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Information

Most cognitive scientists think about the brain and behavior within an informa-
tion-processing framework: Stimuli acting on sensory receptors provide informa-
tion about the state of the world. The sensory receptors transduce the stimuli into
neural signals, streams of action potentials (aka spikes). The spike trains transmit
the information contained in the stimuli from the receptors to the brain, which pro-
cesses the sensory signals in order to extract from them the information that they
convey. The extracted information may be used immediately to inform ongoing beha-
vior, or it may be kept in memory to be used in shaping behavior at some later time.
Cognitive scientists seek to understand the stages of processing by which informa-
tion is extracted, the representations that result, the motor planning processes through
which the information enters into the direction of behavior, the memory processes
that organize and preserve the information, and the retrieval processes that find the
information in memory when it is needed. Cognitive neuroscientists want to under-
stand where these different aspects of information processing occur in the brain
and the neurobiological mechanisms by which they are physically implemented.

Historically, the information-processing framework in cognitive science is closely
linked to the development of information technology, which is used in electronic
computers and computer software to convert, store, protect, process, transmit, and
retrieve information. But what exactly is this “information” that is so central to
both cognitive science and computer science? Does it have a rigorous meaning?
In fact, it does. Moreover, the conceptual system that has grown up around this
rigorous meaning — information theory — is central to many aspects of modern
science and engineering, including some aspects of cognitive neuroscience. For
example, it is central to our emerging understanding of how neural signals trans-
mit information about the ever-changing state of the world from sensory receptors
to the brain (Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997). For us,
it is an essential foundation for our central claim, which is that the function of
the neurobiological memory mechanism is to carry information forward in time in
a computationally accessible form.
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Figure 1.1 Shannon’s schematization of communication (Shannon, 1948).

Shannon’s Theory of Communication

The modern quantitative understanding of information rests on the work of
Claude Shannon. A telecommunications engineer at Bell Laboratories, he laid the
mathematical foundations of information theory in a famous paper published in
1948, at the dawn of the computer age (Shannon, 1948). Shannon’s concern was
understanding communication (the transmission of information), which he schem-
atized as illustrated in Figure 1.1.

The schematic begins with an information source. The source might be a person
who hands in a written message at a telegraph office. Or, it might be an orchestra
playing a Beethoven symphony. In order for the message to be communicated to
you, you must receive a signal that allows you to reconstitute the message. In this
example, you are the destination of the message. Shannon’s analysis ends when the
destination has received the signal and reconstituted the message that was present
at the source.

The transmitter is the system that converts the messages into transmitted signals,
that is, into fluctuations of a physical quantity that travels from a source location
to a receiving location and that can be detected at the receiving location. Encoding
is the process by which the messages are converted into transmitted signals. The
rules governing or specifying this conversion are the code. The mechanism in the
transmitter that implements the conversion is the encoder.

Following Shannon, we will continue to use two illustrative examples, a telegraphic
communication and a symphonic broadcast. In the telegraphic example, the source
messages are written English phrases handed to the telegrapher, for example,
“Arriving tomorrow, 10 am.” In the symphonic example, the source messages are
sound waves arriving at a microphone. Any one particular short message written
in English and handed to a telegraph operator can be thought of as coming from
a finite set of possible messages. If we stipulate a maximum length of, say, 1,000
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characters, with each character being one of 45 or so different characters (26 letters,
10 digits, and punctuation marks), then there is a very large but finite number of
possible messages. Moreover, only a very small fraction of these messages are intel-
ligible English, so the size of the set of possible messages — defined as intelligible
English messages of 1,000 characters or less — is further reduced. It is less clear
that the sound waves generated by an orchestra playing Beethoven’s Fifth can be
conceived of as coming from a finite set of messages. That is why Shannon chose
this as his second example. It serves to illustrate the generality of his theory.

In the telegraphy example, the telegraph system is the transmitter of the mes-
sages. The signals are the short current pulses in the telegraph wire, which travel
from the sending key to the sounder at the receiving end. The encoder is the tele-
graph operator. The code generally used is the Morse code. This code uses pulses
of two different durations to encode the characters — a short mark (dot), and a
long mark (dash). It also uses four different inter-pulse intervals for separations
— an intra-character gap (between the dots and dashes within characters), a short
gap (between the letters), a medium gap (between words), and a long gap (between
sentences).

In the orchestral example, the broadcast system transmitting radio signals from
the microphone to your radio is the transmitter. The encoder is the electronic device
that converts the sound waves into electromagnetic signals. The type of code is likely
to be one of three different codes that have been used in the history of radio (see
Figure 1.2), all of which are in current use. All of them vary a parameter of a high-
frequency sinusoidal carrier signal. The earliest code was the AM (amplitude
modulated) code. In this code, the encoder modulates the amplitude of the carrier
signal so that this amplitude of the sinusoidal carrier signal varies in time in a way
that closely follows the variation in time of the sound pressure at the microphone’s
membrane.

When the FM (frequency modulated) code is used, the encoder modulates the
frequency of the carrier signal within a limited range. When the digital code is used,
as it is in satellite radio, parameters of the carrier frequency are modulated so as
to implement a binary code, a code in which there are only two characters, cus-
tomarily called the ‘0’ and the ‘1> character. In this system, time is divided into
extremely short intervals. During any one interval, the carrier signal is either low
(‘0’) or high (‘1’). The relation between the sound wave arriving at the microphone
with its associated encoding electronics and the transmitted binary signal is not
easily described, because the encoding system is a sophisticated one that makes use
of what we have learned about the statistics of broadcast messages to create efficient
codes. The development of these codes rests on the foundations laid by Shannon.

In the history of radio broadcasting, we see an interesting evolution (Figure 1.2):
We see first (historically) in Figure 1.2a a code in which there is a transparent (eas-
ily comprehended) relation between the message and the signal that transmits it
(AM). The code is transparent because variation in the amplitude of the message
is converted into variation in the amplitude of the carrier signal that transmits
the message. This code is, however, inefficient and highly vulnerable to noise. It
is low tech. In Figure 1.2b, we see a code in which the relation is somewhat less
transparent, because variation in the amplitude of the message is converted into
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Figure 1.2 The various ways of encoding sound “messages” into broadcast radio signals.
All of them use a carrier frequency and vary parameters of that carrier frequency. (a) In
the AM encoding, the amplitude of the message determines the amplitude of the carrier

frequency. This makes for a transparent (easily recognized) relation between the message
and the signal that transmits it. (b) In the FM encoding, the amplitude of the message

modulates the frequency of the carrier. This makes for a less transparent but still

(c) In digital encoding, there is

binary (two-values only) modulation in a parameter of the carrier signal. In this purely

recognizable relation between message and signal.

notional illustration, the amplitude of any given cycle has one of two values, depending
on whether a high or low bit is transmitted. In this scheme, the message is converted

into a sophisticated binary code prior to transmission. The relation between message

and signal is opaque.
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variation in the frequency of the carrier signal that transmits it (FM). This code is
no more efficient than the first code, but it is less vulnerable to noise, because the
effects of extraneous noise tend to fall mostly in frequency bands outside a given
FM band. Finally, in Figure 1.2¢c we see a high-tech code in which the relation between
the message and the signal that transmits it is opaque. The encoding makes extens-
ive use of advanced statistics and mathematics. The code is, however, both efficient
and remarkably invulnerable to noise. That’s why satellite broadcasts sound better
than FM broadcasts, which sound better than AM broadcasts. The greater efficiency
of the digital code accounts for the ability of digital radio to transmit more channels
within a given bandwidth.

