
“9781405155816_4_001” — 2010/5/14 — 17:13 — page 11 — #1

1 Formal Language Theory

SHULY WINTNER

1 Introduction

This chapter provides a gentle introduction to formal language theory, aimed at
readers with little background in formal systems. The motivation is natural lan-
guage processing (NLP), and the presentation is geared towards NLP applications,
with linguistically motivated examples, but without compromising mathematical
rigor.

The text covers elementary formal language theory, including: regular lan-
guages and regular expressions; languages vs. computational machinery; finite
state automata; regular relations and finite state transducers; context-free gram-
mars and languages; the Chomsky hierarchy; weak and strong generative
capacity; and mildly context-sensitive languages.

2 Basic Notions

Formal languages are defined with respect to a given alphabet, which is a finite
set of symbols, each of which is called a letter. This notation does not mean, how-
ever, that elements of the alphabet must be “ordinary” letters; they can be any
symbol, such as numbers, or digits, or words. It is customary to use ‘Σ ’ to denote
the alphabet. A finite sequence of letters is called a string, or a word. For sim-
plicity, we usually forsake the traditional sequence notation in favor of a more
straightforward representation of strings.

Example 1 (Strings). Let Σ = {0, 1} be an alphabet. Then all binary numbers
are strings over Σ . Instead of 〈0, 1, 1, 0, 1〉 we usually write 01101. If Σ =
{a, b, c, d, . . . , y, z} is an alphabet, then cat, incredulous, and supercalifragilisticexp-
ialidocious are strings, as are tac, qqq, and kjshdflkwjehr.

The length of a string w is the number of letters in the sequence, and is denoted
|w|. The unique string of length 0 is called the empty string and is usually denoted ε

(but sometimes λ).

CO
PYRIG

HTED
 M

ATERIA
L

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 12 — #2

12 Shuly Wintner

Let w1 = 〈x1, . . . , xn〉 and w2 = 〈y1, . . . , ym〉 be two strings over the same
alphabet Σ . The concatenation of w1 and w2, denoted w1 · w2, is the string
〈x1, . . . , xn, y1, . . . , ym〉. Note that the length of w1 · w2 is the sum of the lengths of
w1 and w2: |w1 · w2| = |w1| + |w2|. When it is clear from the context, we sometimes
omit the ‘·’ symbol when depicting concatenation.

Example 2 (Concatenation). Let Σ = {a, b, c, d, . . . , y, z} be an alphabet. Then master ·
mind = mastermind, mind · master = mindmaster, and master · master =
mastermaster. Similarly, learn · s = learns, learn · ed = learned, and learn ·
ing = learning.

Notice that when the empty string ε is concatenated with any string w, the
resulting string is w. Formally, for every string w, w · ε = ε · w = w.

We define an exponent operator over strings in the following way: for every
string w, w0 (read: w raised to the power of zero) is defined as ε. Then, for n > 0,
wn is defined as wn−1 · w. Informally, wn is obtained by concatenating w with itself
n times. In particular, w1 = w.

Example 3 (Exponent). If w = go, then w0 = ε, w1 = w = go, w2 = w1 · w = w · w =
gogo, w3 = gogogo, and so on.

A few other notions that will be useful in the sequel: the reversal of a string w
is denoted wR and is obtained by writing w in the reverse order. Thus, if w =
〈x1, x2, . . . , xn〉, wR = 〈xn, xn−1, . . . , x1〉.
Example 4 (Reversal). Let Σ = {a, b, c, d, . . . , y, z} be an alphabet. If w is the string
saw, then wR is the string was. If w = madam, then wR = madam = w. In this case
we say that w is a palindrome.

Given a string w, a substring of w is a sequence formed by taking contiguous
symbols of w in the order in which they occur in w: wc is a substring of w if and
only if there exist (possibly empty) strings wl and wr such that w = wl ·wc ·wr. Two
special cases of substrings are prefix and suffix: if w = wl · wc · wr then wl is a prefix
of w and wr is a suffix of w. Note that every prefix and every suffix is a substring,
but not every substring is a prefix or a suffix.

Example 5 (Substrings). Let Σ = {a, b, c, d, . . . , y, z} be an alphabet and w =
indistinguishable a string over Σ . Then ε, in, indis, indistinguish, and indistin-
guishable are prefixes of w, while ε, e, able, distinguishable and indistinguish-
able are suffixes of w. Substrings that are neither prefixes nor suffixes include
distinguish, gui, and is.

