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The EM algorithm, variational
approximations and
expectation propagation
for mixtures
D. Michael Titterington

1.1 Preamble

The material in this chapter is largely tutorial in nature. The main goal is to
review two types of deterministic approximation, variational approximations and
the expectation propagation approach, which have been developed mainly in the
computer science literature, but with some statistical antecedents, to assist approxi-
mate Bayesian inference. However, we believe that it is helpful to preface discussion
of these methods with an elementary reminder of the EM algorithm as a way of
computing posterior modes. All three approaches have now been applied to many
model types, but we shall just mention them in the context of mixtures, and only a
very small number of types of mixture at that.
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2 MIXTURES

1.2 The EM algorithm

1.2.1 Introduction to the algorithm

Parameter estimation in mixture models often goes hand-in-hand with a discussion
of the EM algorithm. This is especially so if the objective is maximum likelihood
estimation, but the algorithm is also relevant in the Bayesian approach if maximum
a posteriori estimates are required. If we have a set of data D from a parametric
model, with parameter θ, probably multidimensional, and with likelihood function
p(D|θ) and prior density p(θ), then the posterior density for θ is

p(θ|D) ∝ p(D|θ)p(θ),

and therefore the posterior mode θ̂MAP is the maximiser of p(D|θ)p(θ) = p(D, θ).
Of course, if the prior density is uniform then the posterior mode is the same as the
maximum likelihood estimate. If explicit formulae for the posterior mode do not
exist then recourse has to be made to numerical methods, and the EM algorithm is a
popular general method in contexts that involve incomplete data, either explicitly or
by construct. Mixture data fall into this category, with the component membership
indicators z regarded as missing values.

The EM algorithm is as follows. With data D and initial guess θ(0) for θ̂MAP , a
sequence {θ(m)} of values are generated from the following double-step that creates
θ(m+1) from θ(m).

• E-step: Evaluate

Q(θ; θ(m)) = E{log[p(D, z, θ)]|D, θ(m)}
=
∑

z

log[p(D, z, θ)] p(z|D, θ(m))

=
∑

z

log[p(D, z|θ)] p(z|D, θ(m)) + p(θ).

• M-step: Find θ = θ(m+1) to maximise Q(θ; θ(m)) with respect to θ.

Remarks

1. In many other incomplete data problems the missing values z are continuous, in
which case the summation is replaced by an integration in the above.

2. Not surprisingly, Q(θ; θ(m)) is usually very like a complete-data log-posterior,
apart from a constant that is independent of θ, so that the M-step is easy or
difficult according as calculation of the complete-data posterior mode is easy
or difficult.

3. The usual monotonicity proof of the EM algorithm in the maximum-likelihood
context can be used, with minimal adaptation, to show that

log[p(D, θ(m+1))] ≥ log[p(D, θ(m))].
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Thus, the EM algorithm ‘improves’ p(D, θ) at each stage and, provided the
posterior density for θ is locally bounded, the values of p(D, θ(m)) should con-
verge to a local maximum of p(D, θ). The corresponding sequence {θ(m)} will
also often converge, one hopes to θ̂MAP , but convergence may not occur if, for
instance, p(D, θ) contains a ridge. The niceties of convergence properties are
discussed in detail, for maximum likelihood, in Chapter 3 of McLachlan and
Krishnan (1997).

1.2.2 The E-step and the M-step for the mixing weights

Suppose now that the data are a random sampleD = {y1, . . . , yn} from a distribution
with probability density function

p(y|θ) =
k∑

j=1

λjfj(y|φj),

where λ = (λ1, . . . , λk) are the mixing weights, the fj are the component densities,
each corresponding to a subpopulation, and k is finite. The density fj is parame-
terised by φj and the set of all these is to be called φ. Often we shall assume that the
component densities are of the same type, in which case we shall omit the subscript
j from fj . The complete set of parameters is θ = (λ, φ).

The complete-data joint distribution can be conveniently written as

p(D, z, θ) =
n∏

i=1

⎧⎨
⎩

k∏
j=1

[λjfj(yi|φj)]zij

⎫⎬
⎭p(θ),

with the help of the indicator notation, where zij = 1 if the ith observation comes
from component j and is zero otherwise. Thus

log[p(D, z, θ)] =
n∑

i=1

k∑
j=1

zij log[λjfj(yi|φj)] + log p(θ).

For the E-step of the EM algorithm all that we have to compute are the expec-
tations of the indicator variables. Given θ(m) = (λ(m), φ(m)), we obtain

z
(m)
ij = P(zij = 1|yi, θ

(m))

= P(ith observation belongs to component j|yi, θ
(m))

= λ
(m)
j fj(yi|φ(m)

j )∑
l λ

(m)
l fl(yi|φ(m)

l )
,
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for each i, j. We now have

Q(θ; θ(m)) =
n∑

i=1

k∑
j=1

z
(m)
ij log[λjfj(yi|φj)] + log p(θ)

=
k∑

j=1

n
(m)
j log λj +

n∑
i=1

k∑
j=1

z
(m)
ij log fj(yi|φj) + log p(θ)

= Q1(λ) + Q2(φ) + log p(θ),

say, where n
(m)
j =∑n

i=1 z
(m)
ij , a ‘pseudo’ sample size associated with subpopulation

j. (In the case of complete data, nj =∑n
i=1 zij is precisely the sample size for

subpopulation j.)
We now consider the M-step for the mixing weights λ. Before this we make

some assumptions about the prior distributions. In particular, we assume that λ and
φ are a priori independent and that the prior for λ takes a convenient form, namely
that which would be conjugate were the data complete. Thus, we assume that, a
priori, λ ∼ Dir(a(0)); that is,

p(λ) ∝
k∏

j=1

λ
a

(0)
j

−1
j ,

for prescribed hyperparameters a(0) = {a(0)
j }. Clearly, λ(m+1) must maximise

k∑
j=1

(n(m)
j + a

(0)
j − 1) log λj,

which is essentially a log-posterior associated with multinomial data. Thus

λ
(m+1)
j = (n(m)

j + a
(0)
j − 1)/(n + a(0)

. − k),

where a(0)
. =∑j a

(0)
j .

Example 1: Mixture of two known densities

In this simplest case with k = 2, write λ1 = λ = 1 − λ2. Then the iteration is

λ(r+1) = (n(m)
1 + a

(0)
1 − 1)/(n + a(0)

. − 2). (1.1)

In examples involving mixtures of known densities, this completes the analy-
sis. Otherwise the nature of the M-step for φ depends on the model used for the
component densities.

1.2.3 The M-step for mixtures of univariate Gaussian
distributions

This is by far the most commonly used finite mixture in practice. Here,
for j = 1, . . . , k, and using the natural notation for means and variances of
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Gaussian distributions,

fj(y|φj) = f (y|μj, σ
2
j )

= (2πσ2
j )−1/2exp[−(y − μj)2/(2σ2

j )].

Thus

Q2(φ) = const. − 1

2

k∑
j=1

(
n

(m)
j log σ2

j + 1

σ2
j

n∑
i=1

z
(m)
ij (yi − μj)2

)
,

which is very like a sum of k Gaussian log-likelihoods, with the z
(m)
ij included.

