
1

Introduction

The origins of structural equation modeling (SEM) stem from factor analysis

(Spearman, 1904; Tucker, 1955) and path analysis (or simultaneous equations)

(Wright,1918, 1921, 1934). By integrating the measurement (factor analysis) and

structural (path analysis) approaches, a more generalized analytical framework is

produced, called SEM (J€oreskog, 1967, 1969, 1973; Keesling, 1972; Wiley, 1973).

In SEM, unobservable latent variables (constructs or factors) are estimated from

observed indicator variables, and the focus is on estimation of the relations among

the latent variables free of the influence of measurement errors (J€oreskog, 1973;
J€oreskog and S€orbom, 1979; Bentler,1980, 1983; Bollen, 1989a).

SEM provides a mechanism for taking into account measurement error in the

observed variables involved in a model. In social sciences, some constructs, such as

intelligence, ability, trust, self-esteem, motivation, success, ambition, prejudice,

alienation, and conservatism, cannot be directly observed. They are essentially

hypothetical constructs or concepts, for which there exists no operational method

for direct measurement. Researchers can only find some observed measures that are

indicators of a latent variable. The observed indicators of a latent variable usually

contain sizable measurement errors. Even for variables, which can be directly meas-

ured, measurement errors are always a concern in statistical analysis. Traditional

statistical methods [e.g., multiple regressions, analysis of variance (ANOVA), path

analysis, simultaneous equations] ignore the potential measurement error of varia-

bles included in a model. If an independent variable in a multiple regression model

has measurement error, then the model residuals would be correlated with this inde-

pendent variable, leading to violation of the basic statistical assumption. As a result,

the parameter estimates of the regression model would be biased and result in

incorrect conclusions. SEM provides a flexible and powerful means of simulta-

neously assessing the quality of measurement and examining causal relationships

among constructs. That is, it offers an opportunity of constructing the unobserved
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latent variables and estimating the relationships among the latent variables that are

uncontaminated by measurement errors.

Other advantages of SEM include, but are not limited to, the ability to model

multiple dependent variables simultaneously; the ability to test overall model fit,

direct and indirect effects, complex and specific hypotheses, and parameter

invariance across multiple between-subjects groups; the ability to handle difficult

data (e.g., time series with autocorrelated error, non-normal, censored, count and

categorical outcomes), and to combine person-centered and variable-centered ana-

lytical approaches. The related topics on these model features will be discussed in

the following chapters.

This chapter gives a brief introduction to SEM through five steps that character-

ize most SEM applications (Bollen and Long, 1993):

1. Model formulation. It refers to correctly specifying the SEM model that the

researcher wants to test. The model may be formulated on the basis of theory or

empirical findings. A general SEM model is composed of two parts: the mea-

surement model and the structural model.

2. Model identification. It determines whether there is a unique solution for all the

free parameters in the specified model. Model estimation cannot be implemented

if a model is not identified, and model estimation may not converge or reach a

solution if the model is misspecified.

3. Model estimation. It is to estimate model parameters and generate fitting func-

tion. Various estimation methods are available for SEM. The most common

method for SEM model estimation is maximum likelihood.

4. Model evaluation. After meaningful model parameter estimates are obtained, the

researcher needs to assess whether the model fits the data. If the model fits data

well and results are interpretable, then the modeling process can stop after this

step.

5. Model modification. If the model does not fit the data, re-specification or modifi-

cation of the model is needed. In this instance, the researcher makes a decision

regarding how to delete, add, or modify parameters in the model. The fit of the

model could be improved through parameter re-specification. Once a model is

re-specified, steps 1 through 4 may be carried out again. The model modification

may be repeated more than once in real research. In the following sections we

will introduce the SEM process step by step.

1.1 Model formulation

In SEM, researchers begin with the specification of a model to be estimated. There

are different approaches to specify a model of interest. The most intuitive way of

doing this is to describe one’s model by path diagrams first suggested by Wright

(1934). Path diagrams are fundamental to SEM since it allows researchers to formu-

late the model of interest in a direct and appealing fashion. The diagram provides a

useful guide for clarifying a researcher’s ideas about the relationships among
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variables and they can be directly translated into corresponding equations for

modeling. Several conventions are used in developing a SEM model path diagram,

in which the observed variables (also known as measured variables, manifest

variables, or indicators) are presented in boxes, and latent variables or factors are in

circles or ovals. Relationships between variables are indicated by lines; lack of line

connecting variables implies that no direct relationship has been hypothesized

between the corresponding variables. A line with a single arrow represents a

hypothesized direct relationship between two variables, with the head of the arrow

pointing toward the variable being influenced by another variable. The bidirectional

arrows refer to relationships or associations, instead of effects, between variables.

An example of a hypothesized general structural equation model is specified

in the path diagram shown in Figure 1.1. As mentioned above, the latent variables

are enclosed in ovals and the observed variables are in boxes in the path diagram.

The measurement of a latent variable or a factor is accomplished through one or

more observable indicators, such as responses to questionnaire items that are

assumed to represent the latent variable. In our example two observed variables

(x1 and x2) are used as indicators of the latent variable j1, three indicators

(x1� x3) for latent variable j2, and three (y1� y3) for latent variable h1. Note that

h2 has a single indicator, indicating that the latent variable is directly measured

by a single observed variable. This special case will be discussed later.

The latent variables or factors that are determined by variables within the model

are called endogenous latent variables, denoted by h; the latent variables, whose

causes lie outside the model, are called exogenous latent variables, denoted by j. In

the example model, there are two exogenous latent variables (j1 and j2) and two

endogenous latent variables (h1 and h2). Indicators of the exogenous latent variables

are called exogenous indicators (e.g., x1� x5), and indicators of the endogenous

latent variables are endogenous indicators (e.g., y1� y4). The former has a
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Figure 1.1 A hypothesized general structural equation model.
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measurement error term symbolized as d, and the latter has measurement errors

symbolized as e (Figure 1.1).
The coefficients b and g in the path diagram are path coefficients. The first sub-

script notation of a path coefficient indexes the dependent endogenous variable, and

the second subscript notation indexes the causal variable (either endogenous or

exogenous). If the causal variable is exogenous (j), the path coefficient is a g; if the

causal variable is another endogenous variable (h), the path coefficient is a b. For

example, b12 is the effect of endogenous variable h2 on the endogenous variable h1;

g12 is the effect of the second exogenous variable j2 on the first endogenous varia-

ble h1. As in multiple regressions, nothing is predicted perfectly; there are always

residuals or errors. The zs in the model, pointing toward the endogenous variables,

are structural equation residual terms.

Different from the traditional statistical methods, such as multiple regressions,

ANOVA, and path analysis, SEM focuses on latent variables=factors rather than

on the observed variables. The basic objectives of SEM are to provide a means of

estimating the structural relations among the unobserved latent variables of a

hypothesized model free of the effects of measurement errors. These objectives

are fulfilled through integrating a measurement model (confirmatory factor analy-

sis, CFA) and structural model (structural equations or latent variable model) into

the framework of a structural equation model. It can be claimed that a general

structural equation model consists of two parts: (1) the measurement model that

links observed variables to unobserved latent variables (factors); and (2) structural

equations that link the latent variables to each other via a system of simultaneous

equations (J€oreskog, 1973).

1.1.1 Measurement model

A measurement model is the measurement component of a structural equation

model. The main purpose of a measurement model is to describe how well the

observed indicator variables serve as a measurement instrument for the underlying

latent variables or factors. Measurement models are usually carried out and eval-

uated by CFA. As a measurement model, CFA proposes links or relations between

the observed indicator variables and the underlying latent variables=factors that

they are designed to measure; then, it tests them against the data to ‘confirm’ the

proposed factorial structure.

In the structural equation model specified in Figure 1.1, three measurement

models can be considered (Figure 1.2a–c). In each measurement model, the l co-

efficients, which are called factor loadings in the terminology of factor analysis, are

the links between the observed variables and latent variables. For example, in

Figure 1.2a the observed variables x1� x5 are linked through lx11 � lx52 to latent

variables j1 and j2, respectively. In Figure 1.2b the observed variables y1� y3 are

linked through ly11 � ly31 to latent variable h1. Note that Figure 1.2c can be con-

sidered as a special CFA model with a single factor h2 and a single indicator y4.

