
CHAPTER 1 SQL Foundations 445

0005778708.INDD 445 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

 SQL Foundations

 T his chapter off ers a brief introduction to the (somewhat complicated) rela-
tionship between SQL and the relational database model. The chapter high-
lights how certain important terms and concepts may have slightly diff erent

meanings in the (practical) SQL world as opposed to the (theoretical) relational
database world. The chapter also provides some general, all-inclusive defi nitions
for good measure.

 SQL and the Relational Model
SQL is a software tool designed to deal with relational database data. It does far
more than just execute queries. Yes, of course, you can use it to retrieve the data
you want from a database using a query. However, you can also use SQL to create
and destroy databases, as well as modify their structure. In addition, you can add,
modify, and delete data with SQL. Even with all that capability, SQL is still consid-
ered only a data sublanguage, which means that it does not have all the features of
general-purpose programming languages such as C, C++, C#, or Java.

 SQL is specifi cally designed for dealing with relational databases and thus does
not include a number of features needed for creating useful application pro-
grams. As a result, to create a complete application — one that handles queries

Chapter 1

 IN THIS CHAPTER

» Relating SQL to the relational model

» Figuring out functional dependencies

» Discovering keys, views, users,
privileges, schemas, and catalogs

» Checking out connections, sessions,
and transactions

» Understanding routines and paths
CO

PYRIG
HTED

 M
ATERIA

L

0005778708.INDD 446 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

446 BOOK 4 Extracting Information with SQL

as well as provides access to a database — you must write the code in one of
the general-purpose languages and embed SQL statements within the program
whenever it communicates with the database.

The relational database, a type of data model, stores and provides access to data
points that are related to one another, existed as a theoretical model for almost a
decade before the first relational database product appeared on the market. Now,
it turns out that the first commercial implementation of the relational model — a
software program from the company that later became Oracle — did not even use
SQL, which IBM had not yet released. In those early days, there were a number of
competing data sublanguages. Gradually, SQL became a de facto standard, thanks
in no small part to IBM’s dominant position in the market, and the fact that Oracle
started offering it as an alternative to its own language early on.

Although SQL was developed to work with a relational database management sys-
tem, it’s not entirely consistent with the relational model. However, it is close
enough, and in many cases, it even offers capabilities not present in the relational
model. Some of the most important aspects of SQL are direct analogs of some
aspects of the relational model. Others are not.

Sets, Relations, Multisets, and Tables
The relational model is based on the mathematical discipline known as set theory.
In set theory, a set is defined as a collection of unique objects — duplicates are not
allowed. This carries over to the relational model. A relation is defined as a col-
lection of unique objects called tuples — no duplicates are allowed among tuples.

In SQL, the equivalent of a relation is a table. However, tables are not exactly like
relations in that a table can have duplicate rows. For that reason, tables in a rela-
tional database are not modeled on the sets of set theory but rather on multisets,
which are similar to sets, except they allow duplicate objects.

Although a relation is not exactly the same thing as a table, the terms are often
used interchangeably. Because relations were defined by theoreticians, they have
a very precise definition. The word table, on the other hand, is in general use and
is often much more loosely defined. This book uses the word table, in a more
restricted sense, as being an alternate term for relation. The attributes and tuples
of a relation are strictly equivalent to the columns and rows of a table.

So, what’s an SQL relation? Formally, a relation is a two-dimensional table that
has the following characteristics:

SQ
L Foundations

0005778708.INDD 447 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

CHAPTER 1 SQL Foundations 447

 » Every cell in the table must contain a single value if it contains any value at all.
Repeating groups and arrays are not allowed as values. (In this context, groups
and arrays are examples of collections of values.)

 » All the entries in any column must be the same. For example, if a column
contains an employee name in one row, it must contain employee names in
all rows that contain values.

 » Each column has a unique name.

 » The order of the columns doesn’t matter.

 » The order of the rows doesn’t matter.

 » No two rows may be identical.

If and only if a table meets all these criteria, it is a relation. You might have tables
that fail to meet one or more of these criteria. For example, a table might have two
identical rows. It is still a table in the loose sense, but it is not a relation.

