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1.1 Introduction

Real world decision-making problems are usually too complex and ill-structured to be
considered through the examination of a single criterion, attribute or point of view that
will lead to an ‘optimal’ decision. In fact, such a single-dimensional approach is merely an
oversimplification of the actual nature of the problem at hand, and it can lead to unrealistic
decisions. A more appealing approach would be the simultaneous consideration of all
pertinent factors that are related to the problem. However, through this approach some
very essential issues/questions emerge: how can several and often conflicting factors
be aggregated into a single evaluation model? Is this evaluation model unique and/or
‘optimal’? In addressing such issues, one has to bear in mind that each decision-maker
(DM) has his/her own preferences, experiences, and decision-making policy.

The field of multicriteria decision aid (MCDA) is devoted to the study of problems
that fit the above context. Among others, MCDA focuses on the development and imple-
mentation of decision support tools and methodologies to confront complex decision
problems involving multiple criteria, goals or objectives of conflicting nature. It has to
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4 MULTICRITERIA DECISION AID AND ARTIFICIAL INTELLIGENCE

be emphasized through, that MCDA techniques and methodologies are not just some
mathematical models aggregating criteria that enable one to make optimal decisions
in an automatic manner. Instead, MCDA has a strong decision support focus. In this
context the DM has an active role in the decision-modeling process, which is imple-
mented interactively and iteratively until a satisfactory recommendation is obtained that
fits the preferences and policy of a particular DM or a group of DMs.

Even though MCDA has developed as a major and well-distinguished field of opera-
tions research, its interaction with other disciplines has also received much attention. This
is understood if one considers the wide range of issues related to the decision process,
which the MCDA paradigm addresses. These involve among others the phases of problem
structuring, preference modeling, the construction and characterization of different forms
of criteria aggregation models, as well as the design of interactive solution and decision
aid procedures and systems. The diverse nature of these topics often calls for an inter-
disciplinary approach.

A significant part of the research on the connections of MCDA with other disciplines
has focused on intelligent systems. Over the past decades enormous progress has been
made in the field of artificial intelligence, in areas such as expert systems, knowledge-
based systems, case-based reasoning, fuzzy logic, and data mining. This chapter focuses
on computational intelligence, which has emerged as a distinct sub-field of artificial
intelligence involved with the study of adaptive mechanisms to enable intelligent behavior
in complex and changing environments (Engelbrecht 2002). Typical computational intel-
ligence paradigms include machine learning algorithms, evolutionary computation and
nature-inspired computational methodologies, as well as fuzzy systems. We provide an
overview of the main contributions of popular computational intelligence approaches in
MCDA, covering areas such as multiobjective optimization, preference modeling, and
model building through preference disaggregation.

The rest of the chapter is organized as follows: Section 1.2 presents an introduc-
tion to the MCDA paradigm, its main concepts and methodological streams. Section
1.3 is devoted to the overview of the connections between MCDA and computational
intelligence, focusing on three main fields of computational intelligence, namely statistical
learning/data mining, fuzzy set theory, and metaheuristics. Finally, Section 1.4 concludes
the chapter and discusses some future research directions.

1.2 The MCDA paradigm

1.2.1 Modeling process

The major goal of MCDA is to provide a set of criteria aggregation methodologies that
enable the development of decision support models considering the DM’s preferential
system and judgment policy. Achieving this goal requires the implementation of complex
processes. Most commonly, these processes do not lead to optimal solutions/decisions, but
to satisfactory ones that are in accordance with the DM’s policy. Roy (1985) introduced
a general framework that covers all aspects of the MCDA modeling philosophy
(Figure 1.1).

The first level of the process, involves the specification of a set A of feasible alternative
solutions for the decision problem at hand. This set can be continuous or discrete. In the
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Figure 1.1 The MCDA modeling process.

former case, it is specified through a set of constraints. In the case where A is discrete,
it is assumed that the DM can list the alternatives which will be subject to evaluation
within the given decision-making framework. The form that the output of the analysis
should have is also defined at the first phase of the process. This involves the selection
of an appropriate decision ‘problematic’, which may involve: (a) the choice of the best
alternative or a set of good alternatives; (b) the ranking of the alternatives from the best
to the worst ones; (c) the classification of the alternatives into predefined categories; and
(d) the description of the alternatives and their characteristics.

The second stage involves the identification of all factors related to the decision.
MCDA assumes that these factors have the form of criteria. A criterion is a real function f
measuring the performance of the alternatives on each of their individual characteristics.
The set of selected criteria {f1, . . . , fn} must form a consistent family of criteria. A
consistent family of criteria is characterized by the following properties (Bouyssou 1990):

• Monotonicity: If alternative x is preferred over alternative y, the same should also
hold for any alternative z such that fk(z) ≥ fk(x) for all k .

• Completeness: If fk(x) = fk(y) for all criteria, then the DM should be indifferent
between alternatives x and y.