Of course this model cannot be estimated separately because it is unidentified. We

will discuss this issue later.
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Factor loadings in CFA models are usually denoted by the Greek letter l. The

first subscript notation of a factor loading indexes the indicator, and the second

subscript notation indexes the corresponding latent variable. For example, lx21
represents the factor loading linking indicator x2 to exogenous latent variable j1;

and ly31 represents the factor loading linking indicator y3 to endogenous latent

variable h1.
In the measurement model shown in Figure 1.2a, there are two latent variab-

les=factors, j1 and j2, each of which is measured by a set of observed indicators.

Observed variables x1 and x2, are indicators of the latent variable j1, and x3� x5
are indicators of j2. The two latent variables, j1 and j2, in this measurement mode

are correlated with each other (f12 in Figure 1.2a stands for the covariance between

j1 and j2), but no directional or causal relationship is assumed between the

two latent variables. If these two latent variables were not correlated with each

other (i.e., f12¼ 0) there would be a separate measurement model for j1 and j2,
respectively, where the measurement model for j1 would have only two observed

indicators, thus it would not be identified.

For a one-factor solution CFA model, a minimum of three indicators is required

for model identification. If no errors are correlated, a one-factor CFA model with

three indicators (e.g., the measurement model shown in Figure 1.2b) is just identi-

fied (i.e., the number of observed variances=covariances equals the number of free

parameters).1 In such a case, model fit cannot be assessed although model parame-

ters can be estimated. In order to assess model fit, the model must be over-identified

(i.e., the observed pieces of information are more than model parameters that need

to be estimated). Without specifying error covariances, a one-factor solution CFA

model needs at least four indicators in order to be over-identified. However, a factor

with only two indicators may be acceptable if the factor is specified to be correlated

with at least one of the other factors in a CFA model and no error terms are

1 For a one-factor CFA model with three indicators, there are 3(3þ 1)=2¼ 6 observed

variances=covariances. When covariance structure (COVS) is analyzed, six free parameters:

two factor loadings (one loading is fixed to 1.0), one variance of the factor, and three vari-

ances of the error terms; thus degrees of freedom (df)¼ 0.

Figure 1.2 (a) Measurement model 1. (b) Measurement model 2. (c) Measurement model 3.
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correlated with each other (Bollen, 1989a; Brown, 2006). The measurement model

shown in Figure 1.2a is over-identified though factor j1 has only two indicators.

Nonetheless, multiple indicators need to be considered to represent the underlying

construct more completely since different indicators can reflect nonoverlapping

aspects of the underlying construct.

Figure 1.2c shows a simple measurement model. For some single observed indi-

cator variables (e.g., gender, ethnicity) that are less likely to have measurement

errors, the simple measurement model would become like y4¼ h2, where factor

loading ly42 is set to 1.0 and measurement error e4 is 0.0. That is, the observed

variable y4 is a ‘perfect’ measure of construct h2. If the single indicator is not a

perfect measure, measurement error cannot be modeled but rather one must specify

a fixed measurement error variance based on a known reliability of the indicator

(Hayduk, 1987; Wang et al., 1995). This issue will be discussed in Chapter 3.

1.1.2 Structural model

Once latent variables=factors have been assessed in the measurement models, the

potential relationships among the latent variables are hypothesized and assessed

in the structural model (structural equations or latent variable model) (Figure 1.3),

in which path coefficients g11, g12, g21, and g22 specify the effects of the exogenous

latent variables j1 and j2 on the endogenous latent variables h1 and h2, while b12
specifies the effect of h2 on h1; that is, the structural model defines the relationships

among the latent variables, and it is estimated simultaneously with the measurement

models. Note, if the variables in a structural model were all observed variables,

rather than latent variables, the structural model would become a modeling system

of structural relationships among a set of observed variables; thus, the model

reduces to the traditional path analysis in sociology or simultaneous equation model

in econometrics.

Figure 1.3 Structural model.
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The model shown in Figure 1.3 is a recursive model. If the model allows for

reciprocal or feedback effects (e.g., h1 and h2 influence each other), then the model

is called a nonrecursive model. Applications of only recursive models will be dis-

cussed in this book. Readers who are interested in nonrecursive models are referred

to Berry (1984) and Bollen (1989a).

1.1.3 Model formulation in equations

When the covariance structure is analyzed, the general structural equation model

can be expressed by three basic equations:

h ¼ Bhþ Gjþ z

Y ¼ Lyhþ e
X ¼ Lxjþ d

ð1:1Þ

These three equations are expressed in matrix format. Definitions of the variable

matrices involved in the three equations are shown in Table 1.1.

The first equation in Equation (1.1) represents the structural model which

establishes the relationships or structural equations among latent variables.

The components of h are endogenous latent variables; and the components of j are

exogenous latent variables. The endogenous and exogenous latent variables are

connected by a system of linear equations with coefficient matrices B (beta) and G
(gamma), as well as a residual vector z (zeta), where G represents effects of exoge-

nous latent variables on endogenous latent variables, B represents effects of some

endogenous latent variables on other endogenous latent variables, and z represents

the regression residual terms.

The second and third equations in Equation (1.1) represent measurement

models which define the latent variables from the observed variables. The second

equation links the endogenous indicators – the observed y variables – to endoge-

nous latent variables (i.e., hs), while the third equation links the exogenous

indicators – the observed x variables – to the exogenous latent variables (i.e., js).

Table 1.1 Definitions of the variable matrices in the three basic equations of the general

structural equation model.

Variable Definition Dimension

h (eta) Latent endogenous variable m� 1

j (xi) Latent exogenous variable n� 1

z (zeta) Residual term in equations m� 1

y Endogenous indicators p� 1

x Exogenous indicators q� 1

e (epsilon) Measurement errors of y p� 1

d (delta) Measurement errors of x q� 1

Note: m and n represent the number of latent endogenous and exogenous latent variables, respectively; p

and q are the number of endogenous and exogenous indicators, respectively, in the sample.
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The observed variables y and x are related to the corresponding latent variables h

and j by factor loadings Ly (lambda y) and Lx. The e and d are the measurement

errors associated with the observed variables y and x, respectively. It is assumed

that E(e)¼ 0, E(d)¼ 0, Cov (e, j)¼ 0, Cov (e, h)¼ 0, Cov (d, h)¼ 0, Cov (d, j)¼ 0,

and Cov (e, d)¼ 0, but Cov( ei, ej) and Cov (hi, hj) (i 6¼ j) might not be zero.

Note that no intercepts are specified in the above SEM equations. This is

because the deviations from means of the original observed variables are usually

used in structural equation model specification for simplicity. The original observed

variables will be used for model estimation when estimates of intercepts, the means,

and thresholds of variables are involved in a model. We will discuss this issue in

later chapters on modeling categorical outcomes and multi-group modeling.

In the three basic equations shown in Equation (1.1), there are a total of eight

parameter matrices in LISREL notation:2 Lx, Ly, G, B, F,C, Qd and Qd (J€oreskog
and S€orbom, 1981). A SEM model is fully defined by the specification of the struc-

ture of the eight matrices. In the early stages of SEM, a SEM model was specified in

matrix format using the eight-parameter matrix. Although this is no longer the case

in current SEM programs=software, information about parameter estimates in the

parameter matrices are reported in the output of Mplus and other SEM computer

programs. Understanding these notations is helpful for researchers to check the esti-

mates of specific parameters in the output.

A summary of these matrices is presented in Table 1.2. The first two matrices,

Ly and Lx, are factor loading matrices that link the observed indicators to latent

variables h and j, respectively. The next two matrices, B (beta) and G (gamma), are

structural coefficient matrices. The B matrix is an m�m coefficient matrix repre-

senting the relationships among latent endogenous variables. The model assumes

2 LISREL, standing for linear structural relationship, was the first computer software for

SEM, written by Drs Karl J€oreskog and Dag S€orbom from the University of Uppsala,

Sweden.

Table 1.2 Eight fundamental parameter matrices for the general structural equation model.

