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A visual introduction to
quantile regression

Introduction

Quantile regression is a statistical analysis able to detect more effects than conven-
tional procedures: it does not restrict attention to the conditional mean and therefore
it permits to approximate the whole conditional distribution of a response variable.

This chapter will offer a visual introduction to quantile regression starting from
the simplest model with a dummy predictor, moving then to the simple regression
model with a quantitative predictor, through the case of a model with a nominal
regressor.

The basic idea behind quantile regression and the essential notation will be
discussed in the following sections.

1.1 The essential toolkit

Classical regression focuses on the expectation of a variable Y conditional on the
values of a set of variables X, E(Y|X), the so-called regression function (Gujarati
2003; Weisberg 2005). Such a function can be more or less complex, but it restricts
exclusively on a specific location of the Y conditional distribution. Quantile regres-
sion (QR) extends this approach, allowing one to study the conditional distribution
of Y on X at different locations and thus offering a global view on the interrelations
between Y and X. Using an analogy, we can say that for regression problems, QR is
to classical regression what quantiles are to mean in terms of describing locations of
a distribution.
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2 QUANTILE REGRESSION

QR was introduced by Koenker and Basset (1978) as an extension of classical
least squares estimation of conditional mean models to conditional quantile func-
tions. The development of QR, as Koenker (2001) later attests, starts with the idea
of formulating the estimation of conditional quantile functions as an optimization
problem, an idea that affords QR to use mathematical tools commonly used for the
conditional mean function.

Most of the examples presented in this chapter refer to the Cars93 dataset, which
contains information on the sales of cars in the USA in 1993, and it is part of the
MASS R package (Venables and Ripley 2002). A detailed description of the dataset
is provided in Lock (1993).

1.1.1 Unconditional mean, unconditional quantiles
and surroundings

In order to set off on the QR journey, a good starting point is the comparison of mean
and quantiles, taking into account their objective functions. In fact, QR generalizes
univariate quantiles for conditional distribution.

The comparison between mean and median as centers of an univariate distri-
bution is almost standard and is generally used to define skewness. Let Y be a
generic random variable: its mean is defined as the center c of the distribution which
minimizes the squared sum of deviations; that is as the solution to the following
minimization problem:

μ = argmin
c

E(Y − c)2. (1.1)

The median, instead, minimizes the absolute sum of deviations. In terms of a
minimization problem, the median is thus:

Me = argmin
c

E|Y − c|. (1.2)

Using the sample observations, we can obtain the sample estimators μ̂ and M̂e for
such centers.

It is well known that the univariate quantiles are defined as particular locations
of the distribution, that is the θ -th quantile is the value y such that P(Y ≤ y) = θ .
Starting from the cumulative distribution function (CDF):

FY(y) = F(y) = P(Y ≤ y), (1.3)

the quantile function is defined as its inverse:

QY(θ) = Q(θ) = F−1
Y (θ) = inf{y : F(y) > θ} (1.4)

for θ ∈ [0, 1]. If F(.) is strictly increasing and continuous, then F−1(θ) is the unique
real number y such that F(y) = θ (Gilchrist 2000). Figure 1.1 depicts the empirical
CDF [Figure 1.1(a)] and its inverse, the empirical quantile function [Figure 1.1(b)],
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A VISUAL INTRODUCTION TO QUANTILE REGRESSION 3
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Figure 1.1 Empirical distribution function (a) and its inverse, the empirical quan-
tile function (b), for the Price variable of the Cars93 dataset. The three quartiles of
Price are represented on the two plots: qθ corresponds to the abscissa on the FY(y)

plot, while it corresponds to the ordinate on the QY(θ) plot; the other input being
the value of θ.

for the Price variable of the Cars93 dataset. The three quartiles, θ = {0.25, 0.5, 0.75},
represented on both plots point out the strict link between the two functions.

Less common is the presentation of quantiles as particular centers of the distribu-
tion, minimizing the weighted absolute sum of deviations (Hao and Naiman 2007).
In such a view the θ -th quantile is thus:

qθ = argmin
c

E[ρθ (Y − c)] (1.5)

where ρθ (.) denotes the following loss function:

ρθ (y) = [θ − I(y < 0)]y
= [(1 − θ)I(y ≤ 0) + θ I(y > 0)]|y|.

Such loss function is then an asymmetric absolute loss function; that is a weighted
sum of absolute deviations, where a (1 − θ) weight is assigned to the negative
deviations and a θ weight is used for the positive deviations.