• Nonredundancy: The set of criteria satisfies the nonredundancy property if the elim-
ination of any criterion results to the violation of monotonicity and/or completeness.

Once a consistent family of criteria has been specified, the next step is to proceed
with the specification of the criteria aggregation model that meets the requirements of
the problem. Finally, the last stage involves all the necessary supportive actions needed
for the successful implementation of the results of the analysis and the justification of
the model’s recommendations.
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1.2.2 Methodological approaches

MCDA provides a wide range of methodologies for addressing decision-making problems
of different types. The differences between these methodologies involve the form of the
models, the model development process, and their scope of application. On the basis of
these characteristics, Pardalos et al . (1995) suggested the following four main streams in
MCDA research:

• Multiobjective mathematical programming.

• Multiattribute utility/value theory.

• Outranking relations.

• Preference disaggregation analysis.

The following subsections provide a brief overview of these methodological streams.

1.2.2.1 Multiobjective mathematical programming

Multiobjective mathematical programming (MMP) extends the well-known single objec-
tive mathematical programming framework to problems involving multiple objectives.
Formally, a MMP problem has the following form:

max {f1(x), f2(x), . . . , fn(x)}
subject to: x ∈ A (1.1)

where x is the vector of the decision variables, f1, f2, . . . , fn are the objective functions
(in maximization form), and A is the set of feasible solutions defined through multiple
constraints.

In a MMP context, the objectives are assumed to be in conflict, which implies that it
is not impossible to find a solution that maximizes all the objectives simultaneously. In
that regard, efficient solutions (Pareto optimal or nondominated solutions) are of interest.
A solution x∗ is referred to as efficient if there is no other solution x that dominates x∗,
i.e., fk(x) ≥ fk(x

∗) for all k and fj (x) > fj (x
∗) for at least one objective j . An overview

of the MMP theory and different techniques for finding Pareto optimal solutions can be
found in the books of Steuer (1985), Miettinen (1998), Ehrgott and Gandibleux (2002),
and Ehrgott (2005).

An alternative approach to model multiobjective optimization problems is through
goal programming formulations. In the context of goal programming a function of the
deviations from some pre-specified goals is optimized. The goals are set by the DM and
may represent ideal points on the objectives, some benchmark or reference points, or a
set of satisfactory target levels on the objectives that should be met as closely as possible.
The general form of a goal programming formulation is the following:

min F(d+
k , d−

k ; w)

subject to: x ∈ A
fk(x) + d+

k − d−
k = sk, k = 1, . . . , n

d+
k , d−

k ≥ 0, k = 1, . . . , n

(1.2)

where sk is the target level (goal) set for objective k , d+
k and d−

k are the deviations from
the target, and F is a function of the deviations, which is parameterized by a vector w of
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weighting coefficients. These coefficients may either represent the trade-offs between the
deviations corresponding to different objectives or indicate a lexicographic ordering of
the deviations’ significance (pre-emptive goal programming). An overview of the theory
and applications of goal programming can be found in Aouni and Kettani (2001), Jones
and Tamiz (2002), as well as in the book of Jones and Tamiz (2010).

1.2.2.2 Multiattribute utility/value theory

Multiattribute utility/value theory (MAUT/MAVT) extends the traditional utility theory to
the multidimensional case.1 MAVT has been one of the cornerstones of the development
of MCDA and its practical applications. The objective of MAVT is to model and represent
the DM’s preferential system into a value function V (x), where x is the vector with the
data available over a set of n evaluation criteria. The value function is defined on the
criteria space, such that:

V (x) > V (y) ⇒ x � y
V (x) = V (y) ⇒ x ∼ y (1.3)

where � denotes preference and ∼ denotes indifference. The most commonly used form
of value function is the additive one:

V (x) =
n∑

k=1

wkvk(xk) (1.4)

where wk ≥ 0 is the trade-off constant for criterion k (usually the trade-off constants
are assumed to sum up to one) and vk(xk) is the corresponding marginal value function,
which defines the partial value (performance score) of the alternatives on criterion k , in
a predefined scale (e.g., in [0, 1]). If the marginal value function is assumed to be linear
the additive model reduces to a simple weighted average of the criteria. Keeney and
Raiffa (1993) present in detail the theoretical principles of MAVT under both certainty
and uncertainty, and discuss the independence conditions that characterize different types
of value models (e.g., additive, multiplicative, multi-linear).

1.2.2.3 Outranking techniques

The foundations of the outranking relation theory (ORT) have been set by Bernard Roy
during the late 1960s through the development of the ELECTRE family of methods
(ELimination Et Choix Traduisant la REalité; Roy 1968). Since then, ORT has been
widely used by MCDA researchers, mainly in Europe. All ORT techniques operate in
two major stages. The first stage involves the development of an outranking relation,
whereas the second stage involves the exploitation of the outranking relation in order to
perform the evaluation of the alternatives for choice, ranking, and classification purposes.

