
CHAPTER 1 JavaScript: The Big Picture 5

0005780812.INDD 5 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

Chapter 1

 IN THIS CHAPTER

» Getting a feel for programming in
general, and JavaScript in particular

» Checking out the tools you need
to get coding

» Adding comments to your
JavaScript code

» Storing your code in a separate
JavaScript fi le

 JavaScript : The Big
Picture

 I n this chapter, you explore some useful JavaScript basics. Don’t
worry if you’ve never programmed before. I take you through
everything you need to know, step-by-step, nice and easy. As

you’re about to fi nd out, it really is fun to program.

 Adding JavaScript Code to a Web Page
 Okay, it’s time to roll up your sleeves, crack your knuckles, and
start coding. This section describes the standard procedure for
constructing and testing a script and takes you through a couple
of examples.

 The <script> tag
 The basic container for a script is, naturally enough, the HTML
<script> tag and its associated </script> end tag:

 <script>
JavaScript statements go here

 </script>

CO
PYRIG

HTED
 M

ATERIA
L

6 JavaScript Essentials For Dummies

0005780812.INDD 7 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 6 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

Where do you put the <script> tag?
With certain exceptions, it doesn’t matter a great deal where you
put your <script> tag. Some people place the tag between the
page’s </head> and <body> tags. The HTML standard recom-
mends placing the <script> tag within the page header (that is,
between <head> and </head>), so that’s the style I use in this
book:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Where do you put the script tag?

</title>
 <script>
 JavaScript statements go here
 </script>
 </head>
 <body>
 </body>
</html>

Here are the exceptions to the put-your-script-anywhere
technique:

 » If your script is designed to write data to the page, the
<script> tag must be positioned within the page body
(that is, between the <body> and </body> tags) in the
exact position where you want the text to appear.

 » If your script refers to an item on the page (such as a form
object), the script must be placed after that item.

 » With many HTML tags, you can add one or more JavaScript
statements as attributes directly within the tag.

It’s perfectly acceptable to insert multiple <script> tags within
a single page, as long as each one has a corresponding </script>
end tag, and as long as you don’t put one <script> block within
another one.

CHAPTER 1 JavaScript: The Big Picture 7

0005780812.INDD 7 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 6 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

Example #1: Displaying a message
to the user
You’re now ready to construct and try out your first script. This
example shows you the simplest of all JavaScript actions: display-
ing a basic message to the user. The following code shows the
script within an HTML file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Displaying a Message to the User

</title>
 <script>
 alert("Hello JavaScript World!");
 </script>
 </head>
 <body>
 </body>
</html>

As shown in here, place the script within the header of a page,
save the file, and then open the HTML file within your browser.

This script consists of just a single line:

alert("Hello JavaScript World!");

This is called a statement, and each statement is designed to per-
form a single JavaScript task. Your scripts will range from simple
programs with just a few statements to huge projects consisting
of hundreds of statements.

You may be wondering about the semicolon (;) that appears at the
end of the statement. Good eye. You use the semicolon to mark the
end of each of your JavaScript statements.

8 JavaScript Essentials For Dummies

0005780812.INDD 9 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 8 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

In the example, the statement runs the JavaScript alert()
method, which displays to the user whatever message is enclosed
within the parentheses (which could be a welcome message, an
announcement of new features on your site, an advertisement
for a promotion, and so on). Figure 1-1 shows the message that
appears when you open the file.

How did the browser know to run the JavaScript statement? When
a browser processes (parses, in the vernacular) a page, it basically
starts at the beginning of the HTML file and works its way down,
one line at a time. If it trips over a <script> tag, it knows one
or more JavaScript statements are coming, and it automatically
executes those statements, in order, as soon as it reads them. The
exception is when JavaScript statements are enclosed within a
function, which I explain in Chapter 5.

One of the cardinal rules of JavaScript programming is “one
statement, one line.” That is, each statement must appear on only
a single line, and there should be no more than one statement
on each line. I said “should” in the second part of the previous
sentence because it is possible to put multiple statements on a
single line, as long as you separate each statement with a semi-
colon (;). There are rare times when it’s necessary to have two or
more statements on one line, but you should avoid it for the bulk
of your programming because multiple-statement lines are diffi-
cult to read and to troubleshoot.

Example #2: Writing text to the page
One of JavaScript’s most powerful features is the capability to
write text and even HTML tags and CSS rules to the web page
on-the-fly. That is, the text (or whatever) gets inserted into the

FIGURE 1-1: This “alert” message appears when you open the HTML file
containing the example script.

CHAPTER 1 JavaScript: The Big Picture 9

0005780812.INDD 9 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 8 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

page when a web browser loads the page. What good is that? For
one thing, it’s ideal for time-sensitive data. For example, you may
want to display the date and time that a web page was last modi-
fied so that visitors know how old (or new) the page is. Here’s
some code that shows just such a script:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Writing Data to the Page</title>
 </head>
 <body>
 This is a regular line of text.

 <script>
 document.write("Last modified: " +

document.lastModified)
 </script>

This is another line of regular text.
 </body>
</html>

Notice how the script appears within the body of the HTML docu-
ment, which is necessary whenever you want to write data to the
page. Figure 1-2 shows the result.