In the case of a discrete variable Y with probability distribution f (y) = P(Y = y),
the previous minimization problem becomes:

qθ = argmin
c

E[ρθ (Y − c)]

= argmin
c

⎧⎨
⎩(1 − θ)

∑
y≤c

|y − c|f (y) + θ
∑
y>c

|y − c|f (y)
⎫⎬
⎭ .
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4 QUANTILE REGRESSION

The same criterion is adopted in the case of a continuous random variable substitut-
ing summation with integrals:

qθ = argmin
c

E[ρθ (Y − c)]

= argmin
c

⎧⎨
⎩(1 − θ)

c∫
−∞

|y − c|f (y)d(y) + θ

+∞∫
c

|y − c|f (y)d(y)

⎫⎬
⎭

where f (y) denotes the probability density function of Y . The sample estimator q̂θ for
θ ∈ [0, 1] is likewise obtained using the sample information in the previous formula.
Finally, it is straightforward to say that for θ = 0.5 we obtain the median solution
defined in Equation (1.2).

A graphical representation of these concepts is shown in Figure 1.2, where, for
the subset of small cars according to the Type variable, the mean and the three quar-
tiles for the Price variable of the Cars93 dataset are represented on the x-axis, along
with the original data. The different objective function for the mean and the three
quartiles are shown on the y-axis. The quadratic shape of the mean objective func-
tion is opposed to the V-shaped objective functions for the three quartiles, symmetric
for the median case and asymmetric (and opposite) for the case of the two extreme
quartiles.

1.1.2 Technical insight: Quantiles as solutions of a
minimization problem

In order to show the formulation of univariate quantiles as solutions of the mini-
mization problem (Koenker 2005) specified by Equation (1.5), the presentation of
the solution for the median case, Equation (1.2), is a good starting point. Assuming,
without loss of generality, that Y is a continuous random variable, the expected value
of the absolute sum of deviations from a given center c can be split into the following
two terms:

E|Y − c| =
∫

y∈R
|y − c|f (y)dx

=
∫

y<c

|y − c|f (y)dy +
∫

y>c

|y − c|f (y)dy

=
∫

y<c

(c − y)f (y)dy +
∫

y>c

(y − c)f (y)dy.

Since the absolute value is a convex function, differentiating E|Y − c| with respect to
c and setting the partial derivatives to zero will lead to the solution for the minimum:

∂

∂c
E|Y − c| = 0.
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Figure 1.2 Comparison of mean and quartiles as location indexes of a univariate
distribution. Data refer to the Price of small cars as defined by the Type variable
(Cars93 dataset). The car prices are represented using dots on the x-axis while the
positions of the mean and of the three quartiles are depicted using triangles. Objec-
tive functions associated with the three measures are shown on the y-axis. From this
figure, it is evident that the mean objective function has a quadratic shape while the
quartile objective functions are V-shaped; moreover it is symmetric for the median
case and asymmetric in the case of the two extreme quartiles.

The solution can then be obtained applying the derivative and integrating per part as
follows: ⎧⎨

⎩(c − y)f (y)

∣∣∣∣
c

−∞
+

∫
y<c

∂

∂c
(c − y)f (y)dy

⎫⎬
⎭ +

⎧⎨
⎩(y − c)f (y)

∣∣∣∣
+∞

c
+

∫
y>c

∂

∂c
(y − c)f (y)dy

⎫⎬
⎭ = 0

Taking into account that:

lim
x→−∞ f (x) = lim

x→+∞ f (x) = 0
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6 QUANTILE REGRESSION

for a well-defined probability density function, the integrand restricts in y = c1:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(c − y)f (y)

∣∣∣∣
y=c︸ ︷︷ ︸

= 0 when y = c

+
∫

y<c

f (y)dy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(y − c)f (y)

∣∣∣∣
y=c︸ ︷︷ ︸

= 0 when y = c

−
∫

y>c

f (y)dy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Using then the CDF definition, Equation (1.3), the previous equation reduces to:

F(c) − [1 − F(c)] = 0

and thus:

2F(c) − 1 = 0 =⇒ F(c) =
1

2
=⇒ c = Me.

The solution of the minimization problem formulated in Equation (1.2) is thus the
median. The above solution does not change by multiplying the two components
of E|Y − c| by a constant θ and (1 − θ), respectively. This allows us to formulate
the same problem for the generic quantile θ . Namely, using the same strategy for
Equation (1.5), we obtain:

∂

∂c
E[ρθ (Y − c)] =

∂

∂c

⎧⎨
⎩(1 − θ)

c∫
−∞

|y − c|f (y)dy + θ

+∞∫
c

|y − c|f (y)dy

⎫⎬
⎭ .