For the prior p(φ) we make the convenient assumptions that the parameters
corresponding to the different components are a priori independent, with densities
that belong to the appropriate conjugate families. Thus

p(φ) =
k∏

j=1

[p(μj|τj)p(τj)],

in which τj = 1/σ2
j denotes the jth component’s precision,

p(μj|τj) = N[μj; ρ(0)
j , (b(0)

j τj)−1],

p(τj) = Ga(τj; c(0)
j , d

(0)
j ),

where N[μj; ρ(0)
j , (b(0)

j τj)−1] denotes the density of the N[ρ(0)
j , (b(0)

j τj)−1] distribu-

tion and Ga(τj; c(0)
j , d

(0)
j ) denotes the density of the Ga(c(0)

j , d
(0)
j ) distribution. Thus,

for a given j, μ
(m+1)
j and σ

2(m+1)
j are the joint maximisers of

−1

2
n

(m)
j log σ2

j − 1

2σ2
j

n∑
i=1

z
(m)
ij (yi − μj)2 − (c(0)

j − 1) log σ2
j − d

(0)
j /σ2

j

−1

2
log σ2

j − b
(0)
j

2σ2
j

(ρ(0)
j − μj)2.

Straightforward calculus gives

μ
(m+1)
j =

∑n
i=1 z

(m)
ij yi + b

(0)
j ρ

(0)
j

n
(m)
j + b

(0)
j

,

σ
2(m+1)
j =

∑n
i=1 z

(m)
ij (yi − μ

(m+1)
j )2 + 2d

(0)
j + b

(0)
j (ρ(0)

j − μ
(m+1)
j )2

n
(m)
j + 2c

(0)
j − 1

.

As usual, note the similarity in structure with formulae for posterior modes for
Gaussian parameters given complete data.
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1.2.4 M-step for mixtures of regular exponential family
distributions formulated in terms of the natural
parameters

Here log fj(y|φj) = const. + t(y)�φj − C(φj) and therefore

Q2(φ) = const. +
∑

i

∑
j

z
(m)
ij [t(yi)

�φj − C(φj)]

= const. +
∑

j

⎧⎨
⎩
[∑

i

z
(m)
ij t(yi)

]�
φj − n

(m)
j C(φj)

⎫⎬
⎭.

Then an appropriate prior for φj has the form

log p(φj) = d
(0)�
j φj − c

(0)
j C(φj) + const,

and therefore φ(m+1) is the maximiser of[∑
i

z
(m)
ij t(yi) + d

(0)
j

]�
φj − (n(m)

j + c
(0)
j )C(φj).

Differentiation with respect to φ leads to the following equation satisfied by
φj = φ

(m+1)
j :

∑
i

z
(m)
ij t(yi) + d

(0)
j = (n(m)

j + c
(0)
j )

∂C(φj)

∂φj

.

However, if we parameterise by

ψj := E[t(Y )],

in which the expectation is over Y assumed to belong to the jth subpopulation, then

ψj = ∂C(φj)

∂φj

,

so the M-step is just

ψ
(m+1)
j =

∑n
i=1 z

(m)
ij t(yi) + d

(0)
j

n
(m)
j + c

(0)
j

.

Example 2: Mixture of Poisson distributions

In this example the jth component density can be written as

fj(y|φj) ∝ e−φjφ
y
j ,
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so that an appropriate conjugate prior for φj is a Ga(c(0)
j , d

(0)
j ) distribution. Then it

is easy to see that the M-step of the EM algorithm leads to

φ
(m+1)
j =

∑n
i=1 z

(m)
ij yi + c

(0)
j − 1

n
(m)
j + d

(0)
j

.

The terms in Q(θ; θ(m)) that involve φj constitute, up to an additive constant, the
logarithm of a Ga(c(m+1)

j , d
(m+1)
j ) density function, with

c
(m+1)
j =

n∑
i=1

z
(m)
ij yi + c

(0)
j ,

d
(m+1)
j = n

(m)
j + d

(0)
j .

Example 3: Mixture of exponential distributions

In the ‘natural’ parameterisation,

fj(y|φj) = φjexp(−φjy),

so that t(y) = −y, C(φj) = −log φj and ψj = −1/φj. To fit in with the previous
notation, we assume that the prior for φj is a Ga(c(0)

j , d
(0)
j ) distribution. Thus the

M-step is

ψ
(m+1)
j = −

∑n
i=1 z

(m)
ij yi + d

(0)
j

n
(m)
j + c

(0)
j − 1

,

from which φ
(m+1)
j = −1/ψ

(m+1)
j can be obtained.

1.2.5 Application to other mixtures

Application of EM to various other specific mixture models is discussed in
monographs such as Titterington et al. (1985) and McLachlan and Peel (2000),
not to mention many individual papers. Included in these special cases is that
of hidden Markov models, more precisely called hidden Markov chain mod-
els. In a mixture sample the complete data corresponding to the ith observation
consist of observed data yi together with the component-membership indicators
zi = {zij, j = 1, . . . , k}. In a mixture sample the {zi} are missing or ‘hidden’, it is
assumed that the ys for different observations are independent, given the zs, and
also that the zs are themselves independent. In the hidden Markov model, this sec-
ond assumption is modified; instead, it is assumed that the {zi, i = 1, . . . , n} come
from a homogeneous, first-order Markov chain with states corresponding to the
component subpopulations. Thus, dependence is assumed, but is of the simplest,
one-dimensional kind. This model is very popular, in areas such as ecology, speech
modelling and DNA sequencing, and associated methodology has been developed
based on both maximum likelihood (Rabiner, 1989) and the Bayesian approach
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(Robert et al., 1993). The dependence among the hidden variables leads to addi-
tional complications, in comparison to the case of mixture data, but typically not to
a severe degree. More precisely, the E-step in the EM algorithm for finding a poste-
rior mode is not explicit, but requires a (terminating) so-called forwards–backwards
algorithm.

1.2.6 EM as a double expectation

There is an appealing interpretation of EM as a double maximisation rather than
as an expectation followed by a maximisation. The idea goes back at least as far
as Csiszár and Tusnády (1984) but has more recently been set out clearly, in the
context of maximum likelihood estimation, by Neal and Hinton (1999). The version
corresponding to calculation of a Bayesian posterior mode with our notation goes
as follows. Define

F (q, θ) =
∑

z

q(z)log
[
p(D, z, θ)

q(z)

]
,

where q is a density function, and suppose that we are at stage m in the algorithm.

• The first step is to choose q = q(m) to maximise F (q, θ(m)). Since we can write

F (q, θ(m)) =
∑

z

q(z)log
[
p(z|D, θ(m))

q(z)

]
+ log p(D, θ(m)),

the solution is to take q(m)(z) = p(z|D, θ(m)).
• The second step is to choose θ = θ(m+1) to maximise F (q(m), θ). This amounts to

maximising Q(θ; θ(m)), which is just the EM algorithm.

It is easy to see that

F (q(m), θ(m)) = log p(D, θ(m)),

and therefore the above alternating maximisation technique leads to monotonicity:

log p(D, θ(m)) = F (q(m), θ(m)) ≤ F (q(m), θ(m+1)) ≤ F (q(m+1), θ(m+1))

= log p(D, θ(m+1)). (1.2)

1.3 Variational approximations

1.3.1 Preamble

Exact Bayesian analysis of mixture data is complicated, from a computational point
of view, because the likelihood function, in expanded form, consists of the sum of
a large number of terms. In practice, the use of some form of approximation is
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inevitable, and much space has been devoted to the idea of approximating the
posterior density or predictive density of interest stochastically, in the form of a
set of realisations from the distribution, typically created by an MCMC procedure.
In principle the resulting inferences will be asymptotically ‘correct’, in that the
empirical distribution associated with a very large set of realisations should be very
similar to the target distribution. However, practical difficulties may arise, especially
for problems involving many observations and many parameters, because of stor-
age costs, computation time, the need to confirm convergence and so on. These
considerations have led to the development of deterministic approximations to
complicated distributions. In the next two sections we describe two such approaches,
based respectively on variational approximations and on expectation propaga-
tion. We shall see in this section that, unlike with MCMC methods, the resulting
variational approximations are not exact, even asymptotically as n → ∞, but they
are less unwieldy and this may be sufficiently attractive to outweigh technical
considerations. In fact some attractive asymptotic properties do hold, as is
discussed in Section 1.3.6.

