
CHAPTER 1 Exploring Some Layout Basics 675

0005639858.INDD 675	 Trim	size:	7.375	in	×	9.25	in	 June	27,	2023	11:50	AM

 Exploring Some
Layout Basics

To dismiss basic contexts such as link colours, page layouts, navigation
systems, and visual hierarchy as ‘boring’ or ‘pedestrian’ is akin to laughing at
a car’s steering wheel as unimaginative.

 —JEFFREY VEEN

 W hy are some web pages immediately appealing, while others put the
“Ugh” in “ugly”? There are lots of possible reasons: colors, typogra-
phy, image quality, the density of exclamation points. For my money,

however, the number one reason why some pages soar while others are eyesores is
the overall look and feel of the page. We’ve all visited enough websites in our lives
to have developed a kind of sixth sense that tells us immediately whether a page is
worth checking out. Sure, colors and fonts play a part in that intuition, but we all
respond viscerally to the “big picture” that a page presents.

 That big picture refers to the overall layout of the page, and that’s the subject you
start to explore here in Book 5. In this chapter, you build a solid foundation by
understanding how the web browser lays out a page by default, and then explor-
ing a few basic CSS techniques that enable you to break out of that default layout
and take control of your pages. By the time you’re done mastering the nitty-gritty

Chapter 1

 IN THIS CHAPTER

» Understanding page fl ow

» Breaking out of the fl ow by fl oating
elements

» Positioning elements on the page

» Stacking elements on top of each
other

CO
PYRIG

HTED
 M

ATERIA
L

0005639858.INDD 676	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

676 BOOK 5 Looking Good with Layouts

of page layout, you’ll be in a position to design and build beautiful and functional
pages that’ll have them screaming for more.

Getting a Grip on Page Flow
When a web browser renders a web page, one of the really boring things it does is
lay out the tags by applying the following rules to each element type:

»» Inline elements: Render these from left to right within each element’s
parent container.

»» Block-level elements: Stack these on top of each other, with the first element
at the top of the page, the second element below the first, and so on.

These rules assume that the current language is one whose text reads from left
to right and top to bottom (such as English). In some languages (such as Hebrew
and Arabic), the default text flow is from right to left and top to bottom. In vertical
languages, the default text flow is from top to bottom and then either right to left
(as in Japanese and Chinese) or left to right (as in Mongolian).

This is called the page flow. For example, consider the following HTML code (refer
to bk05ch01/example01.html in this book’s example files):

<header>
 The page header goes here.
</header>
<nav>
 The navigation doodads go here.
</nav>
<section>
 This is the first section of the page.
</section>
<section>
 This is—you got it—the second section of the page.
</section>
<aside>
 This is the witty or oh-so-interesting aside.
</aside>
<footer>
 The page footer goes here.
</footer>

Exploring Som
e

Layout Basics

0005639858.INDD 677	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 677

This code is a collection of six block-level elements — a header, a nav, two
section tags, an aside, and a footer — and Figure 1-1 shows how the web
browser renders them as a stack of boxes.

Nothing is inherently wrong with the default page flow, but having your web
page render as a stack of boxes lacks a certain flair. Fortunately for your creative
spirit, you’re not married to the default, one-box-piled-on-another flow. CSS
gives you a ton useful methods for breaking out of the normal page flow and
giving your pages some pizzazz. In this chapter, you learn about three of those
methods: floating, positioning, and stacking.

Floating Elements
When you float an element, the web browser takes the element out of the default
page flow. Where the element ends up on the page depends on whether you float
it to the left or to the right:

»» Float left: The browser places the element as far to the left and as high as
possible within the element’s parent container.

»» Float right: The browser places the element as far to the right and as high as
possible within the element’s parent container.

In both cases, the nonfloated elements flow around the floated element.

You convince the web browser to float an element by adding the float property:

element {
 float: left|right|none;
}

FIGURE 1-1:
The web browser

renders the
block-level

elements as a
stack of boxes.