An outranking relation can be defined as a binary relation used to estimate the strength
of the preference for an alternative x over an alternative y. In comparison with MAVT,
outranking techniques have two special features:

1 The term ‘utility’ is used in the context of decision making under uncertainty, whereas the term ‘value’
is preferred for decisions in a certain environment. Henceforth, the term ‘value’ will be used throughout the
chapter.
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• An outranking relation is not necessarily transitive: in MAVT models the evaluation
results are transitive. On the other hand, models developed on the basis of outrank-
ing relations allow intransitivities.

• An outranking relation is not complete: the main preference relations used in a
MAVT modeling framework involve preference and indifference as defined in (1.3).
In addition to these two relations, outranking methods also consider the incom-
parability relation, which arises when comparing alternatives with very special
characteristics and diverse performance on the criteria.

The most popular methods implementing the outranking relations framework are
the ELECTRE methods (Roy 1991), as well as the PROMETHEE methods (Brans and
Mareschal 2005), with different variants for addressing choice, ranking and classification
problems.

1.2.2.4 Preference disaggregation analysis

The development of the MCDA model can be performed through direct or indirect
procedures. The former are based on structured communication sessions between the
analyst and the DM, during which the analyst elicits specific information about the DM’s
preferences (e.g., weights, trade-offs, goals, etc.). The success of this approach is heavily
based on the willingness of the DM to participate actively in the process, as well as the
ability of the analyst to guide the interactive process in order to address the DM’s cog-
nitive limitations. This kind of approach is widely used in situations involving decisions
of strategic character.

However, depending on the selected criteria aggregation model, a considerable amount
of information may be needed by the DM. In ‘repetitive’ decisions, where time limitations
exist, the above direct approach may not be applicable. Disaggregation methods
(Jacquet-Lagrèze and Siskos 2001) are very helpful in this context. Disaggregation
methods use regression-like techniques to infer a decision model from a set of decision
examples on some reference alternatives, so that the model is as consistent as possible
with the actual evaluation of the alternatives by the DM. This model inference approach
provides a starting basis for the decision-aiding process. If the obtained model’s
parameters are in accordance with the actual preferential system of the DM, then
the model can be directly applied to new decision instances. On the other hand, if
the model is consistent with the sample decisions, but its parameters are inconsistent
with the DM’s preferential system (which may happen if, for example, the decision
examples are inadequate), then the DM has a starting basis upon which he/she can
provide recommendations to the analyst about the calibration of the model in the form
of constraints about the parameters of the model. Thus, starting with a model that is
consistent with a set of reference examples, an interactive model calibration process is
invoked.

Jacquet-Lagrèze and Siskos (1982) introduced the paradigm of preference disaggre-
gation in the context of decision aiding through the development of the UTA method
(UTilité Additive), which enables the development of evaluation models in the form
of an additive value function for ranking purposes. A comprehensive review of this
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methodological approach of MCDA can be found in Jacquet-Lagrèze and Siskos (2001)
and Siskos et al . (2005). Recent research has focused on extensions covering:

• other types of decision models, including among others outranking models
(Doumpos and Zopounidis 2002b 2004 Mousseau et al . 2001), and rule-based
models (Greco et al . 2001);

• other decision problematics (e.g., classification, Doumpos and Zopounidis 2002a);

• new modeling forms in the context of robustness decision-making (Dias et al .
2002),(Greco et al . 2008b).

1.3 Computational intelligence in MCDA

Computational intelligence has evolved rapidly over the past couple of decades and
it is now considered as a distinct sub-field that emerged within the area of artificial
intelligence. Duch (2007) discusses the unique features of computational intelligence as
opposed to the artificial intelligence paradigm, analyzes the multiple aspects of compu-
tational intelligence and introduces a definition of the field as ‘the science of solving
non-algorithmizable problems using computers or specialized hardware.’ Craenen and
Eiben (2003) view artificial intelligence and computational intelligence as two comple-
mentary fields of ‘machine intelligence.’ In their view, artificial intelligence is mostly
concerned with knowledge-based approaches whereas computational intelligence is a
different stream involved with non-knowledge-based principles.

In the following subsections, we focus on three major computational intelligence
paradigms, namely statistical learning/data mining, fuzzy sets, and metaheuristics, which
all have been extremely popular among researchers and practitioners involved with the
area of computational intelligence. We analyze the contributions of the paradigms within
the context of decision-making problems by overviewing their connections with MCDA.

1.3.1 Statistical learning and data mining

Hand et al . (2001) define data mining as ‘the analysis of (often large) observational data
sets to find unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data owner.’ Statistical learning plays an important
role in the data mining process, by describing the theory that underlies the identification
of such relationships and providing the necessary algorithmic procedures.