Matrix Definition Dimension

Coefficient matrices

Ly (lambda y) Factor loadings relating y to h p�m

Lx (lambda x) Factor loadings relating x to j q� n

B (beta) Coefficient matrix relating h to h m�m

G (gamma) Coefficient matrix relating j to h m� n

Variance=covariance matrices

F (phi) Variance=covariance matrices of j n� n

C (psi) Variance=covariance matrices of z m�m

Qe (theta-epsilon) Variance=covariance matrices of e p� p

Qd (theta-delta) Variance=covariance matrices of d q� q

Note: p is the number of y variables, q is the number of x variables, n is the number of j variables, and m

is the number of h variables.
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that (I�B) must be nonsingular, thus, (I�B)�1 exists so that model estimation can

be done. A zero in the B matrix indicates the absence of an effect of one latent

endogenous variable on another. For example, h12¼ 0 indicates that the latent varia-

ble h2 does not have an effect on h1. Note that the main diagonal of matrix B is

always zero; that is, a latent variable h cannot be a predictor of itself. The G matrix

is an m� n coefficient matrix that relates latent exogenous variables to latent

endogenous variables.

There are four parameter variance=covariance matrices for a general structural

equation model: F (phi), C (psi), Qe (theta-epsilon), and Qd (theta-delta).
3 All four

variance=covariance matrices are symmetric square matrices; that is, the number of

rows equals the number of columns in each of the matrices. The elements in the

main diagonal of each of the matrices are the variances that should always be posi-

tive; the elements in the off-diagonal are covariances of all pairs of variables in the

matrices. When all the variables, both observed variables (i.e., indicators of latent

variables) and latent variables are standardized, each of the variance=covariance
matrices would become a correlation matrix in which the diagonal values would all

become 1, and the off-diagonal values would become correlations. The n� n matrix

F is the variance=covariance matrix for the latent exogenous variable js. Its off-

diagonal element fij (i.e., the element in the ith row and jth column in matrix F) is

the covariance between the latent exogenous variables ji and jj (i 6¼ i). If ji and jj
were not hypothesized to be correlated with each other in the model, fij¼ 0

should be set up when specifying the model. The m�m matrix C is the variance=
covariance matrix of the residual terms z of the structural equations. In simulta-

neous equations of econometrics, the disturbance terms in different equations are

often assumed to be correlated with each other. This kind of correlation can be read-

ily set up in matrix C and estimated in SEM. The last two variance=coviances
matrices (i.e., the p� p Qe and q� q Qd) are variance=covariance matrices of the

measurement errors for the observed variables y and x, respectively. In longitudinal

studies, the autocorrelations can be easily handled by correlating specific error

terms with each other.

SEM model specification is actually to formulate a set of model parameters con-

tained in the eight matrices. Those parameters can be specified as either fixed or

free. Fixed parameters are not estimated from the model and their values are typi-

cally fixed at zero (e.g., zero covariance or zero slope indicating no relationship or

no effect) or 1.0 (e.g., fixing one of the factor loadings to 1.0 for the purpose of

model identification). Free parameters are estimated from the model.

The hypothesized model shown in Figure 1.1 can be specified in matrix notation

based on the three basic equations. First, the equation h ¼ Bhþ Gjþ z can be

expressed as:

h1
h2

� �
¼ 0 b12

0 0

� �
h1
h2

� �
þ g11 g12

g21 g22

� �
j1
j2

� �
þ z1

z2

� �
ð1:2Þ

3 The variance=covariance matrix for the latent endogenous variables h need not be estimated

from modeling since it can be calculated as: Var (h)¼Var [(Gjþ z)=(I�B)].
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where the free parameters are represented by symbols (e.g., Greek letters). The

fixed parameters (e.g., whose values are fixed) represent restrictions on the parame-

ters, according to the model. For example, b21is fixed to zero, indicating that h2 is

not specified to be influenced by h1 in the hypothetical model. The diagonal ele-

ments in the matrix B are all fixed to zero as a variable is not supposed to influence

itself. The elements in matrix B are the structural coefficients that express endoge-

nous latent variable h as a linear function of other endogenous latent variables;

elements in matrix G are the structural coefficients that express endogenous variable

h as a linear function of exogenous latent variables. From Equation (1.2), we have

the following two structural equations:

h1 ¼ b12 h2 þ g11 j1 þ g12 j2 þ z1
h2 ¼ g21 j1 þ g22 j2 þ z2

ð1:3Þ

The measurement equation Y ¼ Ly hþ e can be expressed as:

y1
y2
y3
y4

2
664

3
775 ¼

1 0

ly21 0

ly31 0

0 ly42

2
664

3
775 h1

h2

� �
þ

e1
e2
e3
e4

2
664

3
775 ð1:4Þ

where the Ly matrix decides which observed endogenous y indicators are loaded

onto which endogenous h latent variables. The fixed value of 0 indicates the corre-

sponding indicators are not loaded onto the corresponding latent variables, while

the fixed value of 1 is used for the purpose of model identification and defining the

scale of the latent variable. We will discuss this issue in detail later in Chapter 2.

From Equation (1.4) we have the following four measurement structural

equations:

y1 ¼ h1 þ e1
y2 ¼ ly21 h1 þ e2
y3 ¼ ly31 h1 þ e3
y4 ¼ ly42 h2 þ e4

ð1:5Þ

As the second endogenous latent variable h2 has only one indicator (i.e., y4),

thus ly42 should be set to 1.0, thus y4 ¼ h2 þ e4. As it is hard to estimate the

measurement error in such an equation in SEM, the equation is usually set to

y4 ¼ h2, assuming that the latent variable h2 is perfectly measuring the single

indicator y4. However, if the reliability of y4 is known, based on empirical find-

ing or estimated from item reliability study, the variance of e4 in the equation

y4 ¼ h2 þ e4 can be estimated and specified in the model to take into considera-

tion the effect of measurement errors in y4. We will demonstrate how to do this

in Chapter 3.
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Another measurement equation X ¼ Lxjþ d can be expressed as:

x1
x2
x3
x4
x5

2
66664

3
77775 ¼

1 0

lx21 0

0 1

0 lx42
0 lx52

2
66664

3
77775

j1
j2

� �
þ

d1
d2
d3
d4
d5

2
66664

3
77775 ð1:6Þ

Thus,

x1 ¼ j1 þ d1
x2 ¼ lx21 j1 þ d2
x3 ¼ j1 þ d3
x4 ¼ lx42 j2 þ d4
x5 ¼ lx52 j2 þ d5

ð1:7Þ

Among the seven random variable vectors (d, e, z, x, y, j, and h), x, y, j, and h are

usually used together with the eight-parameter matrices to define a SEM model; the

others are error terms or model residuals. It is assumed that E (z)¼ 0, E (e)¼ 0, and

E (d)¼ 0, Cov (z,j)¼ 0, Cov (e,h)¼ 0, and Cov (d,j)¼ 0. In addition, multivariate

normality is assumed for the observed and latent variables.

1.2 Model identification

A fundamental consideration when specifying a SEM model is model identification.

Essentially, model identification concerns whether a unique value for each and

every unknown parameter can be estimated from the observed data. For a given

free (i.e., unknown) parameter that needs to be model estimated, if it is not possible

to express the parameter algebraically as a function of sample variances=covarian-
ces, then that parameter is defined to be unidentified. We can get a sense of the

problem by considering the example equation Var (y)¼Var (h)þVar (e), where
Var (y) is the variance of the observed variable y, Var (h) is the variance of the latent

variable h, and Var (e) is the variance of the measurement error. There are one

known [i.e., Var (y)] and two unknowns [i.e., Var (h) and Var (e)] in the equation;

therefore, there is no unique solution for either Var (h) or Var (e) in this equation.

That is, there are an infinite number of combinations of values of Var (h) and Var (e)
that would sum to Var (y), thus rendering this single equation model unidentified. If

we wish to solve the problem, we need to impose some constrains in the equation.

One such constraint might be to fix the value of Var (e) to a constant by adding one

more equation Var(e)¼C (where C is a constant). Then, Var (h) would be ensured to

have a unique estimate, that is, Var (h)¼Var (y)�C. In other words, the parameter

Var (h) in the equation is identified. The same general principles hold for more com-

plicated SEM models. If an unknown parameter can be expressed by at least one

algebraic function of one or more elements of the variance=covariance matrix of

INTRODUCTION 11



the observed variables, that parameter is identified. If all the unknown parameters

are identified, then the model is identified. Very often, parameters can be expressed

by more than one distinct function. In this case, the parameter is over-identified.

