
1
Basics

This chapter presents some of the preliminaries to the multilevel fast multipole algorithm
(MLFMA). Using Maxwell’s equations and boundary conditions, surface integral equations
are derived to formulate electromagnetics problems involving metallic and dielectric objects.
Discretizations of the surface integral equations with basis and testing functions on triangular
domains lead to dense matrix equations, which can be solved iteratively via MLFMA. Numer-
ical integrations on triangular domains, different types of excitations, iterative algorithms, and
preconditioning are also discussed.

1.1 Introduction

Solving electromagnetics problems is extremely important to analyze electromagnetic inter-
actions of electronic devices with each other and with their environments including living and
nonliving objects [1]. A plethora of applications in the areas of antennas [2]–[13], radars [14],
optics [15], medical imaging [16], wireless communications [17], nanotechnology [18], meta-
materials [19]–[25], photonic crystals [26]–[33], remote sensing, and electronic packaging
involve scattering and/or radiation of electromagnetic waves. The following are some examples
of popular electromagnetics problems:

• Radiation from antennas, e.g., designing novel antennas and estimating their adverse effects
on the human health.

• Indoor and outdoor propagation, e.g., optimizations of wireless electromagnetic sources to
cover required areas with minimum power.

• Visualization via optical imaging devices, such as lens systems in microscopy, astronomy,
surgery, and biology.

• Transmission through frequency-selective photonic crystals and metamaterials, which are
artificial structures having a vast variety of applications, such as invisibility cloaking.

• Detection of ordinary and stealth airborne and naval targets with radar systems using the
radar cross section (RCS).
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• Scattering from biological structures, such as red blood cells (RBCs), to diagnose various
diseases.

• Electromagnetic compatibility of novel electronic devices, such as THz-range circuits.

Solutions of these problems are essential in the design and manufacturing cycles of electronic
devices; they enable engineers to explore novel designs and prevent the waste of the resources
involved in building prototypes and carrying out laboratory tests.

A quick look at a list of emerging technologies shows that electromagnetic fields will play a
major role in the future. Wireless communications, e.g., cellular phones, have already become
key components of modern life, with continuously increasing markets. Wireless energy trans-
ferring systems allowing unplugged electrical devices are now at the prototype stage, and are a
major priority of technology companies. Novel designs in nanotechnology will require better
imaging systems with subwavelength focusing abilities that can be achieved with metamate-
rials. Electromagnetic scattering from human tissues will become more and more popular to
design diagnostic tools for noninvasive treatments. Hence, electromagnetics simulations will
maintain their importance in the future in testing novel devices based on electromagnetic fields
and in reducing their design and manufacturing costs.

Electromagnetics problems can be formulated rigorously with Maxwell’s equations. Unfor-
tunately, these equations can only be solved analytically for a few canonical objects, such as
a sphere [34]. Recently, computational electromagnetics has become a scientifically popular
area, where electromagnetic radiation, scattering, and transmission problems in the aforemen-
tioned areas are solved with numerical techniques. Mathematical formulations of physical
events lead to a set of equations that can be solved numerically by using computers. Thanks
to advances in computer technology and solution algorithms, it has become possible to solve
many real-life problems involving complicated structures.

Developing a fast and accurate electromagnetics solver requires a well-designed combina-
tion of diverse components in many areas, such as wave theory, integral equations, numerical
techniques, fast algorithms, iterative solvers, preconditioners, parallel implementations,
high-performance computing, and computer technology. Accurate simulations of real-life
problems usually require the solution of numerical problems involving large numbers of
unknowns, which cannot be achieved easily, even when using the most powerful computers.
Therefore, one needs to develop special acceleration algorithms, such as MLFMA [35], in
order to solve those large-scale problems efficiently on relatively inexpensive computing
platforms. This book is about MLFMA and its implementation for fast and accurate solutions
of electromagnetics problems.

1.2 Simulation Environments Based on MLFMA

Figure 1.1 presents a typical simulation environment based on MLFMA. Surface integral
equations are derived from Maxwell’s equations without any fundamental approximations and
are applied to the modeled geometry represented by surfaces. Simultaneous discretizations of
the integral equations and surfaces using a set of basis and testing functions defined on trian-
gles lead to dense matrix equations. These matrix equations can be solved iteratively, where
the required matrix-vector multiplications (MVMs) are performed efficiently by MLFMA.
Optionally, convergence of iterations can be accelerated with preconditioners. MLFMA is
employed on parallel computers, particularly those with distributed-memory architectures, to
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Figure 1.1 A typical simulation environment based on MLFMA.

solve very large problems. Finally, solutions, e.g., scattered or radiated electromagnetic fields,
are obtained after a certain number of iterations.

Although Figure 1.1 illustrates the main focus of this book, many different simulation
environments can be constructed using alternative components. For example, volume integral
equations [36]–[40] discretized with tetrahedra can be used to formulate problems. Instead
of MLFMA, one can use the fast Fourier transform (FFT) [41]–[46] or the adaptive integral
method [47],[48] to accelerate MVMs. MLFMA can be further accelerated via asymptotic
techniques [49],[50]. Besides, in the context of parallelization, it can be employed on
shared-memory architectures. Figure 1.1 merely depicts one of the simulation environments
that have passed the time test for the accurate and efficient solutions of electromagnetics
problems.

1.3 From Maxwell’s Equations to Integro-Differential Operators

Maxwell’s equations for linear, isotropic, and homogeneous (simple) media can be written as

∇ × E(r, t) = −𝜇𝜕H(r, t)
𝜕t

(1.1)

∇ × H(r, t) = 𝜖
𝜕E(r, t)

𝜕t
+ J(r, t) (1.2)
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∇ ⋅ E(r, t) = 1
𝜖
𝜌e(r, t) (1.3)

∇ ⋅ H(r, t) = 0, (1.4)

where 𝜖 and 𝜇 are the permittivity and permeability of the medium, E and H are the electric
and magnetic fields, J is the electric current density, and 𝜌e is the electric charge density, which
is related to the electric current via the continuity equation as

∇ ⋅ J(r, t) = −
𝜕𝜌e(r, t)

𝜕t
. (1.5)

In general, electromagnetic fields and sources (currents and charges) depend on position r =
x̂x + ŷy + ẑz and time t. Assuming time-harmonic electromagnetic fields and sources with e−i𝜔t

time dependence, Maxwell’s equations can be rewritten as

∇ × E(r) = i𝜔𝜇H(r) (1.6)

∇ × H(r) = −i𝜔𝜖E(r) + J(r) (1.7)

∇ ⋅ E(r) = 1
𝜖
𝜌e(r) (1.8)

∇ ⋅ H(r) = 0, (1.9)

where
∇ ⋅ J(r) = i𝜔𝜌e(r). (1.10)

Note that, using the phasor notation,

fs(r, t) = Re{fs(r) exp(−i𝜔t)} (1.11)

f 𝑣(r, t) = Re{f 𝑣(r) exp(−i𝜔t)} (1.12)

𝜕fs(r, t)
𝜕t

= −i𝜔Re{fs(r) exp(−i𝜔t)} (1.13)

for a scalar fs and a vector f 𝑣.

Applying the equivalence principle on dielectric objects introduces magnetic sources, in
addition to electric sources. Maxwell’s equations can be extended by including the magnetic
current density M and the magnetic charge density 𝜌m as

∇ × E(r) = i𝜔𝜇H(r) − M(r) (1.14)

∇ × H(r) = −i𝜔𝜖E(r) + J(r) (1.15)

∇ ⋅ E(r) = 1
𝜖
𝜌e(r) (1.16)

∇ ⋅ H(r) = 1
𝜇
𝜌m(r), (1.17)

where
∇ ⋅ M(r) = i𝜔𝜌m(r) (1.18)

is the continuity equation for the magnetic sources.
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A set of Helmholtz equations for the electric and magnetic fields can be directly derived
from Maxwell’s equations. Taking the curl of (1.14) and using (1.15), (1.16), and the identity

∇ × ∇ × f 𝑣 = ∇∇ ⋅ f 𝑣 − ∇2f 𝑣, (1.19)

one can obtain

∇ × ∇ × E(r) = i𝜔𝜇∇ × H(r) − ∇ × M(r) (1.20)

∇∇ ⋅ E(r) − ∇2E(r) = i𝜔𝜇[−i𝜔𝜖E(r) + J(r)] − ∇ × M(r) (1.21)

1
𝜖
∇𝜌e(r) − ∇2E(r) = 𝜔2𝜇𝜖E(r) + i𝜔𝜇J(r) − ∇ × M(r) (1.22)

∇2E(r) + k2E(r) = −i𝜔𝜇J(r) + 1
𝜖
∇𝜌e(r) + ∇ × M(r), (1.23)

where k = 𝜔
√
𝜖𝜇 = 2𝜋∕𝜆 is the wavenumber and 𝜆 is the wavelength. Similarly, taking the

curl of (1.15) and using (1.14), (1.17), and (1.19),

∇ × ∇ × H(r) = −i𝜔𝜖∇ × E(r) + ∇ × J(r) (1.24)

∇∇ ⋅ H(r) − ∇2H(r) = −i𝜔𝜖[i𝜔𝜇H(r) − M(r)] + ∇ × J(r) (1.25)

1
𝜇
∇𝜌m(r) − ∇2H(r) = 𝜔2𝜇𝜖H(r) + i𝜔𝜖M(r) + ∇ × J(r) (1.26)

∇2H(r) + k2H(r) = −i𝜔𝜖M(r) + 1
𝜇
∇𝜌m(r) − ∇ × J(r). (1.27)

By writing the fields in terms of the vector and scalar potentials as

E(r) = i𝜔Am(r) − ∇𝜙e(r) −
1
𝜖
∇ × Ae(r) (1.28)

H(r) = i𝜔Ae(r) − ∇𝜙m(r) +
1
𝜇
∇ × Am(r) (1.29)

and using the Lorentz gauge, i.e.,

∇ ⋅ Am(r) = i𝜔𝜖𝜇𝜙e(r) (1.30)

∇ ⋅ Ae(r) = i𝜔𝜇𝜖𝜙m(r), (1.31)

a set of Helmholtz equations for the potentials can be derived as

∇2𝜙e(r) + k2𝜙e(r) = −1
𝜖
𝜌e(r) (1.32)

∇2𝜙m(r) + k2𝜙m(r) = − 1
𝜇
𝜌m(r) (1.33)

∇2Ae(r) + k2Ae(r) = −𝜖M(r) (1.34)

∇2Am(r) + k2Am(r) = −𝜇J(r). (1.35)
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The Helmholtz equations in (1.32)–(1.35) can be solved for arbitrary current and charge dis-
tributions, leading to

𝜙e(r) =
1
𝜖 ∫ dr′g(r, r′)𝜌e(r′) (1.36)

𝜙m(r) =
1
𝜇 ∫ dr′g(r, r′)𝜌m(r′) (1.37)

Ae(r) = 𝜖 ∫ dr′g(r, r′)M(r′) (1.38)

Am(r) = 𝜇 ∫ dr′g(r, r′)J(r′), (1.39)

where

g(r, r′) =
exp(ikR)

4𝜋R
(R = |r − r′|) (1.40)

is the homogeneous-space Green’s function. Using (1.36)–(1.39) in (1.28) and (1.29), elec-
tromagnetic fields due to arbitrary current and charge distributions can be written as

E(r) = ik𝜂 ∫ dr′
[
J(r′) + 1

k2
∇′ ⋅ J(r′)∇

]
g(r, r′)

− ∫ dr′∇g(r, r′) × M(r′) (1.41)

H(r) = ik𝜂−1 ∫ dr′
[
M(r′) + 1

k2
∇′ ⋅ M(r′)∇

]
g(r, r′)

+ ∫ dr′∇g(r, r′) × J(r′), (1.42)

where 𝜂 =
√

𝜇

ϵ is the intrinsic impedance. Finally, by defining the integro-differential opera-

tors  and  as

 {X}(r) = ik ∫ dr′
[
X(r′) + 1

k2
∇′ ⋅ X(r′)∇

]
g(r, r′) (1.43)

{X}(r) = ∫ dr′X(r′) × ∇′g(r, r′), (1.44)

the expressions for the electromagnetic fields can be rewritten as

E(r) = 𝜂 {J}(r) −{M}(r) (1.45)

H(r) = 𝜂−1 {M}(r) +{J}(r). (1.46)

Equations (1.45) and (1.46) clearly show the dependence of electromagnetic fields on electro-
magnetic sources in a simple medium.
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1.4 Surface Integral Equations

In general, electromagnetics problems involve three-dimensional objects with arbitrary
geometries that can be modeled with perfectly conducting and dielectric (lossy or lossless)
regions. As depicted in Figure 1.2, the equivalence principle can be used to decompose the
original problem into equivalent problems by employing equivalent currents on surfaces.
Equivalent problems are defined for all nonmetallic regions, including the host medium
extending to infinity. Then, integral equations can be derived by applying the operators on
the currents and enforcing the boundary conditions for the tangential components of the
electromagnetic fields.

