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Introduction

In this chapter, we will discuss the rationale for randomised trials and how cluster trials differ
from individually randomised trials. The development of cluster trials and how they fit into
the framework of complex interventions will be outlined. We will describe a number of trials
that will be discussed throughout the book. Two fundamental concepts, namely, the unit of
inference and how to measure the degree of clustering will also be discussed.

1.1 Randomised controlled trials

How do we know that a treatment works? It has long been asserted that the only way
of assessing whether a treatment actually works is through a randomised controlled
trial (RCT). Testing Treatments, an excellent book (Evans et al., 2011, available free at
www.testingtreatments.org), gives a series of examples where treatments, thought to be
beneficial on the basis of observational data, have been shown, in fact, to harm patients. The
modern paradigm is the example of hormone replacement therapy, which had been perceived
as beneficial until the Women’s Health Initiative trial (Prentice et al., 1998) and other studies
showed that, far from reducing the risk of heart disease, it actually slightly increased the risk.

The main ingredients of an RCT can be labelled as ‘ABC’ (Campbell, 1999).

1.1.1 A-Allocation at random

This means that who gets the new treatment, which is to be evaluated, and who does not
is determined by chance. These days this usually means allocation is determined by a
computer-generated random sequence. However, in the past, this was done with shuffled
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envelopes and other mechanical means such as tossing a coin. The main purpose of ran-
domisation is to ensure that, in the long run, the only consistent difference between the
randomised groups is that one group got the new treatment and the other did not; all other
differences have been averaged out. Factors that might influence outcome are often called
prognostic factors. For example, people with more severe disease at the start of treatment
may be expected to do worse than people with mild disease. The important point about
randomisation is that it ensures, in the long run, that there is no preponderance of a prognostic
factor in one group compared with another. A further point is that this is true for both known
and unknown factors. Thus if, after a trial had been published, it became known that a certain
gene had prognostic significance, even though it would be too late to measure the gene in the
patients, the investigators are protected from major imbalances in the gene frequency in the
treatment and control groups by randomisation. An operative phrase here is ‘in the long run’.
Trials cannot be infinitely large, and so for any trial of finite size, it may be possible to find
imbalances in prognostic factors, and steps may be needed to control these. As we shall see
later, cluster trials are primarily judged on the number of clusters they contain and since this
is often not large, imbalance is a particular problem.

Simple randomisation means that the treatment allocation is determined purely by chance.
However, this might mean that the numbers in each group are unequal, which usually reduces
the efficiency of the study. Thus, a development is blocked randomisation, whereby an even
number of subjects are selected and randomised so that half of the subjects get one treatment
and the other half the alternative treatment.

If there are known important prognostic factors in a trial, then it would be foolish to leave a
balanced outcome to chance, and so stratified randomisation is carried out. Here, the subjects
are divided into groups or strata depending on the prognostic factor and blocked randomisation
carried out within each stratum. For example, patients might be divided into those with severe
disease and those with mild disease, and then randomisation carried out separately within
those two disease severity groups. This ensures that there are approximately the same number
of patients in each treatment group with severe disease and the same number with mild disease.

Another important feature of randomisation is that neither the patient nor the person
recruiting the patient knows in advance which treatment the patient is to receive.

1.1.2 B-Blindness

This means that the treatment is concealed to either the investigator or the patient. A
double-blind trial means that neither the investigator nor the patient knows which treatment
they are getting. Blindness can be important because belief can prove an important part in a
patient’s recovery and outcome. In some cases, such as whether to plaster a fracture or not, it
may be impossible to blind the patient. However, it may still be possible to blind the person
measuring the outcome of the trial.

1.1.3 C-Control

This usually refers to contemporaneous controls. This means that patients are evaluated at
the same time in each group. Other factors which affect all patients, such as improved qual-
ity of care, should affect the intervention group and the control group equally. The control
may comprise ‘treatment as usual’ (sometimes abbreviated to tau), which is common for
non-pharmacological treatments, or a placebo for pharmacological treatments. A placebo is
an inert compound that physically resembles the active drug, so that the patient is unaware
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whether they have taken the drug with the active compound. They are used because often
the very act of giving treatments will bring about improvements, irrespective of the actual
treatment. An alternative control is another active treatment. Usually it is helpful to know in
advance that this active treatment is effective relative to no treatment, because an inconclusive
result (i.e. no difference between the two treatments on test) would mean that we would be
unable to decide if the new treatment was beneficial or not relative to no treatment.

The idea of testing treatments has been shown by many authors to have a long history.
However, it was not until the 1940s that trials that used proper randomisation, contemporane-
ous controls and blindness were published (MRC, 1948). These initial trials were individually
randomised and analysed, that is individual patients were randomised to alternative treatments
and then the outcome was measured on these patients. This has formed the gold standard for
assessing medical treatments ever since.

1.2 Complex interventions

However, often interventions are not single simple interventions such as drugs, but so-called
complex interventions, with a variety of interacting components. The United Kingdom’s Med-
ical Research Council website has a good description of these (http://www.mrc.ac.uk/Utilities
/Documentrecord/index.htm?d=MRC004871).

Examples of complex interventions might include specialist stroke units, training surgeons
in a new technique and a leaflet campaign to get children to take their asthma medication. Here,
a number of patients will all be treated in the same unit; for example a surgeon will operate on
a number of different patients and so all these patients will benefit (or suffer!) from the same
level of skill, namely that possessed by that surgeon.

Let us consider an example of an RCT to evaluate the clinical effectiveness of a new surgi-
cal technique compared to existing surgical techniques in a population of patients undergoing
surgery. There are at least three possible designs for a proposed RCT to evaluate a new surgical
technique:

Design 1: All surgeons are trained in the new technique. When a patient presents for surgery
to a particular surgeon, the surgeon is told, via a randomisation method, which type of
surgery to use.

Design 2: Some surgeons are already trained in the new technique and some are not (per-
haps they had to volunteer for training). If a patient presents who is eligible for surgery,
they are randomised to either a surgeon using the new technique or the one using the
old.

Design 3: Willing surgeons are randomised to be either trained in the new technique or not.
Those trained in the new technique will then use it when appropriate. Patients arrive at
surgery through the usual channels.

Each of these designs has advantages and disadvantages. In Design 1, the randomisation is
conducted within a surgeon, so we can compare patients operated on by the same surgeon with
the new technique against those treated with the standard method. Thus, the fact that some
surgeons are better and more experienced than others will not affect the comparison. On the
other hand, it may be very difficult for a surgeon who has been trained in a new technique to
revert to a former mode of practice, and we do not know if the training might have improved
the outcomes for the standard method as well.
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In Design 2, patients treated by a good and experienced surgeon could be expected to
do better than patients treated by an inexperienced (poor) surgeon, so the comparisons will
depend not just on the patient but also on the surgeon. These are so-called therapist trials and
are a form of cluster trial which we will discuss later. It is also possible that the better surgeons
are the ones who volunteer for further training, so confounding the effects of experience and
the new technique.

In Design 3, we have a truly randomised comparison. However, again each surgeon can
be expected to treat a number of patients, and these patients’ outcomes will be affected by
the surgeons’ skill, training and experience. Thus, the outcomes from the patients are not
completely independent. These are cluster randomised controlled trials (cRCTs).