Repeating the above argument, we easily obtain:

∂

∂c
E[ρθ (Y − c)] = (1 − θ)F(c) − θ(1 − F(c)) = 0

and then qθ as the solution of the minimization problem:

F(c) − θF(c) − θ + θF(c) = 0 =⇒ F(c) = θ =⇒ c = qθ .

1.1.3 Conditional mean, conditional quantiles and
surroundings

By replacing the sorting with optimization, the above line of reasoning generalizes
easily to the regression setting. In fact, interpreting Y as a response variable and X as
a set of predictor variables, the idea of the unconditional mean as the minimizer of
Equation (1.1) can be extended to the estimation of the conditional mean function:

μ̂(xi, β) = argmin
μ

E[Y − μ(xi, β)]2,

1 It is worth to recall that our interest is in y = c because it is where E|Y − c| is minimized.
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A VISUAL INTRODUCTION TO QUANTILE REGRESSION 7

where μ(xi, β) = E[Y|X = xi] is the conditional mean function. In the case of a linear
mean function, μ(xi, β) = x�

i β, the previous equation becomes:

β̂ = argmin
β

E[Y − x�
i β)]2

yielding the least squares linear regression model. The problem of minimizing the
squared error can then be reduced to a problem of numerical linear algebra. Using
again the Cars93 dataset, Figure 1.3(a) shows the geometric interpretation of the
least squares criterion in the case of a simple linear regression model where Price
is the response variable and Horsepower is the predictor. The least squares solution
provides the line that minimizes the sum of the area of the squares as determined by
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Figure 1.3 A geometric comparison of least squares (a) and least absolute (b) cri-
teria for a simple linear regression problem. Data refer to the relationship between
Price (response variable) and Horsepower (predictor variable) for the Midsize sub-
set of cars, as determined by the Type variable. Minimization of the squared errors,
as required by the least squares criterion (a), is geometrically equivalent to minimiz-
ing the sum of the squares obtained by projecting the points on the regression line
perpendicularly to the x-axis. Two of these squares, one corresponding to a negative
deviation and one for a positive deviation, are shown on the plot. It is worth noticing
that the choice of using non-equal scales on both the axes involves rectangles and
not squares in an initial analysis of the chart. (b) shows the least absolute criterion
for the median case: the minimization of the sum of the least absolute deviations from
the conditional median is equivalent to the overall minimization of the lengths of the
segments obtained by the x-axis perpendicular projection of the points. Negative (−)

and positive (+) deviations share the same weight in determining the line, involving
then a symmetric loss function. As the number of points is even, there is no point that
lies on the line.
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8 QUANTILE REGRESSION

the projection of the observed data on the same line using segments perpendicular to
the x-axis. Figure 1.3(a), in particular, shows the contribution of two points to this
sum of squares, one point lying below the line and one point lying above the line.

The same approach can be used to extend Equation (1.2) to the median, or the
more general Equation (1.5) to the generic θ -th quantile. In this latter case, we obtain:

q̂Y(θ , X) = argmin
QY (θ , X)

E[ρθ (Y − QY(θ , X))],

where QY(θ , X) = Qθ [Y|X = x] denotes the generic conditional quantile function.
Likewise, for the linear model case the previous equation becomes:

β̂(θ) = argmin
β

E[ρθ (Y − Xβ)],

where the (θ )-notation denotes that the parameters and the corresponding estimators
are for a specific quantile θ . Figure 1.3(b) shows the geometric interpretation of this
least absolute deviation criterion in the case of the model:

̂Price = β̂0(θ) + β̂1(θ)Horsepower, θ = 0.5.

The solution to this median case is the line that minimizes the sum of absolute devi-
ations, that is the sum of the lengths of the segments projecting each yi onto the line
perpendicularly to the x-axis.

Figure 1.4 shows the geometric interpretation of the QR solution for the case
of θ = 0.25 (first quartile) in Figure 1.4(a), and of θ = 0.75 (third quartile) in
Figure 1.4(b), respectively. While in the median case, the deviations yi ≤ ŷi and the
deviations yi > ŷi give the same contribution to the criterion, in the first quartile and
third quartile cases they bring an asymmetric contribution: for θ = 0.25, the devia-
tions of yi ≤ ŷi have weight 1 − θ = 0.75 with respect to the deviations corresponding
to yi > ŷi, whose weights are θ = 0.25, with m points lying exactly on the line, where
m is equal to the number of parameters in the model. This asymmetric weighting
system involves an attraction of the line towards the negative deviation. The same
happens, inverting the weights and then the direction of attraction, for the case of
θ = 0.75. The mathematical formulation of the problem leads to the solution of a lin-
ear programming problem. Its basic structure, and the counterpart algorithm solution,
will be presented in the next chapter (see Sections 2.1.2 and 2.1.3).

