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CHAPTER 1

Why evidence matters

Andrew Moore and Sheena Derry
Pain Research, Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford, UK 

Introduction

There are two ways of answering a question about 
what evidence-based medicine (EBM) is good for 
or even what it is. One is the dry, formal approach, 
essentially statistical, essentially justifying a pro-
scriptive approach to medicine. We have chosen, 
instead, a freer approach, emphasizing the utility 
of knowing when “stuff ” is likely to be wrong and 
being able to spot those places where, as the old 
maps would tell us, “here be monsters.” This is the 
Bandolier approach, the product of the hard knocks 
of a couple of decades or more of trying to under-
stand evidence.

What both of us (and Henry McQuay and other 
collaborators over the years), on our different jour-
neys, have brought to the examination of evidence 
is a healthy dose of skepticism, perhaps epitomized 
in the birth of Bandolier. It came during a lecture on 
evidence-based medicine by a public health doctor, 
who proclaimed that only seven things were known to 
work in medicine. By known, he meant that they were 
evidenced by systematic review and meta- analysis. A 
reasonable point, but there were unreasonable  people 
in the audience. One mentioned thiopentone for 
induction of anesthesia, explaining that with a syringe 
and needle anyone, without exception, could be put 
to sleep given enough of this useful barbiturate; today 
we would say that it had an NNT of 1. So now we 
had seven things known to work in medicine, plus 

thiopentone. We needed somewhere to put the  bullet 
points of evidence; you put bullets in a  bandolier 
(a shoulder belt with loops for ammunition).

The point of this tale is not to traduce well-
 meaning public health docs, or meta-analyses, but 
rather to make the point that evidence comes in dif-
ferent ways and that different types of evidence have 
different weight in different circumstances. There is 
no single answer to what is needed, and we have often 
to think outside what is a very large box. Too often, 
EBM seems to be corralled into a very small box, with 
the lid nailed tightly shut and no outside thinking 
allowed.

If there is a single unifying theory behind EBM, 
it is that, whatever sort of evidence you are looking 
at, you need to apply the criteria of quality, validity, 
and size. These issues have been explored in depth for 
clinical trials, observational studies, adverse events, 
diagnosis, and health economics [1], and will not be 
rehearsed in detail in what follows. Rather, we will try 
to explore some issues that we think are commonly 
overlooked in discussions about EBM. 

We talk to many people about EBM and those not 
actively engaged in research in the area are frequently 
frustrated by what they see as an impossibly compli-
cated discipline. Someone once quoted Ed Murrow 
at us, who, talking about the Vietnam war, said that 
“Anyone who isn’t confused doesn’t really understand 
the situation” (Walter Bryan, The Improbable Irish, 
1969). We understand the sense of confusion that can 
arise, but there are good reasons for continuing to 
grapple with EBM. The first of these is all about the 
propensity of research and other papers you read to 
be wrong. You need to know about that, if you know 
nothing else.
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Most published research false?

It has been said that only 1% of articles in scientific 
journals are scientifically sound [2]. Whatever the 
exact percentage, a paper from Greece [3], replete 
with Greek mathematical symbols and philosophy, 
makes a number of important points which are use-
ful to think of as a series of little laws (some of which 
we explore more fully later) to use when considering 
evidence. 

The smaller the studies conducted in a scientific 
field, the less likely the research findings are to be 
true.
The smaller the effect sizes in a scientific field, the 
less likely the research findings are to be true.
The greater the number and the fewer the selection 
of tested relationships in a scientific field, the less 
likely the research findings are to be true.
The greater the flexibility in designs, definitions, 
outcomes, and analytical modes in a scientific field, 
the less likely the research findings are to be true.
The greater the financial and other interests and 
prejudices in a scientific field, the less likely the 
research findings are to be true. (These might 
include research grants or the promise of future 
research grants.)
The hotter a scientific field (the more scientific 
teams involved), the less likely the research findings 
are to be true.

Ioannidis then performs a pile of calculations and 
simulations and demonstrates the likelihood of us 
getting at the truth from different typical study types 
(Table 1.1). This ranges from odds of 2:1 on (67% 
likely to be true) from a systematic review of good-
quality randomized trials, through 1:3 against (25% 

•

•

•

•

•

•

likely to be true) from a systematic review of small 
inconclusive randomized trials, to even lower levels 
for other study architectures.