Given an alphabet Σ , the set of all strings over Σ is denoted by Σ∗ (the reason
for this notation will become clear presently). Notice that no matter what the Σ is,
as long as it includes at least one symbol, Σ∗ is always infinite. A formal language
over an alphabet Σ is any subset of Σ∗. Since Σ∗ is always infinite, the number of
formal languages over Σ is also infinite.

As the following example demonstrates, formal languages are quite unlike
what one usually means when one uses the term “language” informally. They

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 13 — #3

Formal Language Theory 13

are essentially sets of strings of characters. Still, all natural languages are, at least
superficially, such string sets. Higher-level notions, relating the strings to objects
and actions in the world, are completely ignored by this view. While this is a rather
radical idealization, it is a useful one.

Example 6 (Languages). Let Σ = {a, b, c, . . . , y, z}. Then Σ∗ is the set of all strings
over the Latin alphabet. Any subset of this set is a language. In particular, the
following are formal languages:

• Σ∗;
• the set of strings consisting of consonants only;
• the set of strings consisting of vowels only;
• the set of strings each of which contains at least one vowel and at least one

consonant;
• the set of palindromes: strings that read the same from right to left and from

left to right;
• the set of strings whose length is less than 17 letters;
• the set of single-letter strings;
• the set {i, you, he, she, it, we, they};
• the set of words occurring in Joyce’s Ulysses (ignoring punctuation etc.);
• the empty set.

Note that the first five languages are infinite while the last five are finite.

We can now lift some of the string operations defined above to languages. If
L is a language then the reversal of L, denoted LR, is the language {w | wR ∈ L},
that is, the set of reversed L-strings. Concatenation can also be lifted to lan-
guages: if L1 and L2 are languages, then L1 · L2 is the language defined as
{w1 · w2 | w1 ∈ L1 and w2 ∈ L2}: the concatenation of two languages is the set of
strings obtained by concatenating some word of the first language with some word
of the second.

Example 7 (Language operations). Let L1 = {i, you, he, she, it, we, they} and L2 =
{smile, sleep}. Then LR

1 = {i, uoy, eh, ehs, ti, ew, yeht} and L1 · L2 = {ismile, yous-
mile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep,
shesleep, itsleep, wesleep, theysleep}.

In the same way we can define the exponent of a language: if L is a language
then L0 is the language containing the empty string only, {ε}. Then, for i > 0,
Li = L · Li−1, that is, Li is obtained by concatenating L with itself i times.

Example 8 (Language exponentiation). Let L be the set of words {bau, haus, hof,
frau}. Then L0 = {ε}, L1 = L and L2 = {baubau, bauhaus, bauhof, baufrau,
hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau,
frauhaus, frauhof, fraufrau}.

The language obtained by considering any number of concatenations of words
from L is called the Kleene closure of L and is denoted L∗. Formally, L∗ = ⋃∞

i=0 Li,

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 14 — #4

14 Shuly Wintner

which is a terse notation for the union of L0 with L1, then with L2, L3 and so on
ad infinitum. When one wants to leave L0 out, one writes L+ = ⋃∞

i=1 Li.

Example 9 (Kleene closure). Let L = {dog, cat}. Observe that L0 = {ε}, L1 = {dog,
cat}, L2 = {catcat, catdog, dogcat, dogdog}, etc. Thus L∗ contains, among its infi-
nite set of strings, the strings ε, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat,
catdogcat, dogcatcat, dogdogcat, etc.

As another example, consider the alphabet Σ = {a, b} and the language L =
{a, b} defined over Σ . L∗ is the set of all strings over a and b, which is exactly
the definition of Σ∗. The notation for Σ∗ should now become clear: it is simply a
special case of L∗, where L = Σ .

3 Language Classes and Linguistic Formalisms

Formal languages are sets of strings, subsets of Σ∗, and they can be specified
using any of the specification methods for sets (of course, since languages may
be infinite, stipulation of their members is in the general case infeasible). When
languages are fairly simple (not arbitrarily complex), they can be characterized by
means of rules. In the following sections we define several mechanisms for defin-
ing languages, and focus on the classes of languages that can be defined with these
mechanisms. A formal mechanism with which formal languages can be defined is
a linguistic formalism. We use L (with or without subscripts) to denote languages,
and L to denote classes of languages.