The evolution of encoding in the history of broadcasting may contain an
unpalatable lesson for those interested in understanding communication within the
brain by means of the action potentials that carry information from sources to des-
tinations within the brain. One of neurobiology’s uncomfortable secrets — the sort
of thing neurobiologists are not keen to talk about except among themselves — is
that we do not understand the code that is being used in these communications.
Most neurobiologists assume either explicitly or tacitly that it is an unsophisticated
and transparent code. They assume, for example, that when the relevant variation
at the source is in the amplitude or intensity of some stimulus, then the information-
carrying variation in the transmitted signal is in the firing rate (the number of action
potentials per unit of time), a so-called rate code. The transparency of rate codes
augurs well for our eventually understanding the communication of information
within the brain, but rate codes are grossly inefficient. With more sophisticated but
less transparent codes, the same physical resources (the transmission of the same
number of spikes in a given unit of time) can convey orders of magnitude more
information. State-of-the-art analysis of information transmission in neural signal-
ing in simple systems where we have reason to believe that we know both the set
of message being transmitted and the amount of information available in that set
(its entropy — see below) implies that the code is a sophisticated and efficient one,
one that takes account of the relative frequency of different messages (source stat-
istics), just as the code used in digital broadcasting does (Rieke et al., 1997).

A signal must travel by way of some physical medium, which Shannon refers to
as the signal-carrying channel, or just channel for short. In the case of the tele-
graph, the signal is in the changing flow of electrons and the channel is a wire. In
the case of the symphony, the signal is the variation in the parameters of a carrier
signal. The channel is that carrier signal.' In the case of the nervous system, the
axons along which nerve impulses are conducted are the channels.

In the real world, there are factors other than the message that can also produce
these same fluctuations in the signal-carrying channel. Shannon called these noise

' In digital broadcasting, bit-packets from different broadcasts are intermixed and travel on a com-

mon carrier frequency. The receivers sort out which packets belong to which broadcast. They do so on
the basis of identifying information in the packets. Sorting out the packets and decoding them back
into waveforms requires computation. This is why computation and communication are fused at the
hip in information technology. In our opinion, a similar situation obtains in the brain: Computation
and communication are inseparable, because communication has been optimized in the brain.
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sources. The signal that arrives at the receiver is thus a mixture of the fluctuations
deriving from the encoding of the message and the fluctuations deriving from noise
sources. The fluctuations due to noise make the receiver’s job more difficult, as the
received code can become corrupted. The receiver must reconstitute the message
from the source, that is, change the signal back into that message, and if this sig-
nal has been altered, it may be hard to decode. In addition, the transmitter or the
receiver may be faulty and introduce noise during the encoding/decoding process.

Although Shannon diagrammatically combined the sources of noise and showed
one place where noise can be introduced, in actuality, noise can enter almost any-
where in the communication process. For example, in the case of telegraphy, the
sending operators may not code correctly (use a wrong sequence of dots and dashes)
or even more subtly, they might make silences of questionable (not clearly discern-
ible) length. The telegraph key can also malfunction, and not always produce current
when it should, possibly turning a dash into some dots. Noise can also be introduced
into the signal directly — in this case possibly through interference due to other sig-
nals traveling along wires that are in close proximity to the signal-carrying wire.
Additionally, the receiving operator may have a faulty sounder or may simply decode
incorrectly.

Shannon was, of course, aware that the messages being transmitted often had
meanings. Certainly this is the case for the telegraphy example. Arguably, it is the
case for the orchestra example. However, one of his profound insights was that
from the standpoint of the communications engineer, the meaning was irrelevant.
What was essential about a message was not its meaning but rather that it be selected
from a set of possible messages. Shannon realized that for a communication system
to work efficiently — for it to transmit the maximum amount of information in the
minimum amount of time — both the transmitter and the receiver had to know what
the set of possible messages was and the relative likelihood of the different mes-
sages within the set of possible messages. This insight was an essential part of his
formula for quantifying the information transmitted across a signal-carrying chan-
nel. We will see later (Chapter 9) that Shannon’s set of possible messages can be iden-
tified with the values of an experiential variable. Different variables denote different
sets of possible messages. Whenever we learn from experience the value of an empir-
ical variable (for example, how long it takes to boil an egg, or how far it is from
our home to our office), the range of a priori possible values for that variable is
narrowed by our experience. The greater the range of a priori possible values for
the variable (that is, the larger the set of possible messages) and the narrower the
range after we have had an informative experience (that is, the more precisely we
then know the value), the more informative the experience. That is the essence of
Shannon’s definition of information.

The thinking that led to Shannon’s formula for quantifying information may be
illustrated by reference to the communication situation that figures in Longfellow’s
poem about the midnight ride of Paul Revere. The poem describes a scene from
the American revolution in which Paul Revere rode through New England, warn-
ing the rebel irregulars that the British troops were coming. The critical stanza for
our purposes is the second:
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He said to his friend, “If the British march

By land or sea from the town to-night,

Hang a lantern aloft in the belfry arch

Of the North Church tower as a signal light, —
One if by land, and two if by sea;

And T on the opposite shore will be,

Ready to ride and spread the alarm

Through every Middlesex village and farm,
For the country folk to be up and to arm.”

The two possible messages in this communication system were “by land” and “by
sea.” The signal was the lantern light, which traveled from the church tower to the
receiver, Paul Revere, waiting on the opposite shore. Critically, Paul knew the pos-
sible messages and he knew the code — the relation between the possible messages
and the possible signals. If he had not known either one of these, the communica-
tion would not have worked. Suppose he had no idea of the possible routes by
which the British might come. Then, he could not have created a set of possible
messages. Suppose that, while rowing across the river, he forgot whether it was
one if by land and two if by sea or two if by land and one if by sea. In either case,
the possibility of communication disappears. No set of possible messages, no com-
munication. No agreement about the code between sender and receiver, no com-
munication.

However, it is important to remember that information is always about some-
thing and that signals can, and often do, carry information about multiple things.
When we said above that no information was received, we should have been more
precise. If Paul forgot the routes (possible messages) or the code, then he could
receive no information about how the British might come. This is not to say that
he received no information when he saw the lanterns. Upon seeing the two
lanterns, he would have received information about how many lanterns were hung.
In the simplest analysis, a received signal always (baring overriding noise) carries
information regarding which signal was sent.

Measuring Information

Shannon was particularly concerned with measuring the amount of information com-
municated. So how much information did Paul Revere get when he saw the
lanterns (for two it was)? On Shannon’s analysis, that depends on his prior expecta-
tion about the relative likelihoods of the British coming by land versus their com-
ing by sea. In other words, it depends on how uncertain he was about which route
they would take. Suppose he thought it was a toss-up — equally likely either way.
According to Shannon’s formula, he then received one bit* (the basic unit) of infor-
mation when he saw the signal. Suppose that he thought it less likely that they

2 Shannon was the first to use the word bit in print, however he credits John Tukey who used the

word as a shorthand for “binary digit.”
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would come by land - that there was only one chance in ten. By Shannon’s for-
mula, he then received somewhat less than half a bit of information from the lantern
signal.

Shannon’s analysis says that the (average!) amount of information communicated
is the (average) amount of uncertainty that the receiver had before the commun-
ication minus the amount of uncertainty that the receiver has after the commun-
ication. This implies that information itself is the reduction of uncertainty in the
receiver. A reduction in uncertainty is, of course, an increase in certainty, but what
is measured is the uncertainty.

The discrete case

So how did Shannon measure uncertainty? He suggested that we consider the prior
probability of each message. The smaller the prior probability of a message, the
greater its information content but the less often it contributes that content,
because the lower its probability, the lower its relative frequency. The contribution
of any one possible message to the average uncertainty regarding messages in the set
of possible messages is the information content of that message times its relative
frequency. Its information content is the log of the reciprocal of its probability

i

[log2 lj Its relative frequency is p; itself. Summing over all the possible messages

gives Shannon’s famous formula:

szpi 10%21)l

i=1 i

where H is the amount of uncertainty about the possible messages (usually called
the entropy), n is the number of possible messages, and p; is the probability of the
i™ message.® As the probability of a message in the set becomes very small (as it
approaches 0), its contribution to the amount of uncertainty also becomes very small,
because a probability goes to 0 faster than the log of its reciprocal goes to infinity.
In other words, the fall off in the relative frequency of a message (the decrease in p;)

outstrips the increase in its information content [the increase in logzl).