This script makes use of the document object, which is a built-
in JavaScript construct that refers to whatever HTML file
(document) the script resides in (check out Chapter 6 for more
about the document object). The document.write() statement
tells the browser to insert whatever is within the parentheses to

FIGURE 1-2: When you open the file, the text displays the date and time the
file was last modified.

10 JavaScript Essentials For Dummies

0005780812.INDD 11 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 10 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

the web page. The document.lastModified portion returns the
date and time the file was last changed and saved.

What You Need to Get Started
One of the nicest things about HTML and CSS is that the hurdles
you have to leap to get started are not only short but few in num-
ber. In fact, you really need only two things, both of which are free:
a text editor to enter the text, tags, and properties; and a browser
to view the results. (You’ll also need a web server to host the fin-
ished pages, but the server isn’t necessary when you’re creating
the pages.) Yes, there are high-end text editors and fancy graphics
programs, but these fall into the “Bells and Whistles” category;
you can create perfectly respectable web pages without them.

The basic requirements for JavaScript programming are exactly
the same as for HTML: a text editor and a browser. Again, pro-
grams are available to help you write and test your scripts, but
you don’t need them.

Dealing with Two Exceptional Cases
In this book, I make a couple of JavaScript assumptions related to
the people who’ll be visiting the pages you post to the web:

 » Those people have JavaScript enabled in their web browser.

 » Those people are using a relatively up-to-date version of a
modern web browser, such as Chrome, Edge, Safari, or
Firefox.

These are pretty safe assumptions, but it pays to be a bit paranoid
and wonder how you may handle the teensy percentage of people
who don’t pass one or both tests.

Handling browsers with
JavaScript turned off
You don’t have to worry about web browsers not being able to
handle JavaScript, because all modern browsers have supported
JavaScript for a very long time. You may, however, want to worry

CHAPTER 1 JavaScript: The Big Picture 11

0005780812.INDD 11 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 10 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

about people who don’t support JavaScript. Although rare, some
folks have turned off their browser’s JavaScript functionality. Why
would someone do such a thing? Many people disable JavaScript
because they’re concerned about security, they don’t want cookies
written to their hard drives, and so on.

To handle these iconoclasts, place the <noscript> tag within the
body of the page:

<noscript>
 <p>
 Hey, your browser has JavaScript turned

off!
 </p>
 <p>
 Okay, cool, perhaps you'll prefer this non-JavaScript version of
the page.

 </p>
</noscript>

If the browser has JavaScript enabled, the browser doesn’t
display any of the text within the <noscript> tag. However, if
JavaScript is disabled, the browser displays the text and tags
within the <noscript> tag to the user.

To test your site with JavaScript turned off, here are the tech-
niques to use in some popular browsers:

 » Chrome (desktop): Open Settings, click Privacy and Security,
click Site Settings, click JavaScript, and then select the Don’t
Allow Sites to Use JavaScript option.

 » Chrome (Android): Open Settings, tap Site Settings, tap
JavaScript, and then tap the JavaScript switch to off.

 » Edge: Open Settings, click the Settings menu, click Cookies
and Site Permissions, click JavaScript, and then click the
Allowed switch to off.

 » Safari (macOS): Open Settings, click the Advanced tab, select
the Show Develop Menu in Menu Bar, and then close
Settings. Choose Develop ➪ Disable JavaScript.

12 JavaScript Essentials For Dummies

0005780812.INDD 13 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 12 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

 » Safari (iOS or iPadOS): Open Settings, tap Safari, tap
Advanced, and then tap the JavaScript switch to off.

 » Firefox (desktop): In the Address bar, type about:config
and press Enter or Return. If Firefox displays a warning page,
click Accept the Risk and Continue to display the Advanced
Preferences page. In the Search Preference Name box, type
javascript. In the search results, look for the javascript.
enabled preference. On the far right of that preference, click
the Toggle button to turn the value of the preference from
true to false.

Handling very old browsers
In this book, you learn the version of JavaScript called ECMAScript
2015, also known as ECMAScript 6, or just ES6. Why this version,
in particular, and not any of the later versions? Two reasons:

 » ES6 has excellent browser support, with more than 98 percent
of all current browsers supporting the features released in
ES 6. Later versions of JavaScript have less support.

 » ES6 has everything you need to add all kinds of useful
and fun dynamic features to your pages. Unless you’re a
professional programmer, the features released in subse-
quent versions of JavaScript are way beyond what you need.

Okay, so what about that couple of percent of browsers that don’t
support ES6?

First, know that the number of browsers that choke on ES6 fea-
tures is getting smaller every day. Sure, it’s 2 percent now (about
1.7 percent, actually), but it will be 1 percent in six months, a
0.5 percent in a year, and so on until the numbers just get too
small to measure.

Second, the percentage of browsers that don’t support ES6 varies
by region (it’s higher in many countries in Africa, for example)
and by environment. Most of the people running browsers that
don’t fully support ES6 are using Internet Explorer 11, and most of
those people are in situations in which they can’t upgrade (some
corporate environments, for example).