Functional Dependencies
Functional dependencies are relationships between or among attributes. Consider
the example of two attributes of the CUSTOMER relation, Zipcode and State. If
you know the customer’s zip code, the state can be obtained by a simple lookup
because each zip code resides in one and only one state. This means that State is
functionally dependent on Zipcode or that Zipcode determines state. Zipcode is called
a determinant because it determines the value of another attribute. The reverse is
not true. State does not determine Zipcode because states can contain multiple
Zipcodes. You denote functional dependencies as follows:

Zipcode ➪ State

A group of attributes may act as a determinant. If one attribute depends on the
values of multiple other attributes, that group of attributes, collectively, is a
determinant of the first attribute.

Consider the relation INVOICE, made up as it is of the following attributes:

 » InvNo: Invoice number.

 » CustID: Customer ID.

 » WorR: Wholesale or retail. I’m assuming that products have both a wholesale
and a retail price, which is why I’ve added the WorR attribute to tell me
whether this is a wholesale or a retail transaction.

0005778708.INDD 448 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

448 BOOK 4 Extracting Information with SQL

 » ProdID: Product ID.

 » Quantity: Quantity.

 » Price: You guessed it.

 » Extprice: Extended price (which I get by multiplying Quantity and Price.)

With our definitions out of the way, check out what depends on what by following
the handy determinant arrow:

(WorR, ProdID) ➪ Price
(Quantity, Price) ➪ Extprice,

W/R tells you whether you are charging the wholesale or the retail price. Pro-
dID shows which product you are considering. Thus, the combination of WorR
and ProdID determines Price. Similarly, the combination of Quantity and Price
determines Extprice. Neither WorR nor ProdID by itself determines Price; they are
both needed to determine Price. Both Quantity and Price are needed to determine
Extprice.

Keys
A key is an attribute (or group of attributes) that uniquely identifies a tuple (a
unique collection of attributes) in a relation. One of the characteristics of a rela-
tion is that no two rows (tuples) are identical. You can guarantee that no two
rows are identical if at least one field (attribute) is guaranteed to have a unique
value in every row, or if some combination of fields is guaranteed to be unique for
each row.

Table 1-1 shows an example of the PROJECT relation. It lists researchers affiliated
with the Gentoo Institute’s Penguin Physiology Lab, the project that each partic-
ipant is working on, and the location at which each participant is conducting his
or her research.

In this table, each researcher is assigned to only one project. Is this a rule? Must
a researcher be assigned to only one project, can a researcher be assigned to more
than one? If a researcher can be assigned to only one project, ResearcherID is a
key. It guarantees that every row in the PROJECT table is unique. What if there
is no such rule? What if a researcher may work on multiple projects at the same
time? Table 1-2 shows this situation.

SQ
L Foundations

0005778708.INDD 449 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

CHAPTER 1 SQL Foundations 449

In this scenario, Dr. Pizarro works on the cold feet and the warm eggs projects,
whereas Professor Shelton works on the warm eggs and the varied diet proj-
ects. Clearly, ResearcherID cannot be used as a key. However, the combination of
ResearcherID and Project is unique and is thus a key.

You’re probably wondering how you can reliably tell what is a key and what isn’t.
Looking at the relation in Table 1-1, it looks like ResearcherID is a key because
every entry in that column is unique. However, this could be due to the fact that
you are looking at a limited sample, and any minute now, someone could add a
new row that duplicates the value of ResearcherID in one of the existing rows.
How can you be sure that won’t happen? Easy. Ask the users.

The relations you build are models of the mental images that the users have of
the system they are dealing with. You want your relational model to correspond
as closely as possible to the model the users have in their minds. If they tell you,
for example, that in their organization, researchers never work on more than one
project at a time, you can use ResearcherID as a key. On the other hand, if it is even
remotely possible that a researcher might be assigned to two projects simultane-
ously, you have to revert to a composite key made up of both ResearcherID and
Project.