Thus, a cluster randomised trial is a trial in which groups of subjects are randomised rather
than individuals. They are sometimes known as group randomised trials. The key important
fact is that outcomes for subjects in one cluster are not independent. This means that conven-
tional methods of statistical analysis which typically assume independence, of outcomes, are
invalid and likely to give incorrect results.

1.3 History of cluster randomised trials

The first paper to recognise explicitly the issues that arise when groups of subjects are ran-
domised was by Cornfield (1978). He originated the sayings:

Randomisation by cluster accompanied by an analysis appropriate to randomisa-
tion by individual is an exercise in self-deception

and

Analyse as you randomise.

The latter says that if randomisation was by cluster, then analysis should be by cluster.
Cornfield’s paper was followed by the pioneering work of Allan Donner who has writ-

ten numerous papers on the subject since 1981. There have also been a number of books
on cluster randomised trials by Murray (1998), Donner and Klar (2000), Hayes and Moulton
(2009) and Eldridge and Kerry (2012). There have also been a number of reviews of statistical
methodology, for example Campbell, Donner and Klar (2007).

In the past, cluster trials were often misunderstood and poorly analysed. For example,
Simpson, Klar and Donner (1995) reviewed primary prevention trials published between 1990
and 1993 and showed that out of 21 articles only 19% (4/21) included sample size calcula-
tions or discussions of power that allowed for clustering, while 57% (12/21) took clustering
into account in the analysis. An important landmark was the publication of the Consolidation
of Standards for Reporting Trials (CONSORT) statement for cluster trials (Campbell, 2004;
Campbell, Elbourne and Altman, 2004). Sadly the evidence is that the reporting of cluster
trials has not markedly improved since that statement (Ivers et al., 2011).

1.4 Cohort and field trials

There are two parameters that control the total size of a cluster trial: these are the number of
clusters (k) and the number of subjects per cluster, the cluster size (m). The notation appears to
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Table 1.1 Basic cluster trial types.

Number of clusters (k)

Large Small

Number of subjects per
cluster (m)

Large Rarely seen – very
expensive!

Field trials, or community
interventions

Small Cohort trials Pilot studies

originate from Allan Donner and is quite universal now (Donner and Klar, 2000). As shown
in Table 1.1, for a fixed sample size, you can have small number of clusters k with a large
number of patients per cluster m, or vice versa. It is unusual to have either large k and m, or
small k and m.

A trial with a small number of clusters each with a large number of subjects is often termed
a field trial. It is common when one is trying to evaluate community-wide interventions. Such
a trial is sometimes called a cluster–cluster trial since inference is on the way the intervention
has changed a cluster level response. The trial with a small cluster size and large number of
clusters is often called a cohort trial, since patients are followed up as a cohort or as a group.

We have found that the best way to teach and explain a concept is to start by giving some
examples, so we now give some examples of field and cohort trials, so that the reader can get
the idea of the range of their application.

1.5 The field/community trial

The main emphasis in field or community trials is at the cluster level. The investigator is inter-
ested in how a whole community changes its behaviour. As discussed later, this tends to lead
to cluster level interventions. Field trials usually employ a cross-sectional sample of commu-
nities before and at different times after an intervention. In the control group, the timings of
the sampling are usually the same as for the intervention group. In general, because commu-
nities are usually sampled, they do not have the problem of dropouts which are a problem
with conventional individually randomised trials. It could be argued that they are more gen-
eralisable than conventional trials since they represent a random sample from the population.
However, some of the sample may have recently arrived in the population and so not received
the intervention. This will reduce the size of the contrast between the intervention clusters and
the control clusters.

1.5.1 The REACT trial

An example of a field trial is the REACT trial (Hedges et al., 2000). The objective here was
to determine the impact of a community educational intervention to reduce patient delay
time on the use of reperfusion therapy for acute myocardial infarction (AMI). The inter-
vention was designed to enhance patient recognition of AMI symptoms and encourage early
emergency department (ED) presentation with resultant increased reperfusion therapy rates
for AMI. The study took place in 44 hospitals in 20 pair-matched communities in five US
geographic regions. Eligible study subjects were non-institutionalised patients without chest
injury (aged >30 years) who were admitted to participating hospitals and who received a
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hospital discharge diagnosis of AMI; n= 4885. The applied intervention was an educational
programme targeting community organisations and the general public, high-risk patients and
health professionals in target communities. The primary outcome was a change in the pro-
portion of AMI patients receiving early reperfusion therapy (i.e. within 1 hour of ED arrival
or within 6 hours of symptom onset). Four-month baseline was compared with the 18-month
intervention period. Of the patients included in the primary analyses, 28.3% received reperfu-
sion therapy within 6 hours of symptom onset in the intervention community group during the
baseline period, compared with 27.9% in the control community group. The authors concluded
that community-wide educational efforts to enhance patient response to AMI symptoms may
not translate into sustained changes in reperfusion practices.

1.5.2 The Informed Choice leaflets trial

The field trial that we will describe in detail throughout the book is the Informed Choice
leaflets trial (O’Cathain et al., 2002). The basics of this trial are given in Table 1.2. An impor-
tant feature of this trial is that women were sampled before the intervention was delivered to
the maternity units and again afterwards. The women were not the same in the before and
after groups.

In this trial, the entire cluster is given the intervention, that is all women got the interven-
tion and all women were given a questionnaire to measure the outcome. It should be noted

Table 1.2 Example of a field trial (O’Cathain et al., 2002).

Population Samples of antenatal (at 28-wk gestation) and postnatal
(8 wk after delivery) women

Intervention Provision of 10 pairs of Informed Choice leaflets for service
users and midwives and a training session for staff in
their use

Comparator Usual care
Unit of randomisation Ten maternity units (five intervention, five control) between

600 and 900 women completed questions either before or
after birth, also before or after the intervention (different
women in each case)

Method of randomisation Clusters were paired on the basis of their annual numbers of
deliveries to ensure balance in the numbers in the two
arms of the trial. Pairs were randomly assigned by tossing
a coin to receive the set of leaflets (five intervention
units) or to continue with usual care (five control units)

Outcome Binary primary outcome – proportion of women who
answered ‘yes’ to the question ‘Have you had enough
information and discussion with midwives or doctors to
make a choice together about all the things that
happened during maternity care?’

Data collection Through postal questionnaires
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that the method of randomisation described, namely the toss of a coin, is not recommended
because it cannot be replicated or verified.

1.5.3 The Mwanza trial

Grosskurth et al. (1995) cited in Hayes and Moulton (2009) described a trial whose aim was
to reduce the prevalence of human immunodeficiency virus (HIV) infection by treating other
sexually transmitted diseases (STDs) in the rural Mwanza region of Tanzania. HIV incidence
was compared in six intervention communities and six pair-matched comparison communi-
ties. This is described in Table 1.3.

A total of 12 537 individuals were recruited. At the follow-up, 8845 (71%) of the cohort
were seen. There was concern that a control community might be affected by having an
intervention community adjacent to it, so an attempt was made to separate the control and
intervention communities. Note that in contrast to the Informed Choice leaflets trial, in this
case the investigators did not want to include all the subjects and so they chose a random
sample of subjects. Also in contrast to the Leaflets trial, the same subjects were followed up
before and after the intervention.