0005639858.INDD 678	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

678 BOOK 5 Looking Good with Layouts

For example, consider the following code (check out bk05ch01/example02.html)
and its rendering in Figure 1-2:

<header>

 <h1>News of the Word</h1>
 <h2>Language news you won't find anywhere else (for good

reason!)</h2>
</header>
<nav>
 Home
 What's New
 What's Old
 What's What
 What's That?
</nav>

In Figure 1-2, note that the web browser is up to its usual page-flow tricks: stack-
ing all the block-level elements on top of each other. However, I think this page
would look better if the title and subtitle (the h1 and h2 elements) appeared to
the right of the logo. To do that, I can float the img element to the left (bk05ch01/
example03.html):

header > img {
 float: left;
 margin-right: 2em;
}

Figure 1-3 shows the results. With the logo floated to the left, the title and
subtitle — the h1 and h2 elements — now flow around (or, really, to the right of)
the img element.

FIGURE 1-2:
As usual, the

browser displays
the block-level
elements as a
stack of boxes.

Exploring Som
e

Layout Basics

0005639858.INDD 679	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 679

Example: Creating a pull quote
A pull quote is a short excerpt copied (“pulled”) from the current page text. The
excerpt should be evocative or interesting, and the pull quote is set off from the
regular text. A well-chosen and well-designed pull quote can entice an ambiva-
lent site visitor to read (or, at least, start) the article.

You create a pull quote by copying the article excerpt and placing it inside an ele-
ment such as an aside. You then float that element, most often to the right. Style
the element as needed to make it stand apart from the regular text and you’re
done.

Here’s an example (bk05ch01/example04.html):

HTML (partial):

<p>
 "None of it made a lick of sense" he said.
</p>
<aside class="pullquote">
 They can't understand a word anyone is texting to them.
</aside>
<p>
 It has long been thought that teen instant messages

contained abbreviations (such as <i>LOL</i> for "laughing out
loud" and <i>MAIBARP</i> for "my acne is becoming a real
problem"), short forms (such as <i>L8R</i> for "later" and
<i>R2D2</i> for "R2D2"), and slang (such as <i>whassup</i> for
"what's up" and <i>yo</i> for "Hello, I am pleased to meet
your acquaintance. Do you wish to have a conversation?").
However, the report reveals that this so-called "teenspeak"
began to change so fast that kids simply could not keep up.
Each teen developed his or her own lingo, and the instant
messaging system devolved into anarchy.

</p>

FIGURE 1-3:
When the logo

gets floated left,
the title and
subtitle flow

around it.

0005639858.INDD 680	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

680 BOOK 5 Looking Good with Layouts

CSS:

.pullquote {
 border-top: 4px double black;
 border-bottom: 4px double black;
 float: right;
 color: hsl(0deg, 0%, 40%);
 font-size: 1.9rem;
 font-style: italic;
 margin: 0 0 0.75rem 0.5rem;
 padding: 8px 0 8px 16px;
 width: 50%;
}

Figure 1-4 shows how everything looks.

FIGURE 1-4:
A pull quote
floated to

the right of the
article text.

Exploring Som
e

Layout Basics

0005639858.INDD 681	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 681

Clearing your floats
The default behavior for nonfloated stuff is to wrap around anything that’s
floated, which is often exactly what you want. However, you’ll sometimes want
to avoid having an element wrap around your floats. For example, consider the
following code (bk05ch01/example05.html) and how it gets rendered, as shown
in Figure 1-5.

<header>
 <h1>Can't You Read the Sign?</h1>
</header>
<nav>
 Home
 Signs
 Contact Us
 Suggest a Sign
</nav>
<article>
 <img src="/images/keep-off-the-grass.jpg" alt="A sign

reading Keep Off the Grass beside a well-trodden path running
across the grass.">

</article>
<footer>
 © Can't You Read?, Inc.
</footer>

FIGURE 1-5:
When the image

is floated left,
the footer wraps

around it and
ends up in a
weird place.

0005639858.INDD 682	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

682 BOOK 5 Looking Good with Layouts

With the tag floated to the left, the rest of the content flows around it,
including the content of the <footer> tag, which now appears by the top of the
image.