TABLE 1-1	 PROJECT Relation
ResearcherID Project Location

Pizarro Why penguin feet don’t freeze Bahia Paraiso

Whitehead Why penguins don’t get the bends Port Lockroy

Shelton How penguin eggs stay warm in pebble nests Peterman Island

Nansen How penguin diet varies by season Peterman Island

TABLE 1-2	 PROJECTS Relation
ResearcherID Project Location

Pizarro Why penguin feet don’t freeze Bahia Paraiso

Pizarro How penguin eggs stay warm in pebble nests Peterman Island

Whitehead Why penguins don’t get the bends Port Lockroy

Shelton How penguin eggs stay warm in pebble nests Peterman Island

Shelton How penguin diet varies by season Peterman Island

Nansen How penguin diet varies by season Peterman Island

0005778708.INDD 450 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

450 BOOK 4 Extracting Information with SQL

A question that might arise in your mind is, “Is it possible for a relation to exist
that has no key?” By the definition of a relation, the answer is no. Every relation
must have a key. One of the characteristics of a relation is that no two rows may be
exactly the same. That means that you are always able to distinguish rows from
each other, although you may have to include all the relation’s attributes in the
key to do it.

Views
Although the most fundamental constituent of a relational database is undoubt-
edly the table, another important concept is the virtual table or view. Unlike an
ordinary table, a view has no physical existence until it is called upon in a query.
There is no place on the disk where the rows in the view are stored. The view
exists only in the metadata as a definition. The definition describes how to pull
data from tables and present it to the user in the form of a view.

From the user’s perspective, a view looks just like a table. You can do almost
everything to a view that you can do to a table. The major exception is that you
cannot always update a view the same way that you can update a table. The view
may contain columns that are the result of some arithmetic operation on the data
in columns from the tables upon which the view is based. You can’t update a col-
umn that doesn’t exist in your permanent storage device. Despite this limitation,
views, after they’re formulated, can save you considerable work: You don’t need
to code the same complex query every time you want to pull data from multiple
tables. Create the view once, and then use it every time you need it.

Users
Although it may seem a little odd to include them, the users are an important part
of any database system. After all, without the users, no data would be written into
the system, no data would be manipulated, and no results would be displayed.
When you think about it, the users are mighty important. Just as you want your
hardware and software to be of the highest quality you can afford in order to
produce the best results, and for the same reason, you want the highest-quality
people. To ensure that only the people who meet your standards have access to the
database system, you should have a robust security system that enables autho-
rized users to do their job, and at the same time, prevents access to everyone else.

SQ
L Foundations

0005778708.INDD 451 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

CHAPTER 1 SQL Foundations 451

Privileges
A good security system not only keeps out unauthorized users but also provides
authorized users with access privileges tailored to their needs. The night watch-
man has different database needs from those of the company CEO. One way of
handling privileges is to assign every authorized user an authorization ID. When
the person logs on with his authorization ID, the privileges associated with that
authorization ID become available to him. This could include the ability to read
the contents of certain columns of certain tables, the ability to add new rows to
certain tables, delete rows, update rows, and so on.

A second way to assign privileges is with roles, which were introduced in SQL:1999.
Roles are simply a way for you to assign the same privileges to multiple people,
and they are particularly valuable in large organizations where a number of people
have essentially the same job and, thus, the same needs for data.

For example, a security guard working the nightshift might have the same data
needs as other security guards. You can grant a suite of privileges to the SECU-
RITY_GUARD role. From then on, you can assign the SECURITY_GUARD role to
any new guards, and all the privileges appropriate for that role are automatically
assigned to them. When a person leaves, or changes jobs, revoking their role can
be just as easy.

Schemas
Relational database applications typically use multiple tables. As a database grows
to support multiple applications, it becomes more and more likely that an appli-
cation developer will try to give one of her tables the same name as a table already
in the database. This can cause problems and frustration. To get around this prob-
lem, SQL has a hierarchical namespace structure. A developer can define her tables
as being members of a schema.

With this structure, one developer can have a table named CUSTOMER in her
schema, whereas a second developer can also have an entirely different table, also
named CUSTOMER, but in a different schema.