Consider a homogeneous dielectric region Du bounded by a surface Su. As depicted in
Figure 1.3, this region may extend to infinity. Considering the tangential components of the

Dielectric

Metallic

Original problem
Equivalent problem 1

Equivalent problem 2 Equivalent problem 3 Equivalent problem 4

J

J & M J & M
J & M

J & M
J & M

J J & M

Figure 1.2 Applying the equivalence principle to an electromagnetics problem involving multiple
dielectric and metallic regions.
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D𝓊

𝓷𝓊

𝓷𝓊

∞

∞

∞

∞

Figure 1.3 A dielectric region enclosed in a surface and a dielectric region extending to infinity. In each
case, the region is bounded by a surface Su, which consists of multiple unconnected parts in the second
case.
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electric and magnetic fields on Su, one can derive

−𝜂un̂u × n̂u × u{Ju}(r) + n̂u × n̂u ×u{Mu}(r)

− n̂u × n̂u × Einc
u (r) = −n̂u × n̂u × Eu(r) (1.47)

−𝜂−1
u n̂u × n̂u × u{Mu}(r) − n̂u × n̂u ×u{Ju}(r)

− n̂u × n̂u × Hinc
u (r) = −n̂u × n̂u × Hu(r), (1.48)

where r ∈ Su, n̂u is the inward normal unit vector, and Einc
u and Hinc

u are the incident electric
and magnetic fields, respectively, created by external sources located in Du. The equivalent
currents equivalent electric and magnetic currents are defined as

Ju(r) = ×nu{Hu}(r) = n̂u × Hu(r) (1.49)

Mu(r) = −×nu{Eu}(r) = −n̂u × Eu(r), (1.50)

where

×nu{X}(r) = n̂u × {X}(r) = n̂u × X(r) (1.51)

and  is the identity operator. The operator u is commonly separated into principal-value and
limit parts (see Section 6.1) as

u{X}(r) = PV ,u{X}(r) −
4𝜋 − Ωu

4𝜋
×nu{X}(r), (1.52)

where 0 ≤ Ωu ≤ 4𝜋 is the solid angle that is nonzero when the observation point r is on the
surface. Using (1.52) in (1.47) and (1.48), and rearranging the terms, one can obtain

−𝜂un̂u × n̂u × u{Ju}(r) + n̂u × n̂u ×PV ,u{Mu}(r)

−
Ωu

4𝜋
×nu{Mu}(r) = n̂u × n̂u × Einc

u (r) (1.53)

−𝜂−1
u n̂u × n̂u × u{Mu}(r) − n̂u × n̂u ×PV ,u{Ju}(r)

+
Ωu

4𝜋
×nu{Ju}(r) = n̂u × n̂u × Hinc

u (r). (1.54)

Equations (1.53) and (1.54) are known as the electric-field integral equation (EFIE) and the
magnetic-field integral equation (MFIE), respectively.

As discussed in Chapter 2, EFIE and MFIE each have two forms. In the forms given in (1.53)
and (1.54), the tangential components of the electric and magnetic fields are sampled directly
since

−n̂ × n̂ × f 𝑣 = f 𝑣 − n̂n̂ ⋅ f 𝑣 (1.55)

for an arbitrary vector f 𝑣. Hence, (1.53) and (1.54) are commonly known as tangential integral
equations and denoted with T-EFIE and T-MFIE, respectively. On the other hand, it is also
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possible to sample a rotated version of the tangential electromagnetic fields. Specifically, (1.53)
and (1.54) can be modified as

𝜂un̂u × u{Ju}(r) − n̂u ×PV ,u{Mu}(r)

+
Ωu

4𝜋
{Mu}(r) = −n̂u × Einc

u (r) (1.56)

𝜂−1
u n̂u × u{Mu}(r) + n̂u ×PV ,u{Ju}(r)

−
Ωu

4𝜋
{Ju}(r) = −n̂u × Hinc

u (r), (1.57)

which are commonly known as normal integral equations and denoted with N-EFIE and
N-MFIE, respectively. It should be emphasized that normal integral equations do not involve
electromagnetic fields in normal directions; this convention is used throughout the book.

1.5 Boundary Conditions

Solutions of the surface integral equations (EFIE and MFIE) to compute the electric and mag-
netic currents require the use of appropriate boundary conditions at boundaries. As depicted
in Figure 1.4, two scenarios are of particular interest. When two dielectric regions Du and D𝑣

are separated by a surface Su𝑣, the tangential electric and magnetic fields are continuous across
the surface. This can be written as

Ju(r) = n̂u × Hu(r) = −J𝑣(r) = −n̂𝑣 × H𝑣(r) (1.58)

Mu(r) = −n̂u × Eu(r) = −M𝑣(r) = n̂𝑣 × E𝑣(r), (1.59)

or simply

Ju(r) = −J𝑣(r) = J(r) = n̂ × H(r) (1.60)

Mu(r) = −M𝑣(r) = M(r) = −n̂ × E(r) (1.61)

with n̂ = n̂u. Hence, the integral equations derived for Du and D𝑣 can be combined in different
ways to solve for J and M.

In many electromagnetics problems, some of the objects can be modeled as perfect electric
conductors (PECs). Since electromagnetics fields cannot penetrate into PECs, surface integral
equations are not required inside such objects. On a surface separating a dielectric medium

S𝓊𝓋 S𝓊𝓋

PEC

D𝓊 D𝓊

D𝓋

𝓷𝓊 𝓷𝓊

𝓷𝓋

Figure 1.4 Boundaries between two dielectric regions and on a PEC surface.
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from a PEC, the magnetic current is identically zero and the electric current corresponds to
the induced electric current, i.e.,

Ju(r) = n̂ × H(r) = Jind(r) (1.62)

Mu(r) = 0. (1.63)

As discussed in Chapter 2, (1.62) and (1.63) are also valid for an open PEC with zero volume,
since an open surface can be considered as a limiting case of a closed surface.

Finally, finding the equivalent currents Ju and Mu on the surface Su bounding Du, the sec-
ondary (scattered or radiated) electromagnetic fields can be computed everywhere inside Du
(and on Su) as

Esec
u (r) = 𝜂uu{Ju}(r) −PV ,u{Mu}(r) +

4𝜋 − Ωu

4𝜋
×nu{Mu}(r) (1.64)

Hsec
u (r) = 𝜂−1

u u{Mu}(r) +PV ,u{Ju}(r) −
4𝜋 − Ωu

4𝜋
×nu{Ju}(r). (1.65)

1.6 Surface Formulations

For the solution of electromagnetics problems, various surface formulations can be derived
by using diverse combinations of surface integral equations. Some of these formulations are
known to be stable and provide accurate results [51]–[83], although their performances may
vary significantly in terms of efficiency and accuracy. In general, surface formulations can be
categorized into three groups, i.e., tangential, normal, and mixed, depending on their contents.
Tangential formulations involve T-EFIE and/or T-MFIE, while normal formulations involve
N-EFIE and/or N-MFIE. Mixed formulations are obtained by combining the tangential and
normal formulations, and they contain at least one tangential equation and at least one normal
equation.

For dielectric objects with homogeneous material properties, surface formulations are
derived by properly combining the equations obtained for the inner and outer regions. To
avoid numerical internal resonances, it is preferable to derive a combined-field integral
equation (CFIE) by linearly combining EFIE and MFIE [62]. For example, a combination of
T-EFIE and T-MFIE leads to a T-T-CFIE formulation. Similarly, one can obtain T-N-CFIE
(T-EFIE+N-MFIE), N-T-CFIE (N-EFIE+T-MFIE), and N-N-CFIE (N-EFIE+N-MFIE) by
combining EFIE and MFIE appropriately. In these formulations, the equations obtained for
the inner and outer regions are solved simultaneously to obtain the two sets of unknowns,
i.e., electric and magnetic currents. One can also derive various other formulations involving
triple combinations, such as TN-N-CFIE (T-EFIE+N-EFIE+N-MFIE), for more stable
solutions [68].

The CFIE formulations described above are based on a linear combination of EFIE and MFIE
in the same way for each medium, but it is also possible to use different combinations for the
inner and outer regions [69]. Alternatively, it is quite popular to linearly combine the inner
and outer equations while solving EFIE and MFIE simultaneously. In this class of formula-
tions, the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) [52]–[54] and Müller [51]
formulations are well known and commonly used in the literature. Both tangential and nor-
mal versions of these formulations are possible; however, using a Galerkin discretization,
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only the tangential PMCHWT (T-PMCHWT) formulation and the normal Müller formulation
(NMF) are stable, whereas the normal PMCHWT and the tangential Müller formulations are
usually unstable. Recently, remarkable efforts have been made to further improve dielectric
formulations by devising novel combinations of integral equations. For example, the com-
bined tangential formulation (CTF) [74] is similar to the T-PMCHWT formulation, but it
involves a careful (and improved) scaling of T-EFIE and T-MFIE. A similar combination of
N-EFIE and N-MFIE leads to the combined normal formulation (CNF) [74]. The modified
NMF (MNMF) is obtained by normalizing equations in NMF to produce better-conditioned
matrix equations [73]. Finally, a mixed formulation called the electric and magnetic current
combined-field integral equation (JMCFIE) is derived by combining all four types of integral
equations [71],[78],[80],[83].

Surface formulations of dielectric objects tend to be less accurate as the contrast of the
object decreases and electromagnetic properties change slightly across dielectric interfaces.
There are various applications that involve scattering from low-contrast objects, such as dielec-
tric photonic crystals [29], RBCs in blood plasma [84]–[92], plastic land mines buried in
soil [93], and polymeric materials [94]. When the contrast is low, however, conventional sur-
face formulations encounter stability problems, and scattered fields cannot be calculated accu-
rately with them. Those scattering problems can be solved accurately with volume formula-
tions [36]–[39], which are usually stable independent of the contrast. On the other hand, it is
also desirable to extend the applicability of surface integral equations to low-contrast prob-
lems to be able to take the advantage of surface formulations, which are usually discretized
with fewer unknowns compared to volume formulations. The inaccuracy of surface formu-
lations for the solution of low-contrast problems is due to insufficient modeling of radiating
parts of equivalent currents defined on objects [95]. By extracting nonradiating currents and
solving modified equations only for radiating currents (similar to volume formulations), scat-
tered fields from low-contrast objects can be calculated accurately [96],[97]. These types of
formulations are extensively discussed in Chapter 2, Section 2.2.