You want your footer to appear at the bottom of the page, naturally, so how can
you fix this? By telling the web browser to position the footer element so that it
clears the floated image, which means that it appears after the image in the page
flow. You clear an element by adding the clear property:

element {
 clear: left|right|both|none;
}

Use clear: left to clear all left-floated elements, clear: right to clear all
right-floated elements, or clear: both to clear everything. When I add clear:
left to the footer element (bk05ch01/example06.html), you can note in
Figure 1-6 that the footer content now appears at the bottom of the page.

footer {
 clear: left;
}

FIGURE 1-6:
Adding clear:

left to the
footer element
causes the footer

to clear the
left-floated
image and

appear at the
bottom of
the page.

Exploring Som
e

Layout Basics

0005639858.INDD 683	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 683

Collapsing containers ahead!
The odd behavior of CSS is apparently limitless, and floats offer yet another
example. Consider the following HTML (bk05ch01/example07.html) and its result
in Figure 1-7:

<article>
 <section>
 An awfully long time ago...
 </section>
 <aside>
 Note: Creating a new word by...
 </aside>
</article>

Note, in particular, that I’ve styled the article element with a border.

Rather than the stack of blocks shown in Figure 1-10, you may prefer to have
the section and the aside elements appear side by side. Great idea! So, you
add width properties to each, and float the section element to the left and the

FIGURE 1-7:
An <article>

tag containing a
<section> tag

and an <aside>
tag, rendered

using the default
page flow.

0005639858.INDD 684	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

684 BOOK 5 Looking Good with Layouts

aside element to the right. Here are the rules (bk05ch01/example08.html), and
Figure 1-8 shows the result.

section {
 float: left;
 width: 25rem;
}
aside {
 float: right;
 width: 16rem;
}

Well, that’s weird! The line across the top is what’s left of the article element.
What happened? Because I floated both the section and the aside elements, the
browser removed them from the page flow, which made the article element
behave as though it had no content at all. The result? A CSS bugaboo known as
container collapse.

To fix this issue, you have to force the parent container to clear its own children.

HTML:

<article class="self-clear">

FIGURE 1-8:
With its content

floated, the
<article>

element collapses
down to just
its border.

Exploring Som
e

Layout Basics

0005639858.INDD 685	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 685

CSS:

.self-clear::after {
 content: "";
 display: block;
 clear: both;
}

The ::after pseudo-element tells the browser to add an empty string (because
you don’t want to add anything substantial to the page), and that empty string is
displayed as a block that uses clear: both to clear the container’s children. It’s
weird, but it works, as shown in Figure 1-9 (bk05ch01/example09.html).

Positioning Elements
The second major method for breaking out of the web browser’s default “stacked
boxes” page flow is to position an element yourself using CSS properties. For
example, you could tell the browser to place an image in the top-left corner of the
window, no matter where that element’s tag appears in the page’s HTML
code. In the CSS world, this is known as positioning, and it’s a very powerful tool,
so much so that most web developers use positioning only sparingly.

FIGURE 1-9:
With the self-

clear class
added to the

<article> tag,
the article
element now
clears its own

children and is no
longer collapsed.

0005639858.INDD 686	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

686 BOOK 5 Looking Good with Layouts

The first bit of positioning wizardry you need to know is, appropriately, the
position property:

element {
 position: static|relative|absolute|fixed|sticky;
}

»» static: Places the element in its default position in the page flow.

»» relative: Offsets the element from its default position while keeping the
element in the page flow.

»» absolute: Offsets the element from its default position with respect to its
parent (or sometimes an earlier ancestor) container while removing the
element from the page flow.

»» fixed: Offsets the element from its default position with respect to the
browser viewport while removing the element from the page flow.

»» sticky: Starts the element with relative positioning until the element’s parent
crosses a specified offset with respect to the browser viewport (usually
because the user is scrolling the page), at which point the element switches to
fixed positioning. If the boundary of the element’s parent block then scrolls to
where the element is stuck, the element reverts to relative positioning and
scrolls with the parent.