In the present, simplest possible case, there are two possible messages. If we take
their prior probabilities to be 0.5 and 0.5 (50-50, equally likely), then following
Shannon’s formula, Paul’s uncertainty before he saw the signal was:

1 1 1 1
p log, E + P, log, E = 0.5 log, 03 + 0.5 log, o3 (1)

> The logarithm is to base 2 in order to make the units of information bits, that is, to choose a base

for the logarithm is to choose the size of the units in which information is measured.
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Now, 1/0.5 = 2, and the log to the base 2 of 2 is 1. Thus, equation (1) equals:
(0.5)(1) + (0.5)(1) = 1 bit.

Consider now the case where p; = 0.1 (Paul’s prior probability on their coming
by land) and p, = 0.9 (Paul’s prior probability on their coming by sea). The log, (1/0.1)
is 3.32 and the log, (1/0.9) is 0.15, so we have (0.1)(3.32) + (0.9)(0.15) = 0.47. If
Paul was pretty sure they were coming by sea, then he had less uncertainty than if
he thought it was a toss-up. That’s intuitive. Finding a principled formula that specifies
exactly how much less uncertainty he had is another matter. Shannon’s formula
was highly principled. In fact, he proved that his formula was the only formula
that satisfied a number of conditions that we would want a measure of uncertainty
to have.

One of those conditions is the following: Suppose we have H; amount of uncer-
tainty about the outcome of the roll of one die and H, amount of uncertainty about
the outcome of the roll of a second die. We want the amount of uncertainty we
have about the combined outcomes to be simply H, + H,, that is, we want the
amounts of uncertainties about independent sets of possibilities to be additive.
Shannon’s formula satisfies this condition. That’s why it uses logarithms of the prob-
abilities. Independent probabilities combine multiplicatively. Taking logarithms
converts multiplicative combination to additive combination.

Assuming Paul trusted his friend completely and assuming that there was no pos-
sibility of his mistaking one light for two (assuming in other words, no transmis-
sion noise), then when he saw the two lights, he had no more uncertainty about
which way the British were coming: p,, the probability of their coming by land,
was 0 and p,, the probability of their coming by sea, was 1. Another condition on
a formula for measuring uncertainty is that the measure should be zero when there
is no uncertainty. For Paul, after he had seen the lights, we have: 0 log, (1/0) +
1 log, (1/1) = 0 (because the Liilgp log (1/p) = 0, which makes the first term in the

sum 0, and the log of 1 to any base is 0, which makes the second term 0). So Shannon’s
formula satisfies that condition.

Shannon defined the amount of information communicated to be the difference
between the receiver’s uncertainty before the communication and the receiver’s uncer-
tainty after it. Thus, the amount of information that Paul got when he saw the
lights depends not only on his knowing beforehand the two possibilities (knowing
the set of possible messages) but also on his prior assessment of the probability of
each possibility. This is an absolutely critical point about communicated informa-
tion — and the subjectivity that it implies is deeply unsettling. By subjectivity, we
mean that the information communicated by a signal depends on the receiver’s (the
subject’s) prior knowledge of the possibilities and their probabilities. Thus, the amount
of information actually communicated is not an objective property of the signal
from which the subject obtained it!

Unsettling as the subjectivity inherent in Shannon’s definition of communicated
information is, it nonetheless accords with our intuitive understanding of commun-
ication. When someone says something that is painfully obvious to everyone, it
is not uncommon for teenagers to reply with a mocking, “Duh.” Implicit in this
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mockery is that we talk in order to communicate and to communicate you have
to change the hearer’s representation of the world. If your signal leaves your lis-
teners with the same representation they had before they got it, then your talk is
empty blather. It communicates no information.

Shannon called his measure of uncertainty entropy because his formula is the
same as the formula that Boltzmann developed when he laid the foundations for
statistical mechanics in the nineteenth century. Boltzmann’s definition of entropy
relied on statistical considerations concerning the degree of uncertainty that the
observer has about the state of a physical system. Making the observer’s uncer-
tainty a fundamental aspect of the physical analysis has become a foundational prin-
ciple in quantum physics, but it was extremely controversial at the time (1877).
The widespread rejection of his work is said to have driven Boltzmann to suicide.
However, his faith in the value of what he had done was such that he had his entropy-
defining equation written on his tombstone.

In summary, like most basic quantities in the physical sciences, information is a
mathematical abstraction. It is a statistical concept, intimately related to concepts
at the foundation of statistical mechanics. The information available from a source
is the amount of uncertainty about what that source may reveal, what message it
may have for us. The amount of uncertainty at the source is called the source entropy.
The signal is a propagating physical fluctuation that carries the information from
the source to the receiver.

The information transmitted to the receiver by the signal is the mutual informa-
tion between the signal actually received and the source. This is an objective prop-
erty of the source and signal; we do not need to know anything about the receiver
(the subject) in order to specify it, and it sets an upper limit on the information
that a receiver could in principle get from a signal. We will explain how to quan-
tify it shortly. However, the information that is communicated to a receiver by a
signal is the receiver’s uncertainty about the state of the world before the signal
was received (the receiver’s prior entropy) minus the receiver’s uncertainty after receiv-
ing the signal (the posterior entropy). Thus, its quantification depends on the changes
that the signal effects in the receiver’s representation of the world. The informa-
tion communicated from a source to a receiver by a signal is an inherently subject-
ive concept; to measure it we must know the receiver’s representation of the source
probabilities. That, of course, implies that the receiver has a representation of the
source probabilities, which is itself a controversial assumption in behavioral neuro-
science and cognitive psychology. One school of thought denies that the brain has
representations of any kind, let alone representations of source possibilities and their
probabilities. If that is so, then it is impossible to communicate information to the
brain in Shannon’s sense of the term, which is the only scientifically rigorous sense.
In that case, an information-processing approach to the analysis of brain function
is inappropriate.

The continuous case

So far, we have only considered the measurement of information in the discrete
case (and a maximally simple one). That is to say that each message Paul could
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receive was distinct, and it should not have been possible to receive a message “in
between” the messages he received. In addition, the number of messages Paul could
receive was finite — in this case only two. The British could have come by land or
by sea — not both, not by air, etc. It may seem puzzling how Shannon’s analysis
can be applied to the continuous case, like the orchestra broadcast. On first con-
sideration, the amount of prior uncertainty that a receiver could have about an orches-
tral broadcast is infinite, because there are infinitely many different sound-wave
patterns. Any false note hit by any player at any time, every cough, and so on,
alters the wave pattern arriving at the microphone. This seems to imply that the
amount of prior uncertainty that a receiver could have about an orchestral broad-
cast is infinite. Hearing the broadcast reduces the receiver’s uncertainty from infinite
to none, so an infinite amount of information has been communicated. Something
must be wrong here.

To see what is wrong, we again take a very simple case. Instead of an orchestra
as our source, consider a container of liquid whose temperature is measured by an
analog (continuous) thermometer that converts the temperature into a current flow.
Information is transmitted about the temperature to a receiver in a code that
theoretically contains an infinite number of possibilities (because for any two
temperatures, no matter how close together they are, there are an infinite number
of temperatures between them). This is an analog source (the variation in temper-
ature) and an analog signal (the variation in current flow). Analog sources and
signals have the theoretical property just described, infinite divisibility. There is no
limit to how finely you can carve them up. Therefore, no matter how thin the slice
you start with you can always slice them into arbitrarily many even thinner slices.
Compare this to the telegraphy example. Here, the source was discrete and so
was the signal. The source was a text written in an alphabetic script with a finite
number of different characters (letters, numbers, and various punctuation marks).
These characters were encoded by Morse’s code into a signal that used six primit-
ive symbols. Such a signal is called a digital signal.