1.3.2 Introduction to variational approximations

The fundamental idea is very natural, namely to identify a best approximating den-
sity q to a target density p, where ‘best’ means the minimisation of some ‘distance’
between q and p. There are many measures of distance between density functions,
but the one generally used in this context is the Kullback–Leibler directed diver-
gence kl(q, p), defined by

kl(q, p) =
∫

q log(q/p). (1.3)

Of course, kl(q, p) is not symmetric in its arguments and is therefore not a metric,
but it is nonnegative, and zero only if q and p are the same except on a set of measure
zero. Without further constraints, the optimal q is of course p, but in practice the
whole point is that the p in question is very complicated and the optimisation is
carried out subject to approximating but facilitating constraints being imposed on
q. In many applications the target, p, is pD = p(·|D), the conditional density of a
set of ‘unobservables’, u, conditional on a set of observed data, D, and q is chosen
to minimise

kl(q, pD) =
∫

q(u) log
[
q(u)/p(u|D)

]
du,

subject to simplifying constraints on q.
The same solution yields a lower bound on p(D), the (marginal) probability of

the data. This follows because

log p(D) =
∫

q(u)log[p(D, u)/q(u)]du + kl(q, pD),
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as can be seen by combining the two terms on the right-hand side. The properties
of the Kullback–Leibler divergence then both provide the desired lower bound, in
that then

log p(D) ≥
∫

q(u)log[p(D, u)/q(u)]du = F(q), (1.4)

say, and demonstrate that a q that minimises kl(q, pD) provides the best lower
bound for log p(D). The right-hand side of (1.4), F(q), is known in statistical
physics as the free energy associated with q. The optimum q can be interpreted
as the maximiser of the free energy, and it is this interpretation that stimulates the
methodology described in this chapter.

In a non-Bayesian context these results permit the approximation of a likelihood
function corresponding to a missing-data problem. Here u represents the missing
data and (D, u) the complete data. Thus, the target for q is the conditional density
of the missing data, given the observed data, evaluated at a specified value θ for
the parameters, and (1.4) provides a lower bound for the observed-data loglikeli-
hood, again for the specified value of θ. More discussion of this use of variational
approximations, with references, is given in Section 3.1 of Titterington (2004).

In the Bayesian context, the unobservables include the parameters themselves, as
well as any missing values. Thus u = (θ, z), where z denotes the missing data, which
for us are the mixture component indicators. The target for q is therefore p(θ, z|D),
the posterior density of the parameters and the missing values, and (1.4) provides
a lower bound for the marginal loglikelihood for the observed data. This marginal
likelihood is called the ‘evidence’ by MacKay (1992) or the Type-II likelihood, and
it is a key component of Bayes factors in model-comparison contexts. As we have
said, constraints have to be imposed on q in order to create a workable procedure,
and the standard approximation is to assume a factorised form,

q(θ, z) = q(θ)(θ)q(z)(z),

for q. We are therefore imposing a (posterior) assumption of independence between
the parameters and the missing values. This is clearly a substantive concession,
and it is crucial to assess the degree to which the extra computational feasibility
counteracts the loss of accuracy. One consequence of the assumption is that the
factor q(θ)(θ) represents the variational approximation to the ‘true’ posterior, p(θ|D).
The lower bound in (1.4) is

log p(D) ≥
∫ ∑

z

q(θ)(θ)q(z)(z)log[p(D, z, θ)/q(θ)(θ)q(z)(z)]dθ = F(q(θ), q(z)),

(1.5)
say, and can also be written

log p(D) ≥
∫

q(θ)(θ)

{∑
z

q(z)(z)log[p(D, z|θ)/q(z)(z)] + log[p(θ)/q(θ)(θ)]

}
dθ.
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The optimal q(θ) and q(z) maximise the right-hand side of (1.5). Thus, the two factors
respectively maximise the coupled formulae∫

q(θ)(θ) log
(

exp{∑ q(z)(z)log[p(D, z, θ)]}
q(θ)(θ)

)
dθ, (1.6)

∑
q(z)(z) log

(
exp{∫ q(θ)(θ)log[p(D, z, θ)]dθ}

q(z)(z)

)
. (1.7)

It follows that the optimum q(θ) and q(z) satisfy

q(θ)(θ) ∝ exp
{∑

q(z)(z)log[p(D, z, θ)]
}

(1.8)

and

q(z)(z) ∝ exp
{∫

q(θ)(θ)log[p(D, z, θ)]dθ

}
. (1.9)

Explicit solution of these equations will not be possible. However, writing the
equations in the shorthand form q(θ) = T (θ)(q(z)), q(z) = T (z)(q(θ)) suggests the fol-
lowing iterative algorithm for computing q(θ) and q(z) from an initial q(z) = q(z)(0) :
for m = 0, 1, . . ., calculate

q(θ)(m+1) = T (θ)(q(z)(m)),

q(z)(m+1) = T (z)(q(θ)(m+1)).

(1.10)

The construction of the algorithm is such that, so far as the ‘free energy’
F(q(θ), q(z)) in (1.5) is concerned,

F(q(θ)(m), q(z)(m)) ≤ F(q(θ)(m+1), q(z)(m)) ≤ F(q(θ)(m+1), q(z)(m+1)), (1.11)

for m = 1, 2, . . . , so that the free energy is monotonically increasing and bounded
above by log p(D), and therefore the sequence of free energies converges. This
behaviour is a direct parallel of that of the EM algorithm; compare (1.11) with
(1.2). Whether or not there are multiple local maxima, and so on, is a different
issue; in fact the existence of multiple local maxima, or multiple fixed points of the
algorithm, is a very common phenomenon.

Again the reader is referred to Titterington (2004), and to Bishop (2006), for
general discussions of variational Bayes approaches to missing-data problems and
a substantial body of references.

1.3.3 Application of variational Bayes to mixture problems

We shall consider some of the same examples as those used in section 1.2 about the
EM algorithm, with the intention of revealing strong methodological similarities
between the two approaches.
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Example 4: Mixture of k known densities

Recall that here we assume that the observed data are a random sample
D = {y1, . . . , yn} from a distribution with probability density function

p(y|θ) =
k∑

j=1

λjfj(y),

where the fjs are known so that θ just consists of the λjs. In this case,

p(D, z, θ) =
n∏

i=1

k∏
j=1

(λzijf
zij

ij )p(θ),

where zij = 1 if the ith observation comes from component j and is zero otherwise,
fij = fj(yi) and p(θ) is the prior density for θ. If we assume a Dir(a(0)) prior
for θ, then

p(D, z, θ) ∝
k∏

j=1

λ

∑
i
zij+a

(0)
j

−1
j ,

so that

∑
z

q(z)(z)log[p(D, z, θ)] =
k∑

j=1

(∑
i

q
(z)
ij + a

(0)
j − 1

)
log λj + const,

where ‘const.’ does not depend on θ and q
(z)
ij is the marginal probability that

zij = 1, according to the distribution q(z)(z). From (1.8), therefore, the optimal
q(θ)(θ) density is that of the Dir(a) distribution, where aj =∑i q

(z)
ij + a

(0)
j , for

j = 1, . . . , k.