1.2 The simplest QR model: The case of the dummy
regressor

In order to introduce quantile regression, it is useful to begin by illustrating the sim-
plest form of linear model; that is a model with a quantitative response variable
and a dummy predictor variable. This simple setting aims to study differences in
the response variable between the two groups as determined by the dichotomous
predictor variable.
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Figure 1.4 The geometric interpretation of the asymmetric least absolute deviation
criterion in the case of the conditional first quartile (θ= 0.25), in (a), and of the con-
ditional third quartile (θ= 0.75), in (b). The use of an unbalanced weighting system
(weight equal to (1−θ) for the sum of negative deviations and weight equal to θ for
the sum of positive deviations) determines, in the two cases, a different attraction
of points lying below or above the regression line. Such different attraction of the
two subsets of points is depicted using sizes proportional to the corresponding sub-
set weight. The case of an asymmetric loss function, thus involves a line separating
points with almost θ% lying below the line and the remainder (1−θ)% lying above
the line. The explanation of this inaccurate partition is essentially due to the linear
programming solution of the problem and is given in detail in Chapter 2. It is also
worth noticing that m = 2 points lies exactly on the line, where m is equal to the
number of model parameters.

To illustrate this simple model, we refer again to the Cars93 dataset in order to
compare the distribution of the Price of the cars between the two groups of USA
and non-USA company manufacturers. In particular, the dummy variable Origin,
which assumes a unit value for non-USA cars and zero for USA cars, is used as
regressor.

Figure 1.5 shows the dotplots for the two groups, USA cars represented on the
left-hand side and non-USA cars on the right-hand side. Price means for the two
distributions are depicted by asterisks while the three quartiles are shown using a
box bounded on the first and third quartiles, the box sliced on the median. From the
analysis of the two groups’ dotplots in Figure 1.5, it is evident that the two samples
share a similar mean, but the long right tail for the non-USA car distribution gives
rise to strong differences in the two extreme quartiles. A different view of the dif-
ference between the two distributions is offered by the plot of the Price density for
the two samples, shown in Figure 1.6(a), which shows a right heavy tail for the
non-USA cars distribution. A third graphical representation frequently used to
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Figure 1.5 Comparison of the distribution of the Price variable for the USA and
non-USA manufactured cars, the two groups being specified by the Origin variable
(Cars93 dataset). On each dotplot, an asterisk for the mean is superimposed. The
two boxes are bounded on the first and third quartiles of each distribution and sliced
on the corresponding medians. The right boxplot shows a larger right tail for the
non-USA subset.

compare two datasets is the Q–Q plot (Das and Bhattacharjee 2008), which repre-
sents the quantiles of the first dataset on the x-axis versus the quantiles of the second
dataset on the y-axis, along with a 45o reference line. If the two datasets share a com-
mon distribution, the points should fall approximately along the reference line, if the
points fall under (above) the line the corresponding set shows a shorter (longer) tail
in that part of the distribution. Figure 1.6(b) shows the Q–Q plot for the Price of the
cars comparing their origin. The representation offers the same information as the
density plot, allowing to evaluate shifts in location and in scale, the presence of out-
liers and differences in tail behavior. Unlike the density plot, which requires one to
set the kernel width, the Q–Q plot does not require any tuning parameter. Moreover,
it will turn out to be an enlightening representation for the QR output in the case of
a simple model consisting of a dummy predictor variable.

It is well known that in this simple case of a model with a unique dummy
predictor variable, the classical least square regression:

̂Price = β̂0 + β̂1Origin
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Figure 1.6 Two alternatives to boxplots for comparing distribution: density plot
(a) and Q–Q plot (b). Again for the Cars93 dataset, the two plots refer to the
comparison of the Price variable for the two subsets as determined by the coun-
try manufacturer (USA vs non-USA origin). As well as the dotplots in Figure 1.5,
both the density plot and Q–Q plot show a right heavy tail for the non-USA cars. The
Q–Q plot in particular, is obtained by depicting quantiles of the USA subset of cars
(x-axis) and quantiles of the non-USA subset (y-axis). It allows us to grasp the QR
output in the case of a simple model with a dummy variable.

is equivalent to the mean comparison between the two groups of USA and non-USA
manufactured cars, providing the same results for the classical two samples t-test in
the case of inference.