There are many traps and pitfalls to negotiate when 
assessing evidence, and it is all too easy to be misled 
by an apparently perfect study that later turns out to 
be wrong or by a meta-analysis with impeccable cre-
dentials that seems to be trying to pull the wool over 
our eyes. Often, early outstanding results are followed 
by others that are less impressive. It is almost as if 
there is a law that states that first results are always 
spectacular and subsequent ones are mediocre: the 
law of initial results. It now seems that there may be 
some truth in this.

Three major general medical journals (New 
England Journal of Medicine, JAMA, and Lancet) 
were searched for studies with more than 1000 cita-
tions published between 1990 and 2003 [4]. This is an 
extraordinarily high number of citations when you 
think that most papers are cited once if at all, and that 
a citation of more than a few hundred times is almost 
as rare as hens’ teeth. 

Of the 115 articles published, 49 were eligible for 
the study because they were reports of original  clinical 
research (like tamoxifen for breast cancer prevention 
or stent versus balloon angioplasty). Studies had sam-
ple sizes as low as nine and as high as 87,000. There 
were two case series, four cohort studies, and 43 rand-
omized trials. The randomized trials were very varied 
in size, though, from 146 to 29,133 subjects (median 
1817). Fourteen of the 43 randomized trials (33%) 
had fewer than 1000 patients and 25 (58%) had fewer 
than 2500 patients.

Of the 49 studies, seven were contradicted by later 
research. These seven contradicted studies included 

Table 1.1 Likelihood of truth of research findings from various typical study architectures

Example Ratio of true to not true

Confirmatory meta-analysis of good-quality RCTs 2:1
Adequately powered RCT with little bias and 1:1 prestudy odds 1:1
Meta-analysis of small, inconclusive studies 1:3
Underpowered and poorly performed phase I–II RCT 1:5
Underpowered but well-performed phase I–II RCT 1:5
Adequately powered exploratory epidemiologic study 1:10
Underpowered exploratory epidemiologic study 1:10
Discovery-orientated exploratory research with massive testing 1:1000
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one case series with nine patients, three cohort studies 
with 40,000–80,000 patients, and three randomized 
trials, with 200, 875 and 2002 patients respectively. So 
only three of 43 randomized trials were contradicted 
(7%), compared with half the case series and three-
quarters of the cohort studies.

A further seven studies found effects stronger than 
subsequent research. One of these was a cohort study 
with 800 patients. The other six were randomized tri-
als, four with fewer than 1000 patients and two with 
about 1500 patients.

Most of the observational studies had been contra-
dicted, or subsequent research had shown substan-
tially smaller effects, but most randomized studies 
had results that had not been challenged. Of the nine 
randomized trials that were challenged, six had fewer 
than 1000 patients, and all had fewer than 2003 
patients. Of 23 randomized trials with 2002 patients 
or fewer, nine were contradicted or challenged. None 
of the 20 randomized studies with more than 2003 
patients were challenged.

There is much more in these fascinating papers, but 
it is more detailed and more complex without becom-
ing necessarily much easier to understand. There is 
nothing that contradicts what we already know, namely 
that if we accept evidence of poor quality, without 
validity or where there are few events or numbers of 
patients, we are likely, often highly likely, to be misled.

If we concentrate on evidence of high quality, 
which is valid, and with large numbers, that will 
hardly ever happen. As Ioannidis also comments, if 
instead of chasing some ephemeral statistical signifi-
cance we concentrate our efforts where there is good 
prior evidence, our chances of getting the true result 
are better. This may be why clinical trials on pharma-
ceuticals are so often significant statistically, and in 
the direction of supporting a drug. Yet even in that 
very special circumstance, where so much treasure 
is expended, years of work with positive results can 
come to naught when the big trials are done and do 
not produce the expected answer.

Limitations

Whatever evidence we look at, there are likely to be 
limitations to it. After all, there are few circumstances 
in which one study, of whatever architecture, is likely 
to be able to answer all the questions we need to know 

about an intervention. For example, trials capturing 
information about the benefits of treatment will not 
be able to speak to the question of rare, but serious, 
adverse events.