1.5.4 The paramedics practitioner trial

An example where the cluster is a period of time is given by a study described by Mason
et al. (2007) which is a cluster randomised trial of paramedic practitioners. The intervention
was delivered by seven paramedics who were trained to provide community assessment and
treatment of patients aged over 60 who contacted the emergency ambulance services between
8 a.m. and 8 p.m. The outcome variables were ED attendance or hospital admission within
28 days of call, and satisfaction with service. The randomisation was to different time periods
which were weeks when paramedic practitioners are either operative or non-operative. In total,

Table 1.3 The Mwzana trial (Grosskurth et al., 1995).

Population Adults aged 15–54 yr living in the Mwanza region of
Tanzania

Intervention The establishment of an STD reference clinic, staff training,
regular supply of drugs, regular supervisory visits to
health facilities and health education about sexually
transmitted disease

Comparator Usual care
Unit of randomisation Communities
Method of randomisation Twelve communities were paired by geography, type of

settlement and prior STD attendance. The method of
randomisation is not stated

Outcome HIV incidence
Data collection A random cohort of about 1000 adults aged 15–54 from

each community was surveyed at baseline and at
follow-up 2 yr later
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Table 1.4 The paramedics practitioner trial (Mason et al., 2007).

Population Patients aged over 60 who called the emergency services with
minor acute conditions

Intervention Seven experienced paramedics were given a training course to
enable them to provide community-based clinical
assessment and were included in the operation of the
ambulance service

Comparator Weeks when the paramedics were removed from operational
duties

Unit of randomisation Weeks when the paramedics were on duty or not
Method of randomisation Weeks were randomised before the start of the study to the

paramedic practitioner service being active (intervention) or
inactive (control), when the standard 999 service was
available. Randomisation by blocks, with a block size of 6,
with 26 weeks in the intervention and 30 weeks in the
control

Outcome Attendance at emergency department and hospital admission
between 0 and 28 days, interval from time of call to time of
discharge and patients’ satisfaction with the service received

Data collection The emergency department or ambulance service records were
used to collect clinical data, including investigations,
treatment, diagnoses and discharge from the service, relating
to the initial patient episode

1549 individuals were recruited to the intervention over 26 weeks and 1469 individuals were
recruited to the control over 30 separate weeks. The details are given in Table 1.4.

1.6 The cohort trial

The second type of cluster trial is closer in design to an individually randomised trial and typi-
cally uses more clusters and relatively smaller cluster sizes than a field trial. Usually the same
patients are followed up over time and it has been termed a cohort trial. The main emphasis in
a cohort trial is the individual. Usually the investigator is interested in looking at change in an
outcome, and so will measure values at baseline and at various times after the intervention has
taken place. A cohort cluster trial suffers from similar problems of generalisation as a conven-
tional trial. Patients have to be willing to be in the trial and may drop out before follow-up.
If only a small number of people approached to enter the trial volunteer, or if a large number
of people drop out before follow-up, then the generalisability of the trial could be called into
question. Thus, it is important to report dropout rates and do sensitivity analyses to consider
whether the nature of the dropouts may affect the conclusions.

1.6.1 The PoNDER trial

An example of a cohort cRCT that will be used throughout the book is the Postnatal
Depression Economic Evaluation and Randomised Controlled Trial (PoNDER) study.
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Table 1.5 The PoNDER study (Morrell et al., 2009).

Population Post-natal women
Intervention Health visitors trained to providing psychologically informed

sessions based on CBA approaches or PCA approaches for
an hour a week for 8 wk to new mothers with PND

Comparator Usual care
Unit of randomisation 101 general practices and their associated health visitors 63 in

intervention arms (30 CBA and 32 PCA) and 39 in the
control

Method of randomisation Clusters were stratified by the number of expected births per
cluster per year into three groups (<70, 70–100 and >100).
Clusters were allocated to either CBA or PCA, the two
interventions or the control group in a ratio of 1 : 1 : 1

Outcome The main outcome measure was the 6-month EPDS score. The
EPDS is scored on a 0–30 scale with a higher score
indicating more depressive symptoms. A score of 12 or
more is regarded as being ‘at higher risk’ of PND

Data collection Women were sent a postal questionnaire at 6 weeks
post-natally to collect demographic details, measure
depressive symptoms using the EPDS and measure social
support and stressful life events using the measure of social
relationships and list of threatening experiences, and
previous depression

CBA, cognitive behavioural approach; PCA, person-centred approach; (PND), postnatal depression; EPDS, Edin-
burgh Postnatal Depression Scale.

(Morrell et al., 2009). The PoNDER study involved health visitors (HVs) who worked in
general practitioner (GP) practices which were randomised for the HVs to be trained or not in
psychological approaches to identify postnatal depressive symptoms and to treat women with
postnatal depression. The HVs sequentially recruited new mothers who collectively formed
the corresponding cluster. The PoNDER trial randomised 101 clusters (GP practices and
their associated HVs) and collected data on 2659 new mothers with an 18-month follow-up
(Table 1.5). This trial is further described in Chapter 8, where we will introduce the patient
flow diagram, which shows the number of patients available at each stage of the trial, and in
particular how many women responded.

1.6.2 The DESMOND trial

Another trial which we will return to is the DESMOND (Diabetes Education and
Self-Management Ongoing and Newly Diagnosed) trial (Davies et al., 2008), which is
described in Table 1.6.

In the United Kingdom, diabetes is usually treated in primary care, and it was deemed
impossible to randomise people in the same practice to different treatments. Thus, practices
were chosen (at random) as either ‘intervention’ practices or ‘control’ practices. Practices
randomised to deliver the DESMOND educational intervention taught the course to groups of
eight people at the same time.



10 CLUSTER RANDOMISED TRIALS IN MEDICINE AND HEALTH RELATED RESEARCH

Table 1.6 The DESMOND trial (Davies et al., 2008).

Population Patients with Type II diabetes
Intervention A structured group education programme for 6 hours

delivered in the community by two trained healthcare
professional educators the ‘DESMOND’ course to
improve lifestyle

Comparator Usual care
Unit of randomisation General practices (105 in intervention and 102 in the

control)
Method of randomisation Randomisation was at practice level, with stratification by

training status and type of contract with the primary care
organisation (General Medical Services or Personal
Medical Services)

Outcome Glycosylated haemoglobin (HbA1c%) at 1 yr
Data collection Outcome measures were collected at baseline and at 4, 8

and 12 months. Biomedical data were collected at
practice visits. Questionnaire data were collected from
participants at the beginning of the study and by postal
questionnaire at 4, 8 and 12 months.

1.6.3 The Diabetes Care from Diagnosis trial

A further study for which data are available is the Diabetes Care from Diagnosis trial
(Kinmonth et al., 1998), which is described in Table 1.7. The investigators randomised GPs
into those who would receive training in ‘patient-centred care’ and those who did not. A total
of 21 practitioners were trained and 20 acted as controls. It would be difficult or impossible
for a doctor to change from ‘patient centred care’ to ‘paternalistic’ care with successive
patients. The outcome was measured by HbA1c% in their diabetic patients. An important
distinction in this trial is that the patients were diagnosed with diabetes by the GPs during
the trial. Thus, the investigators could not say in advance exactly how many patients would
be in each cluster. This is in contrast to a trial of a new intervention where all the patients are
present at the start of the trial.