Likewise, the estimation of the QR model:

̂Priceθ = β̂0(θ) + β̂1(θ)Origin (1.6)

for different values of θ ∈ [0, 1] permits us to obtain an estimation of the Price
quantiles for the two groups of cars. Using the coding USA = 0 and non-USA = 1 for
the Origin indicator variable in Equation (1.6), it is straigthforward that the estimated
price for the USA cars is then:

̂Priceθ = β̂0(θ) + β̂1(θ) × 0 = β̂0(θ),

while for the non-USA subset the model becomes:

̂Priceθ = β̂0(θ) + β̂1(θ) × 1 = β̂0(θ) + β̂1(θ).

β̂0(θ) thus provides the estimation of the conditional θ quantile of the Price for USA
cars, while, for the non-USA cars, the conditional θ quantile is obtained through
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Figure 1.7 Density plot (a) and Q–Q plot (b) for the Price variable for the two
groups (USA vs non-USA) of cars, estimated through the QR model with the use
of only the indicator Origin variable as predictor. In this simple setting, the set
of intercepts for different values of θ estimates the Price distribution for the USA
group while the sum of the intercepts and slopes provides the Price estimation for
the non-USA group of cars. The QR coefficients correspond to 90 different values of
θ in [0, 1]. The plots are practically equivalent to the observed ones (see
Figure 1.6).

the combination of the two coefficients; that is as β̂0(θ) + β̂1(θ). By varying θ in
[0, 1], the set of estimated intercepts offers an estimate of the Price distribution for
the USA cars. For the non-USA cars, price is obtained through the sum of the sets of
intercepts and slopes for the different θ . For this example, using 90 different equally
spaced quantiles in the range [0,1], the QR intercepts and slopes are here used to
estimate the Price distribution for the two groups of cars. The density plot and the
Q–Q plot of the estimated distribution reported in Figure 1.7(a) and (b), respectively,
are practically equivalent to the observed ones shown in Figure 1.6. From Figure 1.7,
it is evident how the different sets of coefficients corresponding to different values
of θ are able to fully describe the Price distribution conditional on the two levels of
the Origin variable. In this simplified setting, such conditional distributions represent
the estimation of the Price distribution for the two different groups of cars computed
using the predictor indicator variable.

Numerical results for this example are reported in Table 1.1: the first two
rows show the estimated QR coefficients for five selected quantiles, θ ∈ (0.1, 0.25,
0.5, 0.75, 0.9), and the third and fourth rows report the estimated quantiles for the
two groups through the combination of the two regression coefficients; finally, the
fifth and sixth rows show the quantiles computed on the observed data.
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A VISUAL INTRODUCTION TO QUANTILE REGRESSION 13

Table 1.1 QR coefficients (first two rows) for the simple model ̂Priceθ = β̂0(θ) +
β̂1(θ) Origin. The combination of the two estimated coefficients for the different θ

allows us to estimate the corresponding Price quantiles for the two groups of cars
(third and fourth row). The last two rows show the unconditional Price quantiles.

θ = 0.1 θ = 0.25 θ = 0.5 θ = 0.75 θ = 0.9

Parameter estimates
(Intercept) 11.1 13.4 16.3 20.8 34.3
Origin (non-USA) −2.5 −1.8 2.8 5.9 −0.4

(Intercept) 11.1 13.4 16.3 20.8 34.3
Intercept + Origin (non-USA) 8.6 11.6 19.1 26.7 33.9

Unconditional Price quantiles
Origin (USA) 11.1 13.5 16.3 20.7 30.9
Origin (non-USA) 8.8 11.6 19.1 26.7 33.3

1.3 A slightly more complex QR model: The case of a
nominal regressor

The simple model introduced in the previous section can be slightly complicated by
replacing the indicator predictor variable by a multiple level categorical variable with
g categories. The classical regression for this setting is substantially equivalent to a
mean comparison among the g groups as determined by the levels of the nominal
regressors. Similarly, QR allows us to compare the different quantiles among the
different g groups.

In order to show this setting, again using the Cars93 dataset, we consider in this
section the Airbags variable as a regressor to predict the car price. For such a variable,
the three levels – None, Driver only and Driver and Passenger – correspond to the
number of Airbags installed in the car.