There are many more potential limitations. 
Studies may not be properly conducted or reported 
according to recognized standards, like CONSORT 
for randomized trials (www.consort-statement.
org), QUOROM for systematic reviews, and other 
standards for other studies. They may not measure 
 outcomes that are useful, or be conducted on patients 
like ours, or present results in ways that we can eas-
ily comprehend; trials may have few events, when 
not much happens, but make much of not much, as 
it were. Observational studies, diagnostic studies, and 
health economic studies all have their own particular 
set of limitations, as well as the more pervasive sins of 
significance chasing, or finding evidence to support 
only preconceptions or idées fixes.

Perfection in terms of the overall quality and extent 
of evidence is never going to happen in a single study, 
if only because the ultimate question – whether this 
intervention will work in this patient and produce 
no adverse effects – cannot be answered. The average 
results we obtain from trials are difficult to extrapo-
late to individuals, and especially the patients in front 
of us (of which more later).

Acknowledging limitations
Increasingly we have come to expect authors to make 
some comment about the limitations of their studies, 
even if it is only a nod in the direction of acknowl-
edging that there are some. This is not easy, because 
there is an element of subjectivity about this. Authors 
may also believe, with some reason, that spending too 
much time rubbishing their own results will result 
in rejection by journals, and rejection is not appreci-
ated by pointy-headed academics who live or die by 
publications.

Even so, the dearth of space given over to discuss-
ing the limitations of studies is worrying. A recent 
survey [5] that examined 400 papers from 2005 in the 
six most cited research journals and two open-access 
journals showed that only 17% used at least one word 
denoting limitations in the context of the scientific 
work presented. Among the 25 most cited journals, 
only one (JAMA) asks for a comments section on 
study limitations, and most were silent.



Chapter 1

6

Statistical testing

It is an unspoken belief that to have a paper pub-
lished, it helps to report some measure with a sta-
tistically significant difference. This leads to the 
phenomenon of significance chasing, in which data 
are analyzed to death and the aim is to find any test 
with any data that show significance at the paltry 
level of 5%. A P value of 0.05, or significance at the 
5% level, tells us that there is a 1 in 20 chance that 
the results occurred by chance. As an aside, you might 
want to ask yourself how happy you are with 1 in 
20; after all, if you throw two dice, double six seems 
to occur frequently and that is a chance of 1 in 36. If 
you want to examine evidence with a cold and fishy 
eye, try recognizing significance only when it is at the 
1 in 100 level, or 1%, or a P value of 0.001; it often 
changes your view of things.

Multiple statistical testing
The perils of multiple statistical testing might have 
been drummed into us during our education but as 
researchers, we often forget them in the search for 
“results,” especially when such testing confirms our 
pre-existing biases. A large and thorough examina-
tion of multiple statistical tests underscores the prob-
lems this can pose [6].

This was a population-based retrospective cohort 
study which used linked administrative databases 
covering 10.7 million residents of Ontario aged 
18–100 years who were alive and had a birthday in 
the year 2000. Before any analyses, the database was 
split in two to provide both derivation and validation 
cohorts, each of about 5.3 million persons, so that 
associations found in one cohort could be confirmed 
in the other cohort.

The cohort comprised all admissions to Ontario 
hospitals classified as urgent (but not elective or 
planned) using DSM criteria, and ranked by fre-
quency. This was used to determine which persons 
were admitted within the 365 days following their 
birthday in 2000, and the proportion admitted under 
each astrological sign. The astrological sign with the 
highest hospital admission rate was then tested statis-
tically against the rate for all 11 other signs combined, 
using a significance level of 0.05. This was done until 
two statistically significant diagnoses were identified 
for each astrological sign.

In all, 223 diagnoses (accounting for 92% of all 
urgent admissions) were examined to find two sta-
tistically significant results for each astrological sign. 
Of these, 72 (32%) were statistically significant for at 
least one sign compared with all the others combined. 
The extremes were Scorpio, with two significant 
results, and Taurus, with 10, with significance levels 
of 0.0003 to 0.048.

The two most frequent diagnoses for each sign 
were used to select 24 significant associations in the 
derivation cohort. These included, for instance, intes-
tinal obstructions and anemia for people with the 
astrological sign of Cancer, and head and neck symp-
toms and fracture of the humerus for Sagittarius. 
Levels of statistical significance ranged from 0.0006 to 
0.048, and relative risk from 1.1 to 1.8 (Fig. 1.1), with 
most being modest.

Protection against spurious statistical significance 
from multiple comparisons was tested in several 
ways.