Over-identification means there is more than one way of estimating a parameter

because there is more than enough information for estimating the parameter.

However, parameter estimates obtained from different functions should have an

identical value in the population when the model is correct (Bollen, 1989a). A

model is over-identified when each parameter is identified and at least one para-

meter is over-identified. A model is just-indentified when each parameter is

identified and none is over-identified. The term identified models refers to both

just-identified and over-identified models.

A not identified (under-identified or unidentified) model has one or more

unidentified parameters. If a model is under-identified, consistent estimates of all

the parameters will not be attainable. Since identification is not an issue of sam-

ple size, no matter how big the sample size, an under-identified model remains

under-identified. For any model to be estimated it must be either just identified

or over-identified.

Over-identified SEM models are of primary interest in SEM applications. It

refers to a situation where there are fewer parameters in the model than data

points.4 However, an over-identified model may not necessarily fit the data,

thus creating the possibility of finding whether a model fits the observed data.

The difference between the number of observed variances and covariances and

the number of free parameters is called the degrees of freedom (df) associated

with the model fit. By contrast, a just-identified model has a zero df, therefore

goodness-of-fit cannot be tested for the model.

There is no simple set of necessary and sufficient conditions that provide a

means for verification of identification of parameters in SEM models. However,

two necessary conditions should always be checked. First, the number of data

points must not be less than the number of free parameters. The number of data

points is the number of distinct elements in the observed variance=covariance
matrix, which equals (pþ q)(pþ qþ 1)=2 where (pþ q) is the total number of

observed variables (i.e., p endogenous indicators and q exogenous indicators).

That is, only the diagonal elements and one set of the off-diagonal elements in

the observed variance=covariance matrix, either above or below the diagonal,

are counted. When variance=covariance is analyzed, the free parameters in a

SEM model are usually the factor loadings, factor variances=covariances, path
coefficients, residual variances=covariances, and error variances that are to be

estimated in the model. If there are more data points than free parameters, the

model is said to be over-identified. If the data points are less than the number of

free parameters, the model is said to be under-identified and parameters cannot

4 Data points usually refer to the number of variances and covariances among the observed

variables; however, when mean and covariance structures (MACS) are analyzed, the means

of the observed variables will be counted in the data points.
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be estimated because it is never possible to estimate more unknowns than there

are knowns. Secondly, a measurement scale must be established for every latent

variable in the model. To establish the measurement scale of a latent variable,

one may (1) fix one of the factor loadings (ls) that link a latent variable to its

observed indicators;5 or (2) fix the variance of the latent variable to 1 (by doing

so, the latent variable is standardized). If the variance of the latent variable is

free and if all the factor loadings (ls) are free, the factor loadings and the vari-

ance of the latent variable are not identified. If one or more parameters were

unidentified, specifically, for an independent latent variable, the variance of the

latent variable, coefficients associated with all paths emitted by the latent varia-

ble would be unidentified; for a dependent latent variable, the residual variance

and coefficients associated with all paths leading to or from the latent variable

would be unidentified.

These two conditions are necessary but not sufficient. Identification problems

can still arise even if these two conditions are satisfied. Although a rigorous

verification of model identification can be achieved algebraically, existing SEM

software=programs generally provide a check for identification during model

estimation. When a model is not identified, error messages will be printed in the

program output, pointing to the parameters that are involved in the identification

problem. Using this information, one can modify the model in a meaningful way to

eliminate the problem.

The best way to solve the identification problem is to avoid it. Usually, one

can add more indicators of latent variables so that there would be more data

points. However, the primary prevention strategy is to emphasize correct parame-

ter specification. Model identification depends on the specification of parameters

as free, fixed, or constrained. A free parameter is a parameter that is unknown

and needs to be model estimated. A fixed parameter is a parameter that is fixed

to a specified value. A constrained parameter is a parameter that is unknown but

is constrained to equal one or more other parameters. Supposing that previous

research shows variables x1 and x2 have the same effect on a dependent measure,

one may constrain their path coefficients equal in the SEM model. By fixing or

constraining some of the parameters, the number of free parameters can be

reduced; as such, an under-identified model may become identified. In addition,

reciprocal or nonrecursive SEM is another common source of identification

problem. A structural model is nonrecursive when a reciprocal or bidirectional

relationship is specified so that there are feedback loops between two dependent

variables in the model (e.g., y1 affects y2 on the one hand; and y2 affects y1 on

the other hand). Such models are generally unidentified. For the y1 (y2) equation

to be identified, one or more instrumental variables are needed to directly affect

y1 (y2), but not y2 (y1) (Berry, 1984). Nonrecursive models are not discussed in

this book.

5Most of the existing SEM software=programs set the factor loading of the first observed

indicator of a latent variable to 1.0 by default.
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1.3 Model estimation

Estimation of SEM models is different from that of multiple regressions. Instead of

minimizing the discrepancies between the fitted and observed values of the

response variable [i.e., S(y� ŷ)], SEM estimation procedures minimize the

residuals that are differences between the sample variances=covariances and

the variances=covariances estimated from the model.

Let use S to denote the population covariance matrix of observed variables y

and x; S can be expressed as a function of free parameters u in a hypothesized

model (Appendix 1.A). The basic hypothesis in SEM is:

S ¼ S uð Þ ð1:8Þ
where S uð Þ is the model implied variance=covariance matrix; that is, the

variance=covariance matrix implied by the population parameters for the hypothe-

sized model. The purpose of model estimation or model fit is to find a set of model

parameters u to produce S uð Þ so that [S�S uð Þ] can be minimized. The discrepancy

between S and S uð Þ indicates how well the model fits the data.

Because both S and S uð Þ are unknown, [S�SðûÞ] or (S� Ŝ) is actually

minimized in SEM where S is the sample variance=covariance matrix, û are the

model parameter estimates, and SðûÞ or Ŝ is the model estimated/implied

variance=covariance matrix. As aforementioned, a given theoretical SEM model

is represented by specifying a pattern of fixed and free (estimated) elements

in each of the eight model parameter matrices. The matrix of observed

covariances (S) is used to estimate values for the free parameters in the matrices

that best reproduce the data. Given any set of specific numerical values of the eight

model parameter matrices (Table 1.2), one and only one Ŝ would be reproduced. If

the model is correct, Ŝ would be very close to S. This estimation process involves

the use of a particular fitting function to minimize the difference between S and Ŝ.
There are many fitting functions or estimation procedures available for model

estimation. The most commonly employed fitting function for SEM is the maxi-

mum likelihood (ML) function (see Appendix 1.B):

FMLðûÞ ¼ ln Ŝ
��� ���þ tr S Ŝ

�1
� �

� ln Sj j � ðpþ qÞ ð1:9Þ

where S and Ŝ are the sample and model estimated variance=covariance matrices,

respectively, and (pþ q) is the number of observed variables involved in the model

[yielding (pþ q)(pþ qþ 1)=2 unique variances and covariances].
The goal in SEM estimation is to estimate model parameters such that a func-

tion of the discrepancy between S and Ŝ is minimized. When a model fits data

perfectly, the model estimated variance=covariance equals the sample variance=
covariance matrix (i.e., Ŝ¼ S), then lnjŜj ¼ ln Sj j and tr (Ŝ�1S)¼ tr (I)¼ ( pþ q),

therefore FMLðûÞ¼ 0. That is, a perfect model fit is indicated by a zero value of the

fitting function.
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The ML estimator has several important properties. First, ML estimates are

unbiased – they on average, in large samples, neither overestimate nor under-

estimate the corresponding population parameters. Secondly, ML estimates are

consistent – they converge in probability to the true value of the population parame-

ters being estimated as sample size increases. Thirdly, ML estimates are efficient –

they have minimum variance when sample size is large. Fourthly, the distribution

of the parameter estimate approximates normal distribution as sample size increases

(i.e., they are asymptotically normally distributed). Fifthly, ML function is usually

scale free – change in variable scale does not yield different solutions. Finally, the

ML fitting function FMLðûÞ multiplied by (n� 1) approximates a x2 distribution

under the assumption of multivariate normality and large sample size, and the

model x2 can be used for testing overall model fit.

