
1
Introduction

As we begin our study of “adaptive filters,” it may be worth trying to understand the
meaning of the terms adaptive and filters in a very general sense. The adjective “adaptive”
can be understood by considering a system that is trying to adjust itself so as to respond
to some phenomenon that is taking place in its surroundings. In other words, the system
tries to adjust its parameters with the aim of meeting some well-defined goal or target that
depends on the state of the system as well as its surrounding. This is what “adaptation”
means. Moreover, there is a need to have a set of steps or certain procedure by which
this process of “adaptation” is carried out. And finally, the “system” that carries out and
undergoes the process of “adaptation” is called by the more technical, yet general enough,
name “filter” – a term that is very familiar to and a favorite of any engineer. Clearly,
depending on the time required to meet the final target of the adaptation process, which
we call convergence time, and the complexity/resources that are available to carry out the
adaptation, we can have a variety of adaptation algorithms and filter structures. From this
point of view, we may summarize the contents/contribution of this book as “the study of
some selected adaptive algorithms and their implementations along with the associated
filter structures from the points of view of their convergence and complexity performance.”

1.1 Linear Filters

The term filter is commonly used to refer to any device or system that takes a mixture of
particles/elements from its input and processes them according to some specific rules to
generate a corresponding set of particles/elements at its output. In the context of signals
and systems, particles/elements are the frequency components of the underlying signals
and, traditionally, filters are used to retain all the frequency components that belong to a
particular band of frequencies, while rejecting the rest of them, as much as possible. In a
more general sense, the term filter may be used to refer to a system that reshapes the fre-
quency components of the input to generate an output signal with some desirable features,
and this is how we view the concept of filtering throughout the chapters which follow.

Filters (or systems, in general) may be either linear or nonlinear. In this book, we
consider only linear filters and our emphasis will also be on discrete-time signals and sys-
tems. Thus, all the signals will be represented by sequences, such as x(n). The most basic
feature of linear systems is that their behavior is governed by the principle of superposi-
tion. This means that if the responses of a linear discrete-time system to input sequences
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Figure 1.1 Schematic diagram of a filter emphasizing its role of reshaping the input signal to
match the desired signal.

x1(n) and x2(n) are y1(n) and y2(n), respectively, the response of the same system to the
input sequence x(n) = ax1(n) + bx2(n), where a and b are arbitrary constants, will be
y(n) = ay1(n) + by2(n). This property leads to many interesting results in “linear system
theory.” In particular, a linear system is completely characterized by its impulse response
or the Fourier transform of its impulse response known as transfer function. The transfer
function of a system at any frequency is equal to its gain at that frequency. In other words,
in the context of our discussion above, we may say that the transfer function of a system
determines how the various frequency components of its input are reshaped by the system.

Figure 1.1 depicts a general schematic diagram of a filter emphasizing the purpose for
which it is used in different problems addressed/discussed in this book. In particular, the
filter is used to reshape a certain input signal in such a way that its output is a good estimate
of the given desired signal. The process of selecting the filter parameters (coefficients) so
as to achieve the best match between the desired signal and the filter output is often done
by optimizing an appropriately defined performance function. The performance function
can be defined in a statistical or deterministic framework. In the statistical approach,
the most commonly used performance function is the mean-squared value of the error
signal, that is, difference between the desired signal and the filter output. For stationary
input and desired signals, minimizing the mean squared error (MSE) results in the well-
known Wiener filter, which is said to be optimum in the mean-square sense. The subject
of Wiener filters is extensively covered in Chapter 3. Most of the adaptive algorithms
that are studied in this book are practical solutions to Wiener filters. In the deterministic
approach, the usual choice of performance function is a weighted sum of the squared error
signal. Minimizing this function results in a filter that is optimum for the given set of
data. However, under some assumptions on certain statistical properties of the data, the
deterministic solution will approach the statistical solution, that is, the Wiener filter, for
large data lengths. Chapters 12 and 13 deal with the deterministic approach in detail. We
refer the reader to Section 1.4 for a brief overview of the adaptive formulations under the
stochastic (i.e., statistical) and deterministic frameworks.

1.2 Adaptive Filters

As we mentioned in the previous section, the filter required for estimating the given desired
signal can be designed using either the stochastic or the deterministic formulations. In
the deterministic formulation, the filter design requires the computation of certain average
quantities using the given set of data that the filter should process. On the other hand, the
design of Wiener filter (i.e., in the stochastic approach) requires a priori knowledge of
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the statistics of the underlying signals. Strictly speaking, a large number of realizations of
the underlying signal sequences are required for reliably estimating these statistics. This
procedure is practically not feasible because we usually have only one realization for each
of the signal sequences. To resolve this problem, it is assumed that the underlying signal
sequences are ergodic, which means that they are stationary and their statistical and time
averages are identical. Thus, using the time averages, Wiener filters can be designed, even
though there is only one realization for each of the signal sequences.

Although, direct measurement of the signal averages to obtain the necessary information
for the design of Wiener or other optimum filters is possible, in most of the applications,
the signal averages (statistics) are used in an indirect manner. All the algorithms that are
covered in this book take the output error of the filter, correlate that with the samples
of filter input in some way, and use the result in a recursive equation to adjust the filter
coefficients iteratively. The reasons for solving the problem of adaptive filtering in an
iterative manner are as follows:

1. Direct computation of the necessary averages and their application for computing the
filter coefficients requires accumulation of a large amount of signal samples. Iterative
solutions, on the other hand, do not require accumulation of signal samples, thereby
resulting in a significant amount of saving in memory.

2. Accumulation of signal samples and their postprocessing to generate the filter output,
as required in noniterative solutions, introduces a large delay in the filter output. This is
unacceptable in many applications. Iterative solutions, on the contrary, do not introduce
any significant delay in the filter output.

3. The use of iterations results in adaptive solutions with some tracking capability. That
is, if the signal statistics are changing with time, the solution provided by an iterative
adjustment of the filter coefficients will be able to adapt to the new statistics.

4. Iterative solutions, in general, are much simpler to code in software or implement in
hardware than their noniterative counterparts.

1.3 Adaptive Filter Structures

The most commonly used structure in the implementation of adaptive filters is the
transversal structure, depicted in Figure 1.2. Here, the adaptive filter has a single input,
x(n), and an output, y(n). The sequence d(n) is the desired signal. The output, y(n), is
generated as a linear combination of the delayed samples of the input sequence, x(n),
according to Equation (1.1)

y(n) =
N−1∑
i=0

wi(n)x(n − i) (1.1)

where wi(n)’s are the filter tap weights (coefficients) and N is the filter length. We refer
to the input samples, x(n − i), for i = 0, 1, . . . , N − 1, as the filter tap inputs. The tap
weights, wi(n)’s, which may vary with time, are controlled by the adaptation algorithm.