Example 10 (Language class). Let Σ = {a, b, c, . . . , y, z}. Let L be the set of all the
finite subsets of Σ∗. Then L is a language class.

When classes of languages are discussed, some of the interesting properties to
be investigated are closures with respect to certain operators. The previous section
defined several operators, such as concatenation, union, Kleene closure, etc., on
languages. Given a particular (binary) operation, say union, it is interesting to
know whether a class of languages is closed under this operation. A class of lan-
guages L is said to be closed under some operation ‘•’ if and only if, whenever
two languages L1 and L2 are in the class (L1, L2 ∈ L), the result of performing the
operation on the two languages is also in this class: L1 • L2 ∈ L.

Closure properties have a theoretical interest in and by themselves, but they
are especially important when one is interested in processing languages. Given an
efficient computational implementation for a class of languages (for example, an
algorithm that determines membership: whether a given string indeed belongs to a
given language), one can use the operators that the class is closed under, and still
preserve computational efficiency in processing. We will see such examples in the
following sections.

The membership problem is one of the fundamental questions of interest con-
cerned with language classes. As we shall see, the more expressive the class,
the harder it is to determine membership in languages of this class. Algorithms
that determine membership are called recognition algorithms; when a recognition

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 15 — #5

Formal Language Theory 15

algorithm additionally provides the structure that the formalism induces on the
string in question, it is called a parsing algorithm.

4 Regular Languages

4.1 Regular expressions
The first linguistic formalism we discuss is regular expressions. These are expres-
sions over some alphabet Σ , augmented by some special characters. We define a
mapping, called denotation, from regular expressions to sets of strings over Σ , such
that every well-formed regular expression denotes a set of strings, or a language.

DEFINITION 1. Given an alphabet Σ , the set of regular expressions over Σ is defined
as follows:

• ∅ is a regular expression;
• ε is a regular expression;
• if a ∈ Σ is a letter, then a is a regular expression;
• if r1 and r2 are regular expressions, then so are (r1 + r2) and (r1 · r2);
• if r is a regular expression, then so is (r)∗;
• nothing else is a regular expression over Σ .

Example 11 (Regular expressions). Let Σ be the alphabet {a, b, c, . . . , y, z}. Some
regular expressions over this alphabet are ∅, a, ((c · a) · t), (((m · e) · (o)∗) · w),
(a + (e + (i + (o + u)))), ((a + (e + (i + (o + u)))))∗, etc.

DEFINITION 2. Given a regular expression r, its denotation, [[r]], is a set of strings
defined as follows:

• [[∅]] = {}, the empty set;
• [[ε]] = {ε}, the singleton set containing the empty string;
• if a ∈ Σ is a letter, then [[a]] = {a}, the singleton set containing a only;
• if r1 and r2 are two regular expressions whose denotations are [[r1]] and [[r2]],

respectively, then [[(r1 + r2)]] = [[r1]] ∪ [[r2]] and [[(r1 · r2)]] = [[r1]] · [[r2]];
• if r is a regular expression whose denotation is [[r]] then [[(r)∗]] = [[r]]∗.

Example 12 (Regular expressions). Following are the denotations of the regular
expressions of the previous example:

∅ ∅
ε {ε}
a {a}
((c · a) · t) {c · a · t}
(((m · e) · (o)∗) · w) {mew, meow, meoow, meooow, meoooow, . . .}
(a + (e + (i + (o + u)))) {a, e, i, o, u}
((a + (e + (i + (o + u)))))∗ the set containing all strings of 0 or more vowels

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 16 — #6

16 Shuly Wintner

Regular expressions are useful because they facilitate specification of complex
languages in a formal, concise way. Of course, finite languages can still be specified
by enumerating their members; but infinite languages are much easier to specify
with a regular expression, as the last instance of the above example shows.

For simplicity, we omit the parentheses around regular expressions when no
confusion can be caused. Thus, the expression ((a + (e + (i + (o + u)))))∗ is written
as (a + e + i + o + u)∗. Also, if Σ = {a1, a2, . . . , an}, we use Σ as a shorthand
notation for a1 + a2 + · · · + an. As in the case of string concatenation and language
concatenation, we sometimes omit the ‘·’ operator in regular expressions, so that
the expression c · a · t can be written cat.