In the temperature case, there would appear to be an infinite number of tem-
peratures that the liquid could have, any temperature from 0-o°® Kelvin. Further
thought tells us, however, that while this may be true in principle (it’s not clear
that even in principle temperatures can be infinite), it is not true in practice. Above
a certain temperature, both the container and the thermometer would vaporize. In
fact, in any actual situation, the range of possible temperatures will be narrow.
Moreover, we will have taken into account that range when we set up the system
for measuring and communicating the liquid’s temperature. That is, the structure
of the measuring system will reflect the characteristics of the messages to be
transmitted. This is the sense in which the system will know the set of possible
messages; the knowledge will be implicit in its structure.

However, even within an arbitrarily narrow range of temperatures, there are arbit-
rarily many different temperatures. That is what it means to say that temperature
is a continuous variable. This is true, but the multiple and inescapable sources of
noise in the system limit the attainable degree of certainty about what the tem-
perature is. There is source noise — tiny fluctuations from moment to moment and
place to place within the liquid. There is measurement noise; the fluctuations in the
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Figure 1.3 In analog communication, the receipt of a signal alters the receiver’s
probability density distribution, the distribution that specifies the receiver’s knowledge of
the source value. Generally (though not obligatorily), it narrows the distribution, that is,
G, < O, and it shifts the mean and mode (most probable value).

electrical current from the thermometer will never exactly mimic the fluctuations
in the temperature at the point being measured. And there is transmission noise;
the fluctuations in the current at the receiver will never be exactly the same as the
fluctuations in the current at the transmitter. There are limits to how small each
of these sources of noise can be made. They limit the accuracy with which the tem-
perature of a liquid can in principle be known. Thus, where we went wrong in
considering the applicability of Shannon’s analysis to the continuous case was in
assuming that an analog signal from an analog source could give a receiver infor-
mation with certainty; it cannot. The accuracy of analog signaling is always noise
limited, and it must be so for deep physical reasons. Therefore, the receiver of an
analog signal always has a residual uncertainty about the true value of the source
variable. This a priori limit on the accuracy with which values within a given range
may be known limits the number of values that may be distinguished one from another
within a finite range. That is, it limits resolution. The limit on the number of dis-
tinguishable values together with the limits on the range of possible values makes the
source entropy finite and the post-communication entropy of the receiver non-zero.

Figure 1.3 shows how Shannon’s analysis applies to the simplest continuous case.
Before the receiver gets an analog signal, it has a continuous (rather than discrete)
representation of the possible values of some variable (e.g., temperature). In the
figure, this prior (before-the-signal) distribution is assumed to be a normal (aka
Gaussian) distribution, because it is rather generally the case that we construct a
measurement system so that the values in the middle of the range of possible (i.e.,
measured) values are the most likely values. Shannon derived the entropy for a
normal distribution, showing that it was proportional to the log of the standard
deviation, o, which is the measure of the width of a distribution. Again, this is
intuitive: the broader the distribution is, the more uncertainty there is. After receiv-
ing the signal, the receiver has less uncertainty about the true value of the tem-
perature. In Shannon’s analysis, this means that the posterior (after-the-signal)
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distribution is narrower and higher. The information conveyed by the signal is
proportional to the difference in the two entropies: k(log o, — log o).

How does the simple case generalize to a complex case like the orchestral broad-
cast? Here, Shannon made use of the Fourier theorem, which tells us how to rep-
resent a continuous variation like the variation in sound pressure produced by an
orchestra with a set of sine waves. The Fourier theorem asserts that the whole broad-
cast can be uniquely represented as the sum of a set of sinusoidal oscillations. If
we know this set — the so-called Fourier decompositions of the sound — we can get
back the sound by simply adding all the sinusoids point by point. (See Gallistel,
1980, for elementary explanation and illustration of how this works; also King &
Gallistel, 1996.) In principle, this representation of the sound requires infinitely many
different sinusoids; but in practice, there are limits on both the sensible range of
sinusoidal frequencies and the frequency resolution within that range. For ex-
ample, there is no point in representing the frequencies above 20 kHz, because
humans cannot hear them. In principle, the number of possible amplitudes for a
sinusoid is infinite, but there are limits on the amplitudes that broadcast sounds
actually do have; and within that attainable range, there are limits on the resolu-
tion with which sound amplitude may be ascertained. The same is true for phase,
the third and final parameter that defines a sinusoid and distinguishes it from other
sinusoids. Thus, the space of possible broadcasts is the space defined by the range
of hearable frequencies and attainable amplitudes and phases. Because there are
inescapable limits to the accuracy with which each of these three space-defining
parameters may be ascertained, there is necessarily some residual uncertainty about
any broadcast (some limit on the fidelity of the transmission). Hence, odd as it seems,
there is a finite amount of prior uncertainty about possible broadcasts and a resid-
ual amount of uncertainty after any transmitted broadcast. This makes the amount
of information communicated in a broadcast finite and, more importantly, actually
measurable. Indeed, communications engineers, following the guidelines laid down
by Shannon, routinely measure it. That’s how they determine the number of songs
your portable music player can hold.

Mutual information

The mutual information between an information-conveying signal and its source is
the entropy of the source plus the entropy of the signal minus the entropy of their
joint distribution. Recall that entropy is a property of a probability (relative fre-
quency) distribution over some set of possibilities. The source entropy is a quan-
tity derived from the distribution of probability over the possible messages (the relative
frequencies of the different possible messages). The signal entropy is a quantity derived
from the distribution of probability over the possible signals (the relative frequen-
cies of the different possible signals). A distribution is the set of all the probabilit-
ies (or relative frequencies), one probability for each possibility. Thus, the sum over
these probabilities is always 1, because one or the other possibility must obtain in
every case and the set contains all the possible cases (all the possible messages or
all the possible signals). In computing the entropy of a distribution, we take each
probability in turn, multiply the logarithm of its reciprocal by the probability itself,
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and sum across all the products. Returning to the Paul Revere example, if the prob-
ability, p;, of their coming by land is 0.1 and the probability, ps of their coming by
sea is 0.9, then the source entropy (the basic uncertainty inherent in the situation) is:

p, log, pl + ps log, pl = (0.1)(3.32) + (0.9)(0.15) = 0.47.

L N

If the two signals, one light and two lights, have the same probability distribution,
then the signal entropy is the same as the source entropy.

The joint distribution of the messages and the signals is the probabilities of all
possible co-occurrences between messages and signals. In the Paul Revere example,
four different co-occurrences are possible: (1) the British are coming by land and
there is one signal light; (2) the British are coming by land and there are two sig-
nal lights; (3) the British are coming by sea and there is one signal light; (4) the
British are coming by sea and there are two signal lights. The joint distribution is
these four probabilities. The entropy of the joint distribution is obtained by the
computation we already described: multiply the logarithm of the reciprocal of each
probability by the probability itself and sum the four products.

The entropy of this joint distribution depends on how reliably Paul’s confederate
carries out the assigned task. Suppose that he carries it out flawlessly: every time
they come by land, he hangs one lantern; every time they come by sea, he hangs
two. Then the four probabilities are p, o = 0.1, pran = 0, Psgr = 0, Psgr = 0.9 and
the entropy of this joint distribution is the same as the entropy of the source dis-
tribution and the entropy of the signal distribution; all three entropies are 0.47.
The sum of the source and signal entropies (the first two entropies) minus the third
(the entropy of the joint distribution) is 0.47, so the mutual information between
source and signal is 0.47, which is to say that all the information available at the
source is transmitted by the signal.

