
Getting Started

WHAT’S IN THIS CHAPTER?

Learning about the software used in this book

Downloading the book’s SDK

Understanding the SDK architecture

Importing projects into your IDE

Understanding this book’s template application

Learning how to work with the template code structure

In this chapter, you will fi rst start by setting up your development environment to be able to
work with this book’s tutorials and examples.

You will then receive a quick introduction about this book’s SDK and where to download it,
and learn about the different directories it contains. Then you will learn how to import this
book’s existing SDK projects and templates into your favorite IDE, as you will do throughout
this book when following the different tutorials.

Moving on to the last section of this chapter, you will learn about this book’s cross-platform
template project. And fi nally, this chapter concludes with a quick tutorial that will help you to
get familiar with the events of the template, as well as with the tone that will be used for all the
tutorials in this book.

➤

➤

➤

➤

➤

➤

1

c01.indd 1c01.indd 1 12/30/11 12:09:30 PM12/30/11 12:09:30 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 GETTING STARTED

SOFTWARE REQUIREMENTS

This book’s content is built to run on iOS 5.x+ as well as for Android 2.x+, the latest and most
stable versions of these two mobile operating systems at the time this book was written.

For iOS Developers

To use this book for iOS, all you have to do is to grab a copy of the latest iOS SDK available at
http://developer.apple.com, and install it on your Mac.

Out-of-the-box the iOS SDK provides a simulator with full GLES v2 support, so even if you do not
have an iOS device, or do not have an offi cial iOS Developer Certifi cation from Apple, you can still
make full use of this book.

For Android Developers

To set up your environment for Android, it is unfortunately not as easy as for iOS. First go to
http://developer.android.com/sdk/installing.html and follow the instructions to install the
Android SDK, Eclipse, and the ADT plug-in. Please note that the Android SDK version used for this
book was v2.3.4, but later versions should also work as well.

All the code in this book uses C/C++, which means that you will have to install Android Native
Code support. To fi nalize the installation of your development environment, follow these steps:

 1. Grab a copy of the Android NDK at the following address: http://developer.android
.com/sdk/ndk/index.html. The version used at the time of writing this book was r5c,
but all examples and tutorials should work on later versions as well. Download the
Android NDK zip package and decompress it on your machine where you have read and
write access.

 2. In order to compile and debug native code using Eclipse, you will need to install the
Sequoyah plug-in. To do this, fi rst enable the repository that is located (from the Eclipse
main menu) in: Help ➪ Install New Software ➪ Available Software Sites ➪ Sequoyah
Metadata Repository. Then select the entry from the Work With combo box, and once the
repository data is loaded, select and install the Sequoyah Android Native Code Support, as
shown in Figure 1-1.

 3. Once Sequoyah is installed, go to (from the main menu): Eclipse Preferences ➪ Android ➪
Native Development and specify the location where you extracted the Android NDK in step 1,
as shown in Figure 1-2.

c01.indd 2c01.indd 2 12/30/11 12:09:32 PM12/30/11 12:09:32 PM

Software Requirements ❘ 3

FIGURE 1-1: Sequoyah Native Code Support plug-in

FIGURE 1-2: Specify the location of the Android NDK

c01.indd 3c01.indd 3 12/30/11 12:09:32 PM12/30/11 12:09:32 PM

4 ❘ CHAPTER 1 GETTING STARTED

Congratulations — your Android development environment is now all set! However, please note that
in order to use this book with Android you will need an actual device with OpenGL ES 2.0 support.
The emulator provided by the Android SDK supports only OpenGL ES 1.x, not OpenGL ES 2.0.
So local deployment on the simulator is not possible on Android; only device deployment is
supported when using GLES 2.

DOWNLOADING THE BOOK’S SDK

Once your development environment is set up, you should now grab a copy of this book’s
SDK. The offi cial SDK is available for download at http://www.wrox.com. Alternatively,
if you wish to download it through GIT, go to the offi cial GFX 3D engine website, http://
gfx.sio2interactive.com, where you can fi nd detailed instructions.

If you have downloaded the zip fi le, simply decompress it in a directory that you have read and write
access to. If you have downloaded it using GIT, all the fi les and the SDK architecture are already
available on your drive.