In some applications, such as beamforming (Section 1.6.4), the filter tap inputs are not
the delayed samples of a single input. In such cases, the structure of the adaptive filter
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Figure 1.2 Adaptive transversal filter.
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Figure 1.3 Adaptive linear combiner.

assumes the form shown in Figure 1.3. This is called a linear combiner as its output is a
linear combination of the different signals received at its tap inputs:

y(n) =
N−1∑
i=0

wi(n)xi(n) (1.2)

Note that the linear combiner structure is more general than the transversal. The latter, as
a special case of the former, can be obtained by choosing xi(n) = x(n − i).
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The structures of Figures 1.2 and 1.3 are those of the nonrecursive filters, that is,
computation of filter output does not involve any feedback mechanism. We also refer to
Figure 1.2 as a finite-impulse response (FIR) filter as its impulse response is of finite dura-
tion in time. An infinite-impulse response (IIR) filter is governed by recursive equations
such as (Figure 1.4)

y(n) =
N−1∑
i=0

ai(n)x(n − i) +
M−1∑
i=1

bi(n)y(n − i) (1.3)

where ai(n) and bi(n) are the forward and feedback tap weights, respectively. IIR filters
have been used in many applications. However, as we shall see in the later chapters,
because of the many difficulties involved in the adaptation of IIR filters, their application
in the area of adaptive filters is rather limited. In particular, they can easily become
unstable because their poles may get shifted out of the unit circle (i.e., |z| = 1, in the
z-plane, Chapter 2) by the adaptation process. Moreover, the performance function (e.g.,
MSE as a function of filter coefficients) of an IIR filter usually has many local minima
points. This may result in convergence of the filter to one of the local minima and not to
the desired global minimum point of the performance function. On the contrary, the MSE
functions of FIR filter and linear combiner are well-behaved quadratic functions with a
single minimum point, which can easily be found through various adaptive algorithms.
Because of these points, the nonrecursive filters are the sole candidates in most of the
applications of adaptive filters. Hence, most of our discussions in the subsequent chapters
are limited to the nonrecursive filters. The IIR-adaptive filters with two specific examples
of their applications are discussed in Chapter 10.

The FIR and IIR structures shown in Figures 1.2 and 1.4 are obtained by direct realiza-
tion of the respective difference equations (1.1) and (1.3). These filters may alternatively
be implemented using the lattice structures. The lattice structures, in general, are more
complicated than the direct implementations. However, in certain applications, they have
some advantages which make them better candidates than the direct forms. For instance, in
the application of linear prediction for speech processing where we need to realize all-pole
(IIR) filters, the lattice structure can be more easily controlled to prevent possible instabil-
ity of the filter. Derivation of lattice structures for both FIR and IIR filters are presented in
Chapter 11. Also, in the implementation of the method of least-squares (Section 1.4.2), the
use of lattice structure leads to a computationally efficient algorithm known as recursive
least-squares (RLS) lattice. A derivation of this algorithm is presented in Chapter 13.

The FIR and IIR filters which were discussed above are classified as linear filters
because their outputs are obtained as linear combinations of the present and past samples
of input and, in the case of IIR filter, the past samples of the output also. Although most
applications are restricted to the use of linear filters, nonlinear adaptive filters become
necessary in some applications where the underlying physical phenomena to be modeled
are far from being linear. A typical example is magnetic recording where the recording
channel becomes nonlinear at high densities because of the interaction among the magne-
tization transitions written on the medium. The Volterra series representation of systems
is usually used in such applications. The output, y(n), of a Volterra system is related to
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Figure 1.4 The structure of an IIR filter.

its input, x(n), according to the equation

y(n) = w0,0(n) +
∑

i

w1,i (n)x(n − i)

+
∑
i,j

w2,i,j (n)x(n − i)x(n − j)

+
∑
i,j,k

w3,i,j,k(n)x(n − i)x(n − j)x(n − k) + . . . (1.4)

where w0,0(n), w1,i (n)’s, w2,i,j (n)’s, w1,i,j,k(n)’s, . . . are filter coefficients. In this book,
we do not discuss the Volterra filters any further. However, we note that all the summa-
tions in Eq. (1.4) may be put together and the Volterra filter may be thought of as a linear
combiner whose inputs are determined by the delayed samples of x(n) and their cross-
multiplications. Noting this, we find that the extension of most of the adaptive filtering
algorithms to the Volterra filters is straightforward.
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1.4 Adaptation Approaches

As introduced in Sections 1.1 and 1.2, there are two distinct approaches that have
been widely used in the development of various adaptive algorithms, viz. stochastic and
deterministic. Both these approaches have many variations in their implementations lead-
ing to a rich variety of algorithms; each of which offers desirable features of its own. In
this section, we present a review of these two approaches and highlight the main features
of the related algorithms.

1.4.1 Approach Based on Wiener Filter Theory

According to the Wiener filter theory, which comes from the stochastic framework,
the optimum coefficients of a linear filter is obtained by minimization of its MSE. As
was noted before, strictly speaking, the minimization of MSE requires certain statistics
obtained through ensemble averaging, which may not be possible in practical applications.
The problem is resolved using ergodicity so as to use time averages instead of ensemble
averages. Furthermore, to come up with simple recursive algorithms, very rough estimates
of the required statistics are used. In fact, the celebrated least-mean square (LMS) algo-
rithm, which is the most basic and widely used algorithm in various adaptive filtering
applications, uses the instantaneous value of the square of the error signal as an estimate
of the MSE. It turns out that this very rough estimate of the MSE, when used with a
small step-size parameter in searching for the optimum coefficients of the Wiener filter,
leads to a very simple and yet reliable adaptive algorithm.

The main disadvantage of the LMS algorithm is that its convergence behavior is highly
dependent on the power spectral density of the filter input. When the filter input is white,
that is, its power spectrum is flat across the whole range of frequencies, the LMS algorithm
converges very fast. However, when certain bands of frequencies are not well excited
(i.e., the signal energy in those bands is relatively low), some slow modes of convergence
appear, thus resulting in very slow convergence compared to the case of white input.
In other words, to converge fast, the LMS algorithm requires equal excitation over the
whole range of frequencies. Noting this, over the years, researchers have developed many
algorithms that effectively divide the frequency band of the input signal into a number of
subbands and achieve some degree of signal whitening using some power normalization
mechanism before applying the adaptive algorithm. These algorithms which appear in
different forms are presented in Chapters 7, 9, and 11.