When the 24 associations were tested in the 
 validation cohort, only two remained significant: 
 gastrointestinal haemorrhage and Leo (relative risk 
1.2), and fractured humerus for Sagittarius (relative 
risk 1.4). 

Using a Bonferoni correction for 24 multiple 
comparisons would have set the level of significance 
acceptable as 0.002 rather than 0.05. In this case, nine 
of 24 comparisons would have been significant in 
the derivation cohort, but none in the both deriva-
tion and validation cohort. Correcting for all 14,718 
comparisons used in the derivation cohort would 
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Figure 1.1 Relative risk of associations between 
 astrological sign and illness for the 24 chosen associations, 
using a statistical signifi cance of 0.05, uncorrected for 
multiple comparisons.
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have meant using a significance level of 0.000003, and 
no comparison would have been significant in either 
derivation or validation cohort.

This study is a sobering reminder that statistical 
significance can mislead when we don’t use statistics 
properly: don’t blame statistics or the statisticians, 
blame our use of them. There is no biologic plausi-
bility for a relationship between astrological sign and 
illness, yet many could be found in this huge data set 
when using standard levels of statistical significance 
without thinking about the problem of multiple 
comparisons. Even using a derivation and validation 
set did not offer complete protection against spurious 
results in enormous data sets.

Multiple subgroup analyses are common in 
 published articles in our journals, usually without 
any adjustment for multiple testing. The authors 
examined 131 randomized trials published in top 
journals in 6 months in 2004. These had an average 
of five subgroup analyses, and 27 significance tests for 
efficacy and safety. The danger is that we may react to 
results that may have spurious statistical significance, 
especially when the size of the effect is not large.

Size is everything

The more important question, not asked anything 
like often enough, is whether any statistical testing is 
appropriate. Put another way, when can we be sure 
that we have enough information to be sure of the 
result, using the mathematical perspective of “sure,” 
meaning the probability to a certain degree that we 
are not being mucked about by the random play of 
chance? This is not a trivial question, given that many 
results, especially concerning rare but serious harm, 
are driven by very few events.

In a clinical trial of drug A against placebo, the 
size of the trial is set according to how much better 
drug A is expected to be. For instance, if it is expected 
to be hugely better, the trial will be small but if the 
improvement is not expected to be large, the trial 
will have to be huge. Big effect, small trial; small 
effect, big trial; statisticians perform power calcula-
tions to determine the size of the trial beforehand. 
But remember that the only thing being tested here is 
whether the prior estimate of the expected treatment 
effect is actually met. If it is, great, but when you 
 calculate the effect size from that trial, using number 

needed to treat (NNT), say, you probably have insuffi-
cient information to do so because the trial was never 
designed to measure the size of the effect. If it were, 
then many more patients would have been needed.

In practice, what is important is the size of the 
effect – how many patients benefit. With individual 
trials we can be misled. Figure 1.2 shows an exam-
ple of six large trials (213–575 patients, 2000 in all) 
of a single oral dose of eletriptan 80 mg for acute 
migraine, using the outcome of headache relief (mild 
or no pain) at 2 hours. NNTs measured in the indi-
vidual trials range from 1.6 to 3.1, an almost two-
fold difference in the estimate of the size of the effect 
(overall, the NNT was 2.6). Even with these excellent 
trials, impeccably conducted, variations in response 
with eletriptan (between 56% and 69% in individual 
trials) and placebo (between 21% and 40%) mean 
that there is uncertainty over the size of the effect. For 
many treatments and dose/drug/condition combina-
tions, we have much less information, fewer events, 
and much more uncertainty over the size of the effect.

Consider Figure 1.3, which looks at the variation 
in the response to placebo in over 50 meta- analyses in 
acute pain. In all the 12,000 or more patients given pla-
cebo, the response rate was 18% (meaning not that pla-
cebo caused 18% of people to have at least 50% pain 
relief over 6 hours, but that 18% of people in  trials like 
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Just how many events are needed to be reasonably 
sure of a result when event rates are low (as is the 
case for rare but serious adverse events) was explored 
some while ago [9]. This looks at a number of exam-
ples, varying event rates in experimental and control 
groups, using probability limits of 5% and 1%, and 
with lower and higher power to detect any differ-
ence. Higher power, greater stringency in probability 
values, lower event rates, and smaller differences in 
event rates between groups all suggest the need for 
more events and larger numbers of patients in trials. 
Once event rates fall to about 1% or so, and differ-
ences between experimental and control to less than 
1%, the number of events needed approaches 100 and 
number of patients rises to tens of thousands.