Modern statistical learning and data mining adopt an algorithmic modeling culture
as described by Breiman (2001), in which the focus is shifted from data models to the
characteristics and predictive performance of learning algorithms. This approach is very
different from the MCDA paradigm (a discussion of the similarities and differences
in the context of the preference disaggregation approach of MCDA can be found in
Doumpos and Zopounidis 2011b as well as in the work of Waegeman et al . 2009).
Nevertheless, the algorithmic developments in statistical learning and data mining, such
as the focus on the analysis of large scale data sets, as well as the wide range of different
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types of generalized modeling forms employed in these fields, provide new capabilities
in the context of MCDA.

1.3.1.1 Artificial neural networks

Artificial neural networks (ANNs) can be considered as directed acyclic graphs with nodes
(neurons) organized into layers. The most popular feed-forward architecture consists of
a layer of input nodes, a layer of output nodes, and a series of intermediate processing
layers. The input nodes correspond to the information that is available for every input
vector, whereas the output nodes provide the recommendations of the network. The
nodes in the intermediate (hidden) layers are parallel processing units that define the
input–output relationship. Every neuron at a given layer receives as input the weighted
average of the outputs of the neurons at the preceding layer and maps it to an output
signal through a predefined transformation function.

Depending on the topology of the network and the selection of the neurons’ trans-
formation functions, a neural network can model real functions of arbitrary complexity.
This flexibility has made ANNs a very popular modeling approach in addressing complex
real-world problems in engineering and management. This characteristic has important
implications for MCDA, mainly with respect to modeling general preference structures.

Within this context, ANNs have been successfully used for learning generalized
MCDA models from decision examples in a preference disaggregation setting. Wang
and Malakooti (1992), and Malakooti and Zhou (1994) used feedforward ANN models
to learn an arbitrary value function for ranking a set of alternatives, as well as to learn
a relational multicriteria model based on pairwise comparisons (binary relations) among
the alternatives. Generalized network decision models have a function free form, which
is less restricted by the assumptions imposed in MAVT (Keeney and Raiffa 1993). Exper-
imental simulation results showed that ANN models performed very well in representing
various forms of decision models, outperforming other popular model development tech-
niques based on linear programming formulations. Wang et al . (1994) applied a similar
ANN model to a job shop production system problem.

In a different framework compared with the aforementioned studies, Stam et al . (1996)
used ANNs within the context of the analytic hierarchy process (AHP; Saaty 2006). AHP
is based on a hierarchical structuring of the decision problem, with the overall goal on
the top of the hierarchy and the alternatives at the bottom. With this hierarchical struc-
ture, the DM is asked to perform pairwise comparisons of the elements at each level of
the hierarchy with respect to the elements of the preceding (higher) level. Stam et al .
investigated two different ANN structures for accurately approximating the preferences
ratings of the alternatives, within the context of imprecise preference judgments by the
DM. They showed that a modified Hopfield network has very close connections to the
mechanics of the AHP, but found that this network formulation cannot provide good
results in estimating the mapping from a positive reciprocal pairwise comparison matrix
to its preference rating vector. On the other hand, a feed-forward ANN model was found
to provide very good approximations of the preference ratings in the presence of impre-
ciseness. This ANN model was actually superior to the standard principal eigenvector
method.

Similar ANN-based methodologies have also be used to address dynamic MCDA
problems (where the DM’s preferences change over time; Malakooti and Zhou 1991), to
learn fuzzy preferences (Wang 1994a,b; Wang and Archer 1994) and outranking relations
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(Hu 2009), to provide support in group decision-making problems (Wang and Archer
1994), as well as in multicriteria clustering (Malakooti and Raman 2000).

ANNs have also been employed for preference representation and learning in mul-
tiobjective optimization. Within this context, Sun et al . (1996) proposed a feed-forward
ANN model, which is trained to represent the DM’s preference structure. The trained
ANN model serves as a value function, which is maximized in order to identify the
efficient solution that best fits the DM’s preferences. Sun et al . (2000) used a similar
feed-forward ANN approach to facilitate the interactive solution process in multiobjective
optimization problems. Other ANN architectures have also been used as multiobjective
optimizers (Gholamian et al . 2006; McMullen 2001) and hybrid evaluation systems (Raju
et al . 2006; Sheu 2008).

A comprehensive overview of the contributions of ANNs in MCDA in provided by
Hanne in Chapter 5.

1.3.1.2 Rule-based models

Rule-based and decision tree models are very popular within the machine learning
research community. The symbolic nature of such models makes them easy to understand,
which is important in the context of decision aiding. During the last decade significant
research has been devoted to the use of such approaches as preference modeling tools in
MCDA.