In some applications, we need to use adaptive filters whose length exceeds a few hun-
dreds or even a few thousands of taps. Clearly, such filters are computationally expensive
to implement. An effective way of implementing such filters at a much lower computa-
tional complexity is to use the fast Fourier transform (FFT) algorithm to implement the
time domain convolutions in the frequency domain, as is commonly done in the implemen-
tation of long digital filters (Oppenheim and Schafer, 1975, 1989). Adaptive algorithms
which use FFT for reducing computational complexity are presented in Chapter 8.



8 Adaptive Filters

1.4.2 Method of Least-Squares

The adaptive filtering algorithms whose derivations are based on the Wiener filter theory
have their origin in a statistical formulation of the problem. In contrast to this, the method
of least-squares approaches the problem of filter optimization from a deterministic point
of view. As mentioned before, in the Wiener filter theory, the desired filter is obtained by
minimizing the MSE, that is, a statistical quantity. In the method of least-squares, on the
other hand, the performance index is the sum of weighted error squares for the given data,
that is, a deterministic quantity. A consequence of this deterministic approach (that will
become clear as we go through its derivation in Chapter 12) is that the least-squares-based
algorithms, in general, converge much faster than the LMS-based algorithms. They are
also insensitive to the power spectral density of the input signal. The price that is paid
for achieving this improved convergence performance is higher computational complexity
and poorer numerical stability.

Direct formulation of the least-squares problem results in a matrix formulation of its
solution which can be applied on block-by-block basis to the incoming signals. This, which
is referred to as block estimation of the least-squares method, has some useful applications
in areas such as linear predictive coding (LPC) of speech signals. However, in the context
of adaptive filters, recursive formulations of the least-squares method that update the filter
coefficients after the arrival of every sample of input are preferred because of the reasons
that were given in Section 1.2. There are three major classes of RLS adaptive filtering
algorithms and are as follows:

Standard RLS algorithm. The derivation of this algorithm involves the use of a well-
known result from linear algebra known as the matrix inversion lemma. Consequently,
the implementation of the standard RLS algorithm involves matrix manipulations that
result in a computational complexity proportional to the square of the filter length.

QR-decomposition-based RLS (QRD-RLS) algorithm. This formulation of RLS algorithm
also involves matrix manipulations, which leads to a computational complexity that
grows with the square of the filter length. However, the operations involved here are
such that they can be put into some regular structures known as systolic arrays. Another
important feature of the QRD-RLS algorithm is its robustness to numerical errors
compared to other types of RLS algorithms (Haykin, 1991, 1996)

Fast RLS algorithms. In the case of transversal filters, the tap inputs are successive samples
of input signal, x(n) (Figure 1.1). The fast RLS algorithms use this property of the
filter input and solve the problem of least-squares with a computational complexity,
which is proportional to the length of the filter, thus the name fast RLS. Two types of
fast RLS algorithms may be recognized:

RLS lattice algorithms. These lattice algorithms involve the use of order-update as well
as the time-update equations. A consequence of this feature is that it results in mod-
ular structures, which are suitable for hardware implementations using the pipelining
technique. Another desirable feature of these algorithms is that certain variants of them
are very robust against numerical errors arising from the use of finite word lengths
in computations.

Fast transversal RLS algorithm. In terms of number of operations per iteration, the fast
transversal RLS algorithm is less complex than the lattice RLS algorithms. However, it
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suffers from numerical instability problems that require careful attention to prevent
undesirable behavior in practice.

In this book, we present a complete treatment of the various LMS-based algorithms
in seven chapters. However, our discussion on RLS algorithms is rather limited. We
present a comprehensive treatment of the properties of the method of least-squares and a
derivation of the standard RLS algorithm in Chapter 12. The basic results related to the
development of fast RLS algorithms and some examples of such algorithms are presented
in Chapter 13. A study of the tracking behavior of selected adaptive filtering algorithms is
presented in Chapter 14 of this book. The use of these algorithms to various applications
are discussed in Chapters 15 through 20.

1.5 Real and Complex Forms of Adaptive Filters

There are some practical applications in which the filter input and its desired signal
are complex-valued. A good example of this situation appears in digital data transmis-
sion, where the most widely used signaling techniques are phase shift keying (PSK) and
quadrature-amplitude modulation (QAM). In this application, the baseband signal consists
of two separate components, which are the real and imaginary parts of a complex-valued
signal. Moreover, in the case of frequency domain implementation of adaptive filters
(Chapter 8) and subband adaptive filters (Chapter 9), we will be dealing with complex-
valued signals, even though the original signals may be real-valued. Thus, we find cases
where the formulation of the adaptive filtering algorithms must be given in terms of
complex-valued variables.

In this book, to keep our presentation as simple as possible, most of the derivations are
given for real-valued signals. However, wherever we find it necessary, the extensions to
complex forms will also be followed.

1.6 Applications

Adaptive filters by their very nature are self-designing systems that can adjust themselves
to different environments. As a result, adaptive filters find applications in such diverse
fields as control, communications, radar and sonar signal processing, interference can-
cellation, active noise control (ANC), biomedical engineering, and so on. The common
feature of these applications that brings them under the same basic formulation of adaptive
filtering is that they all involve a process of filtering some input signal to match a desired
response. The filter parameters are updated by making a set of measurements of the under-
lying signals and applying that to the adaptive filtering algorithm such that the difference
between the filter output and the desired response is minimized in either statistical or
deterministic sense. In this context, four basic classes of adaptive filtering applications
are recognized. Namely, modeling, inverse modeling, linear prediction, and interference
cancellation. In the rest of this chapter, we present an overview of these applications.

1.6.1 Modeling

Figure 1.5 depicts the problem of modeling in the context of adaptive filters. The aim is
to estimate the parameters of the model, W(z), of a plant, G(z). On the basis of some
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Figure 1.6 Block diagram of a self-tuning regulator.

a priori knowledge of the plant, G(z), a transfer function, W(z), with certain number
of adjustable parameters is selected first. The parameters of W(z) are then chosen by an
adaptive filtering algorithm such that the difference between the plant output, d(n), and
the adaptive filter output, y(n), is minimized.

An application of modeling, which may be readily thought of, is system identification.
In most modern control systems, the plant under control is identified on-line and the result
is used in a self-tuning regulator (STR) loop, as depicted in Figure 1.6 (see e.g., Astrom
and Wittenmark (1980)).