The architecture of this book’s SDK is very simple. For more information, please refer to the
following directory list:

_chapter#-#: Contains the fi nal result that you should reproduce by reading the tutorials
in the book. At any time while reading this book, if you feel that the instructions are not
clear, or if you are unsure where to insert some code, or even if you simply want to preview
the fi nal result of a tutorial, open this directory. Inside the directory, you can then fi nd at
the root the source fi les used by the tutorial (respectively named templateApp.cpp and
templateApp.h) and two directories
that contain the project fi les for iOS and
Android. You can then load the project
into your IDE and rebuild it from scratch.

common: Contains the free and open
source GFX 3D engine (the mini game
and graphics engine that you will be
using in this book) source code of the
version that was used to create the
templates and tutorials for this book,
along with the source of the libraries the
engine depends on. The GFX 3D engine
is a very small and lightweight graphic
engine that is built with bits and pieces of my own professional engine. It is very small, fast,
fl exible, and scalable; and will allow you to render state-of-the-art graphics on your mobile
device, as shown in Figure 1-3.

data: In this directory, you can fi nd all the original assets that were used in each tutorial.
These assets are either linked dynamically to the projects (in the case of iOS) or simply
duplicated inside the assets directory of each Android tutorial. Please note that all the

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 1-3: An FPS demo using the GFX 3D engine

Models and textures are generously provided by

David Radford (http://dmradford.com).

c01.indd 4c01.indd 4 12/30/11 12:09:33 PM12/30/11 12:09:33 PM

Importing Projects ❘ 5

original project 3D scenes are available as .blend (the default fi le extension of Blender).
It is not mandatory, but highly suggested that you download a copy of Blender for your
platform, which is available at http://blender.org. This will enable you to study the way
the scenes are built and how the assets are linked and exported to the Wavefront OBJ (the
offi cial 3D model exchange format used in the book).

EULA: In here, you can fi nd all the End User License Agreements for the different libraries
that this book’s SDK relies on. If you plan to release a commercial application using this
book’s SDK, make sure that your application complies with all of these licenses.

glsloptimizerCL: Contains the source to a simple yet powerful command line program that
you can use to optimize your GLSL code (as demonstrated in Chapter 5, “Optimization”).

md5_exporter: A python script for Blender (v2.6x) that allows you to export bone animation
sequences created in Blender to the MD5 version 10 fi le format (script generously provided by
Paul Zirkle).

template: The original template project that you will be using when creating a new project
from scratch.

template_chapter#-#: In order to speed up and avoid redundancies, you will duplicate
these directories by following the tutorials throughout the book. This will give you a head
start and save you from having to rebuild everything from scratch using the default template
project.

IMPORTING PROJECTS

This book has over 50 tutorials, varying from the demonstration of a single technique to full-fl edged
games. To be able load and rebuild the projects from this book into your IDE, you will have to
import them. To do this, just follow the instructions in the subsection that corresponds to the type
of developer you are.

For iOS Developers

As usual for iOS developers, importing fi les is very easy. All you have to do to import a project
into XCode is simply double-click the .xcodeproj fi le. To compile, simply click the Build & Run
button.

For Android Developers

Things are a little bit more tedious if you’re using Eclipse. You need to import this book’s
projects as instructed in the following procedure. Of course, this procedure assumes that you
have properly installed and confi gured Android SDK, Android NDK, Eclipse Classic, the ADT
plug-in, and the Sequoyah Android Native Development plug-in (as described at the beginning of
this chapter).

➤

➤

➤

➤

➤

c01.indd 5c01.indd 5 12/30/11 12:09:33 PM12/30/11 12:09:33 PM

6 ❘ CHAPTER 1 GETTING STARTED

Once you have confi gured all the necessary prerequisite fi les, follow these steps to import this
book’s project fi les:

 1. From the Eclipse main menu, select File ➪ New ➪ Android Project. The New Android
Project dialog should appear.

 2. In the Project name text box, enter the project name. Example: chapter2-1.

 3. Select the Create Project From Existing Source option.

 4. Click the Browse button, and then select the existing Android directory inside the chapter
or template project. Example: <path_to_sdk>/SDK/_chapter2-1/Android.