When the object is a PEC, T-EFIE, T-MFIE, N-EFIE, and N-MFIE can be solved indepen-
dently to obtain the induced electric current on the surface. Especially, T-EFIE and N-MFIE
are commonly used in the literature [52],[57],[61]. However, for closed conductors, those for-
mulations suffer from internal resonances. Therefore, similar to dielectric formulations, it is
essential to combine EFIE and MFIE appropriately to derive various CFIE formulations [55].
Conventional CFIE formulations are usually obtained by convex combinations of EFIE and
MFIE. However, there are many studies presenting hybrid formulations, where EFIE and MFIE
are coupled in diverse ways. For example, EFIE and MFIE can be applied on different parts of
the object to efficiently and accurately solve electromagnetics problems involving complicated
structures [59],[64],[65],[76],[82]. This type of hybrid formulations are detailed in Chapter 3,
Section 3.6.1.

For PEC objects, T-EFIE suffers from the low-frequency breakdown problem (see
Chapter 2, Section 2.3.4) when it is discretized with ordinary basis functions [98],[99].
Specifically, matrix equations obtained from T-EFIE become increasingly ill-conditioned as
the discretization is refined. The T-N-CFIE formulation is also affected by the low-frequency
breakdown since it contains T-EFIE [100],[101], whereas N-MFIE is usually stable unless
the frequency is extremely low [102]. To eliminate the low-frequency breakdown problem,
one can apply loop-star or loop-tree decomposition methods [103]–[107]. In addition, current
and charge decompositions can be used [108],[109] to derive very stable formulations at low
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frequencies. Recently, regularization of T-EFIE using Calderon identities has become very
popular to tackle the low-frequency breakdown issue [101],[110]–[116].

1.7 Method of Moments and Discretization

Electromagnetics problems involving complicated objects can be discretized and solved
numerically. By means of a simultaneous discretization of the geometry and surface integral
equations, the equivalent currents are expanded in a series of basis functions. Then, the
coefficients of the basis functions are calculated by solving dense matrix equations, which are
derived by using the method of moments (MOM) [117],[118].

Let  be a linear operator applied on an unknown vector function f (r) to produce a known
vector function g(r), i.e.,

{f}(r) = g(r). (1.66)

Considering surface formulations,  can be a combination of the integro-differential  and 
operators as well as the identity operator , while the right-hand-side (RHS) function can be
a combination of the incident electromagnetic fields created by external sources. Expanding
f (r) in a series of known basis functions bn (n = 1, 2,…,N), i.e.,

f (r) ≈
N∑

n=1

a[n]bn(r), (1.67)

and testing (1.66) using a set of testing functions tm (m = 1, 2,…,N), one can obtain

∫ drtm(r) ⋅
N∑

n=1

a[n]{bn}(r) = ∫ drtm(r) ⋅ g(r) (m = 1, 2,…,N). (1.68)

In (1.67) and (1.68), a[n] represents the nth unknown coefficient, i.e., nth element of the
unknown vector a. Changing the order of the summation and integration, the equation becomes

N∑
n=1

a[n]∫ drtm(r) ⋅ {bn}(r) = ∫ drtm(r) ⋅ g(r) (m = 1, 2,…,N), (1.69)

which can be written as a matrix equation, i.e.,

N∑
n=1

a[n]Z[m, n] = w[m] (m = 1, 2,…,N), (1.70)

where

Z[m, n] = ∫ drtm(r) ⋅ {bn}(r) (1.71)

w[m] = ∫ drtm(r) ⋅ g(r). (1.72)

In the context of electromagnetics problems, Z and w are usually called the impedance matrix
and the excitation vector, respectively. Furthermore, elements of the impedance matrices
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(obtained by the discretization of the integral-equation formulations) can be interpreted as
electromagnetic interactions between discretization elements, i.e., basis and testing functions.

Using small planar triangles on which basis and testing functions are defined is a popular
approach to discretize three-dimensional objects. Some examples of the triangulation of closed
and open objects are illustrated in Figures 1.5, 1.6, and 1.7. In general, the size of triangles
should be small with respect to wavelength, but the discretization depends on the nature of
the problem, e.g., geometry and excitation, as well as the desired level of accuracy. There are
actually two error sources that can appear in the triangulation stage. The first one is the approx-
imation of the sources (and fields) with discrete functions. The second one is the modeling of

Figure 1.5 Surface models of various canonical geometries with triangular meshing.
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Figure 1.6 Surface models of a sphere with triangular meshing using various mesh sizes.

curved surfaces with planar elements (e.g., see Figure 1.6). Both types of errors may be reduced
by decreasing the element size unless limited by low-frequency breakdowns.

Applying a Galerkin scheme for the discretization of surface formulations, i.e., using
the same set of functions to expand the current densities (basis functions) and to test
the boundary conditions (testing functions), normal and mixed formulations will contain
well-tested identity operators. It is well-known that matrix equations involving well-tested
identity operators are diagonally dominant and well-conditioned [74],[119],[120]. However,
tangential formulations do not contain well-tested identity operators, and their discretizations
may lead to ill-conditioned matrix equations. Therefore, for the efficiency of solutions,
normal and mixed formulations are usually preferable, especially for large objects discretized
with large numbers of unknowns. On the other hand, errors in the discretization of well-tested
identity operators may decrease the accuracy of solutions obtained with normal and mixed
formulations [120]–[122]. The error level in these formulations compared to tangential
formulations can be significant, especially in conventional implementations employing the
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Figure 1.7 Surface model of a stealth airborne target Flamme with triangular meshing.

Rao-Wilton-Glisson (RWG) [57] functions. Investigations on PEC objects show that scattered
fields obtained with N-MFIE and T-N-CFIE are significantly inaccurate compared to those
obtained with T-EFIE [123]–[129]. Similar observations have been made for the solution
of dielectric objects [74],[80]. In such cases, it is helpful to improve the discretizations by
employing more appropriate, such as higher-order [130]–[133], basis functions in order to
obtain accurate results with normal and mixed formulations [74],[127]–[129],[134]–[139].
Recent studies also show that a regularization of the identity operator improves the accuracy
of N-MFIE [140].

1.7.1 Linear Functions

Linear functions are widely used to discretize surface integral equations. Among such
functions, the RWG functions [57] are very popular due to their simplicity, flexibility, and
usefulness. Over the years, a plethora of electromagnetics problems involving complicated
three-dimensional geometries have been solved with the help of the RWG functions. Spatial
distributions of the RWG functions are depicted in Figure 1.8, and can be written as

bRWG
n (r) =

⎧⎪⎨⎪⎩
ln

2 An1
(r − rn1), r ∈ Sn1

ln
2 An2

(rn2 − r), r ∈ Sn2

0, r ∉ Sn.

(1.73)

In (1.73), ln represents the length of the main edge en, An1 and An2 are respectively areas of the
first (Sn1) and the second (Sn2) triangles associated with the edge, and Sn = Sn1

⋃
Sn2. Since

they have constant normal (CN) and linear tangential (LT) components at the main edge, the
RWG functions can be classified as a CN-LT type. Despite their simplicity, they provide the
necessary flexibility to model current and field distributions on arbitrarily complicated sur-
faces with sufficient accuracy. They are also shown to possess the ability to properly model
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Figure 1.8 Spatial distributions of the RWG functions. Arrows show the direction while the shading
indicates the magnitude of the vector distribution. Light and dark colors represent the low and high values,
respectively.

the charge distribution, in addition to the current distribution [141]. Therefore, the RWG func-
tions have been extensively used for the discretization of surface integral equations. The RWG
functions are divergence conforming and their divergence is finite everywhere, e.g.,

∇ ⋅ bRWG
n (r) =

⎧⎪⎨⎪⎩
ln

An1
, r ∈ Sn1

− ln
An2

, r ∈ Sn2

0, r ∉ Sn.

(1.74)

This property can be crucial in some formulations, such as T-EFIE. In addition, the total charge
distribution associated with an RWG function is identically zero since

∫Sn

dr∇ ⋅ bRWG
n (r) = An1

ln
An1

− An2
ln

An2
= 0. (1.75)

As extensively discussed in Chapter 2, the RWG functions can be replaced with other sim-
ple functions to improve the accuracy of normal and mixed formulations. For example, the
curl-conforming n̂×RWG functions have a spatial distribution shown in Figure 1.9 that can
be expressed as

bnRWG
n (r) = n̂ × bRWG

n (r), (1.76)

where bRWG
n (r) is the associated RWG function. Obviously, the n̂×RWG functions are

LN-CT (linear normal, constant tangential) type. Implementations of the n̂×RWG functions
can easily be obtained from the implementations of the RWG functions considering the simple
rotation relation in (1.76), whereas more efficient implementations can be derived using the
curl-conforming property of these functions, as discussed in Chapter 2, Section 2.3.9.
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Figure 1.9 Spatial distribution of the n̂×RWG functions. Arrows show the direction while the shading
indicates the magnitude of the vector distribution. Light and dark colors represent the low and high values,
respectively.

In addition to the n̂×RWG functions obtained via rotation, the RWG functions can be
decomposed into the linear-linear (LL) functions [133] to further improve the accuracy of nor-
mal and mixed formulations, as detailed in Chapter 2, Section 2.3.10. Spatial distributions of
the LL functions are depicted in Figure 1.10, where two kinds of the LL functions are defined
on the same edge en with the expressions

bLL(1)
n (r) =

⎧⎪⎨⎪⎩
ln

4(An1)2
(r − rn1) ⋅

[
(rn4 − rn1) × n̂

]
(rn3 − rn1), r ∈ Sn1

ln
4(An2)2

(r − rn2) ⋅ [(rn4 − rn2) × n̂](rn3 − rn2), r ∈ Sn2

0, r ∉ Sn

(1.77)

for the LL function of the first kind, and

bLL(2)
n (r) =

⎧⎪⎨⎪⎩
ln

4(An1)2
(r − rn1) ⋅

[
(rn3 − rn1) × n̂

]
(rn4 − rn1), r ∈ Sn1

ln
4(An2)2

(r − rn2) ⋅ [(rn3 − rn2) × n̂](rn4 − rn2), r ∈ Sn2

0, r ∉ Sn

(1.78)

for the LL function of the second kind. In Figure 1.10, vertex locations rn1, rn2, rn3, and rn4
are labeled as well as the three edges of the triangles en, ep, and ez depending on the kind of
the LL function. Similar to the n̂×RWG functions that are derived from the RWG functions,
the curl-conforming n̂×LL functions can be derived from the LL functions as

bnLL(1)(r) = n̂ × bLL(1)(r) (1.79)

bnLL(2)(r) = n̂ × bLL(2)(r). (1.80)

Spatial distributions of the n̂×LL functions are depicted in Figure 1.11.
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Figure 1.10 (a) First-kind and (b) second-kind LL functions defined at the nth edge (en). Arrows show
the direction while the shading indicates the magnitude of the vector distribution. Light and dark colors
represent the low and high values, respectively, and white corresponds to zero.
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Figure 1.11 (a) First-kind and (b) second-kind n̂×LL functions defined at the nth edge (en). Arrows
show the direction while the shading indicates the magnitude of the vector distribution. Light and dark
colors represent the low and high values, respectively, and white corresponds to zero.
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In order to understand the relation between the LL and RWG functions (or the n̂×LL and
n̂×RWG functions), one can consider the general representation of vector functions [130].
The zeroth-order divergence-conforming basis functions for triangular elements, such as the
RWG functions, can be written as

f 𝛽(r) =
1
J𝛽

[𝜁𝛽+1(r)𝓁𝛽−1 − 𝜁𝛽−1(r)𝓁𝛽+1] (𝛽 = 1, 2, 3), (1.81)

where J𝛽 indicates the Jacobian that can be derived for the RWG functions as

J𝛽 = 2A|𝓁𝛽 | (1.82)

and A is the area of the triangle. In (1.81), 𝜁𝛽 for 𝛽 = 1, 2, 3 represent parent (simplex) coordi-
nates with the dependency relationship