Another application of modeling is echo cancellation. In this application, an adaptive
filter is used to identify the impulse response of the path between the source from which
the echo originates and the point where the echo appears. The output of the adaptive
filter, which is an estimate of the echo signal, can then be used to cancel the unde-
sirable echo. The subject of echo cancellation is discussed further under the topic of
interference cancellation.

Nonideal characteristics of communication channels often result in some distortion in
the received signals. To mitigate such distortion, channel equalizers are usually used.
This technique, which is equivalent to implementing the inverse of the channel response,
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Figure 1.7 An adaptive data receiver using channel identification.

is discussed in the following under the topic of inverse modeling. Direct modeling of the
channel, however, has also been found useful in some implementations of data receivers.
For instance, data receivers equipped with maximum-likelihood detectors require an esti-
mate of the channel response (Proakis, 1995). Furthermore, computation of equalizer
coefficients from channel response has been proposed by some researchers because this
technique has been found to result in better tracking of time-varying channels (Fechtel and
Meyr (1991) and Farhang-Boroujeny and Wang (1995)). In such applications, a training
pattern is transmitted in the beginning of every connection. The received signal, which
acts as the desired signal to an adaptive filter, is used in a setup, as shown in Figure 1.7 to
identify the channel. Once the channel is identified and the normal mode of transmission
begins, the detected data symbols, ŝ(n), are used as input to the channel model and the
adaptation process continues for tracking possible variations of the channel. This is known
as decision-directed mode and is also shown in Figure 1.7.

1.6.2 Inverse Modeling

Inverse modeling, also known as deconvolution, is another application of adaptive filters
that has found extensive use in various engineering disciplines. The most widely used
application of inverse modeling is in communications where an inverse model (also called
equalizer) is used to mitigate the channel distortion. The concept of inverse modeling has
also been applied to adaptive control systems where a controller is to be designed and
cascaded with a plant so that the overall response of this cascade matches a desired (target)
response (Widrow and Stearns, 1985). The process of prediction, which is explained
later, may also be viewed as an inverse modeling scheme (Section 1.6.3). In this section,
we concentrate on the application of inverse modeling in channel equalization. The full
treatment of the subject of channel equalization is presented in Chapter 17.
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Figure 1.8 A baseband data transmission system with channel equalizer.

Channel Equalization

Figure 1.8 depicts the block diagram of a baseband transmission system equipped with a
channel equalizer. Here, the channel represents the combined response of the transmitter
filter, the actual channel, and the receiver front-end filter. The additive noise sequence,
ν(n), arises from thermal noise in the electronic circuits and possible crosstalks from
neighboring channels. The transmitted data symbols, s(n), which appear in the form of
amplitude/phase modulated pulses, are distorted by the channel. The most significant
among the different distortions is the pulse-spreading effect, which results because the
channel impulse response is not equal to an ideal impulse function, and instead a response
which is nonzero over many symbol periods. This distortion results in interference of
neighboring data symbols with one another, thereby making the detection process through
a simple threshold detector unreliable. The phenomenon of interference among neighbor-
ing data symbols is known as intersymbol interference (ISI). The presence of the additive
noise samples, ν(n), further deteriorates the performance of data receivers. The role of the
equalizer, as a filter, is to resolve the distortion introduced by the channel (i.e., rejection or
minimization of ISI), while minimizing the effect of additive noise at the threshold detec-
tor input (equalizer output) as much as possible. If the additive noise could be ignored, the
task of equalizer would be rather straightforward. For a channel H(z), an equalizer with
transfer function W(z) = 1/H(z) could do the job perfectly as this results in an overall
channel equalizer transfer function H(z)W(z) = 1, which implies that the transmitted data
sequence, s(n), will appear at the detector input without any distortion. Unfortunately,
this is an ideal situation which cannot be used in most of the practical applications.

We note that the inverse of the channel transfer function, that is, 1/H(z), may be non-
causal if H(z) happens to have a zero outside the unit circle, thus making it unrealizable in
practice. This problem is solved by selecting the equalizer so that H(z)W(z) ≈ z−�, where
� is an appropriate integer delay. This is equivalent to saying that a delayed replica of the
transmitted symbols appears at the equalizer output. Example 3.4 of Chapter 3 clarifies
the concept of noncausality of 1/H(z) and also the way the problem is (approximately)
solved by introducing a delay, �. Greater details appear in Chapter 17.

We also note that the choice of W(z) = 1/H(z) (or W(z) ≈ z−�/H(z)) may lead to a
significant enhancement of the additive noise, ν(n), in those frequency bands where the
magnitude of H(z) is small (i.e., 1/H(z) is large). Hence, in choosing an equalizer, W(z),
one should keep a balance between residual ISI and noise enhancement at the equalizer
output. Wiener filter is a solution with such a balance (Chapter 3, Section 3.6.4).
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Figure 1.9 Details of a baseband data transmission system equipped with an adaptive channel
equalizer.

Figure 1.9 presents the details of a baseband transmission system, equipped with an
adaptive equalizer. The equalizer is usually implemented in the form of a transversal
filter. Initial training of the equalizer requires knowledge of the transmitted data symbols
as they (to be more accurate, a delayed replica of them) should be used as the desired
signal samples for adaptation of the equalizer tap weights. This follows from the fact
that the equalizer output should ideally be the same as the transmitted data symbols. We
thus require an initialization period during which the transmitter sends a sequence of
training symbols that are known to the receiver. This is called the training mode. Training
symbols are usually specified as part of the standards, and the manufacturers of data
modems1 should comply with these so that the modems of different manufacturers can
communicate with one another.

At the end of the training mode, the tap weights of the equalizer would have converged
close to their optimal values. The detected symbols would then be similar to the trans-
mitted symbols with a probability close to 1. Hence, then onward, the detected symbols
can be treated as the desired signal for further adaptation of the equalizer so that possible
variations of the channel can be tracked. This mode of operation of the equalizer is called
the decision-directed mode. The decision-directed mode successfully works as long as the
channel variation is slow enough so that the adaptation algorithm is able to follow the
channel variations satisfactorily. This is necessary for the purpose of ensuring low-symbol
error rates in detection so that these symbols can still be used as the desired signal.