Suppose instead that Paul’s confederate is terrified of the British and would not
think of spying on their movements. Therefore, he has no idea which way they are
coming, but, because he does not want Paul to know of his cowardice, he hangs
lanterns anyway. He knows that the British are much more likely to go by sea than
by land, so each night he consults a random number table. He hangs one lantern
if the first digit he puts his finger on is a 1 and two lanterns otherwise. Now, there
is no relation between which way the British are coming and the signal Paul sees.
Now the four probabilities corresponding to the four possible conjunctions of British
movements and the coward’s signals are: p; o = 0.01, P> = 0.09, pge; = 0.09,
Pssa = 0.81 and the entropy of this joint distribution is:

(0.01) log, (=) + (0.09) log, (=) + (0.09) log, () + (0.81) log, (

= (0.01)(6.64) + (0.09)(3.47) + (0.09)(3.47) + (0.81)(0.30) = 0.94.

1
81

The entropy of the joint distribution is equal to the sum of the two other entropies
(more technically, the entropy of the joint distribution is the sum of the entropies
of the marginal distributions). When it is subtracted from that sum, the difference
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is 0. There is no mutual information between the signal and the source. Whether
Paul knows it or not, he can learn nothing about what the British are doing from
monitoring his confederate’s signal. Notice that there is no subjectivity in the com-
putation of the mutual information between source and signal. That is why we can
measure the amount of information transmitted without regard to the receiver’s
representation of the source and the source probabilities.

Finally, consider the case where Paul’s confederate is not a complete coward. On
half the nights, he gathers up his courage and spies on the British movements. On
those nights, he unfailingly signals correctly what he observes. On the other half
of the nights, he resorts to the random number table. Now, the probabilities in the
joint distribution are: p; g = 0.055, pran = 0.045, pgoy = 0.045, pgo, = 0.855 and
the entropy of this joint distribution is:

(0.055) log, (=) + (0.045) log, (=) + (0.045) log, (=) + (0.855) log, (=)

0.055 0.855

= (0.055)(4.18) + (0.045)(4.47) + (0.045)(4.47) + (0.855)(0.23) = 0.83.

When this entropy is subtracted from 0.94, the sum of the entropies of the source
and signal distributions, we get 0.11 for the mutual information between source
and signal. The signal does convey some of the available information, but by no
means all of it. The joint distribution and the two marginal distributions are shown
in Table 1.1. Notice that the probabilities in the marginal distributions are the sums
of the probabilities down the rows or across the columns of the joint distribution.

The mutual information between source and signal sets the upper limit on the
information that may be communicated to the receiver by that signal. There is no
way that the receiver can extract more information about the source from the sig-
nal received than is contained in that signal. The information about the source con-
tained in the signal is an objective property of the statistical relation between the
source and the signal, namely, their joint distribution, the relative frequencies with
which all possible combinations of source message and received signal occur. The
information communicated to the receiver, by contrast, depends on the receiver’s
ability to extract the information made available in the signals it receives (for exam-
ple, the receiver’s knowledge of the code, which may be imperfect) and on the receiver’s
representation of the possibilities and their probabilities.

Table 1.1 Joint and marginal distributions in the case where lantern signal conveys
some information about British route

British route/Lantern signal One lantern Two lanterns Marginal (route)
By land 0.055 0.045 0.1
By sea 0.045 0.855 0.9

Marginal (Signal) 0.1 0.9
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Efficient Coding

As illustrated in Figure 1.2¢, in a digital broadcast, the sound wave is transmitted
digitally. Typically, it is transmitted as a sequence of bits (‘0” or ‘1) that are them-
selves segregated into sequences of eight bits — called a byte. This means that each
byte can carry a total of 256 or 2* possible messages (each added bit doubles the
information capacity). The coding scheme, the method for translating the sound
into bytes, is complex, which is why a digital encoder requires sophisticated com-
putational hardware. The scheme incorporates knowledge of the statistics of the
sound waves that are actually produced during human broadcasts into the creation
of an efficient code. Shannon (1948) showed that an efficient communication code
could only be constructed if one knew the statistics of the source, the relative like-
lihoods of different messages.

An elementary example of this is that in constructing his code, Morse made a
single dot the symbol for the letter ‘E,” because he knew that this was the most
common letter in English text. Its frequency of use is hundreds of times higher than
the frequency of use of the letter ‘Z’ (whose code is dash, dash, dot, dot). Shannon
(1948) showed how to measure the efficiency of a communication code, thereby
transforming Morse’s intuition into quantitative science.

The routine use of digital transmission (and recordings with digital symbols) of
broadcasts is another example that the space of discernibly different broadcasts ulti-
mately contains a finite and routinely measured amount of uncertainty (entropy).
To a first approximation, the prior uncertainty (the entropy) regarding the sound-
form of a broadcast of a specified length is measured by the capacity (often ex-
pressed in megabytes, that is, a million bytes) of the CD required to record it. The
number of possible broadcasts of that length is the number of different patterns
that could be written into that amount of CD space. If all of those patterns were
equally likely to occur, then that number of megabytes would be the prior entropy
for broadcasts of that length. In fact, however, some of those patterns are vastly
more likely than others, because of the harmonic structure of music and the statist-
ical structure of the human voice and instruments, among other things. To the extent
that the sound-encoding scheme built into a recorder fails to take account of these
statistics, the actual entropy is less than the entropy implied by the amount of disk
space required.

It is, however, often possible to specify at least approximately the amount of infor-
mation that a given signal could be carrying to a receiver. This is a critical point
because efficient codes often do not reflect at all the intrinsic properties of what
it is they encode. We then say that the code is indirect. An appreciation of this
last point is of some importance in grasping the magnitude of the challenge that
neuroscientists may face in understanding how the brain works, so we give an
illustrative example of the construction of increasingly efficient codes for sending
English words.

One way to encode English words into binary strings is to start with the encod-
ing that we already have by virtue of the English alphabet, which encodes words
as strings of characters. We then can use a code such as ASCII (American Standard
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Code for Information Interchange), which specifies a byte for each letter, that is a
string of eight ‘0’s or ‘1’s — A = 01000001, B = 01000010, and so on. The aver-
age English word is roughly 6 characters long and we have to transmit 8 bits for
each character, so our code would require an average of about 48 bits each time
we transmitted a word. Can we do better than that? We will assume about
500,000 words in English and 2" = 524,288. Thus, we could assign a unique 19-
bit pattern to each English word. With that code, we need send only 19 bits per
word, better by a factor of 2.5. A code that allows for fewer bits to be transferred
is said to be compact or compressed and the encoding process contains a compression
scheme. The more successfully we compress, the closer we get to transmitting on
average the number of bits specified by the source entropy. Can we make an even
better compression scheme? This last code assumes in effect that English words are
equally likely, which they emphatically are not. You hear or read ‘the’ hundreds
of times every day, whereas you may go a lifetime without hearing or reading
‘eleemosynary’ (trust us, it’s an English word, a rare but kindly one).

Suppose we arrange English words in a table according to their frequency of use
(Table 1.2 shows the first 64 most common words). Then we divide the table in
half, so that the words that account for 50% of all usage are in the upper half and
the remaining words in the lower half. It turns out that there are only about 180
words in the top half! Now, we divide each of these halves in half, to form usage
quartiles. In the top quartile, there are only about 15 words! They account for 25%
of all usage. In the second quartile, accounting for the next 25% of all usage, are
about 165 words; and in the third quartile, about 2,500 words. The remaining
500,000 or so words account for only 25% of all usage.

We can exploit these extreme differences in probability of occurrence to make a
more highly compressed and efficient binary code for transmitting English words.
It is called a Shannon-Fano code after Shannon, who first placed it in print in his
1948 paper, and Fano, who originated the idea and popularized it in a later pub-
lication. We just keep dividing the words in half according to their frequency of
usage. At each division, if a word ends up in the top half, we add a 0 to the string
of bits that code for it. Thus, the 180 words that fall in the top half of the first
division, all have 0 as their first digit, whereas the remaining 500,000 odd words
all have 1. The 15 words in the first quartile (those that ended up in the top half
of the first two divisions), also have 0 as their second digit. The 165 or so words
in the second quartile all have 1 as their second digit. We keep subdividing the
words in this way until every word has been assigned a unique string of ‘0’s and
“1’s. Table 1.2 shows the Shannon-Fano codes for the first 64 most commonly used
English words, as found in one source (The Natural Language Technology Group,
University of Brighton) on the Internet.

