Willé DR 1995 Advanced Scientific Fortran . John Wiley & Sons, Chichester.