Next we identify the optimal q(z)(z) as a function of q(θ)(θ). We have

∫
q(θ)(θ)log[p(D, z, θ)]dθ =

n∑
i=1

k∑
j=1

zij[log(φ(q)
j ) + logfij] + const,

where φ
(q)
j = exp[Eq(θ) log(λj)] and now the ‘const.’ is independent of the {zij}. If

we substitute this on the right-hand side of (1.9) we see that the optimal qz takes a
factorised form, with one factor for each observation, and that the optimal factors
are defined by

q
(z)
ij ∝ fijφ

(q)
j ,

for j = 1, . . . k, subject to
∑

j q
(z)
ij = 1, for each i. Properties of the Dir(a) dis-

tribution imply that Eq(θ) log(λj) = �(aj) − �(a.), where � denotes the digamma
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function and a. =∑j aj. Thus, the equations for q(z) are

q
(z)
ij = fijexp[�(aj) − �(a.)]/

k∑
r=1

firexp[�(ar) − �(a.)],

for each i and j. As predicted earlier, clearly the equations for the {aj}, which
define the Dirichlet distribution that represents the variational approximation to the
posterior distribution of θ, and the {q(z)

ij } cannot be solved explicitly, but the version
of the iterative algorithm (1.10) works as follows. Initialise, for example by choosing
q

(z)(0)
ij = fija

(0)
j /(
∑k

r=1 fira
(0)
r ), for each i and j, and carry out the following steps,

for m = 0, 1, . . ..

• Step 1: For j = 1, . . . , k, calculate

a
(m+1)
j =

∑
i

q
(z)(m)
ij + a

(0)
j . (1.12)

• Step 2: For i = 1, . . . , n and j = 1, 2, calculate

q
(z)(m+1)
ij = fijexp

[
�(a(m+1)

j ) − �(a(m+1)
. )

]
/

k∑
r=1

firexp
[
�(a(m+1)

r ) − �(a(m+1)
. )

]
.

(1.13)

Note the strong similarity between Step 1 and an EM algorithm M-step and
between Step 2 and an EM-algorithm E-step, the major difference being the
replacement of z

(m)
ij by q

(z)(m)
ij . Indeed, in some of the literature these algorithms

are called ‘variational EM’.

Example 5: Mixture of k univariate Gaussian densities

In this case

p(y|θ) =
k∑

j=1

λjN(y; μj, σ
2
j ),

where λ = {λj} are the mixing weights, μ = {μj} are the component means and
σ = {σ2

j } are the component variances, so that θ = (λ, μ, σ). Given data
D = {yi, i = 1, . . . , n}, we have

p(D, z, θ) =
n∏

i=1

k∏
j=1

[
λjN(yi; μj, σ

2
j )
]zij

p(θ).

At this point it is revealing to return to Example 4 for a couple of remarks.
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1. The variational posterior for θ there took the form of a Dirichlet distribution,
as a result of the factorisation assumption about q(θ, z) and of the choice of
a Dirichlet prior. In other words, having chosen the traditional complete-data
conjugate family of priors, conjugacy was obtained for the variational method.

2. The joint variational approximation for the distribution of z took a factorised
form, essentially because p(D, z, θ) took the form of a product over i; in other
words the (yi, zi) are independent over i, where zi = {zij, j = 1, . . . .k}.

The second remark holds again here, so that we shall have

q
(z)
ij ∝ exp

{∫
q(θ)(θ)log[p(yi, zij = 1, θ)]dθ

}
, (1.14)

for each i and j, normalised so that
∑

j q
(z)
ij = 1, for each i.

Also, if we choose a complete-data conjugate prior for θ then the optimal q(θ) will
be a member of that family. The appropriate hyperparameters will satisfy equations
interlinked with those for the {q(z)

ij } that can be solved iteratively, by alternately

updating the hyperparameters and the {q(z)
ij }. This structure will clearly obtain for a

wide range of other examples, but we concentrate on the details for the univariate
Gaussian mixture, for which the appropriate prior density takes the form mentioned
before, namely

p(θ) = p(λ, μ, σ) = p(λ)
k∏

j=1

[p(μj|τj)p(τj)],

in which τj = 1/σ2
j denotes the jth component precision,

p(λ) = Dir(λ; a(0)),

p(μj|τj) = N[μj; ρ(0)
j , (b(0)

j τj)−1],

p(τj) = Ga(τj; c(0)
j , d

(0)
j ),

where Dir(λ; a(0)) denotes the density of the Dirichlet distribution with parameters
a(0) = {a(0)

j , j = 1, . . . , k}, and the other notation has been defined already.

Often the priors will be exchangeable, so that all the c
(0)
j s will be the same, and

so on, but we shall work through the more general case. The optimal variational
approximation q(θ)(θ) then takes the form

q(θ)(θ) = q(λ)(λ)
∏
j

[q(μj |τj)(μj|τj)q(τj)(τj)],

within which the factors are given by

q(λ)(λ) = Dir(λ; a),

q(μj |τj)(μj|τj) = N[μj; ρj, (bjτj)−1],

q(τj)(τj) = Ga(τj; cj, dj),
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where the hyperparameters satisfy

aj =
n∑

i=1

q
(z)
ij + a

(0)
j ,

ρj =
(

n∑
i=1

q
(z)
ij yi + b

(0)
j ρ

(0)
j

)
/

(
n∑

i=1

q
(z)
ij + b

(0)
j

)
,

bj =
n∑

i=1

q
(z)
ij + b

(0)
j ,

cj = 1

2

n∑
i=1

q
(z)
ij + c

(0)
j ,

dj = 1

2

[
n∑

i=1

q
(z)
ij (yi − μ̄j)2 + b

(0)
j

(
n∑

i=1

q
(z)
ij

)
(μ̄j − ρ

(0)
j )2/

(
n∑

i=1

q
(z)
ij + b

(0)
j

)]
+ d

(0)
j ,

in which μ̄j =∑n
i=1 q

(z)
ij yi/

∑n
i=1 q

(z)
ij , for each j, representing a pseudo

sample mean for component j in the same way that
∑

i q
(z)
ij represents a pseudo

sample size.
If we write the total set of hyperparameters as h, then the above equations take

the form

h = G1(q(z)). (1.15)

We now have to identify the optimal q(z)(z) as a function of q(θ)(θ) or, to be more
specific, as a function of the associated hyperparameters h. As we have seen, for
each i we have

q
(z)
ij ∝ exp

{∫
q(θ)(θ)log[p(yi, zij = 1, θ)]dθ

}

= exp

⎧⎨
⎩
∫

q(θ)(θ)
∑

j

zij[log(λj) + 1

2
log(τj) − 1

2
τj(yi − μj)2]dθ

⎫⎬
⎭+ const

= exp

⎛
⎝∑

j

zij{Eq(θ) log(λj) + 1

2
Eq(θ) log(τj) − 1

2
Eq(θ) [τj(yi − μj)2]}

⎞
⎠+ const

From Example 1 we know that

Eq(θ) log(λj) = �(aj) − �(a.).