Example 13 (Regular expressions). Given the alphabet of all English letters, Σ =
{a, b, c, . . . , y, z}, the language Σ∗ is denoted by the regular expression Σ∗. The set
of all strings which contain a vowel is denoted by Σ∗ · (a + e + i + o + u) · Σ∗. The
set of all strings that begin in “un” is denoted by (un)Σ∗. The set of strings that
end in either “tion” or “sion” is denoted by Σ∗ · (s + t) · (ion). Note that all these
languages are infinite.

The class of languages which can be expressed as the denotation of regular
expressions is called the class of regular languages.

DEFINITION 3. A language L is regular iff there exists a regular expression r such that
L = [[r]].

It is a mathematical fact that some languages, subsets of Σ∗, are not regular. We
will encounter such languages in the sequel.

4.2 Properties of regular languages
The class of regular languages is interesting because of its “nice” properties, which
we review here. It should be fairly easy to see that regular languages are closed
under union, concatenation, and Kleene closure. Given two regular languages, L1
and L2, there must exist two regular expressions, r1 and r2, such that [[r1]] = L1 and
[[r2]] = L2. It is therefore possible to form new regular expressions based on r1 and
r2, such as r1 · r2, r1 + r2 and r∗

1. Now, by the definition of regular expressions and
their denotations, it follows that the denotation of r1 · r2 is L1 · L2: [[r1 · r2]] = L1 · L2.
Since r1 · r2 is a regular expression, its denotation is a regular language, and hence
L1 ·L2 is a regular language. Hence the regular languages are closed under concate-
nation. In exactly the same way we can prove that the class of regular languages
is closed under union and Kleene closure.

One of the reasons for the attractiveness of regular languages is that they are
known to be closed under a wealth of useful operations: intersection, complemen-
tation, exponentiation, substitution, homomorphism, etc. These properties come
in handy both in practical applications that use regular languages and in mathe-
matical proofs that concern them. For example, several formalisms extend regular
expressions by allowing one to express regular languages using not only the three

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 17 — #7

Formal Language Theory 17

basic operations, but also a wealth of other operations (that the class of regular
languages is closed under). It is worth noting that such “good behavior” is not
exhibited by more complex classes of languages.

4.3 Finite state automata
Regular expressions are a declarative formalism for specifying (regular) lan-
guages. We now present languages as entities generated by a computation. This
is a very common situation in formal language theory: many language classes
are associated with computing machinery that generates them. The dual view of
languages (as the denotation of some specifying formalism and as the output of a
computational process) is central in formal language theory.

The computational device we define in this section is finite state automata (FSA).
Informally, they consist of a finite set of states (sometimes called nodes or vertices),
connected by a finite number of transitions (also called edges or links). Each of the
transitions is labeled by a letter, taken from some finite alphabet Σ . A computation
starts at a designated state, the start state or initial state, and it moves from one
state to another along the labeled transitions. As it moves, it prints the letter which
labels the transition. Thus, during a computation, a string of letters is printed out.
Some of the states of the machine are designated final states, or accepting states.
Whenever the computation reaches a final state, the string that was printed so
far is said to be accepted by the machine. Since each computation defines a string,
the set of all possible computations defines a set of strings or, in other words, a
language. We say that this language is accepted or generated by the machine.

DEFINITION 4. A finite state automaton is a five-tuple 〈Q, q0, Σ , δ, F〉, where Σ is a
finite set of alphabet symbols, Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states, and δ : Q × Σ × Q is a relation from states and alphabet
symbols to states.

Example 14 (Finite state automata). Finite state automata are depicted graphically,
with circles for states and arrows for the transitions. The initial state is shaded
and the final states are depicted by two concentric circles. The finite state
automaton A = 〈Q, Σ , q0, δ, F〉, where Q = {q0, q1, q2, q3}, Σ = {c, a, t, r}, F = {q3}, and
δ ={〈q0, c, q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r, q3〉}, is depicted graphically as follows:

q0 q1 q2 q3
c a

t

r

To define the language generated by an FSA, we first extend the transition
relation from single edges to paths by extending the transition relation δ to its
reflexive transitive closure, δ̂. This relation assigns a string to each path (it also
assumes that an empty path, decorated by ε, leads from each state to itself). We
focus on paths that lead from the initial state to some final state. The strings that
decorate these paths are said to be accepted by the FSA, and the language of the
FSA is the set of all these strings. In other words, in order for a string to be in the

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 18 — #8

18 Shuly Wintner

language of the FSA, there must be a path in the FSA which leads from the initial
state to some final state decorated by the string. Paths that lead to non-final states
do not define accepted strings.