𝜁1(r) + 𝜁2(r) + 𝜁3(r) = 1 (1.83)

when r is on the triangle. In addition, 𝓁𝛽 in (1.81) and (1.82) for 𝛽 = 1, 2, 3 represent edge
vectors with the dependence

𝓁1 + 𝓁2 + 𝓁3 = 0. (1.84)

The RWG functions, which provide three degrees of freedom per triangle, are zeroth-order
complete since they can represent any constant vector function on a triangle and their surface
divergence is also constant. Given the three RWG functions corresponding to the three edges
of a triangle as in (1.81), the set of LL functions associated with the same triangle can be
derived as

f (1)
𝛽
(r) = 1

J𝛽
𝜁𝛽+1(r)𝓁𝛽−1 (1.85)

f (2)
𝛽
(r) = − 1

J𝛽
𝜁𝛽−1(r)𝓁𝛽+1 (1.86)

with the decomposition

f 𝛽(r) = f (1)
𝛽
(r) + f (2)

𝛽
(r) (𝛽 = 1, 2, 3). (1.87)

Note that both of the distributions in (1.81) and (1.85)–(1.86) provide a linear variation for
parallel components along the edges 𝛽. On the other hand,

∇𝜁𝛽(r)|𝜁𝛽 (r)=0 ⋅ f (1)
𝛽
(r) = 𝜁𝛽+1(r) (1.88)

∇𝜁𝛽(r)|𝜁𝛽 (r)=0 ⋅ f (2)
𝛽
(r) = 𝜁𝛽−1(r) (1.89)

so that normal components of the LL functions in (1.85) and (1.86) also have a linear variation
along edges 𝛽, while they are constant for the RWG functions in (1.81), i.e.,

∇𝜁𝛽(r)|𝜁𝛽 (r)=0 ⋅ f 𝛽(r) = 𝜁𝛽+1(r) + 𝜁𝛽−1(r) = 1 − 𝜁𝛽(r) = 1. (1.90)

Any linearly varying vector function on a triangle can be represented by a combination of
the LL functions since

f (1)2 (r)|𝓁2| +
f (2)2 (r)|𝓁2| −

f (1)3 (r)|𝓁3| −
f (2)3 (r)|𝓁3| =

𝓁1

2A
(1.91)
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f (1)3 (r)|𝓁3| +
f (2)3 (r)|𝓁3| −

f (1)1 (r)|𝓁1| −
f (2)1 (r)|𝓁1| =

𝓁2

2A
(1.92)

f (2)2 (r)|𝓁2| −
f (1)3 (r)|𝓁3| =

𝜁1(r)𝓁1

2A
(1.93)

f (2)3 (r)|𝓁3| −
f (1)1 (r)|𝓁1| =

𝜁2(r)𝓁2

2A
(1.94)

−
f (2)3 (r)|𝓁3| =

𝜁2(r)𝓁1

2A
(1.95)

f (1)3 (r)|𝓁3| =
𝜁1(r)𝓁2

2A
. (1.96)

On the other hand, the LL functions are not strictly first-order complete since their divergences

∇ ⋅ f (1)
𝛽
(r) = 1

J𝛽
𝓁𝛽−1 ⋅ ∇𝜁𝛽+1(r) =

1
J𝛽

=
|𝓁𝛽 |
2A

(1.97)

∇ ⋅ f (2)
𝛽
(r) = − 1

J𝛽
(r)𝓁𝛽+1 ⋅ ∇𝜁𝛽−1(r) = − 1

J𝛽
= −

|𝓁𝛽 |
2A

(1.98)

for 𝛽 = 1, 2, or 3 are constants. As indicated in [130], a strictly first-order complete basis
requires eight degrees of freedom on the triangle, whereas the LL functions have six degrees of
freedom. Nevertheless, the LL functions (and their curl-conforming versions, i.e., the n̂×LL
functions) have the advantage that their implementations do not require higher-order tech-
niques yet they provide significantly higher accuracy than the RWG functions for normal and
mixed formulations. This is discussed in Chapter 2, Section 2.3.10.

1.8 Integrals on Triangular Domains

Elements of the matrices derived from the discretization of surface integral equations involve
integrals over the basis and testing functions. Outer integrals over the testing functions can usu-
ally be performed via numerical integration techniques, such as Gaussian quadratures [142]
and adaptive integration methods, while inner integrals over the basis functions may require
singularity extractions [143], [144] before such numerical techniques are applied. In gen-
eral, considering a basis triangle with a surface of Snb lying on the x-y plane, as depicted
in Figure 1.12, the integrals to be evaluated can be written as

I f
in = ∫Snb

dr′f (r, r′)g(r, r′) (1.99)

I f∇′

in = ∫Snb

dr′f (r, r′)∇′g(r, r′), (1.100)

where f (r, r′) = 1 or f (r, r′) = (x′ − x) or f (r, r′) = (y′ − y). Since the Green’s function is singu-
lar and its value becomes infinite as R = |r − r′| goes to zero, singularity extraction is required
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Figure 1.12 A source triangle on the x-y plane and the projection of an observation point.

in (1.99) and (1.100) for accurate computations of the integrals, especially when the observa-
tion point is close to the source (basis) triangle. Specifically, the integrals are divided into
numerical and analytical parts as

I f
in = 1

4𝜋∫Snb

dr′f (r, r′)
(

exp(ikR) − 1

R

)
+ 1

4𝜋∫Snb

dr′f (r, r′) 1
R

(1.101)

I f∇′

in = 1
4𝜋∫Snb

dr′f (r, r′)∇′
(

exp(ikR) − 1 + 0.5k2R2

R

)
+ 1

4𝜋∫Snb

dr′f (r, r′)∇′
( 1

R

)
− k2

8𝜋∫Snb

dr′f (r, r′)∇′R. (1.102)

The numerical integrals in (1.101)–(1.102) can be evaluated accurately by using Gaussian
quadratures or adaptive integration methods.

1.8.1 Analytical Integrals

Consider the scenario depicted in Figure 1.12 involving a source triangle lying on the x-y plane
and an observation point r. The analytical integrals can be further divided as

∫Snb

dr′f (r, r′) 1
R

= ∫SPV ,nb

dr′f (r, r′) 1
R
+ ∫Slim

dr′f (r, r′) 1
R

(1.103)

∫Snb

dr′f (r, r′)∇′
( 1

R

)
= ∫SPV ,nb

dr′f (r, r′)∇′
( 1

R

)
+ ∫Slim

dr′f (r, r′)∇′
( 1

R

)
(1.104)

∫Snb

dr′f (r, r′)∇′R = ∫SPV ,nb

dr′f (r, r′)∇′R + ∫Slim

dr′f (r, r′)∇′R, (1.105)
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where Slim is defined as the infinitesimal circular surface (with radius a → 0) in the vicinity of
the projection of the observation point and SPV ,nb = Snb − Slim. Depending on the location of
the observation point, Slim may not exist. In general, the decompositions in (1.103)–(1.105)
allow for rigorous analytical evaluations of the integrals in terms of the geometric quanti-
ties associated with the basis triangle and the location of the observation point [144]. These
quantities are depicted in Figure 1.13 and can be listed for each edge (i = 1, 2, 3) as follows:

• ûi represents the outward unit vector perpendicular to the ith edge on the x-y plane.
• R+

i and R−
i are the distances between the observation point and the end points of the ith

edge. The superscripts “+” and “−”, referring to the end points of the edge, are determined
by the right-hand rule applied on the triangle in the z direction.

• R0
i is the distance from the observation point to the ith edge and can be written as

R0
i =

√
z2 + |t0

i |2, (1.106)

where |t0
i | is the distance between the projection of the observation point on the x-y plane and

the ith edge. The sign of t0
i is determined by the position of the projection of the observation

point with respect to the edge.
• s+i and s−i have magnitudes equal to the “+” and “−” segments of the ith edge. These seg-

ments are formed by the projection of the observation point on the edge. The signs of s+i
and s−i are determined by the relative position of this projection compared to the “+” and
“−” ends of the edge. In addition, ŝi is the unit vector in the direction of the edge using the
right-hand rule.

In order to evaluate the integrals in the form of (1.103), one can use the identities

∇′
S ⋅

(R
P

P̂
)
= 1

R
(1.107)

∇′
SR =

𝛒′ − 𝛒
R

= x̂
(x′ − x)

R
+ ŷ

(y′ − y)
R

, (1.108)
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1

+
1
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1
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1

t01
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u3

z

𝓍

𝓎

Figure 1.13 Geometric variables introduced to express the results of the analytical integrals. Most of
the variables are shown only for the first edge on the x axis.
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where ∇′
S represents the surface divergence or gradient in the primed coordinates and

P = P̂P = 𝛒 − 𝛒′ = x̂(x − x′) + ŷ(y − y′). (1.109)

Then, using the surface divergence theorem and evaluating the limits (as the infinitesimal sur-
face in Figure 1.12 shrinks to zero), one can obtain

∫Snb

dr′
1
R

=
3∑

i=1

t0
i f2,i − |z| 3∑

i=1

𝛽i (1.110)

∫Snb

dr′
(x′ − x)

R
= 1

2
x̂ ⋅

3∑
i=1

ûi f3,i (1.111)

∫Snb

dr′
(y′ − y)

R
= 1

2
ŷ ⋅

3∑
i=1

ûi f3,i, (1.112)

where

𝛽i = tan−1
t0
i s+i

(R0
i )2 + |z|R+

i

− tan−1
t0
i s−i

(R0
i )2 + |z|R−

i

(1.113)

f2,i = ln

(
R+

i + s+i
R−

i + s−i

)
(1.114)

f3,i = s+i R+
i − s−i R−

i + (R0
i )

2f2,i. (1.115)

Similar procedures can be used to evaluate the integrals in the form of (1.104), leading to

∫Snb

dr′∇′
( 1

R

)
=

3∑
i=1

ûi f2,i + ẑ
z|z| 3∑

i=1

𝛽i (1.116)

∫Snb

dr′(x′ − x)∇′
( 1

R

)
= x̂|z| 3∑

i=1

𝛽i −
3∑

i=1

x̂ ⋅ ŝi f 1,i − ẑzx̂ ⋅
3∑

i=1

ûi f2,i (1.117)

∫Snb

dr′(y′ − y)∇′
( 1

R

)
= ŷ|z| 3∑

i=1

𝛽i −
3∑

i=1

ŷ ⋅ ŝi f 1,i − ẑzŷ ⋅
3∑

i=1

ûi f2,i, (1.118)

where

f 1,i = ŝit
0
i f2i − ûi(R+

i − R−
i ). (1.119)

For the integrals in the form of (1.105), f (r, r′) is usually unity and one can derive

∫Snb

dr′∇′R = 1
2

3∑
i=1

ûi f3,i + ẑz|z| 3∑
i=1

𝛽i − ẑz
3∑

i=1

t0
i f2,i. (1.120)
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It is essential to investigate the values of the integrals when the observation point approaches
the source triangle. For example,

limz→0

3∑
i=1

𝛽i = 𝛼(x, y), (1.121)

where ⎧⎪⎨⎪⎩
𝛼(x, y) = 0, r ∉ Snb

𝛼(x, y) = 2𝜋, r ∈ Snb and r ∉ 𝜕Snb

0 < 𝛼(x, y) < 2𝜋, r ∈ 𝜕Snb

(1.122)

and 𝜕Snb represents the bounding contour around the triangle. Interestingly, the value of 𝛼(x, y)
at any edge depends on how the observation point approaches the edge. Specifically, 𝛼 → 2𝛾
as r → 𝜕Snb, where 𝛾 is the angle between the approach path and the x-y plane, as depicted in
Figure 1.14. This angle-dependent factor vanishes in (1.110), (1.117), and (1.118), since z → 0
as the observation point approaches the edge. However, it does not vanish in (1.116). In fact,
considering this integral, it can be shown that this factor is directly related to the solid-angle
factor in the limit part of the  operator [125] (see Appendix, Section A.1).