All of which points to the inescapable conclusion 
that with few events, our ability to make sense of things 
is highly impaired. As a rule of thumb, we can probably 
dismiss studies with fewer than 20 events, be very cau-
tious with 20–50 events, and reasonably confident with 
more than 200 events – if everything else is OK.

Subgroup analyses

Almost any paper you read, be it analysis of a clinical 
trial, an observational study or meta- analysis of either, 
will involve some form of subgroup analysis, such as 
severity of condition, age or sex. In addition to the 
problems of multiple testing, subgroup analyses also 
tend to involve small numbers – because the more 
you slice and dice the data, the fewer the number of 
actual events – and, if they are clinical trials, remove 
the benefits of randomization. They almost always 
introduce the danger of some unknown confounding.

One of the best examples of the dangers of sub-
group analysis, due to unknown confounding, 
comes from a review article examining the 30-day 
outcome of death or myocardial infarction from a 
meta-analysis of platelet glycoprotein inhibitors [10]. 
Analysis indicated different results for women and 
men (Fig. 1.4), with benefits in men but not women. 
Statistically this was highly significant (P<0.0001).

In fact, it was found that men had higher levels 
of troponins (a marker of myocardial damage) than 
women and when this was taken into account, the dif-
ference between men and women was  understandable, 
with more effect with greater myocardial damage; sex 
wasn’t the source of the difference. 
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Figure 1.3 Percentage of patients with at least 50% pain 
relief with placebo in 56 meta-analyses in acute pain. Size 
of symbol is proportional to number of patients given 
placebo. Vertical line is the overall average.

these will have at least 50% pain relief over 6 hours if 
you do nothing at all). With small numbers, the mea-
sured effect with placebo varies from 0% to almost 
50%. Only when the numbers are large is there greater 
consistency, and there are many other examples like 
this of size overcoming variability caused by the ran-
dom play of chance.

How many events?
A few older papers keep being forgotten. When look-
ing at the strengths and weaknesses of smaller meta-
analyses versus larger randomized trials, a group 
from McMaster suggested that with fewer than 200 
outcome events, research (meta-analyses in this case) 
may only be useful for summarizing information 
and generating hypotheses for future research [7]. 
A  different approach using simulations of clinical tri-
als and meta-analyses arrived at pretty much the same 
conclusion, that with fewer than 200 events, the mag-
nitude and direction of an effect become increasingly 
uncertain [8]. 
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Trivial differences

It is worth remembering what relative risks tell us 
in terms of raw data (Table 1.2). Suppose we have 
a population in which 100 events occur with our 
control intervention, whatever that is. If we have 
150 events with an experimental, the relative risk is 
now 1.5. It may be statistically significant, but most 
events were those occurring anyway. If there were 
250 events, the relative risk would be 2.5, and now 
most events would occur because of the experimental 
intervention.

Large relative risks may be important, even with 
more limited data. Small relative risks, probably 
below 2.0 and certainly below about 1.5, should be 
treated with caution, especially where the number of 

Men

Women

0.5 1 2

Odds ratio (95% CI)

Figure 1.4 Subgroup analysis in women and men of 
death or MI with platelet glycoprotein inhibitors (95% 
confi dence interval).

Table 1.2 Rules of causation

Feature Comment

Consistency and unbiasedness of 
findings

Confirmation of the association by different investigators, in different populations, 
using different methods

Strength of association Two aspects: the frequency with which the factor is found in the disease, and the 
frequency with which it occurs in the absence of the disease. The larger the relative 
risk, the more the hypothesis is strengthened

Temporal sequence Obviously, exposure to the factor must occur before onset of the disease. In addition, 
if it is possible to show a temporal relationship, as between exposure to the factor in 
the population and frequency of the disease, the case is strengthened

‘‘Biologic gradient (dose–response 
relationship)”

Finding a quantitative relationship between the factor and the frequency of the 
disease. The intensity or duration of exposure may be measured

Specificity If the determinant being studied can be isolated from others and shown to produce 
changes in the incidence of the disease, e.g. if thyroid cancer can be shown to have 
a higher incidence specifically associated with fluoride, this is convincing evidence of 
causation