 5. Click the Finish button at the bottom of the dialog box.

Figure 1-4 illustrates each of these steps.

FIGURE 1-4: Importing an Android project into Eclipse

c01.indd 6c01.indd 6 12/30/11 12:09:34 PM12/30/11 12:09:34 PM

The Template ❘ 7

Every time you want to open an existing Android project using Eclipse, you will have to go through
this importing procedure.

THE TEMPLATE

As briefl y mentioned earlier in this chapter, you will work mostly with the template project that is
provided inside this book’s SDK. This template is a C/C++ cross-platform project that initializes
internally for you a vanilla, ready-to-use OpenGLES 2 context. In addition, the template provides an
init and exit function callback, which you can just plug your creation and destruction code into.

The template also provides you with an easy-to-use callback mechanism that acts as a universal
HUB to handle all the platform-specifi c events for you.

Using this mechanism, all you have to do is to link a function callback for the specifi c event you
want to intercept, and you’ll receive updates for this event in real time. This mechanism covers all of
the touche events such as ToucheBegan, ToucheMoved, ToucheEnded, as well as the accelerometer
data. In other words, everything is already set up for you. You can just go ahead and create the code
as instructed in this book’s tutorials without having to worry about platform-specifi c issues.

As the title of this chapter says, it’s time to get started! In order to get familiar with both the template
and the type of tutorials you will be studying throughout this book, follow these instructions:

 1. Duplicate the template project directory at the root of the SDK and rename it template_test.

 2. Load the template_test project (following the appropriate importing method for your
platform as described previously) into your IDE, and then open the templateApp.cpp (for
iOS developers, it is located under the templateApp directory inside the Project Navigator;
for Android developers, you can fi nd it under the jni directory inside the Project Explorer
panel).

 3. Read the code comments that explain what each function is doing.

 4. Uncomment the following callbacks from the initialization (TEMPLATEAPP templateApp =
{): templateAppToucheBegan, templateAppToucheMoved, and templateAppToucheEnded.

 5. Move to the templateAppInit function and add the following code on the line before the
end bracket of the function:

 /* Use the built-in GFX cross-platform API to print on the
console (XCode) or LogCat (Eclipse) that the execution pointer
passes the templateAppInit function. */
 console_print(
 “templateAppInit, screen size: %dx%d\n”, width, height);

 6. On the line before the end bracket of the templateAppDraw function callback, add the
following code block:

 /* Specify that you want to use a chili red color to clear the
screen and spice up your app. */
 glClearColor(1.0f, 0.0f, 0.0f, 1.0f);
 /* Report that the execution pointer was here. */
 console_print(“templateAppDraw\n”);

c01.indd 7c01.indd 7 12/30/11 12:09:34 PM12/30/11 12:09:34 PM

8 ❘ CHAPTER 1 GETTING STARTED

 7. Add the following line before the end bracket of the templateAppToucheBegan function:

 /* Print that the execution pointer enters the touche began
function and print the touche XY value as well as the number of
taps. */
 console_print(“templateAppToucheBegan,”
 “touche: %f,%f”
 “tap: %d\n”, x, y, tap_count);

 8. Repeat the same procedure as in step 7 for templateAppToucheMoved and
templateAppToucheEnded, updating the console_print text with the appropriate callback
function you are dealing with.

 9. Move on to the templateAppExit function that has already been linked to the atexit
built-in C function, and add the following line before the end bracket of the function:

 console_print(“templateAppExit...\n”);

 10. Build and run the application. While the application is running, observe the console or
LogCat (depending on which platform you are developing for). Touch the screen, move your
fi nger around, and monitor in real time on the console how and in which sequence events
are triggered internally.

SUMMARY

By stepping through this chapter, you now have your development environment set up. You have this
book’s SDK resident on your drive and have learned how to fi nd your way around its architecture.

You now know how to import new or existing projects into XCode or Eclipse, and have a good
overview of what the default template project can do for you.

You are now ready to embark on a very challenging journey in game and graphics programming.
Before moving on to the next chapter, make sure that you fully understand what has been covered
inside the different sections of this chapter.

c01.indd 8c01.indd 8 12/30/11 12:09:34 PM12/30/11 12:09:34 PM