Table 1.7 Diabetes care from diagnosis trial (Kinmonth et al., 1998).

Population Patients with Type II diabetes
Intervention Patient-centred care training (1.5 days)
Comparator Routine care
Unit of randomisation General practices (21 in intervention and 20 in the control)
Method of randomisation Practices were randomised, stratified by size of

practice(large or small) and method of delivery of
diabetes care (specialist nurse or not)

Outcome Body mass index at 1 yr
Data collection Body mass index and HbA1c% were measured 1 yr after

the patient had been recruited
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Table 1.8 The REPOSE (Relative Effectiveness of Pumps Over multiple dose injections
and Structured Education) trial.

Population Patients with Type I diabetes
Intervention Insulin pumps
Comparator Multiple dose injections (MDI)
Unit of randomisation Training courses
Method of randomisation Courses were randomised in pairs to pumps or MDIs,

within centre
Outcome HbA1c%
Data collection HbA1c collected at 1 yr after course

1.6.4 The REPOSE trial

The REPOSE (Relative Effectiveness of Pumps Over multiple dose injections and Structured
Education) trial (REPOSE trial protocol www.sheffield.ac.uk/scharr/sections/dts/ctru/repose)
is designed to examine whether insulin pumps give better control of diabetes over multiple
dose injections (MDIs). Patients are trained in groups of 6–8 to use either pumps or MDIs. The
outcome was HbA1c% at 1 year. To reduce recruitment bias (see later for more discussion),
patients in each centre were recruited to one of the two courses and when the courses were
full, randomisation was done so that one course got the intervention and the other got the
control. A total of about 280 patients were to be recruited with about 20 pairs of pump/MDI
courses (Table 1.8).

1.6.5 Other examples of cohort cluster trials

In the trial described by Puder et al. (2011), the intervention was the class in school but the ran-
domisation was by school. They wished to test a multi-dimensional culturally tailored lifestyle
intervention to improve fitness in school children. A total of 40 preschool classes in 30 school
areas with a high migrant population in the German- and French-speaking regions of Switzer-
land were randomised (20 per group) to the intervention or control. A total of 652 of the
727 preschool children gave informed consent. The main outcome measure was aerobic fit-
ness as measured by a shuttle run test. The same children were measured before and after the
intervention.

Soncini et al. (2007) looked at the survival of amalgam versus composite fillings in teeth
and randomised 267 children aged 6 to 10 to have amalgam fillings and 267 to have composite
fillings. It was deemed simpler to ensure that each child had either amalgam or composite
fillings, and so survival times of the filling were clustered by mouth. In permanent teeth, the
replacement rate was 14.9% of composites versus 10.8% of amalgams, and the repair rate was
2.8% of composites versus 0.4% of amalgams. They concluded that composite restorations
on posterior tooth surfaces in children may require replacement or repair at higher rates than
amalgam restorations, even within 5 years of placement.

1.7 Field versus cohort designs

A summary of the differences between field trials and cohort trials is given in Table 1.9.
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Table 1.9 Contrasts between field trials and cohort trials.

Field or community trials Cohort trials

Emphasis Effect of an intervention at a
cluster level

Effect of an intervention at
the individual patient level

Generalisability If response rate is high, then
likely to be generalisable

Requires a high follow-up
rate

Analysis Cluster level Individual level, allowing for
clustering. Often will use
baseline data as covariates

Because responses within the same subject often have a strong positive correlation, one
can use the baseline measurement as a covariate and usually this will reduce the standard
error of the treatment effect. Thus in theory, a cohort design may be more efficient than
a cross-sectional design. However, Feldman and McKinlay (1992) presented a unified
statistical model that embraces both designs as special cases, thus allowing an assessment
of how the values of different design parameters affect their relative precision. A principal
conclusion from their investigation was that cohort designs have unique disadvantages
that may outweigh any advantage in theoretical efficiency. The first of these is related to
possible instability in cohorts of large size, with the resulting likelihood of subject loss to
follow-up. Although this disadvantage can be compensated for by oversampling at baseline,
this might well negate the original reasons for adopting a cohort design. Differential loss
to follow-up by intervention group also creates the risk of bias. The second disadvantage
is related to the issue of representativeness of the target population, which is invariably
hampered by the ageing of the cohort over time. Assuming that changes related to the ageing
process are independent of the intervention assignment, this effect will not invalidate the
principal comparison of interest. However, it does imply that a difference observed in a
cohort trial with respect to a given outcome variable cannot be directly compared to the
corresponding difference between observed cross-sectional samples. Thus if the primary
questions of interest focus on change at the community level rather than at the level of
the individual, cohort samples are the less natural choice. This point was discussed by
Ukoumunne and Thompson (2001) and Nixon and Thompson (2003) who described and
compared several approaches that might be taken to the analysis of repeated cross-sectional
samples.

1.8 Reasons for cluster trials

The five main reasons for adopting a cluster randomised trial are summarised in Table 1.10.
The first reason for using a cluster trial is fear of contamination. This occurs when subjects

in the control group are exposed to the intervention. In field trials, this is fairly obvious. People
living in the same community are unlikely not to notice a mass education programme deliv-
ered on the television or local newspaper! However, in cohort trials the effect is more subtle.
Doctors trained in a new technique will find it difficult to revert to an old technique at the
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Table 1.10 Reasons for adopting a cluster
randomised controlled trial rather than an
individually randomised controlled trial.

1. Contamination
2. Reflects real-life delivery
3. Convenience
4. Intervention better delivered to groups
5. Ethics

toss of a coin and so may not deliver the standard treatment as they used to do before being
trained to deliver the new treatment. The HOOP (Hands On Or Poised) trial (McCandlish
et al., 1998) was a trial of midwives trained to have their hands either on the perineum or
poised (i.e. only touching if absolutely necessary) while delivering a baby. For each delivery,
they were given a random allocation as to which method they should use. Monitors had to be
employed to ensure that the midwives complied with their allocated intervention. However,
it could be argued that this is not how midwives usually perform. Clinicians do not usually
make random choices when faced with similar patients, and so allowing a clinician to treat
similar patients in a similar way ensures that the trial more closely follows real life.

Another reason is that it may be cheaper and more convenient to deliver an interven-
tion to a group. In the Informed Choice leaflets trial, it was much easier to deliver leaflets
to all the intervention clusters and ensure that they were given out to all expectant mothers.
This was also true of the DESMOND trial, where it was much cheaper to deliver the inter-
vention in groups. It is often easier to deliver an intervention to a group of people when it
may involve expensive pieces of equipment which require training in their use such as in the
REPOSE trial. Also it can be difficult if people notice that others are getting a different treat-
ment. In the DESMOND trial, patients may wonder why other people with the same doctor
were getting different treatment, and demand the same for themselves. It can be more effec-
tive to deliver educational programmes to groups. Patients in the same education programme
will interact with each other and may learn more than if learning on their own. This was
particularly true with DESMOND, where patients learned from each other as well as from
the trainer.

Finally, there are ethical considerations associated with cluster trials. These have been
considered by Weijer et al. (http://crtethics.wikispaces.com) among others. Further discussion
of ethics will be given in Chapter 7, where it will be necessary to include ethical considerations
in the protocol of a study.