Another important parameter in the analytical integrals is f2,i given in (1.114). The value of
this parameter is infinite when the observation point is at one of the edges of the source trian-
gle. In such a case, the value of the integral in (1.116) is also infinite due to the non-vanishing
contribution of f2,i. Since the singularity is logarithmic and it is mild, it does not cause a
serious problem in the numerical integration over the testing triangle, as long as the integra-
tion (observation) points are taken inside the testing triangle. It is also possible to apply a
singularity-extraction technique for the outer integrals in near-neighboring interactions [124].

Testing triangle

Source triangle

𝛾

z

𝓍

𝓎

S+
1

S‒
1

‒
1

0
1

+
1

Figure 1.14 A limit case as the observation point approaches the edge of the basis triangle in a
near-neighboring interaction.
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As an example, consider the scenario in Figure 1.14 and an integral

∫Sma

dr f (x, y, z)f2,1 = ∫Sma

drf (x, y, z) ln

(
R+

1 + s+1
R−

1 + s−1

)
(1.123)

over the testing triangle, where f (x, y, z) is a linear function. The logarithmic singularity due
to the first edge of the basis triangle can be extracted as

∫Sma

drf (x, y, z) ln

(
R+

1 + s+1
R−

1 + s−1

)
= ∫Sma

dr

[
f (x, y, z) ln

(
R+

1 + s+1
R−

1 + s−1

)
+ 2 ln (R0

1)

]

− 2∫Sma

drf (x, y, z) ln (R0
1), (1.124)

where the second integral on the RHS can be evaluated analytically [124].

1.8.2 Gaussian Quadratures

Numerical integrations of nonsingular functions on triangles can be performed accurately and
efficiently by using Gaussian quadratures [142]. A symmetrical quadrature rule on a triangle
with a spatial support of Sm can be written as

∫Sm

drf (r) ≈ Am

P∑
p=1

𝑤p f (rpm), (1.125)

where Am is the area of the triangle, P is the number of quadrature points, and 𝑤p repre-
sents the integration weight for the pth sample point. Locations of the sample points are
determined as

rpm = 𝜁p1rm1 + 𝜁p2rm2 + 𝜁p3rm3, (1.126)

where rm1, rm2, and rm3 are node coordinates of the triangle, whereas 𝜁p1, 𝜁p2, and 𝜁p3 are the
simplex coordinates satisfying 𝜁p1 + 𝜁p2 + 𝜁p3 = 1.

1.8.3 Adaptive Integration

In order to reduce the integration error in electromagnetic interactions, the order of the Gaus-
sian quadrature rule applied for the integrals can be increased. Alternatively, low-order Gaus-
sian quadratures can be employed in an adaptive scheme, which can efficiently control the error
by adjusting the sampling rate according to the integrand. Specifically, employing an adaptive
integration method, the integration points can be selected economically by using more sam-
ples at critical locations, where the integrand changes rapidly. Figure 1.15 depicts a simple
adaptive integration method based on a three-point Gaussian quadrature rule. The following
steps are carried out for the integration of a function f on Sm:
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Figure 1.15 An adaptive integration method using a three-point Gaussian quadrature and three subtri-
angles for each triangle. (See color plate section for the color version of this figure)

• Given a triangle, three integration points are chosen at the middle of the edges. Using a
simple Gaussian quadrature rule, the value of the integral is given as

∫Sm

drf (r) ≈ I3 =
Am

3
[f (rp1) + f (rp2) + f (rp3)], (1.127)

where rp1, rp2, and rp3 are the integration points.
• Three additional integration points are chosen on the medians. These points are located at

1/3 of the medians nearer to the vertices of the triangle. Using the three-point Gaussian
quadrature rule in (1.127), the value of the integral using six points can be written as

∫Sm

drf (r) ≈ I6 =
I3

3
+

2Am

9
[ f (rp4) + f (rp5) + f (rp6)], (1.128)

where rp4, rp5, and rp6 are the new integration points on the medians.
• Three-point and six-point integration values are compared. If the error

Δ3−6 =
|I6 − I3||I6| (1.129)
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is lower than a given threshold, then I6 is returned as the value of the integral over the
triangle. Otherwise, the three subtriangles are considered separately. Note that in each sub-
triangle, the integration is carried out by sampling three more points (in addition to the three
points that are already sampled) and comparing the three-point and six-point integration
values.

The steps listed above are performed recursively until the convergence is satisfied for all
subtriangles. The final distribution of the samples on the main triangle can be nonuniform
since the depth of the recursion varies depending on the integrand.

The adaptive integration method described above works well in many cases, but its efficiency
may deteriorate for triangles with large aspect ratios. An alternative method is depicted in
Figure 1.16, and can be described as follows:

• Given a triangle, five integration points are chosen. Using the three-point Gaussian quadra-
ture rule in (1.127), the value of the integral over the triangle can be written as

∫Sm

drf (r) ≈ I5 =
Am

6
[ f (rp1) + f (rp2)

+ f (rp3) + f (rp4) + 2f (rp5)]. (1.130)

Note that two of the integration points are located at the longest edge of the triangle.
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Figure 1.16 An adaptive integration method using a three-point Gaussian quadrature and two subtri-
angles for each triangle. (See color plate section for the color version of this figure)
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• Six additional integration points are chosen. In order to determine the location of these
points, the medians are drawn to the longest edges of both subtriangles. The value of the
integral using ten points can be written as

∫Sm

drf (r) ≈ I10 =
Am

12
[f (rp1) + f (rp2) + f (rp4) + f (rp5) + f (rp6) + f (rp7)

+ 2f (rp8) + f (rp9) + f (rp10) + 2f (rp11)]. (1.131)

• The five-point and ten-point integration values are compared. If the error

Δ10−5 =
|I10 − I5||I10| (1.132)

is lower than a given threshold, then I10 is returned as the value of the integral over the
triangle. Otherwise, the two subtriangles are considered separately.

• Before starting the next recursion cycle, the three-point and five-point integration values
are compared for each subtriangle. Note that the required integration points were already
sampled in the previous recursion step. The recursion continues for a subtriangle if the
convergence is not satisfied.

The adaptive integration method shown in Figure 1.16 is more robust than the method in
Figure 1.15. Although there is an additional cost of finding the longest edge of the triangle,
this cost can be considered negligible compared to the gain from a more efficient distribution
of the integration points. As an example, Figure 1.17 presents the integration of a function
on a triangle with node coordinates (x1, y1) = (0.0, 0.0), (x2, y2) = (0.083, 0.0), and (x3, y3) =
(0.042, 0.048, 0.0). The integrand is depicted in Figure 1.17(a) and the integral over the triangle
is evaluated adaptively with 1% error. Figures 1.17(b) and 1.17(c) illustrate the integration
points when the methods in Figures 1.15 and 1.16 are used, respectively. It can be observed
that, using the first method (Figure 1.15), the integration points are not distributed efficiently
and there is an accumulation near one of the edges of the triangle. In contrast, using the second
method (Figure 1.16), the integration points are distributed efficiently and fewer points are used
to compute the integral, but with the same level of accuracy.

1.9 Electromagnetic Excitation

Let Z ⋅ a = w be an N × N matrix equation constructed using MOM. The excitation vector w
is obtained by testing the incident electric and magnetic fields, i.e., it contains integrals in the
form of

v[m] = ∫Sm

dr
{

tm(r)⋅
tm(r) ⋅ n̂×

}{
𝜂−1Einc(r)

Hinc(r)

}
, (1.133)

where Sm is the spatial support of the testing function tm for m = 1, 2,…,N. Different types of
excitations can be used, as described below.

1.9.1 Plane-Wave Excitation

A common excitation used in numerical simulations, e.g., RCS computations, is the
plane-wave illumination. A plane wave propagating in the k̂ direction with the electric field
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Figure 1.17 Numerical integration of a function on a triangle using the adaptive integration methods
depicted in Figures 1.15 and 1.16. Figures show (a) the function and the integration points to evaluate
the integral with 1% error using (b) the method in Figure 1.15 and (c) the method in Figure 1.16.
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polarized in the ê direction (ê⊥ k̂) can be written as

Einc(r) = êEa exp(ikk̂ ⋅ r) (1.134)

Hinc(r) = 1
𝜂

k̂ × Einc(r) = k̂ × ê
Ea

𝜂
exp(ikk̂ ⋅ r), (1.135)

where Ea is the amplitude of the plane wave.

1.9.2 Hertzian Dipole

A Hertzian (ideal) dipole can be used as a source in many simulations. The electric and mag-
netic fields of a Hertzian dipole with dipole moment IDM located at rd can be written as

Einc(r) = i𝜔𝜇
exp(ik|r − rd|)

4𝜋|r − rd|
[

IDM

(
1 + i

k|r − rd| − 1
k2|r − rd|2

)
−(r − rd)

IDM ⋅ (r − rd)|r − rd|2
(

1 + 3i
k|r − rd| − 3

k2|r − rd|2
)]

(1.136)

and

Hinc(r) = IDM × (r − rd)
exp(ik|r − rd|)

4𝜋|r − rd|2
(

1|r − rd| − ik

)
, (1.137)

respectively. Singularity extraction methods are required to evaluate the integrals in (1.133)
when the dipole is close to the observation point and |r − rd| is small.

1.9.3 Complex-Source-Point Excitation

In order to obtain an electromagnetic beam, which satisfies Maxwell’s equations exactly, an
ideal dipole can be located at rd = rd,R + ird,I in complex coordinates [145]. Then, the expres-
sions in (1.136) and (1.137) can be used to compute the electric and magnetic fields at any
point r, where

|r − rd| = √
(r − rd) ⋅ (r − rd)∗. (1.138)

The real part of the source location (rd,R) determines the position of the beam in real coordi-
nates, whereas the imaginary part (rd,I) determines the direction of the beam and the width of
the beam waist.