Also, from properties of the gamma distribution, we have

Eq(θ) log(τj) = �(cj) − log(dj),

and, averaging out first conditionally on τj and then over τj , we obtain

Eq(θ) [τj(yi − μj)2] = cjd
−1
j (yi − ρj)2 + b−1

j .
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Thus

q
(z)
ij ∝ exp

(
�(aj) + 1

2
[�(cj) − log(dj)] − 1

2
[cjd

−1
j (yi − ρj)2 + b−1

j ]
)

,

with the normalisation carried out over j for each i. The set of relationships can be
represented concisely in the form

q(z) = G2(h). (1.16)

The obvious algorithm for obtaining the variational approximations involves
initialising, by setting q(z) to some q(z)(0), and then calculating h(m+1) = G1(q(z)(m))
and q(z)(m+1) = G2(h(m+1)), for m = 0, 1, . . . . Again, this is the form of (1.10)
corresponding to this example. Since the component densities are unknown, ini-
tialisation is not so straightforward, especially if exchangeable priors are assumed
for the parameters in the component densities. An ad hoc approach that seemed to
be adequate in practice is to perform a cluster analysis of the data into k clusters
and to base the initial q(z) on that. For univariate data the crude method of using
sample quantiles to determine the clusters can be adequate, and for multivariate
data a k-means clustering can be effective enough.

1.3.4 Application to other mixture problems

As already mentioned, Titterington (2004) and Bishop (2006) list many references
to particular cases of variational Bayes. The case of mixtures of multivariate Gaus-
sian distributions has been treated in a number of places. The natural analogue of
the univariate case as discussed in Example 5 is considered by McGrory (2005)
and McGrory and Titterington (2007). The usual conjugate prior is used for the pa-
rameters of the component distributions, namely independent Wishart distributions
for the inverses of the covariance matrices and independent Gaussian priors for the
mean vectors, conditionally on the inverse covariance matrices. The version of the
variational posterior distribution, q(θ)(θ), naturally has the same structure.

The same mixture model was investigated by Corduneanu and Bishop (2001),
but with a different structure for the prior. The prior distributions for the component
means were independent Gaussians with zero means, but with covariance matrices
that were βI, where I is the identity matrix and β is a positive scalar; this is clearly
different from the usual conjugate prior structure. Furthermore, they did not assume
any prior distribution for the mixing weights. Instead, they kept the mixing weights
λ as fixed parameters and chose q(θ)(θ)q(z)(z), where θ consists of the component
mean vectors and precision matrices, so as to maximise

∑
z

∫
q(θ)(θ)log[(D, z, θ|λ)/q(θ)(θ)q(z)(z)]dθ,

which is a lower bound Fλ(q) for the ‘marginal loglikelihood’ log p(D|λ). Cor-
duneanu and Bishop (2001) alternately calculate the optimal q for the current value
of λ and then obtain λ so as to maximise Fλ(q) for that q. In fact they only perform
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one iteration of the algorithm for the calculation of the optimal q before moving on
to obtain a new λ. As the algorithm progresses the values of Fλ increase, reflecting
the fact that the algorithm is similar to the generalised EM algorithm (Dempster
et al., 1977). Hyperparameters such as β are pre-set, although explicit procedures
are not stated in the paper.

The method of Corduneanu and Bishop (2001) is unconventional in statistical
terms in not using the usual structure for the prior distributions for the component
mean vectors and in not treating the mixing weights in a fully Bayesian way, as was
done in McGrory (2005) and McGrory and Titterington (2007). The more traditional
structure is also followed by Ueda and Ghahramani (2002), who consider a more
complicated mixture model known as the mixture-of-experts model (Jordan and
Jacobs, 1994). This model assumes the existence of covariates, the mixing weights
depend on the covariates and the component distributions correspond to regression
models, usually Gaussian, again depending on the covariates. The calculations for
the variational approach involve much careful detail but are again evocative of
complete-data conjugate Bayesian analysis.

Ueda and Ghahramani (2002) emphasise other issues beyond the calculation
of approximate posterior distributions, and in particular they cover prediction and
model choice. So far as prediction is concerned, in the case of ‘ordinary’ Gaussian
mixtures, the calculation of the predictive density of a new observation is straight-
forward, being a mixture of the corresponding component predictive densities, with
mixing weights given by the means of the variational posterior distribution for the
mixing weights. In the univariate case this gives a mixture of Student’s t distribu-
tions. In the case of mixture-of-experts models the complexity of the mixing weights
requires a mild amount of approximation in order to obtain a closed-form predictive
density. Ueda and Ghahramani deal with model choice by assuming a specified finite
class of models, with associated prior probabilities, incorporating a factor q(M)(m)
in the formula to represent the variational posterior distribution on the class of mod-
els, and basing model choice on the resulting values of q(M)(m). In their empirical
work on Gaussian mixtures, Corduneanu and Bishop (2001) observed automatic
model selection taking place, when analysing data that were actually simulated
from mixture distributions. If a model were fitted that contained more components
than the true model, then, as the ‘marginal likelihood’ maximisation progressed, at
least one of the estimates of the mixing weights would become smaller and smaller.
At that stage that component was dropped from the model, the algorithm proceeded
and this automatic pruning stopped only when the estimated mixture had the same
number of components as the true model. If the fitted model did not have as many
components as the true model then no pruning occurred. The same phenonemon
occurred in the fully Bayesian approach of McGrory and Titterington (2007) in
that, if the fitted model was too rich, then, for some j,

∑
i q

(z)
ij became very small,

corresponding to a component for which the other parameters were very similar to
those of a second component. As we have said,

∑
i q

(z)
ij is a pseudo sample size of

those observations nominally assigned to the jth component, and if that number
fell much below 1 the component was dropped from the fitted model. There does
not seem to be any formal explanation for this intriguing yet helpful behaviour.
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Application to hidden Markov models is described in MacKay (1997) and
Humphreys and Titterington (2001). Software for variational Bayes developed by
J. Winn is available at http://vibes.sourceforge.net/.

1.3.5 Recursive variational approximations

Example 1 (Revisited): Mixture of two known densities

We introduce the idea of recursive methods by returning to the very simple case of a
mixture of two known densities, with λ denoting the mixing weight, which is the sole
unknown parameter. The variational posterior turned out to be a beta distribution,
provided that a beta prior was proposed. Alternative ways of deriving beta approxi-
mations to the true posterior are given by recursive approximations, in which the
observations are processed one by one and the posterior is updated each time, within
the beta class. If, after the ith observation has been dealt with, the approximate pos-
terior is the Be(a(i)

1 , a
(i)
2 ) distribution, then the recursion computes hyperparameters

(a(i+1)
1 , a

(i+1)
2 ) on the basis of (a(i)

1 , a
(i)
2 ) and yi+1. Nonvariational versions of these

recursions are motivated by the exact Bayesian step for incorporating observation
i + 1, given a ‘current’ Be(a(i)

1 , a
(i)
2 ) prior. The correct posterior is the mixture

p(λ|yi+1) = wi+1,1Be(λ; a(i)
1 + 1, a

(i)
2 ) + wi+1,2Be(λ; a(i)

1 , a
(i)
2 + 1),

where, for j = 1, 2, wi+1,j = fi+1,ja
(i)
j /(fi+1,1a

(i)
1 + fi+1,2a

(i)
2 ) and Be(λ; a1, a2)

denotes the Be(a1, a2) density.
Recursions such as these were discussed in detail in Chapter 6 of Titterington

et al. (1985). For this simple, one-parameter problem, two particular versions are
the quasi-Bayes method (Makov and Smith, 1977; Smith and Makov, 1978, 1981),
in which a

(i+1)
j = a

(i)
j + wi+1,j, for j = 1, 2, and the probabilistic editor (Athans

et al., 1977; Makov, 1983), in which a
(i+1)
1 and a

(i+1)
2 are calculated to ensure that

the first two moments of the beta approximation match the ‘correct’ moments
corresponding to the mixture. This moment-matching is possible beause there are
two hyperparameters.