DEFINITION 5. Given an FSA A = 〈Q, q0, Σ , δ, F〉, the reflexive transitive closure of the
transition relation δ is δ̂, defined as follows:

• for every state q ∈ Q, (q, ε, q) ∈ δ̂;
• for every string w ∈ Σ∗ and letter a ∈ Σ , if (q, w, q′) ∈ δ̂ and (q′, a, q′′) ∈ δ, then

(q, w · a, q′′) ∈ δ̂.

A string w is accepted by A if and only if there exists a state qf ∈ F such that δ̂(q0, w) =
qf . The language of A is the set of all the strings accepted by it: L(A) = {w | there exists
qf ∈ F such that δ̂(q0, w) = qf }.
Example 15 (Language accepted by an FSA). For the finite state automaton of
Example 14, δ̂ is the following set of triples: 〈q0, ε, q0〉, 〈q1, ε, q1〉, 〈q2, ε, q2〉, 〈q3, ε, q3〉,
〈q0, c, q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r, q3〉, 〈q0, ca, q2〉, 〈q1, at, q3〉, 〈q1, ar, q3〉, 〈q0, cat, q3〉,
〈q0, car, q3〉. The language of the FSA is thus {cat, car}.
Example 16 (Finite state automata). Following are some simple FSA and the lan-
guages they generate.

FSA, A L(A)

q0 ∅

q0 q1
a

{a}

q0 q1
a
b

{a, b}

q0 {ε}

q0 q1
a

a a+ = {a, aa, aaa, aaaa, . . .}

q0 a a∗ = {ε, a, aa, aaa, aaaa, . . .}

We now slightly amend the definition of finite state automata to include what is
called ε-moves. By our original definition, the transition relation δ is a relation from
states and alphabet symbols to states. We extend δ such that its second coordinate
is now Σ ∪ {ε}, that is, any edge in an automaton can be labeled either by some
alphabet symbol or by the special symbol ε, which as usual denotes the empty
word. The implication is that a computation can move from one state to another
over an ε-transition without printing out any symbol.

Example 17 (Automata with ε-moves). The language accepted by the following
automaton is {do, undo, done, undone}:

q0 q1 q2 q3 q4 q5 q6
u n d o n e

ε ε

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 19 — #9

Formal Language Theory 19

Finite state automata, just like regular expressions, are devices for defining for-
mal languages. The major theorem of regular languages states that the class of
languages which can be generated by FSA is exactly the class of regular languages.
Furthermore, there are simple and efficient algorithms for “translating” a regular
expression to an equivalent automaton and vice versa.

THEOREM 1. A language L is regular iff there exists an FSA A such that L = L(A).

Example 18 (Equivalence of finite state automata and regular expressions). For each of
the regular expressions of Example 12 we depict an equivalent automaton below:

∅ q0

a q0 q1
a

((c · a) · t) q0 q1 q2 q3
c a t

(((m · e) · (o)∗) · w) q0 q1 q2 q3
m e

o

w

(a + (e + (i + (o + u)))) q0 q1
a, e, i, o, u

((a + (e + (i + (o + u)))))∗ q0 a, e, i, o, u

4.4 Minimization and determinization
The finite state automata presented above are non-deterministic. By this we mean
that when the computation reaches a certain state, the next state is not uniquely
determined by the next alphabet symbol to be printed. There might very well be
more than one state that can be reached by a transition that is labeled by some sym-
bol. This is because we defined automata using a transition relation, δ, which is not
required to be functional. For some state q and alphabet symbol a, δ might include
the two pairs 〈q, a, q1〉 and 〈q, a, q2〉 with q1 �= q2. Furthermore, when we extended
δ to allow ε-transitions, we added yet another dimension of non-determinism:
when the machine is in a certain state q and an ε-arc leaves q, the computation
must “guess” whether to traverse this arc.