The inverse modeling discussed previously defines the equalizer as an approximation
of z−�/H(z), that is, the target/desired response of the cascade of channel and equalizer
is z−�, a pure delay. This can be generalized by replacing the target response z−� by
a general target response, say �(z). In fact, to achieve higher efficiency in the usage of
the available bandwidth, some special choices of �(z) �= z−� are usually considered in
communication systems. Systems which incorporate such nontrivial target responses are
referred to as partial-response signaling systems. The detector in such systems is no more
the simple threshold detector, but one which can exploit the information that the overall
channel is now �(z), instead of the trivial memoryless channel z−�. The Viterbi detector

1 The term modem which is the abbreviation for “modulator and demodulator” is commonly used to refer data
transceivers (transmitter and receiver).
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(Proakis, 1995) is an example for such a detector. The target response, �(z), is selected
so that its magnitude response approximately matches the channel response, that is,
|�(ejω)| ≈ |H(ejω)|, over the range of frequencies of interest. The impact of this choice
is that the equalizer, which is now W(z) ≈ �(z)/H(z), has a magnitude response that
is approximately equal to 1, thereby minimizing the noise enhancement. To clarify fur-
ther on this and also to mention another application of inverse modeling, we discuss the
problem of magnetic recording next.

Magnetic Recording

The process of writing data bits on a magnetic medium (tape or disk) and reading them
back later is similar to sending data bits over a communication channel from one end
of a transmission line and receiving them at the other side of the line. The data bits,
which are converted to signal pulses before recording, undergo some distortion because
of nonperfect behavior of the head and medium, as it happens in communication channels
because of the nonideal response of the channel. Additive thermal noise and interference
from neighboring recording tracks (just like neighboring channels in communications) are
also present in the magnetic recording channels (Bergmans, 1996).

Magnetic recording channels are usually characterized by their response to an isolated
pulse of width 1-bit interval, T . This is known as dibit response and in the case of
hard-disk channels, it is usually modeled by the superposition of a positive and negative
Lorentzian pulses, separated by 1-bit interval, T . In other words, the Lorentzian pulse
models the step response of the channel. The Lorentzian pulse is defined as

ga(t) = 1

1 +
(

2t
t50

)2 (1.5)

where t50 is the pulse width measured at 50% of its maximum amplitude. The subscript
“a” in ga(t) and other functions that appear in the rest of this subsection are to emphasize
that they are analog (nonsampled) signals. The ratio D = t50/T is known as the recording
density. Typical values of D are in the range of 1 to 3. A higher density means more bits
are contained in one t50 interval, that is, more ISI. We may also note that t50 is a temporal
measure of the recording density. When measured spatially, we obtain another parameter
pw50 = t50/v, where v is the velocity of the medium with respect to head. Accordingly,
for a given speed, v, the value of D specifies the actual number of bits written on a length
pw50 along the track on the magnetic medium.

Using Eq. (1.5), the dibit response of a hard-disk channel is obtained as

ha(t) = ga(t) − ga(t − T ) (1.6)

The response of the channel to a sequence s(n) of data bits is then given by the convo-
lution sum

ua(t) =
∑

n

s(n)ha(t − nT ) (1.7)

Thus, the dibit response, ha(t), is nothing but the impulse response of the
recording channel.
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Figure 1.10a and b shows the dibit (time domain) and magnitude (frequency domain)
responses, respectively, of the magnetic channels (based on the Lorentzian model) for
densities D = 1, 2, and 3. From Figure 1.10b, we note that most of the energy in the
read-back signals is concentrated in a midband range between zero and an upper limit
around 1/2T . Clearly, the bandwidth increases with increase in density. In the light of
our previous discussions, we may thus choose the target response, �(z), of the equalizer
so that it resembles a bandpass filter whose bandwidth and magnitude response are close
to those of the Lorentzian dibit responses. In magnetic recording, the most commonly
used partial responses (i.e., target responses) are given by the class-IV response

�(z) = z−�(1 + z−1)K(1 − z−1) (1.8)

where �, as before, is an integer delay and K is an integer greater than or equal to 1.
As the recording density increases, higher values of K will be required to match the
channel characteristics. But, as K increases, the channel length also increases, implying
higher complexity in the detector. In Chapter 10, we elaborate on these aspects of
partial-response systems.

1.6.3 Linear Prediction

Prediction is a spectral estimation technique that is used for modeling correlated random
processes for the purpose of finding a parametric representation of these processes. In
general, different parametric representations could be used to model the processes. In
the context of linear prediction, the model used is shown in Figure 1.11. Here, the ran-
dom process, x̃(n), is assumed to be generated by exciting the filter G(z) with the input
u(n). As G(z) is an all-pole filter, this is known as autoregressive (AR) modeling. The
choice/type of the excitation signal, u(n), is application dependent and may vary depend-
ing on the nature of the process being modeled. However, it is usually chosen to be a
white process.

Other models used for parametric representation are moving average (MA) models,
where G(z) is an all-zero (transversal) filter, and autoregressive-moving average (ARMA)
models, where G(z) has both poles and zeros. However, the use of AR model is more
popular than other two.

The rationale behind the use of AR modeling may be explained as follows. As the
samples of any given nonwhite random signal, x(n), are correlated with one another,
these correlations could be used to make a prediction of the present sample of the pro-
cess, x(n), in terms of its past samples, x(n − 1), x(n − 2), . . ., x(n − N), as shown
in Figure 1.12. Intuitively, such prediction improves as the predictor length increases.
However, the improvement obtained may become negligible once the predictor length,
N , exceeds certain value, which depends on the extent of correlation in the given pro-
cess. The prediction error, e(n), will then be approximately white. We now note that the
transfer function between the input process, x(n), and the prediction error, e(n), is

H(z) = 1 −
N∑

i=1

aiz
−i (1.9)
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Figure 1.10 Time and frequency domain responses of magnetic recording channels for densities
D = 1, 2, and 3 modeled using the Lorentzian pulse: (a) dibit response; (b) magnitude response of
dibit response.
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u(n) x̃(n)
G(z) =

1

1 − ∑N
i=1 aiz−i

Figure 1.11 Autoregressive modeling of a random process.

where ai’s are the predictor coefficients. Now, if a white process, u(n), with similar
statistics as e(n) is passed through an all-pole filter with the transfer function

G(z) = 1

1 −
N∑

i=1
aiz

−i

(1.10)

as shown in Figure 1.11, the generated output, x̃(n), will clearly be a process with the
same statistics as x(n).

With the background developed above, we are now ready to discuss a few applications
of adaptive prediction.

Autoregressive Spectral Analysis

In certain applications, we need to estimate the power spectrum of a random process. A
trivial way of obtaining such estimate is to take the Fourier transform (discrete Fourier
transform (DFT) in the case of discrete-time processes) and use some averaging (smooth-
ing) technique to improve the estimate. This comes under the class of nonparametric
spectral estimation techniques (Kay, 1988). When the number of samples of the input
is limited, the estimates provided by nonparametric spectral estimation techniques will
become unreliable. In such cases, the parametric spectral estimation, as explained above,
may give more reliable estimates.