In particular, a significant part of the research related to the use of rule-based mod-
els in MCDA has focused on rough set theory (Pawlak 1982; Pawlak and Słowiński
1994), which provides a complete and well-axiomatized methodology for constructing
decision rule preference models from decision examples. Rough sets have been initially
introduced as a methodology to describe dependencies between attributes, to evaluate the
significance of attributes and to deal with inconsistent data in the context of machine
learning. However, significant research has been conducted on the use of the rough set
approach as a methodology for preference modeling in multicriteria decision problems
(Greco et al . 1999, 2001). The decision rule models developed through the rough set
approach for MCDA problems are built on the basis of the dominance relation. Each
‘if . . . then . . . ’ decision rule is composed of a condition part specifying a partial profile
on a subset of criteria to which an alternative is compared using the dominance relation,
and a conclusion part suggesting a decision recommendation.

Decision rule preference models have been initially developed in the context of mul-
ticriteria classification problems. In this case the recommendations in the conclusion part
of each rule involve the assignment of the alternatives either in a specific class or a set
of classes. Extensions to ranking and choice decision problems have been developed by
Greco et al . (2001) and Fortemps et al . (2008), whereas Greco et al . (2008a) presented
a dominance-based rough set approach for multiobjective optimization.

The decision rule preference model has also been considered in terms of conjoint
measurement (Greco et al . 2004) and Bayesian decision theory (Greco et al . 2007).
Greco et al . (2004) showed that there is an equivalence of simple cancellation property,
a general discriminant function and a specific outranking relation, on the one hand, and
the decision rule model on the other hand. They also showed that the decision rule
model resulting from the dominance-based rough set approach has an advantage over
the usual functional and relational models because it permits the handling of inconsistent
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decision instances. Inconsistency decision instances often appear due to the instability of
preferences, the incomplete determination of criteria, and the hesitation of the DM.

In Chapter 6, Szel ¸ag et al . provide a comprehensive presentation of rule-based deci-
sion models, focusing on MCDA ranking problems.

1.3.1.3 Kernel methods

Kernel methods are widely used for pattern classification, regression analysis, and density
estimation. Kernel methods map the problem data to a high dimensional space (feature
space), thus enabling the development of complex nonlinear decision and prediction
models, using linear estimation methods (Schölkopf and Smola 2002). The data map-
ping process is implicitly defined through the introduction of (positive definite) kernel
functions. Support vector machines (SVMs) are the most widely used class of kernel
methods. Recently, they have also been used within the context of preference learning
for approximating arbitrary utility/value functions and preference aggregation.

Herbrich et al . (2000) illustrated the use of kernel approaches, within the context
of SVM formulations, for representing value/ranking functions of the generalized form
V (x) = wφ(x), where φ is a possibly infinite-dimensional and in general unknown feature
mapping. The authors derived bounds on the generalizing performance of the estimated
ranking models, based on the margin separating objects in consecutive ranks.

Waegeman et al . (2009) extended this approach to relational models. In this case,
the preference model of the form f (xi , xj ) = wφ(xi , xj ) is developed to represent the
preference of alternative i compared with alternative j . This framework is general enough
to accommodate special modeling forms. For instance, it includes value models as a
special case, and similar techniques can also be used to kernelize Choquet integrals. As
an example, Waegeman et al . illustrated the potential of this framework in the case of
valued concordance relations, which are used in the ELECTRE methods.

Except for the development of generalized decision models, kernel methods have also
been employed for robust model inference purposes. For instance, Evgeniou et al . (2005)
showed how the regularization principle (which is at the core of the theory of kernel meth-
ods) is related to the robust fitting of linear and polynomial value function models in
ordinal regression problems. Doumpos and Zopounidis (2007) employed the same reg-
ularization principle for developing new improved linear programming formulations for
fitting additive value functions in ranking and classification problems. The development of
additive value function was also addressed by Dembczynski et al . (2006) who presented
a methodology integrating the dominance-based rough set approach and SVMs.

SVMs have also be used in the context of multiobjective optimization (Aytug and
Sayin 2009; Yun et al . 2009) in order to approximate the set of Pareto optimal solutions
in complex nonlinear problems. Multiobjective and goal programming formulations has
also been used for training SVM models (Nakayama and Yun 2006; Nakayama et al .
2005). Finally, hybrid systems based on SVMs have been proposed. For instance, Jiao
et al . (2009) combined SVMs with the UTADIS disaggregation method (Doumpos and
Zopounidis 2002a) for the development of accurate multi-group classification models.

1.3.2 Fuzzy modeling

Decision making is often based on fuzzy, ambiguous, and vague judgments. Verbal
expressions such as ‘almost,’ ‘usually,’ ‘often,’ etc., are simple yet typical examples
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of the ambiguity and vagueness often encountered in the decision-making process. The
fuzzy set theory first introduced by Zadeh (1965), provides the necessary modeling tools
for such situations. The concept of a fuzzy set is at the center of this approach. In the
traditional set theory, a set is considered as a collection of well defined and distinct
objects, which implies that sets have clearly defined (crisp) boundaries. Therefore, a
statement of the form ‘object x belongs to set A’ is either true or false. On other hand,
a fuzzy set has no crisp boundaries, and every object is associated with a degree of
membership with respect to a fuzzy set.