Because static positioning is what the browser does by default, I won’t say any-
thing more about it. For the other four positioning values — relative, absolute,
fixed, and sticky — notice that each one offsets the element. Where do these
offsets come from? From the following CSS properties:

element {
 top: top-value;
 right: right-value;
 bottom: bottom-value;
 left: left-value;
}

»» top: Shifts the element down

»» right: Shifts the element from the right

»» bottom: Shifts the element up

»» left: Shifts the element from the left

Exploring Som
e

Layout Basics

0005639858.INDD 687	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 687

In each case, the value you supply is either a number followed by one of the CSS
measurement units (such as px, em, rem, vw, or vh) or a percentage.

Using relative positioning
Relative positioning is a bit weird because not only does it offset an element rela-
tive to its parent container, but it still keeps the element’s default space in the
page flow intact.

Here’s an example (bk05ch01/example10.html):

HTML:

<h1>
 holloway
</h1>
<div>
 <i>n.</i> A sunken footpath or road; a path that is enclosed

by high embankments on both sides.
</div>

<img src="/images/holloway2.jpg" alt="Photo of a holloway"

class="offset-image">

CSS:

.offset-image {
 position: relative;
 left: 200px;
}

The CSS defines a rule for a class named offset-image, which applies relative
positioning and offsets the element from the left by 200px. In the HTML, the
offset-image class is applied to the middle image. As shown in Figure 1-10, not
only is the middle image shifted from the left, but the space in the page flow
where it would have appeared by default remains intact, so the third image’s place
in the page flow doesn’t change. As far as that third image is concerned, the mid-
dle image is still right above it.

0005639858.INDD 688	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

688 BOOK 5 Looking Good with Layouts

Giving absolute positioning a whirl
Absolute positioning not only offsets the element from its default position but also
removes the element from the page flow. Sounds useful, but if the element is
no longer part of the page flow, from what element is it offset? Good question,
and here’s the short answer: the closest ancestor element that uses nonstatic
positioning.

If that has you furrowing your brow, I have a longer answer that should help. To
determine which ancestor element is used for the offset of the absolutely posi-
tioned element, the browser goes through a procedure similar to this:

1.	 Move one level up the page hierarchy to the previous ancestor.

2.	 Check the position property of that ancestor element.

3.	 If the position value of the ancestor is static, go back to Step 1 and repeat
the process for the next level up the hierarchy; otherwise (that is, if the
position value of the parent is anything other than static), offset the
original element with respect to the ancestor.

4.	 If, after going through Steps 1 to 3 repeatedly, you end up at the top of the
page hierarchy — that is, at the html element — then use the html element
to offset the element, which means in practice that the element is offset with
respect to the browser’s viewport.

FIGURE 1-10:
The middle image

uses relative
positioning to
shift from the

left, but its place
in the page flow

remains.

Exploring Som
e

Layout Basics

0005639858.INDD 689	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 689

I mention in the previous section that relative positioning is weird because it
keeps the element’s default position in the page flow intact. However, now that
weirdness turns to goodness because if you want a child element to use abso-
lute positioning, you add position: relative to the parent element’s style rule.
Because you don’t also supply an offset to the parent, it stays put in the page flow,
but now you have what CSS nerds called a positioning context for the child element.

I think an example would be welcome right about now (bk05ch01/example11.
html):

HTML:

<section>

 <h1>
 holloway
 </h1>
 <div>
 <i>n.</i> A sunken footpath or road; a path that is

enclosed by high embankments on both sides.
 </div>
 <div>
 There are two main methods that create holloways: By

years (decades, centuries) of constant foot traffic that wears
down the path (a process usually accelerated somewhat by water
erosion); or by digging out a path between two properties and
piling up the dirt on either side.

 </div>
</section>

CSS:

section {
 position: relative;
 border: 1px double black;
}

img {
 position: absolute;
 top: 0;
 right: 0;
}

0005639858.INDD 690	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

690 BOOK 5 Looking Good with Layouts

In the CSS, the section element is styled with the position: relative declara-
tion, and the img element is styled with position: absolute and top and right
offsets set to 0. In the HTML, note that the <section> tag is the parent of the
 tag, so the latter’s absolute positioning will be with respect to the former.
With top and right offsets set to 0, the image will now appear in the top-right
corner of the section element and, indeed, it does, as shown in Figure 1-11.