CHAPTER 1 JavaScript: The Big Picture 13

0005780812.INDD 13 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 12 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

If luck has it that your web pages draw an inordinate share of
these older browsers, you may need to eschew the awesomeness
of ES6 in favor of the tried-and-true features of ECMAScript 5.
To that end, as I introduce each new JavaScript feature, I point
out those that arrived with ES6 and let you know if there’s a sim-
ple fallback or workaround (known as a polyfill in the JavaScript
trade) if you prefer to use ES5.

Commenting Your Code
A script that consists of just a few lines is usually easy to read
and understand. However, your scripts won’t stay that simple
for long, and these longer and more complex creations will be
correspondingly more difficult to read. (This difficulty will be
particularly acute if you’re looking at the code a few weeks or
months after you first coded it.) To help you decipher your code,
it’s good programming practice to make liberal use of comments
throughout the script. A comment is text that describes or explains
a statement or group of statements. Comments are ignored by the
browser, so you can add as many as you deem necessary.

For short, single-line comments, use the double-slash (//). Put
the // at the beginning of the line, and then type your comment
after it. Here’s an example:

// Display the date and time the page was last
modified

document.write("This page was last modified on " +
document.lastModified);

You can also use // comments for two or three lines of text, as
long as you start each line with //. If you have a comment that
stretches beyond that, however, you’re better off using multiple-
line comments that begin with the /* characters and end with the
*/ characters. Here’s an example:

/*
This script demonstrates JavaScript's ability
to write text to the web page by using the

14 JavaScript Essentials For Dummies

0005780812.INDD 15 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 14 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

document.write() method to display the date and
time the web page file was last modified.

This script is Copyright Paul McFedries.
*/

Although it’s fine to add quite a few comments when you’re just
starting out, you don’t have to add a comment to everything. If a
statement is trivial or its purpose is glaringly obvious, forget the
comment and move on.

Moving to External JavaScript Files
Earlier in this chapter, I talk about adding JavaScript code to a
web page by inserting the <script> and </script> tags into the
page header (that is, between the <head> and </head> tags), or
sometimes into the page body (that is, between the <body> and
</body> tags). You then write your code between the <script>
and </script> tags.

Putting a script inside the page in this way isn’t a problem if the
script is relatively short. However, if your script (or scripts) take
up dozens or hundreds of lines, your HTML code can look clut-
tered. Another problem you may run into is needing to use the
same code on multiple pages. Sure, you can just copy the code into
each page that requires it, but if you make changes down the road,
you need to update every page that uses the code.

The solution to both problems is to move the code out of the
HTML file and into an external JavaScript file. Moving the
code reduces the JavaScript presence in the HTML file to a single
line (as you’ll learn shortly) and means that you can update
the code by editing only the external file.

Here are some things to note about using an external
JavaScript file:

 » The file must use a plain text format.

 » Use the .js extension when you name the file.

CHAPTER 1 JavaScript: The Big Picture 15

0005780812.INDD 15 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM0005780812.INDD 14 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

 » Don’t use the <script> tag within the file. Just enter your
statements exactly as you would within an HTML file.

 » The rules for when the browser executes statements within
an external file are identical to those used for statements
within an HTML file. That is, statements outside of functions
are executed automatically when the browser comes across
your file reference, and statements within a function aren’t
executed until the function is called. (Not sure what a
“function” is? You get the full scoop in Chapter 5.)

To let the browser know that an external JavaScript file exists, add
the src attribute to the <script> tag. For example, if the exter-
nal file is named myscripts.js, your <script> tag is set up as
follows:

<script src="myscripts.js">

This example assumes that the myscripts.js file is in the
same directory as the HTML file. If the file resides in a different
directory, adjust the src value accordingly. For example, if the
myscripts.js file is in a subdirectory named scripts, you use
this:

<script src="scripts/myscripts.js">

You can even specify a file from another site (presumably your
own!) by specifying a full URL as the src value:

<script src="http://www.host.com/myscripts.js">

As an example, the following code shows a one-line external
JavaScript file named footer.js:

document.write("This page is Copyright "
+ new Date().getFullYear());

This statement writes the text “Copyright” followed by the current
year. (I know: This code looks like some real gobbledygook right
now. Don’t sweat it, because you’ll learn exactly what’s going on
here when I discuss the JavaScript Date object in Chapter 8.)

16 JavaScript Essentials For Dummies

0005780812.INDD 16 Trim size: 5.5 in × 8.5 in March 12, 2024 1:18 PM

The following code shows an HTML file that includes a reference
for the external JavaScript file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Using an External JS File</title>
 </head>
 <body>
 <p>
 Regular page doodads go here.
 </p>
 <hr>
 <footer>
 <script src="footer.js">
 </script>
 </footer>
 </body>
</html>

When you load the page, the browser runs through the HTML line
by line. When it gets to the <footer> tag, it notices the external
JavaScript file that’s referenced by the <script> tag. The browser
loads that file and then runs the code within the file, which writes
the Copyright message to the page, as shown in Figure 1-3.

FIGURE 1-3: This page uses an external JavaScript file to display a
footer message.