Coherence with biologic background 
and previous knowledge

The evidence must fit the facts that are thought to be related, e.g. the rising incidence 
of dental fluorosis and the rising consumption of fluoride are coherent 

Biologic plausibility The statistically significant association fits well with previously existing knowledge

Reasoning by analogy Common sense, especially when you have other similar examples for types of 
intervention and outcome

Experimental evidence This aspect focuses on what happens when the suspected offending agent is 
removed. Is there improvement? The evidence of remission – or even resolution of 
significant medical symptoms – following explanation obviously would strengthen 
the case
It is unethical to do an experiment that exposes people to the risk of illness, but it is 
permissible and indeed desirable to conduct an experiment, i.e. a randomized 
controlled trial on control measures. If fluoride is suspected of causing thyroid 
dysfunction, for example, the experiment of eliminating or reducing occupational 
exposure to the toxin and conducting detailed endocrine tests on the workers could 
help to confirm or refute the suspicion
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events is small, and even more especially outside the 
context of the randomized trial.

The importance of a relative risk of 2.0 has been 
accepted in US courts [11]. “A relative risk of 2.0 
would permit an inference than an individual plain-
tiff ’s disease was more likely than not caused by the 
implicated agent. A substantial number of courts in 
a variety of toxic substance cases have accepted this 
reasoning.”

Confounding by indication 

Bias arises in observational studies when patients 
with the worst prognosis are allocated preferentially 
to a particular treatment. These patients are likely to 
be systematically different from those not treated or 
treated with something else (paracetamol rather than 
nonsteroidal anti-inflammatory drugs (NSAID) in 
asthma, for instance).

Confounding, by factors known or unknown, is 
potentially a big problem, because we do not know 
what we do not know and the unknown could have 
big effects, like troponin above. When relative risks 
are small, say below about 1.3, potential bias created 
because of unknown confounding, or confounding 
by indication improperly adjusted, becomes so great 
that it makes any conclusion at best unreliable. This is 
especially important when interpreting observational 
studies that appear to link a particular intervention 
with a particular outcome. 

Adverse events

Evidence around adverse events is important, 
 complicated, yet often poor. It is impossible to do jus-
tice to adverse event evidence in a few paragraphs, so 
perhaps it is worth sticking to the highlights. 

Adverse events are important because the “value” 
of a particular therapeutic intervention depends 
on both potential benefit and potential harm in the 
individual. To assess this trade-off, we need evidence 
for both, and while evidence about benefit is gener-
ally well documented, at least in clinical trials of 
newer interventions, evidence about harm has been 
neglected.

Long-term drug therapy is increasingly being 
used for primary prevention. Asymptomatic patients 
may be asked to tolerate adverse effects when the 

 likelihood of therapeutic benefit is small. Adverse 
events are a major influence on compliance and the 
most common reason for discontinuation in clini-
cal practice. A medicine not taken is one that cannot 
work. There is an increasing tendency for more open-
ness and accountability in clinical decision making, 
with patients asking for more information and taking 
a more active role in their care.

Adverse events occur in the absence of treat-
ment, something to remember when looking at 
data. Symptoms commonly listed as adverse events 
in clinical trials happen to all of us at some time. 
Fortunately most of them are not serious and even 
if severe, are reversible. Most are not related to any 
therapeutic intervention. Groups of medical and 
nonmedical people in the USA in the 1960s [12], and 
medical students in Germany in the 1990s [13], who 
were free of disease and not in any kind of trial or 
taking any medication, were asked about symptoms. 
Most participants were in their 20s. They were given 
a list of symptoms and asked to record whether or 
not they had experienced any in the previous 3 days. 
Overall, 83% experienced at least one of the symp-
toms and only 17% reported none. There were no 
major differences between medical and nonmedical 
participants, or between studies carried out 30 years 
apart. The most common symptom reported by at 
least 40% was fatigue. Having an idea of the back-
ground rate of an adverse event in a study popula-
tion is important as it can affect tolerability, and also 
how easy it is to establish a causal association with 
the intervention. 

Another example of common adverse events 
would be constipation, something we worry about a 
lot when prescribing opioids. Constipation occurs in 
about 15% of people with chronic pain using weak 
opioids [14].