Having said this, cluster trials are not a universal panacea, and they are more compli-
cated and larger than conventional individually randomised trial. Puffer, Torgerson and Watson
(2003) argue that the problems of recruitment bias are so severe that in many cases individual
randomised trials might be better. A useful example is given by Gilbody et al. (2008). They
examined whether cluster randomised trials produced baseline imbalances between interven-
tion and control conditions; gave results that are substantially different from individually
randomised trials and gave different results when adjusted for unit clustering. They used
14 cluster randomised trials and 20 individualised trials of the same intervention which was
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collaborative care for depression. They found no baseline imbalances in either cluster ran-
domised or individually randomised studies. Cluster randomised studies gave almost identical
estimates of effect size when compared to individually randomised studies. Their conclusion
was that the additional effort and expense involved in cluster randomised trials need to be
justified when individualised studies might produce robust and believable results.

1.9 Between- and within-cluster variation

It is important to understand the concepts of within- and between-cluster variation and this
is perhaps best illustrated with an example. In the DESMOND trial of diabetic patients, the
primary outcome was the HBA1c, in percent, level at 1-year follow-up. Figure 1.1 shows the
HBA1c outcome for patients in each practice, at 1-year follow-up, by intervention and control
groups from the DESMOND trial (Davies et al., 2008) and by practice. We are interested in the
difference in the mean 1-year HbA1c between the intervention and control practices. However,
one can see that there is a good deal of variation within and between the practices, with some
practices having, in general, high values and some having low values. This illustrates the key
point that we cannot think of the outcomes for individuals as being independent, we need to
allow for the fact that two people in the same practice are more similar than two people selected
at random from different practices. Thus, there is variability, in outcomes, between practices
and variability within practices. The R code to generate this figure is given in Appendix 1.A.3.
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Figure 1.1 HbA1c (%) at 1 year by intervention/control from DESMOND (Davies
et al., 2008).
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1.10 Random-effects models for continuous outcomes

1.10.1 The model

Suppose we have a continuous outcome, yij, for the ith patient in the jth cluster in the cRCT.
A basic linear model assuming continuous outcomes is

yij = 𝛽0 + 𝛽1xij + 𝛼j + 𝜖ij (1.1)

where j= 1, … , k indexes the clusters and i= 1, … , mj indexes the subjects within clusters;
xij is an indicator variable for the experimental group (0= control and 1= intervention); 𝛽0 is
the mean outcome in the control group and 𝛽1 is the intervention effect; 𝜖ij is random error
term with variance 𝜎2

𝜖 and correlation Corr(𝜖ij, 𝜖kj)= 0; (i≠ k) 𝛼j is a random effect of cluster
j across all patients with variance 𝜎2

𝛼 . We assume that 𝛼j and 𝜖ij are independent random
variables with mean zero. This is known as a random-effects model or the random intercept
model. It was first described by Eisenhart (1947).

In statistics, a random-effects model, sometimes called a variance components model,
is a hierarchical or multilevel model of parameters that vary at more than one level. Such
models are particularly appropriate for cluster RCTs and research designs where data for
participants are organised at more than one level (i.e. nested data). The units of analysis are
usually individuals (at a lower level) who are nested within clusters (at a higher level).

A random-effects model inference is made conditionally on the clusters using a single
equation to model the covariate effects and the correlation between observations. Comparisons
are made within a cluster rather than across all patients providing a treatment effect with a
cluster-specific interpretation. In a random-effects model, a separate effect is fitted for each
cluster in either a linear or logistic regression model. The variance of the outcome is separated
into within- and between-cluster components. This provides a measure of how much of the
variability in the outcome between patients can be explained by the cluster which they are in
and also enables the heterogeneity within the data to be more fully explored.

The basic model (1.1) is built upon a number of assumptions. The main one is that we are
assuming that each cluster is sampled from a population of clusters, and the results can be gen-
eralised to this population. It is commonly assumed that 𝛼j and 𝜖ij are Normally distributed, but
this is not necessary for some of the estimation procedures. The basic model assumes that the
random variables have constant variance, but again this can be relaxed. Variation in 𝛼j induces
variation in the mean outcome across the clusters, represented by 𝜎2

𝛼 , the between-cluster vari-
ance. It assumes that the treatment effect is homogeneous across the clusters. This is a realistic
model for any clustering across both treatment arms in which the clustering is unlikely to have
an impact on the treatment effect.

A random-effects model can be contrasted with a fixed-effects model. In a fixed-effects
model, we estimate separate parameters for each cluster. Normally a fixed effect is something
important, such as a treatment effect and we assume that if we repeat the trial the same treat-
ment effect would be seen. However, in a random-effects model, the clusters are not important,
and if we repeat the trial we would not use the same clusters. Thus, a researcher investigating
the effect of patient-centred care for people with diabetes administered by GPs would expect a
similar effect for the intervention for two trials conducted separately in the United Kingdom.
However, the trials would not use the same GPs and so simply putting dummy variables in the
model for GPs would artificially reduce the variability since it would suggest we knew which
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GPs were to be used in the second trial. One can see from model (1.1) that the variance of the
outcome is

V(yij) = 𝜎2
𝛼 + 𝜎2

𝜖

and so that the effect of the clusters if this model pertains is to increase the variability of the
outcome.

1.10.2 The intracluster correlation coefficient

The parameter 𝜎2
𝛼 is the between-cluster (or intracluster) variance and 𝜎2

𝜖 is the within-cluster
variance. For a basic model, we assume that all the k clusters have the same size so that mj =m
for all j. Another generalisation is to allow 𝜎2

𝛼 to vary, for example by treatment group. The
intracluster correlation (ICC) is the ratio of the between-cluster variance to the total variance
of an outcome variable and is often denoted by 𝜌. From model (1.1) we can see the total
variance (V) is given by 𝜎2

𝛼 + 𝜎2
𝜖 .

Thus,

𝜌 =
𝜎2
𝛼

𝜎2
𝛼 + 𝜎2

𝜖

(1.2)

The ICC quantifies the correlation between the outcomes of any two individuals within the
same cluster. It should be noted that, like an ordinary correlation coefficient, 𝜌 cannot exceed
unity. This happens when 𝜎2

𝜖 = 0, in other words when all the values in a cluster are the same,
that is all individuals in the same cluster are identical with respect to the outcome, then 𝜌= 1.
If the values in each cluster are the same, then 𝜌= 0; that is individuals within the same cluster
are no more likely to have similar outcomes than individuals in different clusters. This might
happen if in fact the outcome was at the cluster level. However, unlike an ordinary correlation
coefficient 𝜌 cannot go negative and is bounded by zero, when 𝜎2

𝛼 = 0, which occurs when all
the clusters have the same mean value. However, for real data, the ICC can be negative. This
can occur when there are limited resources to share within clusters, and so if one person in a
cluster gets a large share of resources, then another in the same cluster will get a smaller share
of resources. For example, if a sow is feeding a large number of piglets, then there is often a
runt who gets less than its fair share. This may also happen when doctors treat a number of
patients, more the time spent with one patient is less time for another. In this case, model (1.1)
may not be realistic.

Since 𝜎2
𝛼 is the covariance between any two observations within a cluster, in the case of

when there are only two observations per cluster, the ICC can be estimated by the Pearson’s
correlation coefficient.