ML is carried out for continuous outcome measures under normality assump-

tion. Under conditions of severe non-normality, ML parameter estimates are less

likely to be biased but the standard errors of parameter estimates may be biased,

and the model x2 statistic may be enlarged, leading to an inflated Type I error for

model rejection. When non-normality threatens the validity of the ML significance

tests, several remedies are possible. First, researchers may consider transformations

of non-normal variables that lead them to better approximate multi-normality.

Secondly, remove outliers from data. Thirdly, bootstrap procedures may be applied

to estimate variances of parameter estimates for significance tests (Bollen and Stine,

1993; Efron and Tibshirani, 1993; Shipley, 2000). Finally, alternative robust estima-

tors that allow for non-normality may be applied.

A well-known asymptotically distribution free (ADF) estimator developed by

Browne 1982, 1984) does not assume multivariate normality of the observed

variables. ADF is a weighted least square estimator, where the weight matrix is

a consistent estimate of the asymptotic covariance matrix of the sample vari-

ances and covariances (or correlations) (Browne, 1984; see also Kaplan, 2000).

In Joreskog and Sorbom’s notations (1988), the weight matrix in ADF is a

(k� k) matrix with k¼ p( pþ 1)=2 and p is the total number of observed varia-

bles. Thus, the size of the weight matrix increases dramatically with increase of

the number of observed variables. As a result, ADF is very computationally

demanding even with a limited number of observed variables. In addition, ADF

requires a large sample size in order to obtain consistent and efficient estimates

(Muth�en and Kaplan,1985, 1992; J€oreskog and S€orbom, 1989; Bentler and Yuan,

1999). According to J€oreskog and S€orbom (1988), the required sample size

for estimating the weight of ADF should be at least 200 if p� 12, and at least

1.5p ( pþ 1) if p> 12, where p is the number of observed variables. For exam-

ple, our CFA model demonstrated in Chapter 2 has 18 observed indicators, the

sample size needed for ADF would be N¼ 513. The needed sample size would

increase substantially when we expand the CFA into SEM models. It is usually

hard to have a large enough sample size to utilize ADF even with a moderate

number of observed variables. Because of these disadvantages, the application

of ADF in real research is limited.
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Another approach proposed by Satorra and Bentler (1988; Bentler 1995, 2005)

is to adjust the ML estimator to account for non-normality. This method provides a

rescaled x2 statistic which is robust under non-normality (Hoogland, 1999;

Boomsma and Hoogland, 2001). Bentler and Yuan (1999) also proposed an adjusted

ADF x2 and found it performed well at small sample size.

Several robust estimators are available in Mplus for dealing with non-

normality (Muth�en and Muth�en, 1998–2010). For example, MLM is a ML

estimator which provides robust standard errors and mean adjusted x2 sta-

tistic. The MLM x2 statistic is referred to as the Satorra–Bentler x2.

Another estimator, MLR, is a sandwich estimator with robust standard

errors. The MLR x2 statistic is referred to as the Yuan–Bentler T
�
2 test sta-

tistic (Muth�en and Muth�en, 1998–2010; Yuan and Bentler, 2000). MLR is

recommended for small and medium sample size (Muth�en, 2002). In the

current version of Mplus, MLM cannot handle missing values, while MLR

allows missing completely at random (MCAR) and missing at random

(MAR).

Using a numerical integration algorithm, Mplus allows ML estimators (e.g.,

ML, MLM, and MLR) to estimate SEM models with categorical outcomes and con-

tinuous latent variables. However the estimation is computationally demanding,

particularly as the number of factors and the sample size increase (Muth�en and

Muth�en, 1998–2010). When a ML estimator is used for modeling categorical out-

comes, the link function is Logit link by default in Mplus.

To estimate SEM models with categorical outcome measures or a combina-

tion of binary, ordered categorical, and continuous outcome measures, the more

generalized weighted least square based robust estimators, such as mean-

adjusted WLS estimator (WLSM) and the mean and variance-adjusted WLS

(WLSMV), are available in Mplus (Muth�en and Muth�en, 1998–2010). The link

function for WLS estimators is Probit link by default. Both WLSM and

WLSMV are robust estimators, and they provide identical parameter estimates

and standard errors. The difference between the two estimators is the model x2

statistic is adjusted differently. When categorical outcomes are modeled, the

default estimator is WLSMV.

In model estimation, the full information maximum likelihood (FIML)

approach is used by default in Mplus to deal with missing data. FIML uses

every piece of information in the observed data for analysis (Finkbeiner,

1979). Importantly, it not only assumes MCAR, but also MAR. In the case of

MAR, where missingness is allowed to be related to both observed covariates

and observed outcomes, FIML is more efficient and less biased than the tradi-

tional approaches (e.g., LISTWISE deletion, PAIRWISE deletion, or mean

imputation methods) (Little and Rubin, 1987; Arbuckle, 1996; Wothke, 2000).

Note, for modeling censored and categorical outcomes using WLS estimators,

missingness is allowed to be a function of the observed covariates but not the

observed outcomes (Muth�en and Muth�en, 1998–2010). As such, missingness

allowed for WLS estimators is less restrictive than MCAR, but more restrictive

than MAR.
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1.4 Model evaluation

A key feature of SEM is to conduct an overall model fit test on the basic

hypothesis S¼ Ŝ. That is, to assess the degree to which the model estimated

variance=covariance matrix Ŝ differs from the observed sample varian-

ce=covariance matrix S (Hoelter, 1983; Bollen, 1989a; J€oreskog and S€orbom,

1989; Bentler, 1990). If the model estimated variance=covariance matrix, Ŝ, is
not statistically different from the observed data covariance matrix, S, then we

say the model fits data well, and we accept the null hypothesis or we say the

model supports the plausibility of postulated relations among the variables;

otherwise the model does not fit the data, and the null hypothesis should be

rejected. The overall model fit evaluation should be done before interpreting

the parameter estimates. Without evaluating the model fit any conclusion from

the model estimation could be misleading.

To assess the closeness of S to Ŝ, numerous model fit indices have been devel-

oped. For detail information on model fit testing and model fit indices, the readers

are referred to Marsh, Balla, and McDonald (1988), Bollen (1989a), Gerbing and

Anderson (1993), Tanaka (1993), Hu and Bentler (1995, 1998, 1999). Most of the

SEM software=programs (e.g., LISREL, EQS, AMOS) provide a long list of model

fit indices. However, only a few model fit indices are actually reported in real stud-

ies. In the following we focus on the model fit indices that Mplus provides and that

are commonly reported in SEM applications.

The model x2 statistic: The x2 statistic is the original fit index for structural

models, which is defined as:6

x2 ¼ fMLðN � 1Þ ð1:10Þ

where fML¼ F(S, Ŝ) is the minimum value of the fitting function for the specified

model (Appendix 1.B), and N is the sample size. This product is distributed asx2if

the data are multivariate normal, and the specified model is correct. The x2 statistic

assesses the magnitude of the discrepancy between the sample and the model

estimated variance=covariance matrices. Different from the traditional statistical

testing, instead of a significant x2 statistical test, a nonsignificant x2 is desired.

That is, we expect the test not to reject the null hypothesis (H0: the residual matrix

is zero or there is no difference between the model estimated variances=covariances
and the observed sample variances=covariances). As a matter of fact, this x2 is a

badness-of-fit measure in the sense that a large x2 corresponds to bad fit, a small x2

to good fit, and a x2 value of zero indicates a perfect fit.

The model x2 statistic is a conventional overall test of fit in SEM. Before the

model x2 statistic was developed by J€oreskog (1969), factor analysis was simply

based on subjective decisions. The x2 statistic provides, for the first time, a means

of evaluating factor analysis models with more objective criteria. However, the x2

6 In most SEM computer programs, model x2 is defined as x2 ¼ fML(N� 1), but it is defined

as x2 ¼ fML(N) in Mplus.
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statistic has some explicit limitations. First, x2 is defined as N� 1 times the fitting

function; thus, it is highly sensitive to sample size. The larger the sample size, the

more likely to reject the model, thus the more likely to have a Type I error (rejecting

the correct hypothesis). The probability of rejecting a model would substantially

increase when sample size increases even when the difference between the observed

and the model estimated variance=covariance matrices are trivial. Secondly, when

sample size is small, the fitting function may not follow a x2 distribution. Thirdly,

x2 is very sensitive to violations of the assumption of multivariate normality. The x2

value increases when variables have highly skewed and kurtotic distributions.