Because an absolutely positioned element now resides outside of the normal page
flow, the element no longer abides by the default “rule” that no two elements
should overlap. Therefore, you need to be careful when absolutely positioning an
element to ensure that it doesn’t accidentally end up on top of your page text or
other elements.

Trying out fixed positioning
With fixed positioning, the element is taken out of the normal page flow and is then
offset with respect to the browser’s viewport, which means the element doesn’t
move, not even a little, when you scroll the page (that is, the element is “fixed”
in its new position).

One of the most common uses of fixed positioning is to plop a header at the top
of the page and make it stay there while the user scrolls the rest of the content.

FIGURE 1-11:
The img element

uses absolute
positioning to
send it to the

top-right corner
of the section

element.

Exploring Som
e

Layout Basics

0005639858.INDD 691	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 691

Here’s an example (bk05ch01/exmple12.html) that shows you how to create such
a header:

HTML:

<header>

 <h1>
 holloway
 </h1>
</header>
<main>
...
</main>

CSS:

header {
 position: fixed;
 top: 0;
 left: 0;
 width: 100%;
 height: 4rem;
 border: 1px double black;
 background-color: hsl(101, 38%, 63%);
}

main {
 margin-top: 4rem;
}

The HTML includes a header element with an image and a heading, followed by
a longish main section that I don’t include here for simplicity’s sake. In the CSS
code, the header element is styled with position: fixed, and the offsets top and
left set to 0. These offsets fix the header to the top left of the browser’s view-
port. I also added width: 100% to give the header the entire width of the window.
Note, too, that I set the header height to 4rem. To make sure that the main sec-
tion begins below the header, I styled the main element with margin-top: 4rem.
Figure 1-12 shows the results.

0005639858.INDD 692	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

692 BOOK 5 Looking Good with Layouts

Making elements stick (temporarily)
Sticky positioning is a kind of combination of relative and fixed. That is, the element
starts off with relative positioning until the element’s containing block crosses a
specified threshold (usually because the user is scrolling the page), at which point
the element switches to fixed positioning. If the opposite edge of the element’s
containing block then scrolls to where the element is stuck, the element reverts to
relative positioning and scrolls with the containing block.

For example, suppose your page has a section element, and inside that section
is an h2 element that you’ve positioned as sticky. Here’s an abbreviated version of
the code (check out bk05ch01/example13.html for the complete version):

HTML:

<section>
 <h2>Cat ipsum</h2>
 <p>http://www.catipsum.

com/</p>
 <p>Sample:</p>

FIGURE 1-12:
A page with the
header element

fixed to the top of
the screen. When
you scroll the rest
of the page, the
header remains

where it is.

Exploring Som
e

Layout Basics

0005639858.INDD 693	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 693

 <p class="sample-text">
 Cat ipsum dolor sit amet, prance along on top of the

garden fence, annoy the neighbor's dog and make it bark stuff
and things intrigued by the shower. Please stop looking at
your phone and pet me sleep everywhere, but not in my bed get
my claw stuck in the dog's ear and adventure always but drool
yet roll over and sun my belly. Ooh, are those your $250
dollar sandals?

</p>
</section>

CSS:

h2 {
 position: sticky;
 top: 0;
}

In the CSS, notice that for the h2 element, I’ve set position: sticky. To specify
the threshold at which the element sticks, I’ve set top: 0, which means this ele-
ment will stick in place when the top edge of the section element hits the top of
the viewport.

Here’s what happens when the user starts scrolling toward the bottom of the
page:

1.	 At first, the section and h2 elements scroll up together, as shown in Figure 1-13.
Note that I’ve added an outline around the section element to make it easier
for you to visualize its edges.

2.	 When the top edge of the section element hits the top of the viewport
(because I set top: 0 as the sticky threshold), the h2 stops scrolling and
“sticks” in place, as shown in Figure 1-14.