Figures 1.18 and 1.19 present some experiments involving a Hertzian dipole with
IDM = ẑ in complex coordinates. Figure 1.18 depicts the normalized electric field, i.e.,|E(r)| exp(−k|rd,I|), on the x-y plane, when rd = i𝜆x̂ and rd = i𝜆ŷ. Since rd,R = 0, both beams
are located at the origin. However, the beam propagates in the positive x and y directions
when rd,I = 𝜆x̂ and rd,I = 𝜆ŷ, respectively. Figure 1.19 presents two different beams in the x
direction with rd = 2i𝜆x̂ and rd = 10i𝜆x̂. Note that increasing the value of |rd,I| increases the
width of the beam waist.
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Figure 1.18 The normalized electric field on the x-y plane when a Hertzian dipole with IDM = ẑ is
located at (a) rd = i𝜆x̂ and (b) rd = i𝜆ŷ. (See color plate section for the color version of this figure)

1.9.4 Delta-Gap Excitation

In some applications involving metallic objects, voltage sources are required as external excita-
tions. A voltage source can be modeled as a delta-gap excitation, as depicted in Figure 1.20. A
local electric field is defined inside an infinitely narrow opening between two coplanar triangles
of the discretization, i.e.,

Einc(r) = Inlimd→0û𝛿(r, rn)∕d, (1.139)
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Figure 1.19 The normalized electric field on the x-y plane when a Hertzian dipole with IDM = ẑ is
located at (a) rd = 2i𝜆x̂ and (b) rd = 10i𝜆x̂. (See color plate section for the color version of this figure)

where rn represents any point at the nth edge, û is the unit vector perpendicular to the edge in
the plane of the triangles, In is a complex coefficient to represent the strength of the feed, and
d is the width of the theoretical gap. In the limit d → 0, the gap shrinks to the edge en. The
Dirac delta function 𝛿(r, rn) in (1.139) indicates that Einc(r) is zero outside the small gap.

As an example, consider T-EFIE and let a delta-gap excitation at the nth edge be tested by
the RWG functions. Using (1.139), one can obtain

wT-EFIE[m] = −𝜂−1vT
E[m] = −𝜂−1∫Sm

drtm(r) ⋅ Einc(r) = ±
Inln
𝜂

𝛿[m, n], (1.140)
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Figure 1.20 A delta-gap source defined at the nth edge.

where ln represents the length of the edge and

𝛿[m, n] =

{
1, m = n

0, m ≠ n.
(1.141)

When using a single delta-gap excitation, only one element (m = n) of the excitation vector
(1.133) is nonzero.

1.9.5 Current-Source Excitation

Similar to voltage sources, current sources are commonly used to excite metallic structures. A
current source and a corresponding sink can be placed at two different edges, with an electri-
cal connection established mathematically. As opposed to the delta-gap excitation, a current
source can be placed at a physical edge that is not necessarily shared by two triangles.

As an example, consider again T-EFIE discretized with the RWG functions, and let a cur-
rent source and a current sink be placed at two physical edges n1 and n2, respectively. Then,
one can define two half RWG functions at n1 and n2. The resulting matrix equation can be
written as

N+2∑
n=1

Z
T-EFIE

[m, n]a[n] = wT-EFIE[m] = 0 (m = 1,…,N), (1.142)

where the dimension of the equation is increased to N × (N + 2) due to the extra half functions.
Also note that wT-EFIE[m] = 0 since there is no incident-field excitation in this case and the
integral for the RHS evaluates to zero. On the other hand, the coefficients corresponding to n1
and n2 are fixed, i.e.,

a[n1] = In (1.143)

a[n2] = −In. (1.144)
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In other words, the expansion coefficients a[n1] and a[n2] are forced to be ±In to simulate the
source and sink. By setting the two coefficients as above, one can solve the system

N+2∑
n=1

n≠n1,n2

Z
T-EFIE

[m, n]a[n] = −InZ
T-EFIE

[m, n1] + InZ
T-EFIE

[m, n2] (m = 1,…,N),

(1.145)

to determine the coefficients a[n] for n ≠ n1, n2.

1.10 Multilevel Fast Multipole Algorithm

The fast multipole method (FMM) was developed for efficient solutions of radiation and scat-
tering problems in electromagnetics [146],[147]. Discretizations of integral-equation formu-
lations lead to dense matrix equations involving (N) unknowns that can be solved iteratively
via a Krylov-subspace algorithm. Iterative solutions require MVMs, i.e., y = Z ⋅ x, which can
be performed directly with (N2) complexity. For large-scale problems, direct multiplica-
tions render the solution impossible with limited computational resources. Despite that, FMM
provides an efficient way of performing the MVMs required by the iterative algorithms in
(N3∕2) time using (N3∕2) memory. By reducing the computational complexity from (N2)
to (N3∕2), FMM enables the solution of large-scale problems on relatively inexpensive com-
puting platforms [148],[149]. The clustering idea of FMM can be extended and applied in a
recursive manner, leading to MLFMA [35], which enables the solution of even larger prob-
lems by reducing the complexity of MVMs to (Nlog2N) [150] or (N log N) [1], [68],
[151]–[157].

In conventional implementations of MLFMA, a tree structure of L = (log N) levels is con-
structed by placing the object in a cubic box and recursively dividing the computational domain
into subdomains. This recursive clustering is illustrated in Figure 1.21, where a box is divided
into eight identical boxes and one of those smaller boxes is further divided into eight boxes, etc.
Practically, only nonempty boxes are considered and divided into subboxes, whereas empty
boxes created at any stage are simply omitted. The recursion depth depends on the problem as
well as the desired accuracy; but in general, the size of the smallest boxes at the lowest level is
in the order of the wavelength. As depicted in Figure 1.22, nonempty boxes and the recursive
relationship between them are used to construct a multilevel tree structure. In this structure,
each box at the lowest level contains some of the discretization elements and each box at the
higher levels contains maximum eight subboxes. In order to calculate the far-field interactions,
radiated and incoming fields are defined and sampled on the unit sphere.

MLFMA calculates the interactions between the radiating (basis) and receiving (testing)
elements that are far from each other in a group-by-group manner consisting of three
stages, namely, aggregation, translation, and disaggregation. In each MVM, these stages are
performed on the tree structure in a multilevel scheme. The group-by-group calculation of
the interactions is based on the factorization and diagonalization of the Green’s function,
as detailed in Chapter 3, Section 3.1. At this point, it is essential to define the near and far
zones for the boxes. A common approach is to use the one-box-buffer scheme illustrated in
Figure 1.23. Considering the red box at an arbitrary level in this two-dimensional picture,
the blue boxes (which are touching the red box) are assumed to be in the near-zone. In a
three-dimensional clustering, there are 27 near-zone boxes, some of which may be empty; all



36 The Multilevel Fast Multipole Algorithm (MLFMA)

Figure 1.21 Recursive clustering based on dividing each box into eight subboxes.
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Figure 1.22 Recursive clustering of an arbitrary object and the construction of the multilevel tree
structure.
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Figure 1.23 Boxes in the near and far zones for a given box (red) according to the one-box-buffer
scheme. (See color plate section for the color version of this figure)

other boxes are considered to be in the far zone. Among these far-zone boxes, only some of
them (i.e., the magenta boxes, whose parents are in the near zone of the parent of the red box)
are directly interacting with the red box through translations, while the remaining interactions
are implicitly included at the higher levels.

The major operations that are performed in the three stages of MLFMA are illustrated in
Figures 1.24–1.26, and can be summarized as follows.

• Aggregation (Figure 1.24): Radiated fields of boxes are calculated from the lowest level of
the tree structure to the highest level. At the lowest level (bottom), the radiated field of a
box is obtained by combining radiation patterns of the basis functions inside the box. At
the higher levels, the radiated field of a box is the combination of the radiated fields of its
subboxes.

• Translation (Figure 1.25): Radiated fields computed during the aggregation stage are trans-
lated into incoming fields. For each box at any level, there are (1) boxes to translate the
radiated field to. Using identical cubic boxes and the one-box-buffer scheme, there is a max-
imum of 73 − 33 = 316 different translations at each level, independent of the number of
boxes [158]. Examples of translations performed at two consecutive levels are depicted.

• Disaggregation (Figure 1.26): Total incoming fields at the box centers are calculated from
the top of the tree structure to the bottom. As depicted, the total incoming field for a box is
obtained by combining the incoming fields due to translations and the incoming field from
the center of its parent box, if it exists. At the lowest level, incoming fields are received by
testing functions.

In MLFMA, radiated and incoming fields are sampled on the unit sphere with respect to
spherical coordinates 𝜃 and 𝜙. The number of samples required for each box is proportional
to the size of the box, as measured by the wavelength [159]. Therefore, to match different
sampling rates of consecutive levels, interpolation and transpose interpolation (anterpolation)
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Figure 1.24 Operations in an aggregation stage for a parent box involving three subboxes.
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Figure 1.25 Operations in a translation stage for some boxes in two consecutive levels. (See color plate
section for the color version of this figure)
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Figure 1.26 Operations in a disaggregation stage for a parent box involving three subboxes.
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[160] are required during the aggregation and disaggregation stages, respectively. There
are two major ways of implementing interpolations (and anterpolations), namely, through
global and local interpolation methods. Global interpolations are usually based on FFT
along the 𝜙 direction and the Legendre transform along the 𝜃 direction, performed via
one-dimensional FMM [150],[161]. Using a uniform sampling, FFT can also be used along
the 𝜃 direction [162]. Such an MLFMA implementation has (N log2N) time complexity,
while interpolations/anterpolations are performed without error, provided that the Nyquist
criterion is applied for the sampling rate. On the other hand, local interpolation methods
introduce controllable errors [163]–[165], and such methods lead to more efficient MLFMA
implementations with (N log N) complexity.

To be employed repeatedly, translation operators must usually be calculated and stored in
memory before iterations. A direct calculation of these operators requires (N3∕2) operations,
and the processing time for their setup may become substantial as the problem size grows. As
a remedy, a two-step computation can be used based on the interpolation of the translation
operator [166],[167]. First, the translation operator is expressed as a band-limited function
and it is sampled at maximum (N) points. Second, the operator is evaluated at the required
points by interpolation from the previous samples. With an efficient interpolation algorithm,
the processing time for the calculation of the translation operators can be reduced to (N), as
detailed in Chapter 3, Section 3.3.4.

In MLFMA, there are also (N) near-field interactions, which are calculated directly
in the setup stage of the program and stored in memory to be used multiple times during
iterations. These interactions are between the basis and testing functions that are near to
each other, i.e., in the same box or in two touching boxes at the lowest level using the one
box-buffer scheme. Near-field interactions can be calculated accurately by using singularity
extraction techniques [57],[143],[168],[169], adaptive integration methods, and Gaussian
quadratures [142] (see this chapter, above, Section 1.8).

In order to achieve increased efficiency and reduced complexity, MLFMA employs several
ways of gradual elimination of redundancies in the computations. Due to their gradual nature,
such techniques may be interpreted as controllable error sources [1],[159],[166],[170]–[173].
For example, truncation of an infinite series and the angular integration over the unit sphere
are two error sources of controllable error, which are also common to FMM. Interpolation and
anterpolation operations constitute the third error source introduced by MLFMA. In addition,
other errors arise due to MOM, such as the modeling of the geometry, discretization of integral
equations, and numerical integrations on spatial basis and testing functions.

1.11 Low-Frequency Breakdown of MLFMA

MLFMA is an efficient algorithm to solve large-scale electromagnetics problems discretized
with large numbers of unknowns. However, it suffers from the low-frequency breakdown,
i.e., MLFMA boxes that are small compared to the wavelength cause errors. This is because
MLFMA is based on the plane wave expansion, which becomes invalid for short distances.
Therefore, MLFMA becomes inefficient for problems involving small objects discretized
with large numbers of unknowns. Specifically, when ordinary MLFMA is applied to those
low-frequency problems, the lowest-level boxes may involve many discretization elements.
This significantly increases the processing time and memory required for the near-field
interactions, which must be calculated directly. Even the complexity of the MLFMA
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implementation can be more than (N log N) due to excessively large numbers of near-field
interactions.