Since its introduction, fuzzy set theory has been an extremely active research field
with numerous practical applications in engineering and management. Its uses in the
context of decision aiding have also attracted much interest.

1.3.2.1 Fuzzy multiobjective optimization

The traditional multiobjective programming framework assumes that all the parameters of
the problem are well-defined. However, imprecision, vagueness, and uncertainty can make
the specification of goals, targets, objectives, and constraints troublesome and unclear.
Bellman and Zadeh (1970) were the first to explore optimization models in the context
of fuzzy set theory. Zimmermann (1976, 1978) further investigated this idea both in the
case of single-objective problems as well as in the context of multiobjective optimization.

Fuzzy multiobjective programming formulations have a similar form to conventional
multiobjective programming problems (i.e., the optimization of several objective functions
over some constraints). The major distinction between these two approaches is that while
in deterministic multiobjective programming all objective functions and constraints are
specified in a crisp way, in fuzzy multiobjective programming they are specified using the
fuzzy set theory through the introduction of membership functions. Fuzzy coefficients for
the decision variables in the objective function and the constraints can also be introduced.

A major advantage of fuzzy multiobjective programming techniques over conventional
mathematical programming with multiple objectives, is that it provides a framework to
address optimization problems within a less strict context regarding the sense of the
imposed constraints, as well as the degree of satisfaction of the DM from the compromise
solutions that are obtained (i.e., introduction of fuzzy objectives).

The FLIP method (Słowiński 1990) for multiobjective linear programming problems
is a typical example of the integration of the fuzzy set theory with multiobjective
optimization techniques. FLIP considers uncertainty through the definition of all problem
parameters (objective function coefficients, variables’ coefficients in the constraints,
right-hand side coefficients) as fuzzy numbers, each one associated with a possibility
distribution. The recent book by Sakawa et al . (2011) presents a comprehensive
overview of the theory of fuzzy multiobjective programming including stochastic
problems, whereas Roubens and Teghem (1991) present a survey of fuzzy multiobjective
programming and stochastic multiobjective optimization and perform a comparative
investigation of the two areas.

A detailed presentation of the principles and techniques for fuzzy multiobjective
optimization is presented by Sakawa in Chapter 10.

1.3.2.2 Fuzzy preference modeling

Preference modeling is a major research topic in MCDA. The modeling of a DM’s
preferences can be viewed within the context of MAVT models as well as in the context of
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outranking relations (Fodor and Roubens 1994; Roubens 1997). The concept of outranking
relation is closely connected with the philosophy of fuzzy sets. For instance, in ELECTRE
methods the outranking relation xi S xj is constructed to evaluate whether alternative i
is at least as good as alternative j . Similarly, in the PROMETHEE methods a preference
relation is constructed to measure the preference for alternative i over alternative j .
In both sets of methods the outranking/preference relations are not treated in a crisp
setting. Instead, the relations are quantified by proper measures (e.g., credibility index
in ELECTRE and preference index in PROMETHEE) representing the strength of the
outranking/preference of one alternative over another. For instance, the credibility index
σ(xi , xj ) used in ELECTRE methods represents the validity of the affirmation ‘alternative
i outranks alternative j .’ Thus, it is a form of membership function. Perny and Roy
(1992) provided a comprehensive discussion on the use of fuzzy outranking relations
in preference modeling together with an analysis of the characteristics and properties of
such relations.

Despite the above fundamental connection between commonly used MCDA outrank-
ing techniques and fuzzy theory, it should be noted that traditional outranking methods
consider crisp data. However, many extensions for handling fuzzy data in outranking
methods have been proposed. For instance, Czyzak and Słowiński (1996) considered the
evaluations of the alternatives on the criteria as fuzzy numbers in order to construct an
outranking relation. Common aggregation operators (e.g., maximum and minimum) are
employed to aggregate these fuzzy numbers in order to perform the necessary concor-
dance and discordance tests similarly to the traditional outranking relations approach.
Roubens (1996) presented several procedures for aggregating fuzzy criteria in an out-
ranking context for choice and ranking problem, whereas a more recent overview of this
research direction is given by Bufardi et al . (2008). Fuzzy relations can also be used to
handle the fuzziness that characterize the DM’s preferences. For instance, Siskos (1982)
proposed a methodology using disaggregation techniques to build a fuzzy outranking rela-
tion on the basis of the information represented in multiple additive value functions which
are compatible with the DM’s preferences, thus modeling the DM’s fuzzy preferential
system.