As may be seen in Table 1.2, this scheme insures that the more frequent a word
is, the fewer bits we use to transmit it. Using the Shannon-Fano code, we only need
to transmit at most 19 bits for any one word — and that only very infrequently.
For 40% of all the words we transmit, we use 9 bits or fewer. For 25%, we use
only 5 or 6 bits. With this code, we can get the average number of bits per word
transmitted down to about 11, which is almost five times more efficient than the
code we first contemplated. This shows the power of using a code that takes account



Table 1.2 Constructing a Shannon-Fano code for English words. Shannon-Fano codes for the
first 64 most common words in the English language.” Also shown is the cumulative percent of
usage. These 64 words account for roughly 40% of all usage in English text. Note that some
words are repeated as they are considered separate usage.

Rank Word % cum % 1 2 3 4 5 6 7 8 9
1 the 6.25% 6.25% 0 0 0 0 0
2 of 2.97% 9.23% 0 0 0 0 1
3 and 2.71% 11.94% 0 0 0 1 0
4 a 2.15% 14.09% 0 0 0 1 1
5 in 1.83% 15.92% 0 0 1 0 0 0
6 to 1.64% 17.56% 0 0 1 0 1 1
7 it 1.10% 18.66% 0 0 1 1 0 0
8 is 1.01% 19.67% 0 0 1 1 1 0
9 was 0.93% 20.60% 0 0 1 1 1 1
10 to 0.93% 21.53% 0 0 1 0 0 0
11 1 0.89% 22.43% 0 0 1 0 1 0
12 for 0.84% 23.27% 0 0 1 0 1 1
13 you 0.70% 23.97% 0 0 1 1 0 0
14 he 0.69% 24.66% 0 0 1 1 1 0
15 be 0.67% 25.33% 0 0 1 1 1 1
16 with 0.66% 25.99% 0 1 0 0 0 0 0
17 on 0.65% 26.64% 0 1 0 0 0 0 1 0
18 that 0.64% 27.28% 0 1 0 0 0 0 1 1
19 by 0.51% 27.79% 0 1 0 0 0 1 0 0
20 at 0.48% 28.28% 0 1 0 0 0 1 1 0
21 are 0.48% 28.75% 0 1 0 0 0 1 1 1
22 not 0.47% 29.22% 0 1 0 0 1 0 0 0
23 this 0.47% 29.69% 0 1 0 0 1 0 1 0
24 but 0.46% 30.15% 0 1 0 0 1 0 1 1
25 ’s 0.45% 30.59% 0 1 0 0 1 1 0 0
26 they 0.44% 31.03% 0 1 0 0 1 1 0 1
27 his 0.43% 31.46% 0 1 0 0 1 1 1 0
28 from 0.42% 31.88% 0 1 0 0 1 1 1 1
29 had 0.41% 32.29% 0 1 0 1 0 0 0 0
30 she 0.38% 32.68% 0 1 0 1 0 0 0 1
31 which 0.38% 33.05% 0 1 0 1 0 0 1 0
32 or 0.37% 33.43% 0 1 0 1 0 0 1 1
33 we 0.36% 33.79% 0 1 0 1 0 1 0 0
34 an 0.35% 34.14% 0 1 0 1 0 1 0 1
35 n’t 0.34% 34.47% 0 1 0 1 0 1 1 0
36 ’s 0.33% 34.80% 0 1 0 1 0 1 1 1
37 were 0.33% 35.13% 0 1 0 1 1 0 0 0
38 that 0.29% 35.42% 0 1 0 1 1 0 0 1 0
39 been 0.27% 35.69% 0 1 0 1 1 0 0 1 1
40 have 0.27% 35.96% 0 1 0 1 1 0 1 0 0
41 their 0.26% 36.23% 0 1 0 1 1 0 1 0 1
42 has 0.26% 36.49% 0 1 0 1 1 0 1 1 0
43 would 0.26% 36.75% 0 1 0 1 1 0 1 1 1
44 what 0.25% 37.00% 0 1 0 1 1 1 0 0 0
45 will 0.25% 37.25% 0 1 0 1 1 1 0 1 0
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Table 1.2 (cont’d)

Rank Word % cum % 1 2 3 4 K] 6 7 8 9
46 there 0.24% 37.49% 0 1 0 1 1 1 0 1 1
47 if 0.24% 37.73% 0 1 0 1 1 1 1 0 0
48 can 0.24% 37.96% 0 1 0 1 1 1 1 0 1
49 all 0.23% 38.20% 0 1 0 1 1 1 1 1 0
50 her 0.22% 38.42% 0 1 0 1 1 1 1 1 1
51 as 0.21% 38.63% 0 1 1 0 0 0 0 0 0
52 who 0.21% 38.83% 0 1 1 0 0 0 0 1 0
53 have 0.21% 39.04% 0 1 1 0 0 0 0 1 1
54 do 0.20% 39.24% 0 1 1 0 0 0 1 0 0
55 that 0.20% 39.44% 0 1 1 0 0 0 1 0 1
56 one 0.19% 39.63% 0 1 1 0 0 0 1 1 0
57 said 0.19% 39.82% 0 1 1 0 0 0 1 1 1
58 them 0.18% 39.99% 0 1 1 0 0 1 0 0 0
59 some 0.17% 40.17% 0 1 1 0 0 1 0 0 1
60 could 0.17% 40.34% 0 1 1 0 0 1 0 1 0
61 him 0.17% 40.50% 0 1 1 0 0 1 0 1 1
62 into 0.17% 40.67% 0 1 1 0 0 1 1 0 0
63 its 0.16% 40.83% 0 1 1 0 0 1 1 0 1
64 then 0.16% 41.00% 0 1 1 0 0 1 1 1 1

* This list is not definitive and is meant only for illustrative purposes.

of the source statistics. Another important property of a Shannon-Fano code is that
it is what is called a prefix code. This means that no word is coded by a bit pattern
that is the prefix for any other word’s code. This makes the code self-delimiting
so that when one receives multiple words as a string of bits, there is no need for
any form of punctuation to separate the words, and there is no ambiguity. Notice
that this leads to a clarification of the efficiency of the ASCII encoding. The ASCII
encoding of English text is not a prefix code. For example, if one received the text
“andatareallastask,” there would be no way to know with certainty if the intended
words were “and at are all as task,” or “an data real last ask.” Because of this,
the ASCII encoding scheme would actually require each word to end with a space
character (another code of 8 bits), and the total expected bits per word increases
to 7 bytes or 56 bits per word.*

Compact codes are not necessarily a win-win situation. One problem with com-
pact codes is that they are much more susceptible to corruption by noise than non-
compact codes. We can see this intuitively by comparing the ASCII encoding scheme
to the each-word-gets-a-number scheme. Let’s say we are trying to transmit one

* The Shannon-Fano prefix code, while efficient, is suboptimal and can result in less than perfect com-

pression. The Huffman (1952) encoding scheme uses a tree-like structure formed from the bottom up
based on the probabilities themselves, not just the rankings. It produces a prefix code that can be shown
to be optimal with respect to a frequency distribution that is used irrespective of the text sent, that is,
it does not take advantage of the statistics of the particular message being sent.
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English word. In the ASCII scheme, roughly 48 bits encode each word. This is a
total number of 2* possible patterns — a number in excess of 36 quadrillion —
36,000,000,000,000,000. With our each-word-gets-a-number scheme, we send 19
bits per word, resulting in 2'* possible patterns or 524,288. If, for argument’s sake,
we assume that our lexicon contains 524,288 possible words, then if one bit is changed
(from a ‘0’ to a ‘1’ or from a ‘1’ to a ‘0’) because of noise on the signal channel,
then the word decoded will with certainty be another word from the lexicon (one
of possibly 19 words), with no chance of knowing (without contextual clues) that
the error occurred. On the other hand, with the ASCII scheme, regardless of the
noise, we will have less than a 1 in 50 billion chance of hitting another word in
our lexicon. Since this “word” will almost certainly not be found in the lexicon, it
will be known that an error has occurred and the communication system can request
that the word be re-sent or likely even correct the error itself. Clearly in a com-
munication system with very noisy channels, using the ASCII scheme would be more
costly in terms of bits, but more likely to get the right message across.