It is easy to define a sequence of beta variational approximations
{Be(a(i)

1 , a
(i)
2 )}. Given an approximating Be(a(i)

1 , a
(i)
2 ) at stage i, choose

q
(z)(0)
i+1,j = fi+1,ja

(i)
j /{∑2

r=1(fi+1,ra
(i)
r )}, for each j = 1, 2, and carry out the following

steps, for m = 0, 1, . . ..

• Step 1: For j = 1, 2, calculate

a
(i+1)(m+1)
j = q

(z)(m)
i+1,j + a

(i)
j .

• Step 2: For j = 1, 2, calculate

q
(z)(m+1)
i+1,j = fi+1,jexp[�(a(i+1)(m+1)

j ) − �(a(i+1)(m+1)
. )]∑2

r=1 fi+1,rexp[�(a(i+1)(m+1)
r ) − �(a(i+1)(m+1)

. )]
.

Note the obvious similarity to Equations (1.12) and (1.13).



EM, VARIATIONAL APPROXIMATIONS AND EP 19

Clearly, at each recursive stage, the iterative procedure may take some time, but
for large i very few iterations should be necessary, and even terminating at m = 1
may eventually be adequate. One important factor is that the results obtained will
depend on the order in which the observations are incorporated, as tends to be the
case with all recursive methods.

Humphreys and Titterington (2000) report an experiment based on a sample of
size 50 from a mixture of the N(3, 1) and N(5, 1) densities with mixing weight
λ = 0.65, starting from a Un(0,1) prior, so that a

(0)
1 = a

(0)
2 = 1. So far as the pos-

terior variances are concerned, the values that were obtained empirically from
the nonrecursive variational method, the quasi-Bayes and the recursive variational
methods were 0.0043, 0.0044 and 0.0043, respectively. In contrast, the values ob-
tained from Gibbs sampling and the Probabilistic Editor (PE) were 0.0088 and
0.0091, respectively.

Of particular note is the fact that only the probabilistic editor leads to a posterior
variance for λ that is very similar to the ‘correct’ value provided by the Gibbs sam-
pling result; all the other methods, including the nonrecursive variational method,
‘underestimate’ the posterior variability, although they produce a reasonable mean.
Further detailed elucidation of this behaviour is provided in Section 1.4.4.

As remarked above, the recursive results are influenced by the ordering of the
data. In the case of a hidden Markov chain, a natural ordering does exist, and indeed
recursive (online) analysis could be of genuine practical importance. Humphreys
and Titterington (2001) develop versions of the quasi-Bayes, probabilistic editor
and recursive variational methods for this problem.

1.3.6 Asymptotic results

Variational Bayes approximations have been developed for many particular scenar-
ios, including a number involving mixture models, and have led to useful empirical
results in applications. However, it is important to try to reinforce these pragmatic
advantages with consideration of the underlying theoretical properties. What as-
pects, if any, of the variational posteriors match those of the true, potentially highly
complex, posteriors, at least asymptotically? Attias (1999, 2000) and Penny and
Roberts (2000) claim that, in certain contexts, the variational Bayes estimator, given
by the variational posterior mean, approaches the maximum likelihood estimator
in the large sample limit, but no detailed proof was given.

More recently, some more detailed investigations have been carried out. In Wang
and Titterington (2004a) the case of a mixture of k known densities was consid-
ered, for which the variational approximation is a Dirichlet distribution whereas
the true posterior corresponds to a mixture of Dirichlets. However, it was proved
that the variational Bayes estimator (the variational posterior mean) of the mix-
ing weights converges locally to the maximum likelihood estimator. Wang and
Titterington (2005a) extended the treatment of this mixture example by proving
asymptotic normality of the variational posterior distribution of the parameters.
In terms of asymptotic mean and distribution type, therefore, the variational ap-
proximation behaved satisfactorily. However, the paper went on to examine the
asymptotic covariance matrix and showed that it was ‘too small’ compared with
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that of the maximum likelihood estimators. As a result, interval estimates based on
the variational approximation will be unrealistically narrow.

This confirms, through theory, intuition inspired by the fact that the variational
approximation is a ‘pure’ Dirichlet rather than a complicated mixture of Dirichlets,
as well as reinforcing the empirical results described in the previous section. For the
case of k = 2, the asymptotic variational posterior variance of the mixing weight
λ is λ(1 − λ)/n, in other words the same as the variance of the complete-data
maximum likelihood estimator. For the example in Humphreys and Titterington
(2000), mentioned in the previous section, in which λ = 0.65 and n = 50, this
variance is 0.00455, which is rather similar to some of the estimates reported in
Section 1.3.5. As already mentioned, we return to this in Section 1.4.4.

In Wang and Titterington (2005b) the demonstration of this unsatisfactory nature
of posterior second moments was extended to the case of mixtures of multivariate
normal distributions with all parameters unknown. Also in the context of this type
of mixture, Wang and Titterington (2006) allowed more flexibility in the algorithm
for computing the hyperparameters in q(θ) by introducing a variable step-length
ε reminiscent of the extension of the EM algorithm in Peters and Walker (1978);
the standard algorithm corresponds to ε = 1. It was proved that, for 0 < ε < 2, the
algorithm converges and that the variational Bayes estimators of the parameters con-
verge to the maximum likelihood estimators. Wang and Titterington (2004b) consid-
ered the more general context of data from exponential family models with missing
values, establishing local convergence of the iterative algorithm for calculating the
variational approximation and proving asymptotic normality of the estimator.

In the context of hidden Markov chains, the use of a fully factorised version of
q(z) does not reflect the correct solution of the variational problem and this shows up
in unsatisfactory empirical results. Wang and Titterington (2004c) reinforced this
more formally by showing that, in the context of a simple state-space model, which
is a continuous-time analogue of the hidden Markov chain model, the variational
Bayes estimators could be asymptotically biased; the factorisation constraints im-
posed on q(z) are inconsistent with the essential correlations between the hidden
states that constitute z.

1.4 Expectation–propagation

1.4.1 Introduction

In this section we describe, in the mixtures context, another deterministic approx-
imation to Bayesian analysis, as an alternative to the variational approximation
of the previous section and as before stimulated by the fact that exact calculation
of posterior and predictive distributions is not feasible when there are latent or
missing variables.

Suppose that we have data of the form D := {y1, . . . , yn}. The posterior distri-
bution of interest is given formally by

p(θ|D) ∝ p(D|θ) p(θ),
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where p(θ) on the right-hand side is the prior density for θ. In this account we shall
assume that the data are independently distributed, so that we can write

p(θ|D) ∝ t0(θ)
n∏

i=1

ti(θ),

in which t0(θ) = p(θ) and ti(θ) = p(yi|θ), the probability density or mass function
for the ith observation, for i = 1, . . . , n.

The alternative class of deterministic approximations is that provided by the
method of expectation propagation (Minka, 2001a, 2001b). In this approach it is
assumed that the posterior distribution for θ is approximated by a product of terms,

qθ(θ) =
n∏

i=0

t̃i(θ),

where the i = 0 term corresponds to the prior density and, typically, if the prior
comes from a conjugate family then, as functions of θ, all the other terms take
the same form so that qθ(θ) does also. The explicit form of the approximation is
calculated iteratively.