As mentioned already, parametric spectral estimation could be done using either AR,
MA, or ARMA models (Kay, 1988). In the case of AR modeling, we proceed as fol-
lows. We first choose a proper order, N , for the model. The observed sequence, x(n), is
then applied to a predictor structure similar to Figure 1.12 whose coefficients, ai’s, are
optimized by minimizing the prediction error, e(n). Once the predictor coefficients have

⊕N∑

i=1

aiz
−i

x(n)

x̃(n) e(n)
+

−

Figure 1.12 Linear predictor.
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converged, an estimate of the power spectral density of x(n) is obtained according to the
following equation:

�xx (e
jω) = No

∣∣∣∣∣∣∣∣∣

1

1 −
N∑

i=1
aie−jωi

∣∣∣∣∣∣∣∣∣

2

(1.11)

where No is an estimate of the power of the prediction error, e(n). This follows from
the model of Figure 1.11 and the fact that after the convergence of the predictor, e(n)

is approximately white. For further explanation on the derivation of Eq. (1.11) from the
signal model of Figure 1.11, refer to Chapter 2 (Section 2.4.4).

Adaptive Line Enhancement

Adaptive line enhancement refers to the situation where a narrow-band signal embedded
in a wide-band signal (usually, white) needs to be extracted. Depending on the application,
the extracted signal may be the signal of interest, or an unwanted interference that should
be removed. Examples of the latter case are a spread spectrum signal that has been
corrupted by a narrow-band signal and biomedical measurement signals that have been
corrupted by the 50/60 Hz power-line interference.

The idea of using prediction to extract a narrow-band signal when mixed with a wide-
band signal follows from the following fundamental result of signal analysis: successive
samples of a narrow-band signal are highly correlated with one another, whereas there
is almost no correlation between successive samples of a wide-band process. Because of
this, if a process x(n) consisting of the sum of a narrow-band and wide-band processes is
applied to a predictor, the predictor output, x̂(n), will be a good estimate of the narrow-
band portion of x(n). In other words, the predictor will act as a narrow-band filter,
which rejects most of the wide-band portion of x(n) and keeps (enhances) the narrow-
band portion, thus the name line enhancer. Examples of line enhancers can be found in
Chapters 6 and 10. In particular, in Chapter 10, we find that line enhancers can be best
implemented using IIR filters.

We also note that in the applications where the narrow-band portion of x(n) has to be
rejected (such as the examples mentioned above), the difference between x(n) and x̂(n),
that is, the estimation error, e(n), is taken as the system output. In this case, the transfer
function between the input, x(n), and the output, e(n), will be that of a notch filter.

Speech Coding

Since the advent of digital signal processing, speech processing has always been one of
the focused research areas. Among various processing techniques that have been applied
to speech signals, linear prediction has been found to be the most promising technique
leading to many useful algorithms. In fact, most of the theory of prediction was developed
in the context of speech processing.

There are two major speech coding techniques that involve linear prediction (Jayant
and Noll, 1984). Both these techniques aim at reducing the number of bits used for every
second of speech to achieve saving in storage and/or transmission bandwidth. The first
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Figure 1.13 Speech-production model.

technique, which is categorized under the class of source coders, strives to produce dig-
itized voice data at low bit rates in the range of 2 to 10 kb/s. The synthesized speech,
however, is not of a high quality. It sounds more synthetic, lacking naturalism. Hence,
it becomes difficult to recognize the speaker. The second technique, which comes under
the class of waveform coders, gives much better quality at the cost of a much higher bit
rate (typically, 32 kb/s).

The main reason for linear prediction being widely used in speech coding is that speech
signals can be accurately modeled as shown in Figure 1.13. Here, the all-pole filter is
the vocal-tract model. The excitation to this model, u(n), is either a white noise in the
case of unvoiced sounds (fricatives such as /s/ and /f/), or an impulse train in the case
of voiced sounds (vowels such as /i/). The period of the impulse train, known as pitch
period, and the power of the white noise, known as excitation level, are parameters of the
speech model which are to be identified in the coding process.

Linear Predictive Coding (LPC)

Speech signal is a highly nonstationary process. The vocal-tract shape undergoes variations
to generate different sounds in uttering each word. Accordingly, in LPC, to code a speech
signal, it is first partitioned into segments of 10-30 ms long. These segments are short
enough for the vocal-tract shape to be nearly stationary, so that the parameters of the
speech-production model of Figure 1.13 could be assumed fixed. Then, the following
steps are used to obtain the parameters of each segment:

1. Using the predictor structure shown in Figure 1.12, the predictor coefficients, ai’s, are
obtained by minimizing the prediction error e(n) in the least-squares sense, for the
given segment.

2. The energy of the prediction error e(n) is measured. This specifies the level of exci-
tation required for synthesizing this segment.

3. The segment is classified as voiced or unvoiced.
4. In the case of voiced speech, the pitch period of the segment is measured.



20 Adaptive Filters

The following parameters are then stored or transmitted for every segment, as the coded
speech: (i) predictor coefficients, (ii) energy of excitation signal, (iii) voiced/unvoiced
classification, and (iv) pitch period in the case of voiced speech. These parameters
can then (when necessary) be used in a model similar to Figure 1.13 to synthesize the
speech signal.

Waveform Coding

The most direct way of waveform coding is the standard pulse-code modulation (PCM)
technique, where the speech signal samples are directly digitized into a prescribed num-
ber of bits to generate the information bits associated with the coded speech. Direct
quantization of speech samples requires relatively large number of bits (usually, 8 bits
per sample) in order to be able to reconstruct the original speech with an acceptable
quality.

A modification of the standard PCM, known as differential pulse-code modulation
(DPCM), employs a linear predictor such as Figure 1.12 and uses the bits associated with
the quantized samples of the prediction error, e(n), as the coded speech. The rationale
here is that the prediction error, e(n), has much smaller variance than the input, x(n).
Thus, for a given quantization level, e(n) may be quantized with less number of bits
compared to x(n). Moreover, as the number of information bits per every second of the
coded speech is directly proportional to the number of bits used per sample, bit rate of
the DPCM will be less compared to the standard PCM.