We can help this problem, however, by adding redundancy into our schemes.
For example, with the each-word-gets-a-number scheme, we could send 3 bits for
each 1 bit we sent before, each 3 bits simply being copies of the same bit. So instead
of transmitting the 19 bits, 1001010001100110011, we would transmit 57 bits:

111000000111000111000000000111111000000111111000000111111

In this case, we have decreased the efficiency back to the ASCII scheme, however,
the redundancy has resulted in certain advantages. If any one bit is flipped due to
noise, not only can we detect the error with certainty, we can also correct it with
certainty. If two bits are flipped, then with certainty we can detect it. We would
also have a 55/56 chance of correcting it.

Information and the Brain

Clearly, the tradeoffs between efficiency, accuracy, error detection, and error cor-
rection can lead to tremendous complexities when designing efficient codes in a world
with noise. These issues are made even more complex when one takes into account
the relative frequencies of the messages, as is done with the Shannon-Fano coding
scheme. Computer scientists must routinely deal with these issues in designing real-
world communication schemes. It is almost certainly the case that that the brain
deals with the same issues. Therefore, an understanding of these issues is crucial
to understanding the constraints that govern the effective transmission of information
by means of nerve impulses within the brain.

As noted in connection with Figure 1.2, insofar as the considerations of
efficiency and noise-imperviousness have shaped the system of information trans-
mission within the brain, the brain’s signaling code may be indirect. That is, the
signals may not reflect intrinsic properties of the things (source messages) that they
encode for. For example, first consider an ASCII encoding of a word, such as ‘dog.’
Note that we are talking about the word ‘dog’, not the animal. The word is first
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encoded into letters, that is “dog.” This code reflects inherent properties of the word
‘dog’, as the letters (to some degree) reflect phonemes in the spoken word (“d”
reflects the ‘d’ sound). If we encode each letter by an ASCII symbol, we retain this
coding property, as each character has a one-to-one mapping to an ASCII symbol.
This coding scheme is quite convenient as it also has some direct relationships with
many other features of words such as their frequency of usage (smaller words tend
to be more common), their part of speech, their country of origin, and even their
meaning. As we saw, however, this direct encoding comes at a price — the code is
not compact and is not ideal for transmission efficiency.

On the other hand, consider the Shannon-Fano encoding scheme applied to words.
Here, the letters are irrelevant to the coding process. Instead, the code generates
the signals based on the words’ rank order in a usage table, not from anything
related to its sound or meaning (although there are strong and interesting correla-
tions between meaning and relative frequency — something that code breakers can
use to their advantage). Most efficient (compact) codes make use of such relative
frequencies and are therefore similarly indirect.

In addition, in modern signal transmission, it is often the case that encoded into
the signals are elements of redundancy that aid with the problem of noise. One
common technique is to include what are called checksum signals to the encoding
signal. The checksum refers not to what the symbol encodes for, but instead, the
symbol itself. This allows the communication system to detect if a message was
corrupted by noise. It is called a checksum, as it typically treats the data as pack-
ets of numbers, and then adds these numbers up. For example, let’s take the ASCII
encoding scheme. The word ‘dog’ (lower case) would be encoded as 01100100,
01101111, 01100111. Now, we can treat these bytes as binary numbers, giving us
the sequence (in decimal), 100, 111, 103. If we sum these numbers, we get 314.
Because this is a bigger number than can be encoded by one byte (8 bits), we take
the remainder when divided by 255, which is 59. In binary, that is 00111011. If
we prepend this byte to the original sequence, we can (with over 99% certainty),
determine if the signal was corrupted. Such schemes involve computations at both
the source and destination, and they can make the code harder to break.

If coding schemes in the nervous system are similarly indirect, then the neuro-
scientist’s job is hard. We have no assurance that they are not. At present, with a
few small and recent exceptions (Rieke et al., 1997), neurophysiologists are in the
position of spies trying to figure out how a very complex multinational corpora-
tion functions by listening to phone conversations conducted in a communication
code they do not understand. That is because, generally speaking, neuroscientists
do not know what it is about trains of action potentials that carries the informa-
tion, nor exactly what information is being communicated. We’ve been listening to
these signals for a century, but we have only translated minute parts of what we
have overheard.

This brings us to a brief consideration of how Shannon’s analysis applies to the
brain (Figure 1.4). The essential point is that the brain is a receiver of signals that,
under the proper conditions, convey to it information about the state of the world.
The signals the brain receives are trains of action potentials propagating down
sensory axons. Neurophysiologists call these action potentials spikes, because they
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Figure 1.4 World-to-brain communication. The states of some delimited aspect of the
world correspond to Shannon’s messages. Perceptual psychologists call these states distal
stimuli. Stimulus energy is either reflected off or emitted by the source. This energy
together with contaminating energy from other sources (noise) impinges on sensory
receptors in sensory organs (sensory encoders). Perceptual psychologists call the stimulus
that actually impinges on the receptors the proximal stimulus. The encoders translate the
proximal stimulus into sensory signals, streams of spikes in the sensory axons leading
from sensory organs to the brain. Biophysical noise contaminates this neural signal,
with the result that variations in the spike train are not due entirely to variations in the
proximal stimulus. The sensory-processing parts of the brain are the decoder. Successive
stages of sensory decoding translate incoming sensory signals into, first, a representation
of aspects of the proximal stimulus, and then into a set of symbols that constitute what
psychologists call a percept. This set of symbols represents the distal stimulus in the
brain’s subsequent information processing. The appropriate processing of these symbols,
together with the communication chain that confers reference on them, makes the brain
a representational system.

look like spikes when viewed on an oscilloscope at relatively low temporal resolu-
tion. Spikes are analogous to electrical pulses that carry information within elec-
tronic systems. Sensory organs (eyes, ears, noses, tongues, and so on) and the sensory
receptors embedded in them convert information-rich stimulus energy to spike trains.
The stimuli that act directly on sensory receptors are called proximal stimuli. Examples
are the photons absorbed by the rods and cones in the retina, the traveling waves
in the basilar membrane of the cochlea, which bend the underlying hair cells, the
molecules absorbed by the nasal mucosa, and so on. Proximal stimuli carry infor-
mation about distal stimuli, sources out there in the world. The brain extracts this
information from spike trains by processing them. This is to say that much of the
signal contains data from which useful information must be determined.

The problem that the brain must solve is that the information it needs about the
distal stimulus in order to act appropriately in the world — the source information
— is not reflected in any simple way in the proximal stimulus that produces the
spike train. Even simple properties of the proximal stimulus itself (how, for exam-
ple, the pattern of light is moving across the retina) are not reflected in a straight-
forward way in the spike trains in the optic nerve, the bundle of sensory axons
that carries information from the retina to the first way-stations in the brain. The
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physical processes in the world that convert source information (for example, the
reflectance of a surface) to proximal stimuli (the amount of light from that surface
impinging on the retina) encode the source information in very complex ways. Many
different, quite unrelated aspects of the world — for example, the reflectance of the
surface and the intensity of its illumination — combine to determine proximal stim-
uli. To extract from the spike train useful facts about a specific source (for exam-
ple, what the reflectance of a particular surface actually is), the brain must invert
this complex encoding and separate the messages that are conflated in the signals
it receives. This inversion and message separation is effected by a sequence of com-
putational operations, very few of which are currently understood.