• Step 1: From an initial or current proposal for qθ(θ) the ith factor t̃i is discarded
and the resulting form is renormalised, giving qθ,\i(θ).

• Step 2: This qθ,\i(θ) is then combined with the ‘correct’ ith factor ti(θ) (imply-
ing that the correct posterior does consist of a product) and a new qθ(θ) of the
conjugate form is selected that gives an ‘optimal’ fit with the new product, pi(θ).
In Minka (2001b) optimality is determined by Kullback–Leibler divergence, in
that, with

pi(θ) ∝ qθ,\i(θ)ti(θ),

then the new qθ(θ) minimises

kl(pi, q) =
∫

pi log (pi/q). (1.17)

However, in some cases, simpler solutions are obtained if moment-matching
is used instead; if the conjugate family is Gaussian then the two approaches
are equivalent.

• Step 3: Finally, from qθ,\i(θ) and the new qθ(θ), a new factor t̃i(θ) can be obtained
such that

qθ(θ) ∝ qθ,\i(θ)t̃i(θ).

This procedure is iterated over choices of i repeatedly until convergence is attained.
We note in passing that the position of q among the arguments of the Kullback–

Leibler divergence in (1.17) is different from that in (1.3).
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As with the variational Bayes approach, an approximate posterior is obtained
that is a member of the complete-data conjugate family. The important question is
to what extent the approximation improves on the variational approximation. Much
empirical evidence suggests that it is indeed better, but it is important to investigate
this issue at a deeper level. Does expectation propagation achieve what variational
Bayes achieves in terms of Gaussianity and asymptotically correct mean and does it
in addition manage to behave appropriately, or at least better, in terms of asymptotic
second posterior moments?

This section takes a few first steps by discussing some very simple scenarios and
treating them without complete rigour. In some cases positive results are obtained,
but the method is shown not to be uniformly successful in the above terms.

1.4.2 Overview of the recursive approach to be adopted

As Minka (2001b) explains, expectation propagation (EP) was motivated by a recur-
sive version of the approach known as assumed density filtering (ADF) (Maybeck,
1982). In ADF an approximation to the posterior density is created by incorpo-
rating the data one by one, carrying forward a conjugate-family approximation
to the true posterior and updating it observation-by-observation using the sort of
Kullback–Leibler-based strategy described above in Step 2 of the EP method; the
same approach was studied by Bernardo and Girón (1988) and Stephens (1997,
Chapter 5) and there are some similarities with Titterington (1976). The differ-
ence from EP is that the data are run through only once, in a particular order, and
therefore the final result is order-dependent. However, recursive procedures such as
these often have desirable asymptotic properties, sometimes going under the name
of stochastic approximations. There is also a close relationship with the probabilis-
tic editor. Indeed, our analysis concentrates on the recursive step defined by Step 2
in the EP approach, which is essentially the probabilistic editor if moment-matching
is used to update.

We shall summarise results for two one-parameter scenarios, namely normal
mixtures with an unknown mean parameter, for which the conjugate prior family is
Gaussian, and mixtures with an unknown mixing weight, for which the conjugate
prior family is beta. Full details will appear in a paper co-authored with N. L. Hjort.

We shall suppose that the conjugate family takes the form q(θ|a), where a

represents a set of hyperparameters and θ is a scalar. For simplicity we shall omit
the subscript θ attached to q. Of interest will be the relationship between consecutive
sets of hyperparameters, a(n−1) and a(n), corresponding to the situation before and
after the nth observation, yn, is incorporated. Thus, q(θ|a(n)) is the member of the
conjugate family that is closest, in terms of Kullback–Leibler divergence, or perhaps
of moment-matching, to the density that is given by

q(θ|a(n−1))tn(θ) = q(θ|a(n−1))f (yn|θ),

suitably normalised. If En and Vn are the functions of a(n) that represent the mean and
the variance corresponding to q(θ|a(n)), then we would want En and Vn asymptoti-
cally to be indistinguishable from the corresponding values for the correct posterior.
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We would also expect asymptotic Gaussianity. So far as En is concerned, it is a
matter of showing that it converges in some sense to the true value of θ. The cor-
rect asymptotic variance is essentially given by the asymptotic variance of the
maximum likelihood estimator, with the prior density having negligible effect,
asymptotically. Equivalently, the increase in precision associated with the addi-
tion of yn, V−1

n − V−1
n−1, should be asymptotically the same, in some sense, as the

negative of the second derivative with respect to θ of log f (yn|θ), again by analogy
with maximum likelihood theory.

1.4.3 Finite Gaussian mixtures with an unknown mean
parameter

The assumption is that the observed data are a random sample from a univariate mix-
ture of J Gaussian distributions, with means and variances {cjμ, σ2

j ; j = 1, . . . , J}
and with mixing weights {vj; j = 1, . . . , J}. The {cj, σ

2
j , vj} are assumed known,

so that μ is the only unknown parameter. For observation y, therefore, we have

p(y|μ) ∝
J∑

j=1

vj

σj

exp

[
− 1

2σ2
j

(y − cjμ)2

]
.

In the case of a Gaussian distribution the obvious hyperparameters are the
mean and the variance themselves. For comparative simplicity of notation we shall
write those hyperparameters before treatment of the nth observation as (a, b), the
hyperparameters afterwards as (A, B) and the nth observation itself as y.

In the recursive step the hyperparameters A and B are chosen to match the
moments of the density for μ that is proportional to

b−1/2exp
[
− 1

2b
(μ − a)2

] J∑
j=1

vj

σj

exp

[
− 1

2σ2
j

(y − cjμ)2

]
.

Detailed calculation, described in Hjort and Titterington (2010), shows that the
changes in mean and precision satisfy, respectively,

A − a = b
∑

j

RjSjTj/

⎡
⎣∑

j′
Tj′ + o(b)

⎤
⎦ (1.18)

and

B−1 − b−1 =
∑

j R2
jTj∑

j Tj

−
∑

j TjR
2
jS

2
j∑

j Tj

+ (
∑

j TjRjSj)2

(
∑

j Tj)2
+ o(1), (1.19)

where Rj = cj/σj , Sj = (x − cja)/σj and

Tj = vj

σj

exp

[
− (y − acj)2

2σ2
j

]
.
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As explained earlier, the ‘correct’ asymptotic variance is given by the inverse
of the Fisher information, so that the expected change in the inverse of the variance
is the Fisher information corresponding to one observation, i.e. the negative of the
expected second derivative of

log p(y|μ) = const. + log

⎧⎨
⎩

J∑
j=1

vj

σj

exp

(
− 1

2σ2
j

(y − cjμ)2

)⎫⎬
⎭

= const. + log
∑

j

T ′
j,

where T ′
j is the same as Tj except that a is replaced by μ. In what follows, R′

j and
S′

j are similarly related to Rj and Sj . Then it is straightforward to show that the
observed information is

− ∂2

∂μ2
log p(y|μ) =

∑
j R′2

j T ′
j∑

j T ′
j

−
∑

j T ′
jR

′2
j S′2

j∑
j T ′

j

+ (
∑

j T ′
jR

′
jS

′
j)2

(
∑

j T ′
j)2

. (1.20)

The right-hand sides of (1.19) and (1.20) differ only in that (1.19) involves
a whereas (1.20) involves μ, and (1.19) is correct just to O(b) whereas (1.20) is
exact. However, because of the nature of (1.18), stochastic approximation theory
as applied by Smith and Makov (1981) will confirm that asymptotically a will
converge to μ and terms of O(b) will be negligible.