Finally, x2 increases when the number of variables in a model increases. As such,

the significance of the x2 test should not be a reason by itself to reject a model. To

address the limitations of the x2 test, a number of model fit indices have been pro-

posed for the model fit test.

Comparative fit index (CFI): As the name implies, Bentler’s (1990) CFI com-

pares the specified model with the null model which assumes zero covariances

among the observed variables. This measure is based on the noncentrality para-

meter d¼ (x2 � df ) where df is the degrees of freedom of the model.7 The CFI is

defined as:

CFI ¼ dnull � dspecif ied

dnull

ð1:11Þ

where dnull and dspecified are the noncentrality parameters for the null model and the

specified model, respectively. The CFI is defined as the ratio of improvement in

noncentrality (moving from the null to the specified model) to the noncentrality of

the null model. As the null model has the worst fit, it has considerably higher non-

centrality (larger d) than a specified model. The values of CFI range from 0 to 1 (if

outside this range it is reset to 0 or 1). CFI is an incremental fit index or relative fit

index. Analogous to R2, CFI¼ 0 indicates the worst fit and CFI¼ 1 indicates the

best fit. Traditionally, the rule of thumb reasonable cutoff for the fit index is 0.90.

However, Hu and Bentler 1998, 1999) suggest increasing this minimum rule of

thumb from 0.90 to 0.95. The CFI is a good fit index even in small samples (Bentler,

1995). However, the CFI depends on the average size of the correlations in the

data. If the average correlation between variables is not high, then the CFI will

not be very high.

Tucker–Lewis index (TLI) or non-normed fit index (NNFI): The TLI (Tucker

and Lewis, 1973) is also called the NNFI by Bentler and Bonett (1980). The TLI is

7 The noncentrality parameter is estimated as (x2 � df ) [if x2 < df, then set (x2 � df )¼ 0].

When model x2 equals the df, the model fit is considered perfect. When a model is

incorrectly specified, the model x2 statistic would follow a noncentral x2 distribution that

can be approximately considered as a result of the central x2 being shifted to the right by

(x2 � df ) units. As such, the noncentrality parameter can be considered as an index that

reflects the degree to which a model fails to fit data. The larger the (x2 � df ), the worse the

model fit; the smaller the (x2 � df ), the better the model fit.
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another way to compare the lack of fit of a specified model to the lack of fit of the

null model. TLI is defined as:

TLI ¼
x2
null

df null
� x2

specif ied

df specif ied

� �
x2
null

df null
� 1

� � ð1:12Þ

where x2
null=df null and x2

specif ied=df specif ied are ratios of x
2 statistics to the degrees of

freedom of the null model and the specified model, respectively. As such, TLI has a

penalty for model complexity because the more free parameters the smaller

df specif ied , thus the larger x
2
specif ied=df specif ied, leading to a smaller TLI.

Like CFI, TLI is an incremental fit index, and its values are not guaranteed to

vary from 0 to 1. If its value is outside the 0–1 range, then reset it to 0 or 1. A

negative TLI indicates that the x2=df ratio for the null model is less than the ratio

for the specified model. This situation might occur if the specified model has too

few degrees of freedom and correlations among the observed variables are low.

Though TLI tends to run lower than CFI, the recommended cut-off value for

TLI is the same for CFI. A TLI value lower than 0.90 indicates a need to respe-

cify the model.

TLI also depends on the average size of the correlations in the data. If the aver-

age correlation between variables is not high, then the TLI will not be high. Unlike

CFI, the TLI is moderately corrected for parsimony: its value estimates the relative

model fit improvement per degree of freedom over the null model (Hoyle and

Panter, 1995). TLI is often reported along with the CFI; this is akin to reporting the

AGFI along with the GFI when LISREL or other SEM programs are used for

modeling.

Root mean square error of approximation (RMSEA): RMSEA is one of the

most recently proposed tests of model fit. The error of approximation means

the lack of fit of the specified model to the population. This measure is based on the

noncentrality parameter as:

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
S � df S

� 	
=N

df S

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
S=df S

� 	� 1

N

s
ð1:13Þ

where (x2
s � dfs)=N is the rescaled non-centrality parameter to adjust for sample

size. By adjusting for the model degrees of freedom, RMSEA measures average

lack of fit per degree of freedom. The values of RMSEA are often interpreted as:

0¼ perfect fit; <0.05¼ close fit; 0.05–0.08¼ fair fit; 0.08–0.10¼mediocre fit; and

>0.10¼ poor fit (Browne and Cudeck, 1993; MacCallum, Browne, and Sugawara,

1996; Byrne, 1998). Hu and Bentler (1999) suggest RMSEA� 0.06 as the cut-off

for a good model fit.

Besides the model x2 statistic, RMSEA is the only model fit index so far that

can provide a confidence interval (CI) around its calculated value. The CI of

RMSEA is asymmetric around the point estimate and ranges from zero to positive
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infinity (Browne and Cudeck, 1993). Usually, RMSEA is reported with its 90% CI

In a well-fitting model, the lower 90% confidence limit includes or is close to 0,

while the upper limit is less than 0.08. In addition, a close-fit test for null hypothesis

(H0: RMSEA� 0.05) can be conducted. The P-value examines the alternative

hypothesis (HA: RMSEA> 0.05). If P> 0.05, then we cannot reject the null

hypothesis, therefore, the specified model has a ‘close fit.’ RMSEA has become an

increasingly used model fit index in applications of SEM, and simulation studies

have shown that RMSEA performs better than other fit indices (Steiger, 1990;

Browne and Cudeck, 1993; Sugawara and MaCallum, 1993; Marsh and Balla,

1994; Browne and Arminger, 1995).

Root mean square residual (RMR): This is residual-based model fit index. The

RMR is the square root of the average residual. As aforementioned, residuals

in SEM are differences in the elements between the sample variance=covariance
matrix (S) and the model implied variance=covariance matrix (Ŝ). RMR is defined

as (J€oreskog and S€orbom, 1981):

RMR ¼
X
j

X
k

ðsjk � ŝjkÞ2
.
e

 !1=2

ð1:14Þ

where sjk and ŝjk are elements in the observed variance=covariance matrix S and the

model estimated variance=covariance matrix Ŝ, respectively, e¼ p (pþ 1)=2, and p

is the total number of observed indicator variables.

Standardized root mean square residual (SRMR): SRMR is a standardized ver-

sion of RMR based on standardized residuals. It is defined as (Bentler, 1995;

Muth�en, 1998–2004):

SRMR ¼
X
j

X
k

r2jk

 !

e

 !1=2

ð1:15Þ

where rjk is the difference in the elements between the observed correlation matrix

and the model estimated correlation matrix (Muth�en, 1998–2004):

rjk ¼ sjkffiffiffiffiffi
sjj

p ffiffiffiffiffiffi
skk

p
 !

� ŝjkffiffiffiffiffiffi
ŝjj

p ffiffiffiffiffiffiffi
ŝkk

p
 !

ð1:16Þ

where sjk is the sample covariance between the observed variables yj and yk and

ŝjkis the corresponding model estimated covariance; sjj and skk are sample vari-

ances and ŝjj and ŝkk are model estimated variances, respectively. A value of

SRMR less than 0.08 is considered a good fit (Hu and Bentler, 1999; Kline,

2005), and less than 0.10 is acceptable (Kline, 2005). The value of this index

tends to be smaller when sample size and the number of parameters in the model

increase.
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Weighted root mean square residual (WRMR): WRMR is another variant of

RMR, which is defined as (Muth�en, 1998–2004):

WRMR ¼
P
j

P
k

sjk�ŝjkð Þ2
yjk

,
e

8<
:

9=
;

1=2

ð1:17Þ

where sjk � ŝjk

� 	
is the residual, yjk is the estimated asymptotic variance of sjk, and

e is the total number of sample variances and covariances. WRMR is more suitable

for models where sample statistics have large disparate variances, outcome

measures have non-normal distributions, and when sample statistics are on

different scales such as in models with mean and=or threshold structures (Muth�en,
1998–2004). AWRMR value of 1.0 or lower is considered a good fit (Yu, 2002).