The modern approach to a neurobiological understanding of sensory transduc-
tion and the streams of impulses thereby generated relies heavily on Shannon’s insights
and their mathematical elaboration (Rieke et al., 1997). In a few cases, it has been
possible to get evidence regarding the code used by sensory neurons to transmit
information to the brains of flies and frogs. The use of methods developed from
Shannon’s foundations has made it possible to estimate how many bits are con-
veyed per spike and how many bits are conveyed by a single axon in one second.
The answers have been truly revolutionary. A single spike can convey as much as
7 bits of information and 300 bits per second can be transmitted on a single axon
(Rieke, Bodnar, & Bialek, 1995).

Given our estimates above of how many bits on average are needed to convey
English words when an efficient code is used (about 10 per word), a single axon
could transmit 30 words per second to, for example, a speech center.’ It could do
so, of course, only if the usage-frequency table necessary to decode the Shannon-
Fano code were stored in the speech center, as well as in the source center.
Remember that both Paul’s confederate (the encoder) and Paul (the decoder) had
to know the lantern code for their system to work. These encoding tables consti-
tute knowledge of the statistical structure of English speech. Central to Shannon’s
analysis of communication is the realization that the structure of the encoding and
decoding mechanisms must reflect the statistical structure of the source. To make
a system with which the world can communicate efficiently, you must build into
it implicit information about the statistical structure of that world. Fortunately, we
know that English speakers do know the usage frequency of English words (even
though they don’t know they know it). The effects of word frequency in many tasks
are among the more ubiquitous and robust effects in cognitive psychology (Hasher
& Zacks, 1984; Hulme et al., 1997; Jescheniak & Levelt, 1994). The information-
theoretic analysis provides an unusual explanation of why they ought to know these
relative frequencies.®

Until the advent of these information-theoretic analyses, few neuroscientists had
any notion of how to go about estimating how many axons it might in principle
take to relay words to a speech center at natural speaking rates (2-8 words/second).

5 Whether transmission rates of 300 bits per second are realistic for axons within the brain (as opposed

to sensory axons) is controversial (Latham & Nirenberg, 2005).
¢ This knowledge is, of course, not built in; it is constructed in the course of learning the language.
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No one would have guessed that it could be done with room to spare by a single
axon. Understanding how the brain works requires an understanding of the rudi-
ments of information theory, because what the brain deals with is information.

Digital and Analog Signals

Early communication and recording technology was often analog. Analog sources
(for example, sources putting out variations in sound pressure) were encoded into
analog signals (continuously fluctuating currents) and processed by analog re-
ceivers. For decades, neuroscientists have debated the question whether neural
communication is analog or digital or both, and whether it matters. As most
technophiles know, the modern trend in information technology is very strongly in
the digital direction; state-of-the-art transmitters encode analog signals into digital
signals prior to transmission, and state-of-the art receivers decode those digital sig-
nals. The major reason for this is that the effects of extraneous noise on digital
communication and recording are much more easily controlled and minimized. A
second and related reason is that modern communication and recording involves
computation at both the transmitting (encoding) and receiving (decoding) stages.
Much of this computation derives from Shannon’s insights about what it takes to
make a code efficient and noise resistant. Modern information-processing hardware
is entirely digital — unlike the first computers, which used analog components. To
use that hardware to do the encoding and decoding requires recoding analog sig-
nals into digital form. One of the reasons that computers have gone digital is for
the same reason that modern information transmission has — noise control and con-
trol over the precision with which quantities are represented.

Our hunch is that information transmission and processing in the brain is like-
wise ultimately digital. A guiding conviction of ours — by no means generally shared
in the neuroscience community — is that brains do close to the best possible job
with the problems they routinely solve, given the physical constraints on their opera-
tion. Doing the best possible job suggests doing it digitally, because that is the best
solution to the ubiquitous problems of noise, efficiency of transmission, and preci-
sion control.

We make this digression here because the modern theory of computation, which
we will be explaining, is cast entirely in digital terms. It assumes that information
is carried by a set of discrete symbols. This theory has been extensively developed,
and it plays a critical role in computer science and engineering. Among other things,
this theory defines what it means to say that something is computable. It also estab-
lishes limits on what is computable. There is no comparable theory for analog com-
putation (and no such theory seems forthcoming). The theory we will be explaining
is currently the only game in town. That does not, of course, mean that it will not
some day be supplanted by a better game, a better theory of computation. We think
it is fair to say, however, that few believe that analog computation will ultimately
prove superior. There is little reason to think that there are things that can only
be computed by an analog computer. On the contrary, the general, if largely unspo-
ken, assumption is that digital computation can accomplish anything that analog
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computation can, while the converse may not be the case. As a practical matter,
it can usually accomplish it better. That is why there is no technological push to
create better analog computers.

Appendix: The Information Content of Rare Versus
Common Events and Signals

Above, we have tacitly assumed that the British move out night after night and
Paul’s confederate spies on them (or fails to do so) and hangs lanterns (transmits
a signal) every night. In doing so, we have rectified an implicit fault in the Paul
Revere example that we have used to explicate Shannon’s definition of informa-
tion. The fault is that it was a one-time event. As such, Shannon’s analysis would
not apply. Shannon information is a property of probability (that is, relative fre-
quency) distribution, not of single (unique) events or single (unique) signals. With
a unique event, there is only one event in the set of messages. Thus, there is no
distribution. Hence, there is no entropy (or, if you like, the entropy is 0, because
the relative frequency of that event is 1, and the log of 1 is 0). The consequences
of the uniqueness were most likely to have surfaced when he or she came to the
case in which there was said to be a 0.1 “probability” of their coming by land and
a 0.9 “probability” of their coming by sea. If by probability we understand relat-
ive frequency, then these are not intelligible numbers, because with a unique event,
there is no relative frequencys; it either happens or it doesn’t.” If we ignore this,
then we confront the following paradox: the information communicated by the lantern
signal is the same whether Paul sees the low probability signal or the high prob-
ability signal, because the prior probability distribution is the same in both cases,
hence the pre-signal entropies are the same, and the post-signal entropies are both
0. If, however, the event belongs to a set of events (a set of messages) with empir-
ically specifiable relative frequencies, then when we compute the entropy per event
or per signal we find that, for rare events, the entropy per event is higher than for
common events, in accord with our intuitions. We get this result because the entropy
is defined over the full set of events, that is, the entropy is a property of the relat-
ive frequency distribution (and only of that distribution, not of its constituents,
nor of their individual relative frequencies). The source entropy in the case of the
British movements (assuming they recur night after night) is a single fixed quan-
tity, regardless of whether we consider the rare occurrences (coming by land) or
the common ones (coming by sea). However, the common occurrences are nine times

7 This is among the reasons why radical Bayesians reject the interpretation of probabilities as relative

frequencies. For a radical Bayesian, a probability is a strength of belief. Although we are sympathetic
to this position, considering how information theory would look under this construal of probability
would take us into deeper philosophical waters than we care to swim in here. As a practical matter, it
is only applied in situations where relative frequencies are in fact defined. Note that whether or not an
event has a relative frequency depends on the set of messages to which it belongs and that in turn depends
on how we choose to describe it. Any event has a relative frequency under at least some description.
This issue of descriptions relates to the question of “aboutness,” which we take up in a later chapter.
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more frequent than the rare ones. Therefore, the amount of entropy per common
event is nine times less than the amount of entropy per rare event, because the amount
of entropy per type of event times the relative frequency of that type of event has
to equal the total entropy of the distribution. As the rare events get rarer and rarer,
the total entropy gets smaller and smaller, but the entropy per rare event gets larger
and larger. This is true whether we are considering source entropy or signal
entropy. The entropy per event, which is sometimes called the information content
of an event, is log(1/p), which goes to infinity (albeit slowly) as p goes to 0. Thus,
the entropy of a distribution is the average information content of the events (mes-
sages) over which the distribution is defined.