1.10.3 Estimating the intracluster correlation (ICC) coefficient

There are a number of ways of estimating the ICC. The simplest, which works best with
balanced data, is from an analysis of variance (ANOVA) model and is described in Appendix
1.A.1. One can also derive the ICC from a random-effects model. We will describe this in
more detail in Chapter 5, but in the meantime we give the R code to do it in Appendix 1.A.3.
There is also a publically available R package ‘ICC’ which estimates the ICC and gives a
confidence interval about the estimate which is also described in Appendix 1.A.3.
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As an example consider a random set of data generated according to model (1.1). The
R program genranddata (given in Appendix 1.A.3) generates a set of random variables accord-
ing to model (1.1) with 𝛽0 = 𝛽1 = 0 and 𝜎𝛼 = 1 and 𝜎𝜖 = 4.36 so that 𝜌= 12/(12 + 4.362)= 0.05.
The R program calcicc (also in Appendix 1.A.3) uses both methods and gives the results in
Textbox 1.1.

We can see that the estimates from both methods are very close and also quite close to
the population ICC of 𝜌= 0.05. One should not expect exactly the same results since the
methods are different. However, most methods give similar results unless the data are very
extreme (outliers and unbalanced cluster sizes), in which case all methods are challenged. We
consider the binary case in the next section.

Textbox 1.1

Output from R program calcicc using data generated by genranddata

ICC derived from one-way ANOVA 0.04645379
ICC derived from random-effects model 0.04645367

1.10.4 Link between the Pearson correlation coefficient and the
intraclass correlation coefficient

Most people are familiar with the Pearson correlation coefficient and it is worth investi-
gating the link between the two. Suppose we have two random variables X1 and X2 which
we think of these as being sampled from the same cluster i. Suppose E(X1)=E(X2)= 0 and
Var(X1)=Var(X2)= 𝜎2, E(X1X2)= 𝜎2𝜌Pearson where 𝜌Pearson is the Pearson correlation coeffi-
cient.

Using model (1.1) we can write X1 as ai + ei1 and X2 as 𝛼i + 𝜖i2 and so 𝜎2 = 𝜎2
𝛼 + 𝜎2

𝜖

Then
E(X1 − X2)2 = E(𝜖i1 − 𝜖i2)2 = 2𝜎2

𝜖

but
E(X1 − X2)2 = E(X1

2) − 2E(X1X2) + E(X2
2) = 2𝜎2 − 2𝜎2𝜌Pearson

and so

𝜌Pearson =
(𝜎2 − 𝜎2

𝜖 )
𝜎2

=
𝜎2
𝛼

𝜎2
= ICC

Thus under model (1.1) the ICC and the Pearson correlation coefficient are the same. It is
perhaps worth remarking that before Fisher derived the ANOVA, the intraclass correlations
were used as an extension of Pearson’s correlations to investigate comparisons of more than
two groups. However, there is a fundamental difference between the ICC and 𝜌Pearson in that
the Pearson’s correlation is based on a regression model y= a+ bx. It does not matter whether
we substitute X1 for y and X2 for x, or vice versa, we get the same correlation, but the regression
model allows b to be negative. In model (1.1), the observations are also ‘exchangeable’ in that
it does not matter which one is written first, and if one exchanged the first for the second in any
cluster it would make no difference to the intraclass correlation. However model (1.1) does not
allow negative correlations which are permissible under a linear regression model. In addition,
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X1 and X2 have the same expectation which is not true for a regression model. A technique
to obtain an estimate which might be expected to give a closer value to the population value
would be the following. If x1 and x2 are the first and second vectors of observations of length
n, concatenate x1 and x2 to give a new vector x12 of length 2n and also concatenate x2 and
x1 to give a new vector x21. This will also have expected value 𝜌, but now the mean value of
the two vectors is the same. We have written an R program pearsonicc to find the Pearson’s
correlation using the usual methods, and the concatenated method and the results are given in
Textbox 1.2. One can see that these estimates are close and give a reasonable estimate of the
population ICC.

Textbox 1.2

Output from R program pearsonicc

Correlation coefficient between x1 and x2 0.04298662
Correlation between x1 : x2 and x2 : x1 0.04143834

If the ICC is small or in fact if 𝜎2
𝛼 = 0, then by chance an estimate may be negative. If

the data were in fact generated by model (1.1), then one cannot have 𝜌= 0, but in practice
of course, one does not know which model generated the data, and negative ICCs can be
observed. Examples of this are when there are finite resources in a cluster, so that if one
individual gets more resource then another gets less. For example, the weights of piglets in
a litter may be negatively correlated, or there may be a finite amount of money for medical
care in a health centre, so that if a large amount of money is spent on one individual, much
less has to be spent on others. A review of the numerical values of ICCs likely to be seen
in primary care has been given by Adams et al. (2004). In general, values between 0.01 and
0.05 are found, but larger values can occur if the outcome is in some way associated with the
cluster. For example, some doctors are more likely to issue a prescription for antibiotics for a
sore throat than others and so if the outcome was an antibiotic prescription, one might expect
quite a high ICC.

1.11 Random-effects models for binary outcomes

1.11.1 The model

For a binary outcome, we have a dependent variable yij with expectation 𝜋ij for the ith patient
in the jth cluster. The basic random-effects logistic model is

log

(
𝜋ij

1 − 𝜋ij

)
= 𝛽0 + 𝛽1xij + 𝛼j (1.3)

Logistic regression is discussed in many books including Campbell (2006). Convention-
ally, we assume that 𝛼j is Normally distributed with variance 𝜎2

𝛼 .
An alternative is to assume that the 𝜋ij are distributed with a Gamma distribution and

conditional on 𝜋ij and we assume the counts have a Poisson distribution. In this case, the
observed counts will have a negative binomial distribution.
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1.11.2 The ICC for binary data

With no individual covariates, we assume that each cluster j has a probability of success of
𝜋j. There are a number of possibilities for the ICC. The simplest is to assume that the 𝜋j
have a constant variance 𝜎2

𝛼 . We also assume that a randomly selected individual from the
population has a probability of success of 𝜋, where 𝜋 is the probability of success for the whole
population. If we assume that the estimate for 𝜋 has variance 𝜋(1 − 𝜋), then the intracluster
correlation is defined as

𝜌 =
𝜎2
α

𝜋(1 − 𝜋)
(1.4)

Another formulation is to assume a model of the form Equation 1.3. In this case,
var(log(𝜋/(1 − 𝜋)))= 1/(𝜋(1 − 𝜋) and so for the logistic model 𝜌=𝜋(1 − 𝜋)𝜎2

𝛼 . It is important
to note the different formulation depending on different models.

As with the case for continuous data, we can estimate the ICC in a number of ways. Perhaps
surprisingly, carrying out an ANOVA in which the dependent variable is simply 0 or 1 gives
a valid estimate of 𝜌, despite the usual Normality assumptions not being met. However, it is
can be estimated using a random-effects model of the form Equation 1.3 in a similar fashion
to that described for the linear model in Section 1.10.2. This is described in more detail in
Chapter 6.