Information criteria indices: Information criterion statistics are relative model

fit statistics that are commonly used for model comparisons, including comparing

non-nested models. The general form of information criterion statistics is defined

as (Sclove, 1987):

�2 lnðLÞ þ aðnÞm ð1:18Þ

where L is the model maximum likelihood. The possible values of �2 ln(L) range

from 0 to 1 with smaller values indicating a better fit. The term a(n)m in Equa-

tion (1.18) is considered a penalty added to �2 ln(L) for model complexity, where

n and m are sample size and model free parameters, respectively. Mplus provides

three types of information criterion statistics: Akaike’s information criterion

(AIC) (1973, 1983), Bayesian information criterion (BIC) or Schwarz criterion

(Schwarz, 1978), and sample-size adjusted BIC (ABIC) (Sclove, 1987), defined,

respectively, as:

AIC ¼ �2 lnðLÞ þ 2m ð1:19Þ
BIC ¼ �2 lnðLÞ þ lnðnÞm ð1:20Þ

ABIC ¼ �2 lnðLÞ þ lnðn�Þm ð1:21Þ

The above equations are all special cases of Equation (1.18). For AIC, the penalty

term a(n)m in Equation (1.18) is replaced with 2m regardless of sample size,

whereas a(n)m is replaced with ln(n)m for BIC. For ABIC, sample size n is

replaced with n�¼ (nþ 2)=24 to somewhat reduce the penalty for larger sample

sizes (Sclove, 1987; Muth�en, 1998–2004). Clearly, BIC and ABIC impose more

penalties than AIC for model complexity because the product of sample size and

the number of free parameters is included in the penalty term; thus BIC and ABIC

favor smaller models with fewer free parameters.

With so many model fit indices being proposed, no single index should be relied

on exclusively for testing a hypothesized SEM model. Instead, it is recommended
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that multiple fit indices should be reported for model evaluation in order to avoid

making an inaccurate conclusion of model fit (Bollen, 1989a; Bollen and Long,

1992; Tanaka, 1993; Bentler, 2007). The model x2 statistic, RMSEA, 90% CI of

RMSEA, P-value of the close-fit test, CFI, TLI, and SRMR are commonly reported

in applications.

Importantly, the model fit indices indicate the overall model fit on average. A

model with excellent fit indices does not necessarily mean that the model is a cor-

rect model. First, other model components are also important for model evaluation.

For example, coefficient estimates should be interpretable, R-squares of equations

are acceptable, and there are no improper solutions (e.g., negative variance, correla-

tion less than �1 or greater than 1). Problems in the model components indicate that

some parts of the model may fit the data poorly. Secondly, there may be many mod-

els that fit data equally well as judged by model fit indices. Among these equivalent

models, the parsimonious model should be accepted. In addition, the model evalua-

tion is not entirely a statistical matter. It should also be based on sound theory and

empirical findings. If a model makes no substantive sense, it is not justified even if it

statistically fits the data very well.

Model comparison: In SEM, it is recommended to consider alternative models

rather than to examine a single model so that the best fit model can be determined

by model comparisons (Bollen and Long, 1993). The likelihood ratio (LR) test is

often used for model comparison in SEM for two nested models estimated from the

same data set. For two models to be nested, for example, Model B is nested within

Model A, Model B must have fewer free parameters, therefore, a larger number of

degrees of freedom than does Model A. In addition, the parameters in Model B

cannot include new parameters that are not included in Model A. Once these two

conditions are satisfied, difference in model x2 or likelihood function between the

two models will follow a x2 distribution with df that is the difference in df between

the two models.

It is noteworthy that when some robust estimators, such as MLM, MLMV,

MLR, ULSMV, WLSM and WLSMV, are used for model estimation, the model x2

statistics cannot be used for the LR test in the regular way because the difference in

the model x2 statistic between two nested models does not follow a x2 distribution

(Muth�en and Muth�en, 1998–2010). Such difference testing will be discussed with

examples in the next chapter.

For models that are not nested, the information measures, such as AIC, BIC, and

ABIC, can be used for model comparison. The model with smaller information

measures has a better fit. These information measures are important parsimony-

corrected indices that can be used to compare both non-nested as well as nested

models. Raftery (1996), based on Jeffreys (1961), suggests some guidelines for the

strength of evidence favoring one model against another model based on a differ-

ence in absolute value of BIC: 0–2, weak evidence; 2–6, positive evidence; 6–10,

strong evidence; and 10þ, very strong evidence.

Finally, an important approach for checking lack of model fit is to examine the

model residuals. Recall, unlike the residuals in multiple regressions, the residuals in

SEM are the elements in the residual matrix (S� Ŝ) where S is the sample
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variance=covariance matrix and Ŝ is the model estimated variance=covariance
matrix. The residuals are dependent upon the measurement scale of the observed

variables, and thus are not quire meaningful as the observed variables often have

various metric. To avoid this problem, the residuals are often standardized, that is,

divided by their asymptotical (large sample) standard errors, which is a complicated

function of the elements of the observed variance=covariance matrix S (J€oreskog
and S€orbom, 1989). Though standardized residuals are not technically a model

fit index, they provide useful information about how close the estimated

variances=covariances are to those observed. A large standardized residual indi-

cates a large discrepancy in a specific variance or covariance between S and Ŝ.
A standardized residual is considered large if it is larger than 2.58 in magnitude

(J€oreskog and S€orbom, 1989, p. 32).

1.5 Model modification

In application of SEM one usually specifies a model based on theory or empirical

findings then fit the model to the available data. Very often the tentative initial

model may not fit data well. In other words, the initial model may be somewhat

mis-specified. In such a case, the possible sources of lack of model fit need to be

assessed to determine what is specifically wrong with the model specification, then

modify the model and re-test it using the same data. This process is called ‘model

specification search.’

To improve the initial model that does not fit the data satisfactorily, most often

the modification indices (MIs) (S€orbom, 1989) that are associated with the fixed

parameters of the model are used as diagnostic statistics to capture model mis-

specfication. A MI indicates the decrease in model x2 statistic with 1 df indicating

if a particular parameter is freed from a constraint in the preceding model.

A high MI value indicates the corresponding fixed parameter should be freed to

improve model fit. Although a drop in x2 of 3.84 with 1 df indicates a significant

model fit improvement at P¼ 0.05 level, no strict rules of thumb exist concerning

how large MIs must be to warrant a meaningful model modification. In Mplus out-

put MIs are listed by default if a drop in a corresponding x2 is at least 10. If there

are several parameters with high MIs, they should be freed one at a time, beginning

with the largest MI because change in a single parameter in a model could affect

other parts of the solution (MacCallum, Roznowski, and Necowitz, 1992). Freeing

additional parameters may improve model fit, however, the model modification

must be theoretically meaningful. Associated with MI is the expected parameter

change (EPC) index for the expected change in the value of a parameter if that

parameter was freed (Saris, Satorra and S€orbom, 1987). Mplus provides MIs, EPC,

and standardized EPC for all parameters in the model that are fixed or constrained

to be equal to other parameters (Muth�en and Muth�en, 1998–2010).
It must be emphasized that the model modification or re-specification should be

both statistics-driven and theory-driven. Any model modification must be justified

on a theoretical basis and empirical findings. Blind use of MIs for model
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modification should be avoided. Parameters should not be added or removed solely

for the purpose of model fit improvement. Our goal is to find a model that fits data

well from a statistical point of view, and importantly all the parameters of the model

must have substantively meaningful interpretation.

1.6 Computer programs for SEM

Awide variety of computer programs=software has been developed in the past two

decades for SEM. The most popular computer programs include LISREL (J€oreskog
and S€orbom, 2006), AMOS (Arbuckle, 2006), EQS (Bentler, 1995), Mplus (Muth�en
and Muth�en, 1998–2010), SAS PROC CALIS and SAS PROC TCALIS (SAS

Institute Inc., 2008). Each computer program has its own strengths and weaknesses,

and most structural equation models can be estimated with each of the programs.

The choice of program is often down to personal preference.

In this book, the computer program Mplus is used for model demonstration.