The overall average percentage of people with 
 constipation in a systematic review of constipation 
prevalence in the US was about 15% (1 in 7 adults 
[15]). The range was 1.9–27%, depending to some 
extent on how constipation was ascertained. Most 
reports were in the range of 12–19%, with some 
self-reported prevalence being higher and two face-
to-face questioning reports below 4%. There was a 
distinctly higher prevalence in women compared with 
men in almost every study, irrespective of method of 
ascertainment. Prevalence of constipation in women 
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was on average about twice as high as in men. There 
was also a consistent finding of higher constipation 
 prevalence in non-Caucasian people, by a factor of 
about 1.4 to 1, though nonwhite racial groups were not 
subdivided. Other trends were for decreased prevalence 
in people with highest income and highest educational 
attainment or years of education, though these may 
well be measuring different aspects of the same phe-
nomenon. Older age, especially age over 70 years, was 
also associated with higher constipation rates.

With any examination of adverse events, it is 
worth bearing in mind that what we want to estab-
lish is causation. The most important aide-mémoire 
is the Bradford-Hill rules, summarized in Table 1.2. 
They ask about strength of association, timing, dose–
response, and other linking evidence. We need more 
than association to proceed to causation. 

Safety

Claims are all too often made about safeties that are 
unfounded. To some extent, it depends what one 
means by safety, but members of the public say that 
they want to know about any adverse event that 
occurs at a rate more frequently than 1 in 100,000 
[16]. To be even remotely confident about an adverse 
event occurring at a rate 10 times more frequently 
than that (1 in 10,000), we would need information 
from about 2 million people. 

Clinical trials, even meta-analyses of clinical tri-
als, will not have this amount of information. Nor 
will most observational studies or even meta- analyses 
of observational studies. Things may be changing, 
because large databases are beginning to be interro-
gated to provide data on safety. Caution is required 
because of confounding by indication and small 
numbers of events, so that individual studies can give 
very different results. For instance, a systematic review 
looking at NSAIDs and risk of myocardial infarction 
showed that the risk for naproxen compared to non-
use of NSAIDs varied linearly between a relative risk 
of 0.5 and one of 1.5 (with a mean of 1.0).

Large database studies may also surprise. A good 
example of the surprising results of database studies 
(good as in good study, as well as a surprising result) 
indicated that long-term use of proton pump  inhibitors 
significantly increased risk of hip fracture in older peo-
ple [17]. It might be that the risk of using a proton 

pump inhibitor with NSAID incurs a bigger risk to life 
from hip fracture than did the gastrointestinal bleed 
the proton pump inhibitor was protecting against.

In any event, claims of absolute safety cannot be 
made, and we will see more examples of rare but serious 
adverse events in future than ever we did in the past.

Importance of the individual 
patient

The two quotations below come from people who 
argued vehemently over the role and importance of 
EBM yet agreed on the importance of the individual 
within the system. 

“Evidence-based medicine is the conscientious, 
explicit and judicious use of current best evidence 
in making decisions about the care of individual 
patient.” [18].

“Managers and trialists may be happy for 
 treatments to work on average; patients expect 
their doctors to do better than that.” [19].

This underlines the importance of looking at informa-
tion from the point of view of the individual patient. 
In acute pain, patients have been shown generally 
to obtain pain relief that is either very good or poor, 
but the average of responses to analgesics is at a point 
where there are few, if any, patients [20]. It is com-
monly understood that not every patient with a partic-
ular condition benefits from treatments known to work 
(on average). Patients may discontinue therapy because 
of adverse events as well as lack of efficacy, especially in 
chronic conditions. A clinical trial may tell us that 50% 
of patients have pain relief with drug, compared with 
20% with placebo, and we applaud a good NNT of 3.3. 
Yet that obscures the fact that half the patients do not 
have pain relief but may have adverse effects.

A classic example demonstrating how different we 
all are is provided by a trial in which depressed patients 
were randomized to one of three antidepressants 
which were, on average, the same [21]. Patients ini-
tially randomized to one treatment  frequently changed 
to another. By 9 months only 44% were still taking 
the treatment to which they had been randomized. 
Some (about 15%) were lost to follow-up after base-
line or when on any of the  randomized treatments. 
Others either switched to another  antidepressant or 
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stopped treatment because of adverse effects or lack 
of efficacy, again without any difference between the 
three antidepressants. Each was taken by about the 
same proportion, on average, just different patients to 
those initially randomized. Patients and their doctors 
found the balance of effect and absence of adverse 
events that was right for them, and almost 70% had a 
good outcome over the 9 months of the trial.