The prediction filter used in DPCM can be fixed or be made adaptive. A DPCM system
with an adaptive predictor is called adaptive DPCM (ADPCM). In the case of speech
signals, use of ADPCM results in superior performance compared to the case where a
nonadaptive DPCM is used. In fact, the ADPCM has been standardized and widely used
in practice (ITU Recommendation G.726).

Figure 1.14 depicts a simplified diagram of the ADPCM system, as proposed in ITU
Recommendation G.726.2. Here, the predictor is a six-zero, two-pole adaptive IIR filter.
The coefficients of this filter are adjusted adaptively so that the quantized error ẽ(n) is
minimized in mean-square sense. The predictor input x̃(n) is same as the original input
x(n) except for the quantization error in ẽ(n). To understand the joint operation of the
encoder and decoder shown in Figure 1.14, note that the same signal, ẽ(n), is used as
inputs to the predictor structures at the encoder and decoder. Hence, if the stability of
the loop consisting of the predictor and adaptation algorithm could be guaranteed, then
the steady-state value of the reconstructed speech at the decoder, that is, x̃ ′(n), will be
equal to that at the encoder, that is, x̃(n), as nonequal initial conditions of the encoder
and decoder loops will die away after their transient phase.

1.6.4 Interference Cancellation

Interference cancellation refers to situations where it is required to cancel an interfering
signal/noise from the given signal which is a mixture of the desired signal and the inter-
ference. The principle of interference cancellation is to obtain an estimate of interfering

2 ITU stands for International Telecommunication Union
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Figure 1.15 Interference cancellation.

signal and subtract that from the corrupted signal. Feasibility of this idea relies on the
availability of a reference source from which the interfering signal originates.

Figure 1.15 depicts the concept of interference cancellation, in its simplest form. There
are two inputs to the canceler: primary and reference. The primary input is the corrupted
signal, that is, the desired signal plus interference. The reference input, on the other hand,
originates from the interference source only.3 The adaptive filter is adjusted so that a
replica of the interference signal that is present in the primary signal appears at its output,
y(n). Subtracting this from the primary input results in an output which is cleared from
interference, thus the name interference cancellation.

3 In some applications of interference cancellation, there might also be some leakage of the desired signal to the
reference input. Here, we have ignored this situation for simplicity.
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Figure 1.16 Simplified diagram of a telephone network.

We note that the interference cancellation configuration of Figure 1.15 is different from
the previous cases of adaptive filters, in the sense that the residual error (which was
discarded in other cases) is the cleaned-up signal, here. The desired signal in the previous
cases has been replaced here by a noisy (corrupted) version of the actual desired signal.
Moreover, the use of the term reference to refer the adaptive filter input is clearly related
to the role of this input in the canceler.

In the rest of this section, we present some specific applications of interference
canceling.

Echo Cancellation in Telephone Lines

Echoes in telephone lines mostly occur at points where hybrid circuits are used to convert
four-wire networks to two-wire ones. Figure 1.16 presents a simplified diagram of a
telephone connection network, highlighting the points where echoes occur. The two wires
at the ends are subscriber loops connecting customers’ telephones to central offices. It
may also include some portions of the local network. The four wires, on the other hand,
are carrier systems (trunk lines) for medium-to-long-haul transmission. The distinction is
that the two-wire segments carry signals in both directions on the same lines, while in
the four-wire segment signals in the two directions are transmitted on two separate lines.
Accordingly, the role of hybrid circuit is to separate the signals in the two directions.
Perfect operation of the hybrid circuit requires that the incoming signal from the trunk
lines should be directed to the subscriber line and that there be no leakage (echo) of
that to the return line. In practice, however, such ideal behavior cannot be expected
from hybrid circuits. There would always be some echo on the return path. In the case of
voice communications (i.e., ordinary conversation on telephone lines), effect of the echoes
becomes more obvious (and annoying to the speaker) in long-distance calls, where the
delay with which the echo returns to the speaker may be in the range of a few hundred
milliseconds. In digital data transmission, both short- and long-delay echoes are serious.

As was noted before and also can clearly be seen from Figure 1.17, the problem of
echo cancellation may be viewed as one of system modeling. An adaptive filter is put
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between the incoming and outgoing lines of the hybrid. By adapting the filter to realize
an approximation of the echo path, a replica of the echo is obtained at its output. This is
then subtracted from the outgoing signal to clear that from the undesirable echo.

Echo cancelers are usually implemented in transversal form. The time spread of echoes
in a typical hybrid circuit is in the range of 20–30 ms. If we assume a sampling rate of
8 kHz for the operation of the echo canceler, an echo spread of 30 ms requires an adaptive
filter with at least 240 taps (30 ms×8 kHz). This is a relatively long filter, requiring a
high-speed digital signal processor for its realization. Frequency domain processing is
often used to reduce the high computational complexity of long filters. The subject of
frequency domain adaptive filters is covered in Chapter 8.

The echo cancelers described previously are applicable to both voice and data trans-
mission. However, more stringent conditions need to be satisfied in the case of data
transmission. To maximize the usage of the available bandwidth, full-duplex data trans-
mission is often used. This requires the use of a hybrid circuit for connecting the data
modem to the two-wire subscriber loop, as shown in Figure 1.18. The leakage of the
transmitted data back to the receiver input is thus inevitable and an echo canceler has to
be added, as indicated in Figure 1.18. However, we note that the data echo cancelers are
different from the voice echo cancelers used in central switching offices in many ways.
For instance, because the input to the data echo canceler are data symbols, it can operate
at the data symbol rate that is in the range of 2.4–3 kHz (about three times smaller than
the 8 kHz sampling frequency used in voice echo cancelers). For a given echo spread, a
lower sampling frequency implies less number of taps for the echo canceler. Clearly, this
simplifies the implementation of the echo canceler, greatly. On the other hand, the data
echo cancelers require to achieve a much higher level of echo cancellation to ensure reli-
able transmission of data at higher bit rates. In addition, the echoes returned from the other
side of the trunk lines should also be taken care of. Detailed discussions on these issues
can be found in Lee and Messerschmitt (1994) and Gitlin, Hayes, and Weinstein (1992).

Acoustic Echo Cancellation

The problem of acoustic echo cancellation can be best explained by referring to
Figure 1.19, which depicts the scenario that arises in teleconferencing applications.
The speech signal from a far-end speaker, received through a communication channel,
is broadcast by a loudspeaker in a room and its echo is picked up by a microphone.
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Figure 1.19 Acoustic echo cancellation.

This echo must be canceled to prevent its feedback to the far-end speaker. The
microphone also picks up the near-end speaker(s) speech and possible background noise,
which may exist in the room. An adaptive transversal filter with sufficient length is used
to model the acoustics of the room. A replica of the loudspeaker echo is then obtained
and subtracted from the microphone signal before the transmission.