Fuzzy preference modeling approaches have also been developed in the context of
MAVT. Grabisch (1995; 1996) introduced an approach to manage uncertainty in the
MAVT framework through the consideration of the concept of fuzzy integrals initially
introduced by Sugeno (1974). In the proposed approach fuzzy integrals are used instead
of the additive and multiplicative aggregation operators that are commonly used in MAVT
in order to aggregate all attributes into a single evaluation index (value function). The
major advantageous feature of employing fuzzy integrals within the MAVT context is their
ability to consider the interactions among the evaluation criteria including redundancy and
synergy. On the other hand, the major drawback of such an approach that is a consequence
of its increased complexity over simple aggregation procedures (e.g., weighted average),
involves the increased number of parameters that should be defined, either directly by the
DM, or employing heuristics and optimization techniques. The use of the Choquet integral
as an aggregation function has also attracted much interest among MCDA researchers.
Marichal and Roubens (2000) first introduced a methodology implementing this approach
in a preference disaggregation context. Some work on this topic can be found in the papers
of Angilella et al . (2004; 2010) and Kojadinovic (2004; 2007), while a review of this
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area is given in the paper by Grabisch et al . (2008). Other applications of the fuzzy set
theory to MAVT are discussed in the book by Lootsma (1997).

A final class of decision models developed within the context of fuzzy set theory
that attracted much interest in the context of MCDA is based on the ordered weighted
averaging (OWA) approach first introduced by Yager (1988). An OWA aggregation model,
is a particular case of the Choquet integral, which is similar to a simple weighted average
model. However, instead of weighting the criteria, an OWA model assigns weights to
the relative position of one criterion value with respect to the other values (Torra 2010).
In this way, OWA models allow for different compensation levels to be modeled. For
instance, assigning high weights to low performances lead to a noncompensatory mode,
whereas compensation can be allowed if higher weight is given to good performance
levels. In the context of decision making under uncertainty, the OWA aggregation scheme
is a generalization of the Hurwicz rule. Yager (1993) and Xu and Da (2003) provide
overviews of different OWA models, whereas Yager (2004) extends this framework to
consider different criteria priorities in an MCDA context.

1.3.3 Metaheuristics

Metaheuristics have been one of the most active and rapidly evolving fields in com-
putational intelligence and operations research. Their success and development is due
to the highly complex nature of many decision problems. As a consequence the corre-
sponding mathematical models are nonlinear, nonconvex, and/or combinatorial in nature,
thus making it very difficult to solve them through traditional optimization algorithms.
Metaheuristics and evolutionary techniques have been very successful in dealing with
computationally intensive optimization problems, as they make few or no assumptions
about the problem and can search very large solution spaces very efficiently. In the con-
text of MCDA, such methods have been primarily used for multiobjective optimization.
Their use for fitting complex decision models in a preference disaggregation setting has
also attracted some interest.

1.3.3.1 Evolutionary methods and metaheuristics in multiobjective optimization

Traditional multiobjective optimization techniques seek to find an efficient solution that
best fits the preferences of a DM. The solution process is performed iteratively so that
the DM’s preferences are progressively specified and refined until the most satisfactory
solution is identified. During this process a series of optimization problems needs to be
solved, which may not be easy in the case of combinatorial or highly complex nonlinear
and nonconvex problems. Furthermore, in such procedures the DM is often not provided
with a full idea of the whole set of Pareto optimal solutions. Metaheuristics are well-
suited in this context as they are applicable in all types of computationally intensive
multiobjective optimization problems and enable the approximation of complex Pareto
sets in a single run of an algorithmic procedure.

Different classes of algorithms can be identified in this research direction. Approaches
based on genetic algorithms (GAs) are probably the most popular. GAs are computational
procedures that mimic the process of natural evolution for solving complex optimization
problems. They implement stochastic search schemes to evolve an initial population (set)
of solutions through selection, mutation, and crossover operators until a good solution
is reached. The first GA-based approach for multiobjective optimization problem was
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proposed by Schaffer (1985). During the 1990s and the 2000s many other algorithms
implementing a similar GA approach have been proposed. A comprehensive presentation
of this approach can be found in the book by Deb (2001), whereas Konak et al . (2006)
presented a tutorial and review of the field.

The differential evolution (DE) algorithm has also attracted much interest for multi-
objective optimization. DE has been introduced by Storn and Price (1997) as a powerful
alternative to GAs, which is well-suited to continuous optimization problems. Similarly
to a GA, DE also employs evolution operators to evolve a generation of solutions, but
it is based on greedy search strategies, which ensure that solutions are strictly improved
in every iteration of the algorithm. Abbass and Sarker (2002) presented one of the first
implementations of the DE scheme in multiobjective optimization. Some recent exten-
sions have been presented by Gong et al . (2009), Krink and Paterlini (2011), and Wang
and Cai (2012), whereas Mezura-Montes et al . (2008) present a review of DE-based
multiobjective optimization algorithms.