3.	 As the user keeps scrolling, the section content keeps scrolling up, as shown
in Figure 1-15.

4.	 When the bottom edge of the section element reaches the bottom of the
stuck h2 element, the h2 becomes “unstuck” (that is, it goes back to relative
positioning) and resumes scrolling up with the section, as shown in
Figure 1-16.

0005639858.INDD 694	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

694 BOOK 5 Looking Good with Layouts

The h2 element The scroll direction

The section element

FIGURE 1-13:
At first, the

section and h2
elements scroll

up together.

The top edge of the section element has reached the top edge of the viewport, so…

…the h2 element sticks in place

FIGURE 1-14:
When the top of

the section
element hits
the top of the

viewport, the h2
“sticks” in place.

Exploring Som
e

Layout Basics

0005639858.INDD 695	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 695

The h2 element remains stuck The section element continues to scroll

FIGURE 1-15:
As you keep

scrolling,
the section

content keeps
scrolling up.

…the h2 element becomes unstuck and resumes scrolling with the section element

The bottom edge of the section element has reached
the bottom edge of the h2 element, so…

FIGURE 1-16:
When the

section bottom
reaches the stuck
h2 element, the

h2 becomes
“unstuck.”

0005639858.INDD 696	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

696 BOOK 5 Looking Good with Layouts

Stacking Elements
When you position an element using position: fixed, or position: sticky, as
I describe in the previous section, a weird thing happens: When you scroll past
the fixed or stuck element, the subsequent text and other page knickknacks slide
under the element.

Similarly, if you position an element with position: relative or position:
absolute, it’s possible to place the element on the page (by manipulating the top,
right, bottom, and left properties) so that it sits on top of some other elements.

How does the browser know which elements go on top of the other elements? The
browser uses the following default layering:

1.	 The background and borders of the html element are rendered on the bottom
layer.

2.	 All nonpositioned elements (that is, all elements where the position property
is static) are placed on the next layer.

3.	 All positioned elements (that is, elements with a position value of relative,
absolute, fixed, or sticky) are placed on subsequent layers in the order
they appear in the HTML.

These layers represent the browser defaults, but CSS offers a way to layer stuff the
way you want, which is the topic of the next section.

Layering elements with z-index
If you think back to high school geometry (my apologies if this is a painful ask),
you’ll recall the idea of the two-dimensional Cartesian plane where the x-axis
represents horizontal values and the y-axis represents vertical values. You may
also have come across the three-dimensional version that added a z-axis perpen-
dicular to the plane representing points that are, relative to you as the observer,
closer to you (positive) or farther away from you (negative).

This idea of having points closer to or farther away from you can be applied to the
browser’s rendering layers, with the page background farthest away, a nonposi-
tioned element one layer closer to you, and a positioned element yet another layer
closer to you.

CSS enables you to override the browser’s default layers by setting up a stack,
where elements on higher stack levels are rendered above elements on lower stack

Exploring Som
e

Layout Basics

0005639858.INDD 697	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 697

levels. You specify an element’s stack level by setting the z-index property on a
positioned element (z-index has no effect on nonpositioned elements):

z-index: value;

»» value: An integer that specifies the stack level. 0 (or auto) is the default level.
A positioned element with a larger z-index value is rendered above a
positioned element with a lower z-index value. Negative values are allowed.

Here’s an example (bk05ch01/example14.html):

HTML:

<body>
 <div id="div1">
 div1
 </div>
 <div id="div2">
 div2
 </div>
</body>

CSS:

#div1 {
 position: relative;
 z-index: 2;
}
#div2 {
 position: relative;
 bottom: 100px;
 left: 100px;
 z-index: 1;
}

The HTML creates two div elements with ids div1 and div2. In the CSS, div2 is
positioned relatively and shifted up by 100px and to the left by 100px. Because
div2 comes after div1 in the HTML, div2 should appear on top of div1 by default.
However, I set z-index: 2 on div1, which is higher than the z-index: 1 declared
on div2, so div1 now appears on top of div2, as shown in Figure 1-17.