In the literature, there are two common approaches to solve low-frequency problems effi-
ciently via (modified versions of) MLFMA. The first approach is based on a spectral rep-
resentation of the Green’s function, where radiated fields are divided into propagating and
evanescent parts [174]–[177]. Evanescent waves are employed to compute the interactions
between small boxes separated by short distances. The second approach is based on the multi-
pole representation of radiated fields [178]–[183]. As also detailed in Chapter 3, Section 3.7,
the Green’s function is factorized in a series of multipoles, but the multipoles are not converted
into plane waves. In both approaches, box size is not restricted, and one can divide the object
into boxes that can be much smaller than the wavelength. There are also new studies using
alternative expansion methods for stable implementations at low frequencies [184],[185].

Obviously, diagonalization is the major source for the low-frequency breakdown of
MLFMA. As a heuristic explanation, plane waves introduced by diagonalization cannot
accurately represent electromagnetic fields of localized sources in small volumes (e.g.,
boxes). For a rigorous analysis, one should consider the factorized and diagonalized forms
of the Green’s function. As detailed in Chapter 3, Section 3.1, the factorization of the
homogeneous-space Green’s function is represented by an infinite summation involving the
spherical Bessel and Hankel functions of the first kind, i.e., jt(r) and h(1)t (r). In the factorized
form, jt(r) and h(1)t (r) balance each other, even for localized sources. Further stabilization
is also possible by scaling jt(r) and h(1)t (r) with the size of the source [183]. Applying the
diagonalization, however, spherical waves are converted into plane waves and the Green’s
function is represented by an angular integration involving diagonal shifts and a diagonal
translation operator. Unfortunately, in this form, the translation operator becomes unstable for
small distances. Specifically, this operator is a summation of the spherical Hankel functions
multiplied with the Legendre polynomials. As depicted in Figure 1.27, the spherical Hankel
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Figure 1.28 Iterative solutions of dense matrix equations derived from integral equations.

functions grow rapidly for small arguments. Hence, the Green’s function is to be obtained by
adding and subtracting large numbers, which can be prone to numerical problems, depend-
ing on the precision used. As a trivial but rigorous solution, avoiding diagonalization for
small boxes in MLFMA effectively prevents the low-frequency breakdown, as also detailed in
Chapter 3, Section 3.7.

1.12 Iterative Algorithms

Figure 1.28 depicts how MLFMA is used to solve large-scale electromagnetics problems.
Specifically, an iterative algorithm performs iterative solutions by employing MLFMA, which
provides an efficient means of executing the required MVMs. Note that the iterative algorithm
also interacts with a preconditioner, as detailed in this chapter, below, Section 1.13. In the lit-
erature, various Krylov-subspace methods are available to solve electromagnetics problems
formulated with integral equations [186]–[196]. Some of these methods are listed below:

• BiCG: Biconjugate gradient
• BiCGStab: Biconjugate gradient stabilized [188]
• CG: Conjugate gradient
• CGS: Conjugate gradient squared [189]
• GMRES: Generalized minimal residual [190]
• LSQR: Least-squares QR [191]–[193]
• MINRES: Minimal residual
• QMR: Quasi-minimal residual [194]
• TFQMR: Transpose-free quasi-minimal residual [195]

In all algorithms, the solution is (implicitly) expanded in a Krylov subspace, i.e.,

a ∈ Span{w,Z ⋅ w,Z
2
⋅ w,…,Z

j
⋅ w}. (1.146)
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For a given problem, the performance of each algorithm (the number of iterations j) may vary
significantly, depending on the shape of the geometry, discretization, and the type of formu-
lation; there is no one algorithm that performs best in all cases. Since reducing the number of
iterations is extremely important to obtain efficient solutions, one should investigate and com-
pare the iterative solutions provided by various algorithms [197],[198]. Sequential and parallel
implementations of iterative algorithms can be found in [186] and [199]. Chapter 3, Section 3.6
includes many examples and comparisons of iterative methods for solving electromagnetics
problems.

The Krylov-subspace methods listed above can be investigated in the context of matrix diag-
onalization.

1.12.1 Symmetric Lanczos Process

Consider a matrix equation

Z ⋅ a = w, (1.147)

where Z is an N × N symmetric matrix. One can define

𝛽(1)v(1) = w (1.148)

and construct

𝛽(k+1)v(k+1) = Z ⋅ v(k) − 𝛼(k)v(k) − 𝛽(k)v(k−1), (1.149)

where

𝛼(k) = [v(k)]H ⋅ Z ⋅ v(k) − [v(k)]H ⋅ 𝛽(k)v(k−1) (1.150)

and 𝛽(k) ≥ 0 are chosen appropriately such that ||v(k)||2 = 1. In (1.150), the superscript ‘H’
represents the Hermitian operation. The recursion can be rewritten as

[Z]N ×N ⋅ [V]N × k = [V]N × k ⋅ [𝚫]k× k

+ 𝛽(k+1)[0 0 · · · 0 v(k+1)]N × k, (1.151)

where

V = [v(1) v(2) · · · v(k)]N × k (1.152)

is a unitary matrix, i.e.,

V
H
⋅ V = I. (1.153)
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This process is called tridiagonalization and

𝚫 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼(1) 𝛽(2)

𝛽(2) 𝛼(2) 𝛽(3)

𝛽(3) 𝛼(3) 𝛽(4)

𝛽(4) 𝛼(4) ⋱

⋱ ⋱ 𝛽(k−1)

𝛽(k−1) 𝛼(k−1) 𝛽(k)

𝛽(k) 𝛼(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ k× k

(1.154)

is tridiagonal.

If the matrix Z is positive definite, the CG method can be applied to solve the matrix equation
in (1.147). In this method, a subproblem

[𝚫]k× k ⋅ y(k) =
⎡⎢⎢⎢⎣
𝛽(1)

0
⋮
0

⎤⎥⎥⎥⎦ k× 1

(1.155)

is solved so that the original solution can be obtained as a(k) = V ⋅ y(k). For the solution of the
subproblem, a Cholesky factorization is used, i.e.,

[𝚫]k× k = [L]k× k ⋅ [D]k× k ⋅ [L
H
]k× k, (1.156)

where L is lower triangular and D is diagonal.
For a general symmetric Z matrix, which is not positive definite, the MINRES method can

be applied by minimizing the norm of

[
𝚫

0 · · · 0 𝛽(k)

]
(k+1) × k

⋅ y(k) −
⎡⎢⎢⎢⎣
𝛽(1)

0
⋮
0

⎤⎥⎥⎥⎦ (k+1) × 1

(1.157)

to obtain y(k) and a(k) = V ⋅ y(k). For the solution of the subproblem in (1.157), a QR factoriza-
tion is used as [

𝚫
0 · · · 0 𝛽(k)

]
(k+1) × k

= [Q](k+1)×(k+1) ⋅
[

R
0

]
(k+1) × k

, (1.158)

where Q is unitary and R is upper triangular.
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1.12.2 Nonsymmetric Lanczos Process

Consider a matrix equation in the form of (1.147), where Z is an N × N nonsymmetric matrix.
One can define

𝛽(1)v(1) = w (1.159)

and u(1) ⋅ v(1) = 1 to construct

𝛽(k+1)u(k+1) = Z ⋅ u(k) − 𝛼(k)u(k) − 𝛿(k)u(k−1) (1.160)

𝛿(k+1)v(k+1) = Z ⋅ v(k) − 𝛼(k)v(k) − 𝛽(k)v(k−1). (1.161)

In (1.160) and (1.161),

𝛼(k) = [u(k)]H ⋅ Z ⋅ v(k), (1.162)

𝛽(k) ≥ 0, and 𝛿(k) ≥ 0 are chosen appropriately such that ||v(k)||2 = 1 and ||u(k)||2 = 1. The
recursion can be rewritten as

[Z]N ×N ⋅ [V]N × k = [V]N × k ⋅ [𝚫]k× k

+ 𝛿(k+1)[0 0 · · · 0 v(k+1)]N × k (1.163)

[Z]N ×N ⋅ [U]N × k = [U]N × k ⋅ [𝚫]k× k

+ 𝛽(k+1)[0 0 · · · 0 v(k+1)]N × k, (1.164)

where

V = [v(1) v(2) · · · v(k)]N × k (1.165)

and

U = [u(1) u(2) · · · u(k)]N × k (1.166)

satisfy

U
H
⋅ V = I. (1.167)

This process is also a tridiagonalization and

𝚫 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼(1) 𝛽(2)

𝛿(2) 𝛼(2) 𝛽(3)

𝛿(3) 𝛼(3) 𝛽(4)

𝛿(4) 𝛼(4) ⋱

⋱ ⋱ 𝛽(k−1)

𝛿(k−1) 𝛼(k−1) 𝛽(k)

𝛿(k) 𝛼(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k× k

(1.168)

is tridiagonal.
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BiCG and QMR methods, as well as their transpose-free variants, i.e., BiCGStab, CGS, and
TFQMR, are based on the nonsymmetric Lanczos process. For example, in BiCG, a subprob-
lem similar to (1.155) is solved via an LU factorization in iterative methods factorization,
i.e.,

𝚫k× k = Lk× k ⋅ Dk× k ⋅ Rk× k. (1.169)

The QMR method is similar to MINRES, and the norm of

[
𝚫

0 · · · 0 𝛿(k)

]
(k+1) × k

⋅ y(k) −
⎡⎢⎢⎢⎣
𝛿(1)

0
⋮
0

⎤⎥⎥⎥⎦ (k+1) × 1

(1.170)

is minimized by using a QR factorization.

1.12.3 Arnoldi Process

The Arnoldi process involves a recursion in the form of

[Z]N ×N ⋅ [V]N × k = [V]N × k ⋅ [H]k× k

+ 𝛽(k+1)[0 0 · · · 0 v(k+1)]N × k, (1.171)

[Z]N ×N ⋅ [V]N × k = [V]N × k ⋅ [H]k× k

+ 𝛽(k+1)[0 0 · · · 0 v(k+1)]N × k, (1.172)

where V = [v(1)n v(2)n · · · v(k)n ] is again a unitary matrix. As opposed to the matrix obtained
by a tridiagonalization, H is a Hessian matrix. In general, a subproblem similar to (1.155) is
considered for the solution. The efficient GMRES method is based on the Arnoldi process.

1.12.4 Golub-Kahan Process

For a general N × N matrix equation in the form of (1.147), the Golub-Kahan process starts
with

𝛽(1)x(1) = w (1.173)

𝛼(1)v(1) = Z
H
⋅ x(1) (1.174)

and constructs a recursion as

𝛽(k+1)x(k+1) = Z ⋅ v(k) − 𝛼(k)x(k) (1.175)

𝛼(k+1)v(k+1) = Z
H
⋅ x(k+1) − 𝛽(k+1)v(k), (1.176)
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where 𝛼(k) ≥ 0 and 𝛽(k) ≥ 0 are chosen appropriately such that ||x(k)||2 = 1 and ||v(k)||2 = 1.
The recursion can be rewritten as

[Z]N ×N ⋅ [V]N × k = [X]N × (k+1) ⋅ [𝚲](k+1) × k (1.177)

[Z
H
]N ×N ⋅ [X]N × (k+1) = [V]N × k ⋅ [𝚲

H
]k× (k+1)

+ 𝛼(k+1)[0 0 · · · 0 v(k+1)]N × (k+1), (1.178)

where 𝚲 is lower-bidiagonal, i.e.,

𝚲 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼(1)

𝛽(2) 𝛼(2)

𝛽(3) 𝛼(3)

𝛽(4) 𝛼(4)

⋱ ⋱
𝛽(k−1) 𝛼(k−1)

𝛽(k) 𝛼(k)

𝛽(k+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (k+1) × k

. (1.179)

The LSQR method is based on the Golub-Kahan process, where a subproblem similar to
(1.157) is solved via a QR factorization.