Unlike the continuous case, it can be seen that for binary data the ICC will depend on
the proportion 𝜋, which might be an incidence or a prevalence. If the model (1.4) holds true
and if 𝜋 is very small, then so will be the ICC. Gulliford et al. (2005) looked at empirical
evidence of the result and gave examples of ICCs likely to occur with chosen binary variables
in practice. From 188 ICCs for binary outcomes in general practice, they found the median
prevalence to be 13.1% (interquartile range IQR 3.5–28.4%) and median ICC 0.051 (IQR
0.011–0.094). There were 136 ICCs from a Health Technology Assessment (HTA) review,
with median prevalence 6.5% (IQR 0.4–20.7%) and median ICC 0.006 (IQR 0.0003–0.036).
There was an approximate linear association of log ICC with log prevalence in both data
sets. When the prevalence was 1%, the predicted ICC was 0.008 from the general practice or
0.002 from the HTA, but when the prevalence was 40% the predicted ICC was 0.075 (GPRD,
general practitioner research database) or 0.046 (HTA). They concluded that the prevalence
of an outcome may be used to make an informed assumption about the magnitude of the
intraclass correlation coefficient.

1.11.3 The coefficient of variation

The two sources of variation are captured by 𝜎2
𝛼 and 𝜎2

𝜖 . The problem is that these will vary
depending on the units of measurement. One advantage of 𝜌 is that it is dimensionless and can
be assumed similar for different outcome measures.

Hayes and Moulton (2009) define a different dimensionless variable to summarize the
variability between clusters: the coefficient of variation of clusters (cvc). This is described as
the standard deviation between clusters divided by the overall mean of the outcome. Using
the notation of Equation 1.1 and assuming no covariates, we have

cvc =
𝜎𝛼

𝛽0
(1.5)
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One advantage of the cvc is that it is applicable for continuous variables, rates and propor-
tions. For proportions, we replace 𝜇 with 𝜋 where 𝜋 is the overall proportion of successes:

cvc =
𝜎𝛼

𝜋
(1.6)

1.11.4 Relationship between cvc and 𝝆 for binary data

From Equations 1.3 and 1.6, we get that

𝜌 = cvc2𝜋

1 − 𝜋

Since 𝜌≤ 1, this also means that

cvc ≤

√
1 − 𝜋

𝜋

This can be useful if one has a good idea about the value of 𝜋, but are rather vague about
the value of the cvc.

Thomson, Hayes and Cousens (2009) argue that practical experience suggests that epi-
demiologists may find the cvc easier to use and interpret, since the coefficient of variation (the
standard deviation expressed relative to the mean) is a familiar concept used in many branches
of medicine, whereas few find the intracluster correlation coefficient as an intuitive measure.
When the outcome is continuous, 𝜌 is the more appropriate measure of between-cluster vari-
ability. Knowledge of 𝜌 is sufficient to correct for clustering in a sample size calculation,
(Chapter 3), but knowledge of cvc is not sufficient on its own and a measure of within-cluster
variability is also necessary. Conversely, when the outcome is a person-time rate, cvc is read-
ily defined, but 𝜌 is not as there is no clearly defined unit of observation when working with
a person-time denominator. In Chapter 6, we will discuss how we can use different outcome
measures for binary data, such as an odds ratio or a relative risk. If we assume that an interven-
tion has a constant effect on one such measure, then we cannot necessarily assume the measure
of intracluster variation is constant. Thomson et al. (2009) show that in some circumstances,
it is more likely that cvc will be constant than 𝜌.

We suggest that, in general, one should use 𝜌, but be aware that in what we have termed
field trials, investigators may find cvc more useful.

1.12 The design effect

The design effect (DE) is the ratio of the variance of an outcome measure when clustering is
accounted for to the variance of the outcome measure when clustering is not accounted for. It
is often referred to as the variance inflation factor (VIF) since it measures the amount that one
should increase a variance estimate obtained by ignoring clustering to allow for the clustering
effect. For clusters of equal size m, it can be shown that DE= 1+(m − 1)𝜌. The derivation is
shown in Appendix 1.A.2. This is also called the sample size inflation factor (SSIF) since the
same factor that inflates the variance will also inflate the required sample size. This is because
the required sample size for a trial is directly proportional to the variance of the outcome
measure.
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Suppose we calculated the sample size for an individually randomised trial (using the
effect size, power and significance level) and found we needed n patients per arm. For a cluster
randomised trial with the same parameters, we would need n×DE patients per arm.

It is commonly believed that since the ICC is likely to be small, then the DE is also going to
be small. However, this is to ignore the fact that the DE also includes the number of patients per
cluster. If we only have one patient per cluster, that is m= 1, we have in effect an individually
randomised trial and the DE= 1. However, suppose 𝜌= 0.05, which is by no means uncommon
in trials in primary care. If we have m= 21, that is 21 subjects per cluster, then we find the
DE= 2. This means that a cluster trial with this DE would have to recruit twice as many
patients as the corresponding individually randomised trial. Correspondingly, if we analysed
a cluster trial but conducted an analysis appropriate for an individually randomised trial, the
standard error of our parameter estimates would be underestimated by

√
2, and so we would

be more likely to declare factors statistically significant than expected from the preset Type I
error.

The consequence of this is that one needs to weigh up carefully the counterbalancing needs
of unbiased estimates of the treatment effect, which a cluster trial is more likely to deliver
versus improved precision, which an individually randomised trial will give. In general, since
bias is usually unknown, one would prefer to have an estimate of the treatment effect that is
believed to be unbiased, albeit slightly less precise, and so one would choose a cRCT design
in preference to an individually randomised design. Puffer et al. (2003) in particular argue for
more careful consideration of the options before adopting a cluster trial.

1.13 Commonly asked questions

Should I always use a cluster trial to evaluate an intervention, if both a cluster and indi-
vidually randomised trial are possible?

The general answer is if you can be sure to avoid contamination and can deliver the inter-
vention to an individual, then it may be possible, and indeed better, to use an individually
randomised trial. An example of an individually randomised trial that might have been
clustered is the HOOP trial (McCandlish et al., 1998). The aim of this trial was to com-
pare the effect of two methods of perineal management used during spontaneous vaginal
delivery on the prevalence of perineal pain reported at 10 days after birth. At the end
of the second stage of labour, women were allocated to either the ‘hands on’ method,
in which the midwife’s hands put pressure on the baby’s head and support (‘guard’) the
perineum; lateral flexion is then used to facilitate delivery of the shoulders or the ‘hands
poised’ method, in which the midwife keeps her hands poised, not touching the head or
perineum, allowing spontaneous delivery of the shoulders. The midwives’ compliance
with the allocated policies of hands off or hands poised was reported as being around
70%, and the likelihood of contamination between the treatment groups is high.

1.14 Websources

A video of Allan Donner talking about the basics of cluster trials is given here: http://www
.youtube.com/watch?v=I4gfGl_JBEA
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There are also videos of other aspects of cluster trials by Sandra Eldridge, Mike Campbell,
Ian White and Charles Weijer: http://www.newton.ac.uk/programmes/DAE/seminars/.

The discussion of ethics in cluster trials can be found at: http://crtethics.wikispaces.com.

Exercise
Answer the following as true of false
1. In a cluster randomised trial, the main purposes for adopting a cluster design may be to:

(a) Minimize contamination

(b) Get more power than from an individually randomised trial of same size

(c) Blind patients to the intervention

(d) Effective delivery of the intervention.

2. Field trials

(a) Usually have more clusters than cohort trials

(b) Can be known as cluster–cluster trials

(c) Follow the same subjects over time

(d) May be more representative of a population than a cohort trial.