0005778708.INDD 452 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

452 BOOK 4 Extracting Information with SQL

Catalogs
These days, organizations can be so big that if every developer had a schema for
each of her applications, the number of schemas itself could be a problem. Some-
one might inadvertently give a new schema the same name as an existing schema.
An additional level was added at the top of the namespace hierarchy to head off
this possibility. A catalog can contain multiple schemas, which in turn can contain
multiple tables. The smallest organizations don’t have to worry about either cata-
logs or schemas, but those levels of the namespace hierarchy are there if they’re
needed. If your organization is big enough to worry about duplicate catalog names,
it is big enough to figure out a way to deal with the problem.

Connections, Sessions, and Transactions
A database management system is typically divided into two main parts: a client
side, which interfaces with the user, and a server side, which holds the data and
operates on it. To operate on a database, a user must establish a connection between
their client and the server that holds the data they want to access. Generally, the
first thing you must do — if you want to work on a database at all — is to establish

THE RELATIONAL DATABASE HIERARCHY
A relational database is organized in a hierarchical structure, where the highest level is
the catalog. Generally, only the largest, most complex databases have multiple catalogs.

• Catalogs: A database catalog comes into play only in large, complex databases that
have multiple schemas.

• Schemas: A database schema contains metadata. This metadata includes defini-
tions of tables, views, value ranges, indexes, users, and user groups. It can also
include stored procedures and triggers.

• Tables: A database table is a set of elements organized as a two-dimensional table
with horizontal rows and vertical columns. The columns correspond to the attri-
butes in an entity’s entity relationship (ER) model. The rows hold the data about
individual instances of the entity.

• Columns: A column is a component of a database table. Each column in the table
corresponds to one of the attributes in the ER model of the entity being actualized
by the table.

SQ
L Foundations

0005778708.INDD 453 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

CHAPTER 1 SQL Foundations 453

a connection to it. You can do this with a CONNECT statement that specifies your
authorization ID and names the server you want to connect to. The exact imple-
mentation of this varies from one DBMS to another. (Most people today would use
the DBMS’s graphical user interface to connect to a server instead of using the SQL
CONNECT statement.)

A session is the context in which a single user executes a sequence of SQL state-
ments, using a single connection. A user can either be a person entering SQL state-
ments at the client console, or a program running on the client machine.

A transaction is a sequence of SQL statements that is atomic with respect to recov-
ery. This means that if a failure occurs while a transaction is in progress, the
effects of the transaction are erased so that the database is left in the state it was
in before the transaction started. Atomic in this context means indivisible. Either
the transaction runs to completion, or it aborts in such a way that any changes it
made before the abort are undone.

Routines
Routines are procedures, functions, or methods that can be invoked either by an
SQL CALL statement or by the host language program that the SQL code is operat-
ing with. Methods are a kind of function used in object-oriented programming.

Routines enable SQL code to take advantage of calculations performed by host
language code and enable host language code to take advantage of data operations
performed by SQL code.

Because either a host language program or SQL code can invoke a routine, and
because the routine being invoked can be written either in SQL or in host language
code, routines can cause confusion. A few definitions help to clarify the situation:

 » Externally invoked routine: A procedure, written in SQL and residing in a
module located on the client, which is invoked by the host language program

 » SQL-invoked routine: Either a procedure or a function residing in a module
located on the server, which could be written in either SQL or the host
language that is invoked by SQL code

 » External routine: Either a procedure or a function residing in a module located
on the server, which is written in the host language, but is invoked by SQL

 » SQL routine: Either a procedure or a function residing in a module located on
either the server or the client, which is written in SQL and invoked by SQL

0005778708.INDD 454 Trim size: 7.375 in × 9.25 in February 22, 2024 12:05 PM

454 BOOK 4 Extracting Information with SQL

Paths
A path in SQL, similar to a path in operating systems, tells the system in what
order to search locations to find a routine that has been invoked. For a system with
several schemas (perhaps one for testing, one for QA, and one for production), the
path tells the executing program where to look first, where to look next, and so
on, to find an invoked routine.