It is widely known that in a regression model, to deal with a g level nominal
variable requires the introduction of a g − 1 dummy variable (Scott Long 1997).
Such a coding system then produces the QR model:

̂Priceθ = β̂0(θ) + β̂1(θ)I(Driver only) + β̂2(θ)I(Driver and Passenger),

where I() is the indicator function returning 1 if the particular unit assumes the value
in parenthesis and 0 otherwise. Moreover, it is well known that the first level, the
so-called reference level, is associated with the model intercept.

The previous equation provides the estimation of the conditional θ quantile of the
Price and the coding system allows us to easily obtain the estimation for the three
different levels of the regressor. For the None level, associated with the intercept,
the model reduces to:

̂Priceθ = β̂0(θ) + β̂1(θ) × 0 + β̂2(θ) × 0 = β̂0(θ).
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14 QUANTILE REGRESSION

Table 1.2 QR coefficients (first three rows) for the simple model ˆPriceθ = β̂0(θ) +
β̂1(θ)I(Driver only) + β̂2(θ)I(Driver and Passenger), where Price is the dependent
variable and Airbags is the regressor. The three estimated coefficients are shown in
the first three rows; the combination of the three estimated coefficient for the different
θ allows us to estimate the corresponding Price quantiles for the two groups of cars
(rows four to six); the last three rows show the unconditional Price quantiles.

θ = 0.1 θ = 0.25 θ = 0.5 θ = 0.75 θ = 0.9

(Intercept) 8.4 9.2 12.2 16.3 19.5
Airbags (Driver only) 3.4 6.4 7.7 10.0 12.4
Airbags (Driver 7.4 8.5 12.2 18.9 20.6
and Passenger)

(Intercept) 8.4 9.2 12.2 16.3 19.5
Intercept + Airbags
(Driver only)

11.8 15.6 19.9 26.3 31.9

Intercept + Airbags
(Driver and
Passenger)

15.8 17.7 24.4 35.2 40.1

Unconditional Price quantiles
Airbags (None) 8.4 9.4 11.9 16.2 19.4
Airbags (Driver only) 11.9 15.6 19.9 26.2 31.5
Airbags (Driver and
Passenger)

16.6 18.2 25.5 35.4 38.9

A similar line of reasoning leads to the estimation of the conditional quantiles for the
Drivers only group:

̂Priceθ = β̂0(θ) + β̂1(θ) × 1 + β̂2(θ) × 0 = β̂0(θ) + β̂1(θ),

and, for the Driver and Passenger group:

̂Priceθ = β̂0(θ) + β̂1(θ) × 0 + β̂2(θ) × 1 = β̂0(θ) + β̂2(θ).

Therefore, in a model with a nominal regressor, for a given quantile θ , the combi-
nation of the intercept with the different slopes, allows us to estimate the conditional
quantile of the response variable. The estimated effect of the particular group is
obtained using the dummy variable associated with the particular slope.

Numerical results for the simple model previously considered are in Table 1.2:
the three coefficients are on the first three rows of the table; rows four to six show the
estimated conditional quantile for the Price variable, while the last three rows show
the unconditional Price quantiles. Using again 90 quantiles in (0, 1), the estimated
conditional densities of the Price variable for the three groups of cars are represented
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Figure 1.8 Observed density plot (a) for the Price variable: different lines refer to
different groups determined by the nominal variable, Airbags. Through the combi-
nation of the different coefficients it is possibile to estimate the quantile of the Price
variable conditional on the Airbags variable (b). Comparing (a) and (b), it is evident
that the estimated densities are practically equivalent to the observed ones.

in Figure 1.8(b). They are practically equivalent to three observed distributions,
shown in Figure 1.8(a).

1.4 A typical QR model: The case of a quantitative
regressor

Once that the general idea behind QR and the two models involving a nominal
regressor have been illustrated, we can move to the more common regression set-
ting with a quantitative regressor. A simple example for the Cars93 dataset is offered
by the model:

̂Price = β̂0 + β̂1Passengers;

that is studying the car price starting from the number of passengers they are regis-
tered to carry. For the sake of illustration, we restrict our attention to the cars licensed
to carry 4, 5, and 6 passengers. Figure 1.9(a) depicts the scatterplot of the Passengers
variable (x-axis) vs the Price variable (y-axis). Given the nature of the Passengers
variable (discrete variable assuming only three different values), such a scatterplot
can be easily interpreted as the combination of three dotplots for the Price variable
corresponding to the three different numbers of passengers; that is it depicts the three
conditional distributions of the Price on the Passengers. From Figure 1.9(a), differ-
ences in location and variability for the three groups are evident. Such differences
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Figure 1.9 Scatterplot of Passengers vs Price for the Cars93 dataset (a). The Pas-
sengers variable assumes only three different values for the considered subset: the
plot can then be easily interpreted as the distributions of the Price variable con-
ditional on the values of the Passengers variable. In (b), the location of the mean
(asterisk) and of five quantiles for the three conditional distributions are superim-
posed on the scatterplot. In particular, the three quartiles are depicted using a box,
with boundaries on the two extreme quartiles and sliced on the median, and the two
extreme quantiles (q0.1 and q0.9) are shown with triangles.

become clearer by superimposing the information of the mean and of five quan-
tiles of the distributions [Figure 1.9(b)]. The five quantiles used are the common
three quartiles (depicted using the box with boundaries on the two extreme quar-
tiles and sliced on the median) and two symmetric extreme quantiles, q0.1 and q0.9,
represented by the triangles in Figure 1.9(b), along with the means (depicted using
asterisks).

Using five such values for θ , the QR simple linear model is estimated, and the
results are superimposed on Figure 1.10. The ordinary least squares (OLS) line is
recognizable by looking at the position of the asterisks. The patterns in Figure 1.10
reveal differences in location, variability, and shape for the different values of the
number of passengers for which the car is patented. Such differences in the rela-
tionship between the Price variable and the Passengers variable are more evident
by looking at the corresponding three density plots for the Price variable shown
in Figure 1.11, along with the marginal density plot for the Price variable. Each
panel of Figure 1.11 refers to a conditional distribution, the latter depicting the
marginal distribution: the observed Price variable and the QR estimated Price vari-
able, conditional on the values of the number of passengers, are represented in each
subplot. From this figure it is evident that the estimated QR distribution is able to
fully describe the patterns of the Price, both for the conditional cases and for the



�

�

“9781119975281c01” — 2013/9/27 — 11:41 — page 17 — #17
�

�

�

�

�

�

A VISUAL INTRODUCTION TO QUANTILE REGRESSION 17

10

20

30

40

50

60

4.0 4.5 5.0 5.5 6.0

Passengers

P
ric

e

Figure 1.10 QR lines for θ = (0.1, 0.25, 0.5, 0.75, 0.9) for the simple linear model
̂Price = β0(θ) + β1(θ) Passengers. The OLS line is recognizable by looking at the
position of the asterisks, which represent the averages for the three groups.

marginal case. Density estimation is obtained by simply combining the different
estimates for different values of θ and selecting the ‘best’ model according to the
deviation between the observed value and the estimated values. More details on the
technicalities behind the density estimation are illustrated in Chapter 4, Section 4.2.

As already mentioned, QR is an extension of the classical estimation of condi-
tional mean models to conditional quantile functions; that is an approach allowing
us to estimate the conditional quantiles of the distribution of a response variable Y in
function of a set X of predictor variables.

In the framework of a linear regression, the QR model for a given conditional
quantile θ can be formulated as follows:

Qθ (Y|X) = Xβ(θ),

where 0 < θ < 1 and Qθ (.|.) denotes the conditional quantile function for the θ -th
quantile.

The parameter estimates in QR linear models have the same interpretation as
those of any other linear model, as rates of change. Therefore, in a similar way to the
OLS model, the βi(θ) coefficient of the QR model can be interpreted as the rate of
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Figure 1.11 The two different lines in each panel represent the densities for the
observed Price variable and the estimated Price variable, the latter obtained through
QR. Different panels depict the conditional distributions of the three values of the
Passengers variable, and the bottom panel depicts the marginal distributions.

change of the θ -th quantile of the dependent variable distribution per unit change in
the value of the i-th regressor:

βi(θ) =
∂Qθ (Y|X)

∂xi
.

In Table 1.3, OLS and QR results obtained for the previous simple linear model
are limited to the five quantiles θ = (0.1, 0.25, 0.5, 0.75, 0.9).

Table 1.3 OLS and QR coefficients for the simple linear model predicting
car Price through the Passengers they are licensed to carry.