Clearly, the problem of acoustic echo cancellation can also be posed as one of system
modeling. The main challenge here is that the echo paths spread over a relatively long
length in time. For typical office rooms, echoes in the range of 100–250 ms spread is
quite common. For a sampling rate of 8 kHz, this would mean 800–2000 taps! Thus, the
main problem of acoustic echo cancellation is that of realizing very long adaptive filters.
In addition, as speech is a lowpass signal, it becomes necessary to use special algorithms
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to ensure fast adaptation of the echo canceler. The algorithms discussed in Chapters 8
and 9 have been widely used to overcome these difficulties in the implementation
of acoustic echo cancelers. The topic of echo cancelers, with particular emphasis on
acoustic echo cancelers, is covered in Chapter 15.

Active Noise Control

ANC refers to situations where acoustic antinoise waves are generated from electronic cir-
cuits (Kuo and Morgan, 1996). The ANC can be best explained by the following example.

A well-examined application of ANC is cancellation of noise in narrow ducts, such as
exhaust pipes and ventilation systems, as illustrated in Figure 1.20. The acoustic noise
traveling along the duct is picked up by a microphone at position A. This is used as
reference input to an ANC filter whose parameters are adapted so that its output after
conversion to an acoustic wave (through the canceling loudspeaker), is equal to the neg-
ative value of the duct noise at position B, thereby canceling that. The residual noise,
picked up by the error microphone at position C, is the error signal used for adaptation
of the ANC filter.

Comparing this ANC setup with the interference cancellation setup shown in
Figure 1.15, we may note the following. The source of interference here is the duct
noise, reference input is the noise picked up by the reference microphone, desired output
(i.e., what we wish to see after canceling the duct noise) is zero, and primary input is
the duct noise reaching position B. Accordingly, the role of ANC filter is to model the
response of the duct from position A to B.

The above description of ANC assumes that the duct is narrow and the acoustic noise
waves are traveling along the duct, which is like a one-dimensional model. The acous-
tical models of wider ducts and large enclosures, such as cars and aircrafts, are usually
more complicated. Multiple microphones/loudspeakers are needed for successful imple-
mentation of ANCs in such enclosures. The adaptive filtering problem is then that of a
multiple-input multiple-output system (Kuo and Morgan, 1996). Nevertheless, the basic
principle remains the same, that is, generation of antinoise to cancel the actual noise. The
subject of active noise control is covered in detail in Chapter 16.
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Beamforming

In the applications that have been discussed so far, the filters/predictors are used to
combine together samples of the input signal(s) at different time instants to generate
the output. Hence, these are classified as temporal filtering. Beamforming, however, is
different from these in the sense that the inputs to a beamformer are samples of incoming
signals at different positions in space. This is called spatial filtering. Beamforming finds
applications in communications, radar, and sonar (Johnson and Dudgeon, 1993), and also
imaging in radar and medical engineering (Soumekh, 1994).

In spatial filtering, a number of independent sensors are placed at different points
in space to pick up signals coming from various sources (Figure 1.21). In radar and
communications, the signals are usually electromagnetic waves and the sensors are thus
antenna elements. Accordingly, the term antenna arrays is often used to refer to these
applications of beamformers. In sonar applications, the sensors are hydrophones designed
to respond to acoustic waves.

In a beamformer, the samples of the signals picked up by the sensors at a particular
instant of time constitutes a snapshot. The samples of snapshot (spatial samples) play
the same role as the successive (temporal) samples of input in a transversal filter. The
beamformer filter linearly combines the sensor signals so that signals arriving from some
particular direction are amplified, while signals from other directions are attenuated. Thus,
in analogy with the frequency response of temporal filters, spatial filters have responses
that vary according to the direction-of-arrival of the incoming signal(s). This is given in
the form of a polar plot (gain versus angle) and is referred to as beam pattern.

In many applications of beamformers, the signals picked up by sensors are narrow
bands having the same carrier (center) frequency. These signals differ in their direction-
of-arrival, which are related to the location of their sources. The operation of beamformers
in such applications can be best explained by the following example.

Consider an antenna array consisting of two omnidirectional elements A and B, as
presented in Figure 1.22. The tone (as approximation to narrow-band) signals s(n) =
α cos ωon and ν(n) = β cos ωon arriving at angles 0 and θo (with respect to the line
perpendicular to the line connecting A and B), respectively, are the inputs to the array
(beamformer) filter, which consists of a phase-shifter and a subtracter. The signal s(n)

arrives at elements A and B at the same time, whereas the arrival times of signal ν(n) at
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A and B are different. We may thus write

sA(n) = sB(n) = α cos ωon

νB(n) = β cos ωon

and
νA(n) = β cos(ωon − ϕ)

where subscripts A and B are used to denote the signals picked up by elements A and B,
respectively, ϕ is the phase shift arising from the time delay of arrival of ν(n) at element
A with respect to its arrival at element B.

Now, if we assume that s(n) is the desired signal and ν(n) is an interference, by
inspection, one can see that if the phase-shifter phase is chosen equal to ϕ, then the
interference, ν(n), will be completely canceled by the beamformer. The desired signal,
on the other hand, reaches the beamformer output as α(cos ωon − cos(ωon − ϕ)), which
is nonzero (and still holding the information contained in its envelope, α) when ϕ �= 0,
that is, when the interference direction is different from the direction of the desired signal.
This shows that one can tune a beamformer so as to allow the desired signal arriving
from a direction to pass through it, while rejecting the unwanted signals (interferences)
arriving from other directions.

The idea of using a phase-shifter to adjust the beam pattern of two sensors is easily
extendible to the general case of more than two sensors. In general, by introducing appro-
priate phase shifts and also gains at the output of the various sensors and summing up
these outputs, one can realize any arbitrary beam pattern. This is similar to the selection
of tap weights of a transversal filter so that the filter frequency response becomes a good
approximation to the desired response. Clearly, by increasing the number of elements in
the array, better approximations to the desired beam pattern can be achieved.

The last point that we wish to add here is that in cases where the input signals to the
beamformer are not narrow band, a combination of spatial and temporal filtering needs to
be used. In such cases, spatial information is obtained by having sensors at different posi-
tions in space, as was discussed previously. The temporal information is obtained using
a transversal filter at the output of each sensor. The output of the broadband beamformer
is the summation of the outputs of these transversal filters. Detailed discussions on these
points and the relevant mathematical backgrounds are presented in Chapter 18.