Appendix 1.A

1.A.1 Estimating the ICC from an analysis of variance

Let MSB and MSW denote the mean square between and mean square within clusters from a
standard one-way ANOVA. Then the usual ANOVA table for Equation 1.1 is as follows:

Source Sum of squares Degrees of freedom Mean square Estimates

Between clusters SSB k − 1 MSB m𝜎2
𝛼 + 𝜎2

𝜖

Within clusters SSW k(m − 1) MSW 𝜎2
𝜖

Total mk − 1

Then we have

𝜌 = MSB − MSW
MSB + (m − 1)MSW

=
S2

B

S2
B + S2

W

where

S2
W = MSW S2

B = MSB − MSW
m

are the sample estimates of 𝜎2
𝜖 and 𝜎2

𝛼 , respectively.
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1.A.2 Derivation of the design effect

Suppose in model (1.1), there were no covariates and all the clusters are of the same size, so
the simple model is

yij = 𝛼j + 𝜖ij (A1)

where 𝛼j and 𝜖ij are assumed independent random variables and where j= 1, … , K are the
index clusters and i= 1, … , m are the index subjects. Then V(yij)= 𝜎2 = 𝜎2

𝛼 + 𝜎2
𝜖 . The pres-

ence of 𝛼j means that yij and yi′j are correlated when i≠ i′, and since E(𝛼j)=E(𝜖ij)= 0 we have
Cov(yij, yi′j)=E(yijyi′j)= 𝜎2

𝛼 .
Now consider

Var(y) = Var

⎛⎜⎜⎜⎝
(∑K

j=1
∑m

i=1 yij

)
mk

⎞⎟⎟⎟⎠ =
1

(mk)2

K∑
j=1

Var

(
m∑

i=1

yij

)
(A2)

Since the first summation is over clusters and the clusters are independent, we can simply
sum over the clusters and take the variance inside the summation.

Now

Var

(
m∑

i=1

yij

)
= E

⎧⎪⎨⎪⎩
(

m∑
i=1

yij

)2⎫⎪⎬⎪⎭ = m2𝜎2
𝛼 + m𝜎2

𝜖

and so Equation A2 becomes

Var(y) =
m2k𝜎2

𝛼 + mk𝜎2
𝜖

(mk)2
=

(
mk

(
m𝜎2

𝛼 + 𝜎2
𝜖

)
(mk)2

= 𝜎2

mk
(1 + 𝜌(m − 1)

)

where 𝜌 = 𝜎2
𝛼∕(𝜎2

𝛼 + 𝜎2
𝜖 ). The term 𝜎2/mk is the variance of the mean under independence and

so the (1+ 𝜌(m − 1)) is the amount we need to inflate the variance under model (1.1).

1.A.3 R programs

Further explanation of the implementation of R is given in Chapter 10.

1.A.3.1 R code to generate Figure 1.1

Program stripchart

setwd("f:\\Cluster RCTs book\\Data\\R data sets")
desmond<-read.table("desmond.txt", header=T)
attach(desmond)
names(desmond)

hba1c1n<-as.numeric(as.character(hba1c1))

par(mfrow=c(2,1))
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stripchart(hba1c1n[random=="I"]∼pract[random=="I"],pch=21,
main="Intervention Practices k=24, patients n=296",
xlab="HbA1c at 1 year", ylab="Practice number")
stripchart(hba1c1n[random=="C"]∼pract[random=="C"],pch=21,
main="Control Practices k=24, patients n=340", xlab="HbA1c
at 1 year", ylab="Practice number")

1.A.3.2 Program to generate clustered data

Program genranddata
This program generates k= 100 clusters of size m= 2, with an ICC of 0.05.

setwd("f:\\Cluster RCTs book\\Data\\R data sets")

#generate 100 clusters each of size 2
k<-100
m<-2

# generate the clusters
c<-gl(k,m)
n<-m*k

#generate the cluster random effects
a1<-rnorm(k,0,1)
a11<-rep(a1, each=m)
#generate the individual random noise
e1<-rnorm(n,0,4.36)
#Now generate the sum
x<-a11+e1

data<-data.frame(x,c)
write.table(data, "rand.txt", col.names=c("x","c"),row.names=F)

1.A.3.3 Program to calculate the ICC from raw data

Program calcicc
This program estimates the ICC generated by genranddata using ANOVA and linear

mixed models.

setwd("f:\\Cluster RCTs book\\Data\\R data sets")
random<-read.table("rand.txt", header=T)
attach(random)
names(random)

# One analysis of variance between clusters

aovmod<-aov(x∼c)

#extract the mean squares
ms<-summary(aovmod)[[1]][[3]]
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#find variance components
s2w<-ms[2]
s2b<-(ms[1]-ms[2])/m
rho<-s2b/(s2w+s2b)

names(rho)<-"ICC derived from one way anova"
rho
#Using a linear mixed model we need to specify that the constant
is fixed and clusters are random
library(nlme)

lmemod<-lme(fixed =x∼1, random=∼1|c)
s2b1<-as.numeric(VarCorr(lmemod))[[1]]
s2w1<-as.numeric(VarCorr(lmemod))[[2]]
rho1<-s2b1/(s2b1+s2w1)
names(rho1)<- "ICC derived from random effects model"
rho1

1.A.3.4 Program to calculate the compute the ICC for paired data using Pearson’s
correlation

Program pearsonicc
This program estimates the ICC from the data generated by genranddata using two forms

of the Pearson correlation.

setwd("f:\\Cluster RCTs book\\Data\\R data sets")
random<-read.table("rand.txt", header=T)
attach(random)

# Finding pearson’s correlation between the first and second vari-
ables
# Generate a variable which indicates the first and second observa-
tion in a cluster

var<-gl(2,1,200)
x1<-x[var==1]
x2<-x[var==2]
r<-cor(x1,x2)
names(r)<- "correlation coefficient between x1 and x2 "
r

# It is better to ensure the means are the same for the two vari-
ables.
# This can be achieved by concatenating x1 and x2 and also x2
with x1 and correlating the extended vectors
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x12<-c(x1,x2)
x21<-c(x2,x1)
r1<-cor(x12,x21)
names(r1)<-" correlation between x1:x2 and x2:x1"
r1

1.A.3.5 Use of user-supplied program ICC

A package ‘ICC’ by Matthew Wolak including a number of functions to assist in the estima-
tion of the ICC is available in R. Functions included an estimate of the ICC from variance
components of a one-way ANOVA and also estimate the number of individuals or groups
necessary to obtain an ICC estimate with a desired confidence interval width.

One needs to ‘load’ and ‘install’ ICC. One of the packages is ICCest which estimates the
ICC and gives a 95% confidence interval and the results are shown below.

> ICCest(c,x, data, 0.05, "THD")
$ICC
[1] 0.04652074
$LowerCI
[1] -0.1498308
$UpperCI
[1] 0.2395293
$N
[1] 100
$k
[1] 2
$varw
[1] 20.8661
$vara
[1] 1.018068

The confidence intervals using the method ‘THD’ (Thomas, Hultquist and Donner) are
not ideal since they allow negative numbers, especially when the ICC is low and the numbers
of subjects per cluster is small. In this case, the second method from calcicc is better.

Using the same data, our program calcicc gives the same result for the estimate.

> rho
ICC derived from one way anova
0.04652074