1.13 Preconditioning

MLFMA provides the solution of large problems by reducing the complexity of MVMs
required by iterative solvers from (N2) to (N log N). For efficient solutions, however, the
number of iterations should also be small. Along this direction, preconditioning refers to
transforming a matrix equation into an equivalent form with more favorable conditioning
characteristics and that can be solved easier with iterative methods [200]. This is usually
achieved by multiplying the matrix equation with an approximate inverse of the matrix.

In MLFMA, there are (N) near-field interactions, which are calculated directly and are
available for constructing preconditioners. Using the one-box-buffer scheme, these interac-
tions are between the basis and testing functions that are located in the same box or in two
touching boxes at the lowest level of the tree structure. During solutions via MLFMA, one can
reorder the basis and testing functions according to their positions in the multilevel tree. Let
N1 be the number of boxes at the lowest level and N(C) represent the number of basis or testing
functions in box C = 1, 2,…,N1. Then, the basis and testing functions in box C are indexed
from N+(C) + 1 to N+(C) + N(C), where

N+(C) =
C−1∑
C′=1

N(C). (1.180)

This way, the impedance matrix has a block structure, where each block represents the interac-
tion of a pair of boxes at the lowest level. In the sparse near-field matrix, only the blocks cor-
responding to self-interactions of boxes or interactions of two touching boxes involve nonzero
elements. An example of reordering is depicted in Figure 1.29, where the self-interactions of
the boxes are illustrated for a small 72-unknown problem.
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Figure 1.29 Distribution of the matrix elements in the self interactions of the boxes for a 72-unknown
problem (a) before reordering and (b) after reordering based on the box indices.



48 The Multilevel Fast Multipole Algorithm (MLFMA)

With the direct factorization in preconditioners factorization of the sparse near-field
matrix of all near-field interactions, one can obtain the near-field preconditioner (NFP).
However, in most cases, near-field interactions are distributed irregularly in the full matrix
and cannot be collected in a bandlimited diagonal region, even when using reordering
algorithms [201]. Hence, the factorization performed once before iterations and the solution
of the preconditioner system applied in each iteration can be expensive in terms of processing
time; thus the preconditioner becomes a bottleneck as the problem size grows. As a remedy,
a block-diagonal preconditioner (BDP), which is much more efficient, can be obtained by
extracting only the self-interactions of the lowest-level boxes [35] (e.g., Figure 1.29). Both
the factorization and application of BDP are (N); this is appropriate for MLFMA since
its complexity is (N log N) and the complexity of the preconditioner should not be higher
than that. Due to its simplicity and favorable computing cost, BDP is commonly used for
MLFMA solutions of normal and mixed formulations, such as T-N-CFIE. Unfortunately,
BDP usually decelerates iterative solutions of tangential formulations, such as T-EFIE,
except in a few special cases [202]. In addition, for large problems involving complicated
objects, acceleration provided by BDP may not be sufficient, even when normal and mixed
formulations are used.

Recently, there have been many efforts to improve iterative solutions of surface integral
equations, particularly for metallic objects, using preconditioners [203]–[211]. In the context
of MLFMA, one of the most common preconditioning techniques is the incomplete LU (ILU)
method [200],[203]–[206]. This is a forward-type preconditioning technique, where the pre-
conditioner matrix P approximates the system matrix, and one can solve for

P
−1

⋅ Z ⋅ a = P
−1

⋅ w (1.181)

or

(Z ⋅ P
−1
) ⋅ (P ⋅ a) = w, (1.182)

instead of the original matrix equation. In (1.181) and (1.182), which correspond to left and
right preconditioning, respectively, the solution of P ⋅ x = y for a given y should be cheaper
than the solution of the original matrix equation. During the factorization of the preconditioner
matrix, the ILU method sacrifices some of the fill-ins and provides an approximation to the
near-field matrix, i.e.,

P = L ⋅ U ≈ ZNF. (1.183)

It is shown that the ILU preconditioner without a threshold provides inexpensive and good
approximations to the near-field matrices for T-N-CFIE, hence it reduces the iteration counts
and solution times substantially [206]. For ill-conditioned T-EFIE matrices, however, the
ILUT (i.e., threshold-based ILU) preconditioner with pivoting [205] is required to prevent the
potential instability. Other successful adoptions of the ILU-type preconditioners are presented
in [204].

Despite the remarkable success of the ILU-type preconditioners, they are limited to sequen-
tial implementations due to difficulties in parallelizing their factorization algorithms and
forward-backward solutions. Hence, the sparse-approximate-inverse (SAI) preconditioner,
which is well-suited for parallel implementations, has been more preferable for the solution
of large-scale electromagnetics problems [207]–[210]. The SAI preconditioner is based on a
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backward-type scheme, where the inverse of the system matrix is directly approximated, i.e.,

P ≈ Z
−1

. In MLFMA, only the near-field matrix is considered, and one can minimize

|I − P ⋅ ZNF|F, (1.184)

where || ⋅ ||F represents the Frobenius norm. Using the pattern of the near-field matrix for the
nonzero pattern of P provides some advantages by decreasing the number of QR factorizations
required during the minimization in (1.184) [208]. In parallel implementations, one can use
row-wise partitioning to distribute the near-field interactions among processors. Therefore,
left-preconditioning must be used to accelerate the iterative solutions with the SAI precondi-
tioner. However, right-preconditioning can be used for the symmetric matrix equations, e.g.,
those derived from T-EFIE [210].

Preconditioners that are based on near-field interactions can be insufficient to accelerate
iterative solutions of large-scale problems, especially those formulated with T-EFIE. For more
efficient solutions, it is possible to use far-field interactions in addition to near-field interactions
and construct more effective preconditioners. As depicted in Figure 1.30, this can be achieved
by using flexible solvers and employing approximate and ordinary versions of MLFMA in an
inner-outer scheme [211]. Using a reasonable approximation of the inner solutions, the number
of outer iterations can be reduced substantially. There are two ways to describe the advantages
of this strategy:

• MVMs performed by an ordinary MLFMA are replaced with more efficient MVMs per-
formed by an approximate MLFMA (AMLFMA). Different from the relaxation strategies,
however, only a single specific implementation of AMLFMA is sufficient to construct an
inner-outer scheme. In addition, reasonable accuracy (without strict limits) is sufficient for
the approximation.

MVM Preconditioner

Preconditioner
P · 𝓏 = 𝓋 ‒AMLFMA

C· 𝓏 = 𝓋 ‒

Inner solver
C· 𝓍 = 𝓎 ‒

MLFMA

Z· 𝓍 = 𝓎 ‒

𝓍 𝓍𝓎 𝓎

Outer solver Z · 𝑎 = 𝓌 ‒

𝓋 𝓋𝓏 𝓏

𝓌 𝑎

‒C ≈ Z‒

Figure 1.30 An inner-outer scheme involving a flexible iterative solver using an inner solver as a
preconditioner.
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• Iterative solutions by an ordinary MLFMA are preconditioned with a very strong precondi-
tioner that is constructed by approximating the full matrix instead of the sparse part of the
matrix.

Strategies for building a less-accurate MLFMA are discussed in Chapter 3, Section 3.5.

In addition to more efficient solutions, the inner-outer scheme prevents numerical errors that
arise because of deviations in the computed residual from the true residual by significantly
decreasing the number of outer iterations. This is because the residual gap, i.e., the differ-
ence between the true and computed residuals, increases with the number of iterations [212].
Another benefit of the reduction in iteration counts appears when the iterative solutions are per-
formed with the GMRES algorithm, which is usually an optimal method for T-EFIE in terms
of the processing time [206],[208]. Even though other variants of GMRES, e.g., the flexible
GMRES (FGMRES) [205], require the storage of two vectors per iteration instead of one,
nested solutions require significantly less memory than ordinary GMRES solutions because
they dramatically reduce the iteration counts.

1.14 Parallelization of MLFMA

For a dense matrix equation involving (N) unknowns, MLFMA reduces the complexity of
MVMs from (N2) to (N log N), allowing for the solution of large problems with limited
computational resources. On the other hand, accurate solutions of many real-life problems
require discretizations with millions of elements, leading to matrix equations involving mil-
lions of unknowns, which cannot easily be solved with sequential implementations of MLFMA
running on a single processor. To solve such large problems, it is helpful to increase com-
putational resources by assembling parallel computing platforms and, at the same time, by
parallelizing MLFMA.

Of the various parallelization schemes for MLFMA, the most popular use distributed-
memory architectures by constructing clusters of computers with local memories connected
via fast networks [158],[214]–[232]. Parallelization tools, such as the message passing inter-
face (MPI) [233], organizing parallel solutions via communication protocols are available.
However, the parallelization of MLFMA is not trivial due to the complicated structure of this
algorithm [217]. Although other algorithms with higher complexities, such as FMM, have
been parallelized very successfully with simple parallelization techniques [216],[226], this
is not the case for MLFMA. This is due to the unavoidable occurrences of communications
among processors, poor load balancing, and duplications of computations over multiple
processors in MLFMA. Consequently, there have been many efforts to improve the paral-
lelization of MLFMA by using novel partitioning strategies, load-balancing algorithms, and
optimized communications [217]–[232].

In a typical tree structure of MLFMA, the lowest level involves (N) boxes with dimensions
in the order of wavelength, and the number of boxes decreases by a factor of four from one level
to the next higher level. On the other hand, the number of samples required for the factorization
and diagonalization of the Green’s function depends on the size of boxes as measured by
the wavelength. Consequently, the number of samples increases by a factor of four from one
level to the next higher level. It is remarkable that the number of boxes and the number of
samples balance each other, and all levels in MLFMA have approximately an equal cost with
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(N) complexity. Therefore, an efficient parallelization of MLFMA should consider the best
possible partitioning at each level. With such a strategy, it would be possible to solve problems
with hundreds of millions of unknowns on relatively inexpensive computing platforms with
distributed-memory architectures [225]–[232].

In a simple parallelization of MLFMA, boxes are distributed among processors at all levels.
Such a technique provides efficient parallelization for small numbers of processors, usually
fewer than 16. For more processors, however, the efficiency drops drastically due to poor load
balancing. This is because small numbers of boxes in the higher levels of MLFMA cannot be
distributed evenly among processors. In addition, dense communications among processors
are required. Note that low parallelization efficiency not only increases processing time but
also restricts the size of problems that can be solved. As a remedy, a hybrid technique has
been proposed to improve the parallelization of MLFMA [217],[221]. This technique is based
on using an appropriate partitioning scheme for the higher levels of MLFMA by distributing
samples instead of boxes. Due to the improved load balancing in the higher levels, the hybrid
technique significantly increases the parallelization efficiency, compared to the simple tech-
nique. Nevertheless, the hybrid technique fails to provide efficient solutions when the number
of processors is larger than 32 [219],[225].

Recently, a hierarchical parallelization technique has been developed for efficient paral-
lelization of MLFMA [219],[223],[225],[230]–[232]. In this technique, the boxes and their
samples are partitioned among processors by employing load-balancing algorithms. Although
changing the partitioning between levels bears an additional cost, the hierarchical technique
offers a higher parallelization efficiency than previous parallelization techniques for MLFMA.
Specifically, this hierarchical partitioning strategy provides two important advantages. First,
simultaneous partitioning of the boxes and their samples leads to improved load balancing
among processors at each level. Second, communications between processors are reduced,
i.e., average package size is enlarged, the number of communication events is reduced, and
the communication time is significantly shortened. Details of the hierarchical partitioning
strategy and comparisons with previous parallelization techniques can be found in Chapter 4,
Section 4.6.