DEFINITION 6. An FSA A = 〈Q, q0, Σ , δ, F〉 is deterministic iff it has no ε-transitions
and δ is a function from Q × Σ to Q.

Much of the appeal of finite state automata lies in their efficiency; and their
efficiency is in great part due to the fact that, given some deterministic FSA A and
a string w, it is possible to determine whether or not w ∈ L(A) by “walking” the
path labeled w, starting with the initial state of A, and checking whether the walk
leads to a final state. Such a walk takes time that is proportional to the length of w,
and is completely independent of the number of states in A. We therefore say that

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 20 — #10

20 Shuly Wintner

the membership problem for FSA can be solved in linear time. But when automata
are non-deterministic, an element of guessing is introduced, which may impair
the efficiency: no longer is there a single walk along a single path labeled w, and
some control mechanism must be introduced to check that all possible paths are
taken.

Non-determinism is important because it is sometimes much easier to construct
a non-deterministic automaton for some language. Fortunately, we can rely on two
very important results: every non-deterministic finite state automaton is equiva-
lent to some deterministic one; and every finite state automaton is equivalent to
one that has a minimum number of nodes, and the minimal automaton is unique.
We now explain these results.

First, it is important to clarify what is meant by equivalent. We say that two finite
state automata are equivalent if and only if they accept the same language.

DEFINITION 7. Two FSA A1 and A2 are equivalent iff L(A1) = L(A2).

Example 19 (Equivalent automata). The following three finite state automata are
equivalent: they all accept the set {go, gone, going}.

A1

n g
i

g o n e

A2

g o i n g

g o n e

g
o

A3

g o i n g

n e ε

ε
ε

Note that A1 is deterministic: for any state and alphabet symbol there is at most
one possible transition. A2 is not deterministic: the initial state has three out-
going arcs all labeled by g. The third automaton, A3, has ε-arcs and hence is
non-deterministic. While A2 might be the most readable, A1 is the most compact
as it has the fewest nodes.

Given a non-deterministic FSA A, it is always possible to construct an equiv-
alent deterministic automaton, one whose next state is fully determined by the
current state and the alphabet symbol, and which contains no ε-moves. Some-
times this construction yields an automaton with more states than the original,

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 21 — #11

Formal Language Theory 21

non-deterministic one (in the worst case, the number of states in the deterministic
automaton can be exponential in the size of the non-deterministic one). However,
the deterministic automaton can then be minimized such that it is guaranteed that
no deterministic finite state automaton generating the same language is smaller.
Thus, it is always possible to determinize and then minimize a given automaton
without affecting the language it generates.

THEOREM 2. For every FSA A (with n states) there exists a deterministic FSA A′ (with
at most 2n states) such that L(A) = L(A′).

THEOREM 3. For every regular language L there exists a minimal FSA A such that
no other FSA A′ such that L(A) = L(A′) has fewer states than A. A is unique (up to
isomorphism).

4.5 Operations on finite state automata
We know from Section 4.3 that finite state automata are equivalent to regular
expressions; we also know from Section 4.2 that the regular languages are closed
under several operations, including union, concatenation, and Kleene closure. So,
for example, if L1 and L2 are two regular languages, there exist automata A1 and
A2 which accept them, respectively. Since we know that L1 ∪ L2 is also a regu-
lar language, there must be an automaton which accepts it as well. The question
is, can this automaton be constructed using the automata A1 and A2? In this
section we show how simple operations on finite state automata correspond to
some operators on languages.

We start with concatenation. Suppose that A1 is a finite state automaton such
that L(A1) = L1, and similarly that A2 is an automaton such that L(A2) = L2. We
describe an automaton A such that L(A) = L1 · L2. A word w is in L1 · L2 if and only
if it can be broken into two parts, w1 and w2, such that w = w1 · w2, and w1 ∈ L1,
w2 ∈ L2. In terms of automata, this means that there is an accepting path for w1 in
A1 and an accepting path for w2 in A2; so if we allow an ε-transition from all the
final states of A1 to the initial state of A2, we will have accepting paths for words
of L1 · L2. The finite state automaton A is constructed by combining A1 and A2 in
the following way: its set of states, Q, is the union of Q1 and Q2; its alphabet is the
union of the two alphabets; its initial state is the initial state of A1; its final states
are the final states of A2; and its transition relation is obtained by adding to δ1 ∪ δ2
the set of ε-moves described above: {〈qf , ε, q02〉 | qf ∈ F1} where q02 is the initial
state of A2.