A third class of computational intelligence techniques for solving multiobjective
optimization problems involves other metaheuristic algorithms, such as simulated anneal-
ing, tabu search, ant colony optimization, and particle swarm optimization, which have
been proved very successful in solving complex optimization problems of a combinato-
rial nature. The use of such algorithms in multiobjective optimization can be found in
Landa Silva et al . (2004), Molina et al . (2007), Bandyopadhyay et al . (2008), Doerner
et al . (2008), and Elhossini et al . (2010). Jones et al . (2002) present an overview of
the field, whereas Ehrgott and Gandibleux (2008) focus on recent approaches, where
metaheuristics are combined with exact methods.

In Chapter 8, Jaimes and Coello Coello present in detail different interactive methods
for multiobjective optimization.

1.3.3.2 Preference disaggregation with evolutionary techniques

Inferring simple decision-making models (e.g., additive or linear value functions) from
decision examples poses little computational problems. Most existing preference dis-
aggregation techniques use linear programming for this purpose (Jacquet-Lagrèze and
Siskos 2001; Zopounidis and Doumpos 2002). However, more complex models cannot
be constructed with exact methods. Metaheuristics are well-suited in this context and
have attracted the interest of MCDA researchers over the past few years.

Most of the research on this area has focused on outranking models. Goletsis et al .
(2004) used a GA for the development of an outranking model based on the philoso-
phy of the ELECTRE methods in a medical classification problem. Belacel et al . (2007)
used the reduced variable neighborhood search metaheuristic to infer the parameters of
the PROAFTN outranking method from a set of reference examples. Focusing on the
same outranking method Al-Obeidat et al . (2011) used a particle swarm optimization
algorithm. Fernandez et al . (2009) developed a model based on a fuzzy indifference
relation for classification purposes. In order to infer the parameters of the model from a
set of reference examples they used the NSGA-II multiobjective evolutionary algorithm
(Deb et al . 2002) considering four measures related to the inconsistencies and the cor-
rect recommendations of the decision model. A similar approach was also presented by
Fernandez and Navarro (2011). Doumpos et al . (2009) presented a methodology based on
the differential evolution algorithm for estimating all the parameters of an ELECTRE TRI
model from assignment examples in classification problems under both the optimistic and
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the pessimistic assignment rules (Roy and Bouyssou 1993). Doumpos and Zopounidis
(2011a) applied this methodology to a large data set for the development of credit rating
models and demonstrated how the special features of ELECTRE TRI can provide useful
insights into the relative importance of the credit rating criteria and the characteristics of
the alternatives. Eppe et al . (2011) employed the NSGA-II algorithm for inferring the
parameters of PROMETHEE II models from decision instances. The authors suggested a
bi-objective approach according to which the model is developed so that the number of
inconsistencies compared with the DM’s evaluation of the reference alternatives is mini-
mized and the robustness of the model’s parameters estimates is maximized. In contrast
to all the aforementioned studies, which focused on outranking models, Doumpos (2012)
considered the construction of a nonmonotone additive value function, assuming that the
marginal value functions are quasi-convex. The differential evolution algorithm was used
to infer the additive function from reference examples in a classification setting.

1.4 Conclusions

In a dynamic environment characterized by increasing complexity and considerable
uncertainties, the interdisciplinary character of decision analysis and decision aiding is
strengthened. Complex and ill-structured decision problems in engineering and manage-
ment cannot be handled in a strictly defined methodological context. Instead, integrated
approaches often need to be implemented, combining concepts and techniques from var-
ious research fields. In this context, the relationship between artificial intelligence and
MCDA has attracted much interest among decision scientists.

This chapter presented an overview of this area, focusing on the computational intel-
ligence paradigm. Computational intelligence has been one of the most active areas in
artificial intelligence research, with numerous applications engineering and management
systems. The overview focused on the contributions of computational intelligence method-
ologies in decision support, covering important issues such as the introduction of new
preference modeling techniques, advanced algorithmic solution procedures for complex
problems, as well as new techniques for constructing decision models. The advances in
each of these areas provides new capabilities for extending the research and practice
of the MCDA paradigm, thus enabling its use in new ill-structured decision domains,
characterized by uncertainty, vagueness, and imprecision, complex preference and data
structures, and high data dimensionality.

The active research conducted in this area is expected to continue to grow at a rapid
pace. Future research could cover various issues. For instance, the integration with other
artificial intelligence paradigms, including knowledge management, representation, and
engineering, natural language processing, intelligent agents (see Chapter 11), evidential
reasoning (see Chapter 7) and Bayesian inference, is an interesting research area providing
a wide range of new potentials for enhancing decision aiding. The implementation of the
state-of-the-art research results into intelligent decision support systems taking advantage
of the rapid advances in data management and web-based technologies is also important
for disseminating new results among researchers and improving their applicability in
practice (see Chapter 2). Finally, given the wide arsenal of existing approaches, their
comprehensive comparative empirical evaluation is necessary in order to identify their
strengths, weaknesses, and limitations, under different decision aiding settings.
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