The degree of variability between individuals in 
their physiologic response to drugs is remarkable, 
and best exemplified by a study of 50 healthy young 
volunteers who received rofecoxib 25 mg, celecoxib 
200 mg or placebo in randomized order, and who 
underwent a series of tests [22]. There was con-
siderable variability between individuals in cyclo-
 oxygenase 2 inhibition achieved, and in selectivity, 
for both of the drugs. Variation between individuals 
was 50 to several hundred-fold in activity in different 
in vitro tests following a single dose. Differences were 
associated with genetic polymorphisms and other 
factors were involved in the variability observed. 
Similarly, a range of polymorphisms in genes coding 
for enzymes metabolizing morphine, opioid recep-
tors, and blood–brain barrier transport of morphine 
by drug  receptors all contribute to considerable 
variability between individuals [23]. A number of 
mechanisms can influence individual responses to 
analgesics [24].

There are important practical implications follow-
ing these findings. They obviously relate particularly 
to the potential harm of limited formularies, but also 
challenge how we use average results from trials in 
making decisions about individual patients. 

Outcomes

Where evidence can often let us down is in the out-
comes chosen in trials. Outcomes used may not be 
what we, or patients, want from treatment, but rather 
what it is possible to measure. Ideally, a satisfac-
tory outcome should involve both benefit and lack 
of adverse events, because adverse events are often 
a cause of discontinuation of an otherwise effective 
therapy.

Things are changing. In migraine, for example, an 
outcome of mild or no pain 2 hours after  therapy 
changed to no pain at 2 hours, then no pain at 
2 hours plus no recurrence or need to use analgesics 

over the next 24 hours. The hurdle was getting higher. 
It was recently raised yet again, when an individual 
patient meta-analysis identified those patients who 
were both pain free for 24 hours and had no adverse 
effects [25]; this amounted to no more than 22% of 
the total, only 12% more than with placebo. A large 
randomized comparison of two triptans found about 
30% of patients with this outcome [26].

There are other examples where people have sought 
more relevant outcomes. For instance, a series of dif-
ferent outcomes related to wart clearance and return 
emerged from a systematic review of genital wart 
therapy [27], while a longitudinal survey of patients 
with bipolar disorder suggested that success be judged 
over longer periods because of the sustained nature of 
the disorder [28].

There is no reason why we cannot demand more 
intelligent and comprehensive outcomes to be meas-
ured in clinical trials. While it is likely that the com-
bination of benefit plus absence of adverse events will 
be found only in the minority, this will be a spur for 
both better use of what therapies we have and deter-
mination of better therapies for the future.

Conclusion

Evidence-based medicine is about a number of things. 
First and foremost, it is about avoiding being misled. 
That means that we have to have a passing acquaint-
ance with issues of quality, validity, and size, and 
most of these come down to good old common sense. 
When a trial is done using two men and a dog and 
reports a subgroup analysis on the dog as statistically 
significant, that is not a reason for rushing to change 
practice. 

The second thing that EBM should be about is 
making things better. This could mean wanting bet-
ter and more meaningful outcomes or knowing how 
to assess trial results in terms of an individual patient, 
or asking the question of knowing which patient will 
benefit before you treat. It may be slow, but keeping 
some of these issues in your mind can mean hours 
of fun asking awkward questions of visiting speakers, 
a few of which may do some good. Over and above 
this, of course, is the incorporation of prior evidence 
in the production of new evidence, especially clinical 
trials, which are becoming bigger and better, though 
much more expensive to conduct.
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Thirdly, when we collect together all the good 
 evidence on a topic and get rid of the misleading, we 
often see more clearly. A number of examples exist in 
pain, especially in acute pain [29], migraine [30], and 
neuropathic pain [31]. 

The final message should be about the impor-
tance of wisdom. EBM, in its fullest sense, should 
 incorporate evidence from whatever source, your 
knowledge of the patient, the patient’s own prefer-
ences, and the circumstances you are in. Evidence 
should be regarded as a tool, not a rule. Even where 
there is limited evidence, in combination with clinical 
experience and wisdom it can produce useful results, 
perhaps the best example being a treatment algorithm 
for neuropathic pain [31].
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