In a very similar way, an automaton A can be constructed whose languages
is L1 ∪ L2 by combining A1 and A2. Here, one should notice that for a word to be
accepted by A it must be accepted either by A1 or by A2 (or by both). The combined
automaton will have an accepting path for every accepting path in A1 and in A2.
The idea is to add a new initial state to A, from which two ε-arcs lead to the initial
states of A1 and A2. The states of A are the union of the states of A1 and A2, plus

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 22 — #12

22 Shuly Wintner

the new initial state. The transition relation is the union of δ1 with δ2, plus the new
ε-arcs. The final states are the union of F1 and F2.

An extension of the same technique to construct the Kleene closure of an
automaton is rather straightforward. However, all these results are not surprising,
as we have already seen in Section 4.2 that the regular languages are closed under
these operations. Thinking of languages in terms of the automata that accept them
comes in handy when one wants to show that the regular languages are closed
under other operations, where the regular expression notation is not very sugges-
tive of how to approach the problem. Consider the operation of complementation:
if L is a regular language over an alphabet Σ , we say that the complement of L is
the set of all the words (in Σ∗) that are not in L, and write L for this set. Formally,
L = Σ∗ \ L. Given a regular expression r, it is not clear what regular expression r′
is such that [[r′]] = [[r]]. However, with automata this becomes much easier.

Assume that a finite state automaton A is such that L(A) = L. Assume also that
A is deterministic. To construct an automaton for the complemented language,
all one has to do is change all final states to non-final, and all non-final states to
final. In other words, if A = 〈Q, Σ , q0, δ, F〉, then A = 〈Q, Σ , q0, δ, Q \ F〉 is such that
L(A) = L. This is because every accepting path in A is not accepting in A, and vice
versa.

Now that we know that the regular languages are closed under complementa-
tion, it is easy to show that they are closed under intersection: if L1 and L2 are
regular languages, then L1 ∩ L2 is also regular. This follows directly from funda-
mental theorems of set theory, since L1 ∩ L2 can actually be written as L1 ∪ L2, and
we already know that the regular languages are closed under union and comple-
mentation. In fact, construction of an automaton for the intersection language is
not very difficult, although it is less straightforward than the previous examples.

4.6 Applications of finite state automata in natural
language processing

Finite state automata are computational devices that generate regular languages,
but they can also be viewed as recognizing devices: given some automaton A and a
word w, it is easy to determine whether w ∈ L(A). Observe that such a task can be
performed in time linear in the length of w, hence the efficiency of the represen-
tation is optimal. This reversed view of automata motivates their use for a simple
yet necessary application of natural language processing: dictionary lookup.

Example 20 (Dictionaries as finite state automata). Many NLP applications require
the use of lexicons or dictionaries, sometimes storing hundreds of thousands of
entries. Finite state automata provide an efficient means for storing dictionar-
ies, accessing them, and modifying their contents. Assume that an alphabet is
fixed (say, Σ = {a, b, . . ., z}) and consider how a single word, say go, can be repre-
sented. As we have seen above, a naïve representation would be to construct an
automaton with a single path whose arcs are labeled by the letters of the word go:

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 23 — #13

Formal Language Theory 23

go :
g o

To represent more than one word, add paths to the FSA, one path for each
additional word. For example, after adding the words gone and going, we obtain:

go, gone, going :

g o i n g

g o n e

g
o

This automaton can then be determinized and minimized, yielding:

go, gone, going :

n g
i

g o n e

The organization of the lexicon as outlined above is extremely simplistic. A
possible extension attaches to the final states of the FSA additional information
pertaining to the words that decorate the paths to those states. Such informa-
tion can include definitions, morphological information, translations, etc. FSA are
thus suitable for representing various kinds of dictionaries, in addition to simple
lexicons.

Regular languages are particularly appealing for natural language processing
for two main reasons. First, it turns out that most phonological and morphologi-
cal processes can be straightforwardly described using the operations that regular
languages are closed under, in particular concatenation. With very few excep-
tions (such as the interdigitation word-formation processes of Semitic languages
or the duplication phenomena of some Asian languages), the morphology of most
natural languages is limited to simple concatenation of affixes, with some morpho-
phonological alternations, usually on a morpheme boundary. Such phenomena are
easy to model with regular languages, and hence are easy to implement with finite
state automata. Second, many of the algorithms one would want to apply to finite
state automata take time proportional to the length of the word being processed,
independently of the size of the automaton. Finally, the various closure properties
facilitate modular development of FSA for natural languages.