OLS θ = 0.1 θ = 0.25 θ = 0.5 θ = 0.75 θ = 0.9

(Intercept) 0.18 −1.7 −6.20 3.40 −3.80 10.9
Passengers 3.84 2.5 3.65 2.65 5.55 4.2
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Figure 1.12 Graphical representation of the QR intercept (a) and slope (b) behav-
ior (solid line) for the simple linear model ̂Price = β̂0 + β̂1 Passengers. The
conditional quantiles are represented on the x-axis and the coefficient values on
the y-axis. A dashed line for both coefficients is placed at the corresponding OLS
estimates.

The effect of Passengers increases moving from the lower part to the upper part of
the Price distribution with the exception of the median: this confirms the conjecture
of a location-scale model, namely of changes both in the central tendency and in
the variability of the response variable. If in the central location (both in mean and
in median) a one-unit increase of the Passengers variable leads to an increase in
the Price by 3.84 and 2.65, respectively, such an effect is equal to 3.65 at the 25-th
quantile and increases further to 5.55 at the 75-th quantile. In practical terms, QR
results suggest that the number of passengers a car is licensed to carry has a greater
effect for the more expensive cars, that is for cars with a price greater than or equal
to the 75-th quantile (β̂θ=0.75 = 5.55).

The obtained results can also be graphically inspected. A typical graphical rep-
resentation of QR coefficients (Koenker 2011) permits us to observe the different
behaviors of the coefficients with respect to the different quantiles. Figure 1.12
displays the obtained estimates for intercept and slope: the different conditional
quantiles are represented on the x-axis while the coefficient values are on the y-axis,
the solid line with filled symbols represents the point estimates for the five distinct
conditional quantiles, while the dashed line is placed at the value of the OLS esti-
mate. With respect to the slope [Figure 1.12(b)], the previous comments on the OLS
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and QR results are confirmed: up to the median, QR slope estimates are lower than
the OLS counterpart, while the effect of Passengers on Price seems slightly stronger
for the upper quantile. The intercept estimates seem more dependent on the particular
quantile.

This chapter restricts itself to simple linear regression models in order to intro-
duce the QR logic. It is worth noticing that the extension to multiple regression
follows the same line of reasoning of classical regression (Gujarati 2003; Weisberg
2005). Using the same rules of OLS regression, a categorical explanatory variable
can also be included in the model: it is preliminarily transformed into dummy vari-
ables, and all of them, except for one, are included in the model, the excluded
category being the reference category in the interpretation of the results (Scott Long
1997). More realistic and interesting applications of QR, along with the inference
tools, will be presented in the following chapters, starting from Chapter 3.

Finally, for all the examples shown up to now, five conditional quantiles,
θ = (0.1, 0.25, 0.5, 0.75, 0.9), have been used for synthesis purposes. However,
although it is possible to extract an infinite number of quantiles, in practice, a finite
number is numerically distinct, the so-called quantile process; it depends on the
number of observations increasing roughly linearly with them (Koenker and D’Orey
1987; Portnoy 1991; Buchinsky 1998). In the case of a particular interest in very high
quantiles, larger samples are required (Cade and Noon 2003). For technical details
about the quantile process the reader is referred to Chapter 2, Section 2.3.3.

1.5 Summary of key points

• While classical regression gives only information on the conditional expec-
tation, quantile regression extends the viewpoint on the whole conditional
distribution of the response variable.

• The mean and the quantiles are particular centers of a distribution minimiz-
ing a squared sum of deviations and a weighted absolute sum of deviations,
respectively. This idea is easily generalized to the regression setting in order to
estimate conditional mean and conditional quantiles.

• A simple linear regression model with a quantitative response variable and a
dummy regressor allows us to compare the mean (classical regression) and
the quantiles (quantile regression) between the two groups determined by the
dummy regressor. Using a nominal regressor, such a comparison is among the
g groups corresponding to the g levels of the nominal variable.

• For QR, as well as for classical regression, the parameter estimates in lin-
ear models are interpretable as rates of changes: the βi(θ) coefficient can be
interpreted as the rate of change of the θ -th quantile of the dependent variable
distribution per unit change in the value of the i-th regressor.

• QR provides location, scale, and shape shift information on the conditional
distribution of the response variable.
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• QR allows us to approximate the whole distribution of a response variable
conditional on the values of a set of regressors.

• We have seen how QR, offering information on the whole conditional distribu-
tion of the response variable, allows us to discern effects that would otherwise
be judged equivalent using only conditional expectation. Nonetheless, the QR
ability to statistically detect more effects can not be considered a panacea for
investigating relationships between variables: in fact, the improved ability to
detect a multitude of effects forces the investigator to clearly articulate what is
important to the process being studied and why.
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