Mplus was developed on the basis of the computer program LISCOMP (Muth�en,
1988). While retaining most of LISCOMP’s features for SEM of categorical

and continuous data, Mplus comes with some important additions. It allows SEM

models with all different types of outcome measures (e.g., continuous, censored,

ordinal, nominal, and count variables, as well as a combination of different variable

types); it can handle various incomplete data, non-normality, and complex survey

data. Additionally, some recently developed advanced models, such as multilevel

SEM, mixture models, multilevel mixture models, SEM with exploratory factor

analysis, and SEM with Bayesian approach, as well as Monte Carlo simulation, can

be readily implemented in Mplus. Overall, Mplus is a user-friendly program that is

becoming increasingly popular in SEM.

The models demonstrated in this book are intended to show readers how to

build SEM models in Mplus using both cross-sectional and longitudinal data.

Mplus syntax for the models is provided in the corresponding chapters of the

book. While data used for these examples are drawn from public health studies,

the methods and analytical techniques are applicable to SEM practices in many

other fields.
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Appendix 1.A Expressing variances and covariances
among observed variables as functions of model
parameters

Let us denote S the population variance=covariance matrix of variables y and x,

then

S ¼ EðYY 0Þ EðXY 0Þ0
EðXY 0Þ EðXX0Þ

" #
ð1:22Þ

where the diagonal elements are variances of the variables y and x, respectively; and

the off-diagonal elements are covariances among y and x. In SEM it is hypothesized

that the population variance=covariance matrix of y and x can be expressed as a

function of the model parameters u, that is:

S ¼ S uð Þ ð1:23Þ

where S uð Þ is called the model implied variance=covariance matrix.

Based on the three basic SEM equations [Equation (1.1)], we can derive that

S uð Þ can be expressed as functions of the parameters in the eight fundamental SEM

matrices. Let us start with the variance=covariance matrix of y, then the varian-

ce=covariance matrix of x and the variance=covariance matrix of y and x, and then

finally assemble them together.

The variance=covariance matrix of y can be expressed as:

EðYY 0Þ ¼ E½ðLyhþ eÞðLyhþ eÞ0�
¼ E½ðLyhþ eÞðh0L0

y þ e0Þ�
¼ E½Lyhh

0L0
y� þQe

¼ LyE½hh0�L0
y þQe

ð1:24Þ

were Qe is the variance=covariance matrix of the error term e.

as h ¼ Bhþ Gjþ z

then h ¼ ðI� BÞ�1ðGjþ zÞ
hh0 ¼ ½ðI� BÞ�1ðGjþ zÞ�½ðI� BÞ�1ðGjþ zÞ�0

¼ ½ðI� BÞ�1ðGjþ zÞ� ðGjþ zÞ0½ðI� BÞ�1�0
n o

¼ ½ðI� BÞ�1ðGjþ zÞ� ðj0G0 þ z0Þ½ðI� BÞ�1�0
n o

ð1:25Þ

Assuming that z is independent of j, then

Eðhh0Þ ¼ ðI � BÞ�1ðGFG0 þCÞ½ðI� BÞ�1�0 ð1:26Þ

INTRODUCTION 25



where F is the variance=covariance matrix of the latent variable j; C is the

variance=covariance matrix of the residual z. Substituting Equation (1.26) into

Equation (1.24), we have:

EðYY 0Þ ¼ Ly ðI � BÞ�1ðGFG0 þCÞ½ðI � BÞ�1�0
n o

L0
y þQe ð1:27Þ

This equation implies that variances=covariances of the observed y variables are a

function of model parameters such as factor loadings Ly, path coefficients B

and G, the variances=covariances F of the exogenous latent variables, residual

variances=covariances matrixC, and the error variances=covariances Qe.

The variance=covariance matrix of x can be expressed as:

EðXX0Þ ¼ E½ðLxjþ dÞðLxjþ dÞ0�
¼ E½ðLxjþ dÞðj0L0

x þ d0Þ� ð1:28Þ

Assuming that d is independent of j, then

EðXX0Þ ¼ E½Lxjj
0L0

x þ dd0�
¼ LxFL0

x þQd

ð1:29Þ

where Qd is the variance=covariance matrix of the error term d. Equation (1.29)

implies that variances=covariances of the observed x variables are a function of

model parameters, such as the loadings Lx, the variances=covariances F of the

exogenous latent variables, and the error variances=covariances Qe.

The covariance matrix among x and y can be expressed as:

EðXY 0Þ ¼ E½ðLxjþ dÞðLyhþ eÞ0�
¼ E½ðLxjþ dÞðh0L0

y þ e0Þ� ð1:30Þ

Assuming that d and e are independent of each other and independent of the latent

variables, then

EðXY 0Þ ¼ EðLxjh
0L0

yÞ
¼ LxEðjh0ÞL0

y

¼ LxE j½ðI� BÞ�1ðGjþ zÞ�0
n o

L0
y

¼ LxE j ðGjþ zÞ0½ðI� BÞ�1�0
n on o

L0
y

¼ LxE jj0G0½ðI� BÞ�1�0 þ jz0½ðI� BÞ�1�0
n o

L0
y

¼ LxFG0½ðI� BÞ�1�0L0
y

ð1:31Þ

26 STRUCTURAL EQUATION MODELING



Thus, the variances and covariances among the observed variables x and y can be

expressed as in terms of the model parameters:

S uð Þ ¼
Ly ðI � BÞ�1ðGFG0 þCÞ½ðI � BÞ�1�0
n o

L0
y þQe LyðI � BÞ�1GFL0

x

LxFG0½ðI � BÞ�1�0L0
y LxFL0

x þQd

2
64

3
75

ð1:32Þ

where the upper right part of the matrix is the transpose of the covariance matrix

among x and y. Each element in the model implied variance=covariance matrix

S uð Þ is a function of model parameters. For a set of specific model parameters

from the eight SEM fundamental matrices that constitute a SEM model, there is

one and only one corresponding model implied variance=covariance matrix S uð Þ
(Hayduk, 1987).

Appendix 1.B Maximum likelihood function for SEM

In SEM model estimation, attention is directed to the sample distribution of the

observed variance=covariance matrix S. If a random sample is selected from a

multivariate normal population, the likelihood of finding a sample with variance=
covariance matrix S is given by the Wishart distribution (Wishart, 1928):

WðS;S; nÞ ¼ e�
1
2
n�trðSS�1Þ nSj j12 ðn�K�1Þ

Sj j12n212nKp1
4
KðK�1Þ QK

k¼1

G
1

2
nþ 1� kð Þ

� � ð1:33Þ

where S is the sample variance=covariance matrix, S is the population variance=
covariance matrix, n¼N� 1 (where N is sample size), K is the number of variables,

and G is the gamma function. Note that all the terms in Equation (1.33), except

those involving S, are constant. Since we are only interested in maximizing the

function rather than calculating the precise value of the function, all the constant

terms in Equation (1.33) can be combined into one constant term C, thus the equa-

tion can be simplified to:

WðS;S; nÞ ¼ e�
1
2
n�trðSS�1Þ

Sj j12 n
C

¼ e�
1
2
n�trðSS�1Þ Sj j� 1

2
n
C

ð1:34Þ
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For a model that fits data perfectly, Ŝ ¼ S. As such, the ratio of the Wishart function

of the specified model to that of the perfect model is:

LR ¼ e�
1
2
n�trðSS�1Þ Sj j� 1

2
n
C

e�
1
2
n�trðSS�1Þ Sj j� 1

2
n
C

¼ e�
1
2
n�trðSS�1Þ Sj j� 1

2
n
e
1
2
n�trðSS�1Þ Sj j12 n

ð1:35Þ

Taking a natural logarithm, we have

LnðLRÞ ¼ � 1

2
n � trðSS�1Þ � 1

2
n � ln Sj j þ 1

2
n � trðSS�1Þ þ 1

2
n � ln S

¼ � 1

2
n trðSS�1Þ þ ln Sj j � trðSS�1Þ � ln S
h i

¼ � 1

2
n trðSS�1Þ þ ln Sj j � ðpþ qÞ � ln S
h i ð1:36Þ

Since a minus sign precedes the right-hand side of Equation (1.36), maximizing

Equation (1.36) is equivalent to minimizing the function in brackets:

FMLðuÞ ¼ ln Ŝ
��� ���þ trðSŜ�1Þ � ln S� ðpþ qÞ ð1:37Þ

where FMLðuÞ or FML is called the minimum discrepancy function, which is the

value of the fitting function evaluated at the final estimates (Hayduk, 1987).
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