Thus, the approximate posterior distribution derived in this section behaves
as we would wish, in terms of its mean and variance; by construction it is
also Gaussian.

Hjort and Titterington (2010) show that, for this problem, the change in precision
achieved by the variational approximation in incorporating an extra observation is
unrealistically large and in fact equal, to first order, to the change corresponding to
the complete-data scenario. They also report details for particular normal mixtures,
including Minka’s (2001b) ‘clutter’ problem.

1.4.4 Mixture of two known distributions

Recall that in this case

ti(λ) = p(yi|λ) = λf1(yi) + (1 − λ)f2(yi),

in which λ is an unknown mixing weight between zero and one and f1 and f2

are known densities. The prior density for λ is assumed to be that of Be(a(0), b(0)),
and the beta approximation for the posterior based on D is assumed to be the
Be(a(n), b(n)) distribution, for hyperparameters a(n) and b(n). The expectation and
variance of the beta approximation are respectively

En = a(n)/(a(n) + b(n)),

Vn = (a(n)b(n))/[(a(n) + b(n))2(a(n) + b(n) + 1)]

= En(1 − En)/(Ln + 1),
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where Ln = a(n) + b(n). The limiting behaviour of En and Vn is of key interest. We
would want En to tend to the true λ in some sense and Vn to tend to the variance of
the correct posterior distribution of λ. Asymptotic normality of the approximating
distribution is also desired. If En behaves as desired then En(1 − En) tends to
λ(1 − λ) and, for Vn, the behaviour of a(n) + b(n) + 1 = Ln + 1, and therefore of
Ln, is then crucial.

Hjort and Titterington (2010) compile the following results.

• For the case of complete data, En is, to first order, λ̂CO, the proportion of the n

observations that belong to the first component, it therefore does tend to λ, by
the law of large numbers, and the limiting version of Vn is

VCO = λ(1 − λ)/n,

for large n. Asymptotic normality of the posterior distribution of λ follows from
the Bernstein–von Mises mirror result corresponding to the central limit result
for λ̂CO.

• The behaviour of the correct posterior distribution will be dictated by the be-
haviour of the maximum likelihood estimator λ̂ML; for large n, approximately,

E(λ̂ML) = λ,

var(λ̂ML) = 1

n
∫ [f1(x)−f2(x)]2

f (x) dx

= VML,

say. Again, these properties can be transferred to the posterior distribution
of λ, by a Bernstein–von Mises argument. This transference will apply as a
general rule.

• For the variational approximation, which is of course a beta distribution, the
limiting version of Vn is

VVA = λ(1 − λ)/n,

as already mentioned in Section 1.3.6. This is the same as VCO. It is therefore
‘smaller than it should be’ and would lead to unrealistically narrow interval
estimates for λ.

• For the recursive quasi-Bayes approach of Smith and Makov (1978), the posterior
mean is consistent for large n, and

Vn � VQB = λ(1 − λ)/n;

this is the same as for the confirmed-data case and the variational approxima-
tion, thereby falling foul of the same criticism as the latter as being ‘too small’.
Similar remarks apply to a recursive version of the variational approximation,
implemented in Humphreys and Titterington (2000).

• For the probabilistic editor, the sequence {En} of posterior means will con-
verge (to the true λ value), and the posterior variance of the PE-based beta
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approximation based on n observations is approximately, for large n,

VPE = n−1λ(1 − λ)
[

1 −
∫

f1f2

λf1 + (1 − λ)f2

]−1

,

which Hjort and Titterington (2010) then show is equal to VML. Thus, asymptot-
ically, the probabilistic editor, and by implication the moment-matching version
of expectation propagation, get the variance right. The same is shown to be true
for the standard EP and ADF approaches based on minimisation of the Kullback–
Leibler divergence rather than on moment-matching.

1.4.5 Discussion

The simulation exercise of Humphreys and Titterington (2000), mentioned in
Section 1.3.5, compared empirically the nonrecursive variational approximation,
its recursive variant, the recursive quasi-Bayes and probabilistic editor, and the
Gibbs sampler, the last of which can be regarded as providing a reliable estimate of
the true posterior. As can be expected on the basis of the above analysis, the approx-
imation to the posterior density provided by the probabilistic editor is very similar
to that obtained from the Gibbs sampler, whereas the other approximations are ‘too
narrow’. Furthermore, the variances associated with the various approximations are
numerically very close to the ‘asymptotic’ values derived above. The implication
is that this is also the case for the corresponding version of the EP algorithm based
on moment-matching, mentioned in Section 3.3.3 of Minka (2001a), of which the
PE represents an online version. Of course EP updates using KL divergence rather
than (always) matching moments, but the two versions perform very similarly in
Minka’s empirical experiments, and Section 1.4.4 reflects this asymptotically. Re-
cursive versions of the algorithm with KL update, i.e. versions of ADF, are outlined
and illustrated by simulation in Chapter 5 of Stephens (1997) for mixtures of known
densities, extending earlier work by Bernardo and Girón (1988), and for mixtures
of Gaussian densities with all parameters unknown, including the mixing weights.
For mixtures of two known densities, Stephens notes that, empirically, the KL up-
date appears to produce an estimate of the posterior density that is indistinguishable
from the MCMC estimate, and is much superior to the quasi-Bayes estimate, which
is too narrow. For a mixture of four known densities, for which the conjugate prior
distributions are four-cell Dirichlet distributions, Stephens shows the KL update
clearly to be better than the quasi-Bayes update, but somewhat more ‘peaked’ than
it should be. This is because, in terms of the approach of the present paper, there are
insufficient hyperparameters in the conjugate family to match all first and second
moments. For a J-cell Dirichlet, with J hyperparameters, there are J − 1 indepen-
dent first moments and J(J − 1)/2 second moments, so that full moment-matching
is not possible for J > 2, that is for any case but mixtures of J = 2 known densities.

This is implicit in the work of Cowell et al. (1996) on recursive updating,
following on from Spiegelhalter and Lauritzen (1990) and Spiegelhalter and Cowell
(1992), and referred to in Section 3.3.3 of Minka (2001a) and Section 9.7.4 of
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Cowell et al. (1999). They chose Dirichlet hyperparameters to match first moments
and the average variance of the parameters. Alternatively, one could match the
average of the variances and covariances. However, the upshot is that there is no hope
that a pure Dirichlet approximation will produce a totally satisfactory approximation
to the ‘correct’ posterior for J > 2, whether through EP or the recursive alternatives,
based on KL updating or moment-matching. Nevertheless, these versions should be
a distinct improvement on the quasi-Bayes and variational approximations in terms
of variance. A possible way forward for small J is to approximate the posterior
by a mixture of a small number of Dirichlets. To match all first- and second-order
moments of a posterior distribution of a set of J-cell multinomial probabilities one
would need a mixture of K pure J-cell Dirichlets, where

KJ + (K − 1) = (J − 1) + (J − 1) + (J − 1)(J − 2)/2,

i.e. Dirichlet hyperparameters + mixing weights = first moments + variances +
covariances. This gives K = J/2. Thus, for even J , the match can be exact, but
for odd J there would be some redundancy. In fact, even for J as small as 4, the
algebraic details of the moment-matching become formidable.
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