0005639858.INDD 698	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

698 BOOK 5 Looking Good with Layouts

Getting your head around
stacking contexts
The general idea that an element with a higher z-index value gets rendered on
top of an element with a lower z-index value seems pretty straightforward. Ah,
but here be dragons! To learn how z-index can get mightily weird, here’s a look
at some code (bk05ch01/example15.html):

HTML:

<body>
 <div id="div1">
 div1
 </div>
 <div id="div2">
 div2
 <aside>
 aside
 </aside>
 </div>
</body>

CSS:

#div1 {
 position: relative;
 z-index: 2;
}

FIGURE 1-17:
The element div1

now appears
on top of div2

because its
z-index value (2)

is higher.

Exploring Som
e

Layout Basics

0005639858.INDD 699	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 699

#div2 {
 position: relative;
 bottom: 100px;
 left: 100px;
 z-index: 1;
}
aside {
 position: relative;
 top: 25px;
 left: 80px;
 z-index: 3;
}

This is the same code as in the previous section, except for two things:

»» The HTML adds an aside child to the second div element.

»» The aside CSS positions the element relatively, adds vertical and horizontal
offsets, and sets the z-index property to 3.

The aside now has the highest z-index value of the three elements, so you’d
expect that the aside would get rendered on top of everything. Figure 1-18 shows
what actually happens.

FIGURE 1-18:
The new aside

element appears
behind the div1
despite having a
higher z-index

value (3).

0005639858.INDD 700	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

700 BOOK 5 Looking Good with Layouts

Wait, what!? The browser is rendering the aside element, which has a z-index
value of 3, behind div1, which has a z-index value of 2! How can that be?

To understand what’s going on here, you need to become fast friends with a
concept known as the stacking context, which is the ability of a parent element’s
children to be stacked on top of each other.

The default stacking context is created by the html element, and within this stack-
ing context the following rules apply:

»» Nonpositioned elements are rendered at the bottom of the stacking order.

»» Positioned elements are rendered above the nonpositioned elements in stack
levels that reflect the order in which the positioned elements appear in the
HTML.

»» Positioned elements can use z-index to move up or down in the stacking
order.

All this would be no big deal if you had just the one stacking context to worry
about. Ah, if only life on Planet CSS were that simple! In fact, CSS creates new
stacking contexts whenever either one of the following is true:

»» An element uses position: relative or position: absolute and sets its
z-index value to anything other than auto.

»» An element uses position: fixed or position: sticky.

There are actually a lot more scenarios in which a stacking context is created. To eye-
ball the complete list, check out https://developer.mozilla.org/en-US/docs/
Web/CSS/CSS_Positioning/Understanding_z_index/The_stacking_context.

You have two main points to take away from all this:

»» When an element creates a new stacking context, any z-index values you
apply to positioned children or descendants of the element will be relative
only to other children and descendants of the element. In other words, within
a stacking context, z-index values can’t “see” outside that context.

»» In the overall stack order of the page, the positioned children or descendants
of any element that creates a stacking context can never be placed higher
than that element’s stack level.

Exploring Som
e

Layout Basics

0005639858.INDD 701	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

CHAPTER 1 Exploring Some Layout Basics 701

Take look at the code once again, but now with fresh eyes:

HTML:

<body>
 <div id="div1">
 div1
 </div>
 <div id="div2">
 div2
 <aside>
 aside
 </aside>
 </div>
</body>

CSS:

#div1 {
 position: relative;
 z-index: 2;
}
#div2 {
 position: relative;
 bottom: 100px;
 left: 100px;
 z-index: 1;
}
aside {
 position: relative;
 top: 25px;
 left: 80px;
 z-index: 3;
}

The div2 element uses position: relative and z-index: 1, so it creates a
stacking context. The aside element is a child of the div2 element, so its dec-
laration of z-index: 3 is relative only within the div2. And because the div2 is
declared with z-index: 1, the aside can never go higher than that in the over-
all page stack order. That’s why the aside appears behind the div1 element in
Figure 1-18.

0005639858.INDD 702	 Trim size: 7.375 in × 9.25 in� June 27, 2023 11:50 AM