4.7 Regular relations
While finite state automata, which define (regular) languages, are sufficient for
some natural language applications, it is often useful to have a mechanism for
relating two (formal) languages. For example, a part-of-speech tagger can be
viewed as an application that relates a set of natural language strings (the source
language) to a set of part-of-speech tags (the target language). A morphological

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 24 — #14

24 Shuly Wintner

analyzer can be viewed as a relation between natural language strings (the surface
forms of words) and their internal structure (say, as sequences of morphemes).
In this section we discuss a computational device, very similar to finite state
automata, which defines a relation over two regular languages.

Example 21 (Relations over languages). Consider a simple part-of-speech tagger: an
application which associates with every word in some natural language a tag,
drawn from a finite set of tags. In terms of formal languages, such an applica-
tion implements a relation over two languages. Assume that the natural language
is defined over Σ1 = {a, b, . . . , z} and that the set of tags is Σ2 = {PRON, V, DET,
ADJ, N, P }. Then the part-of-speech relation might contain the following pairs
(here, a string over Σ1 is mapped to a single element of Σ2):

I PRON the DET
know V Cat N
some DET in P
new ADJ the DET
tricks N Hat N
said V

As another example, assume that Σ1 is as above, and Σ2 is a set of part-of-speech
and morphological tags, including {-PRON, -V, -DET, -ADJ, -N, -P, -1, -2, -3, -sg,
-pl, -pres, -past, -def, -indef }. A morphological analyzer is a relation between a
language over Σ1 and a language over Σ2. Some of the pairs in such a relation are:

I I-PRON-1-sg the the-DET-def
know know-V-pres Cat cat-N-sg
some some-DET-indef in in-P
new new-ADJ the the-DET-def
tricks trick-N-pl Hat hat-N-sg
said say-V-past

Finally, consider the relation that maps every English noun in singular to its plu-
ral form. While the relation is highly regular (namely, adding “s” to the singular
form), some nouns are irregular. Some instances of this relation are:

cat cats hat hats
ox oxen child children
mouse mice sheep sheep
goose geese

Summing up, a regular relation is defined over two alphabets, Σ1 and Σ2.
Of course, the two alphabets can be identical, but for many natural language
applications they differ. If a relation in Σ∗ × Σ∗ is regular, its projections on both
coordinates are regular languages (not all relations that satisfy this condition are
regular; additional constraints must hold on the underlying mapping which we

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 25 — #15

Formal Language Theory 25

ignore here). Informally, a regular relation is a set of pairs, each of which consists
of one string over Σ1 and one string over Σ2, such that both the set of strings
over Σ1 and that over Σ2 constitute regular languages. We provide a precise
characterization of regular relations via finite state transducers below.

4.8 Finite state transducers
Finite state automata are a computational device for defining regular languages;
in a very similar way, finite state transducers (FSTs) are a computational device for
defining regular relations. Transducers are similar to automata, the only difference
being that the edges are not labeled by single letters, but rather by pairs of sym-
bols: one symbol from Σ1 and one symbol from Σ2. The following is a preliminary
definition that we will revise presently:

DEFINITION 8. A finite state transducer is a six-tuple 〈Q, q0, Σ1, Σ2, δ, F〉, where Q is
a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, Σ1 and Σ2
are alphabets, and δ is a subset of Q × Σ1 × Σ2 × Q.

Example 22 (Finite state transducers). Following is a finite state transducer relating
the singular forms of two English words with their plural form. In this case,
both alphabets are identical: Σ1 = Σ2 = {a, b, . . . , z}. The set of nodes is Q = {q1,
q2, . . . , q11}, the initial state is q6 and the set of final states is F = {q5, q11}. The transi-
tions from one state to another are depicted as labeled edges; each edge bears two
symbols, one from Σ1 and one from Σ2, separated by a colon (:). So, for example,
〈q1, o, e, q2〉 is an element of δ.

q1 q2 q3 q4 q5

q6 q7 q8 q9 q10 q11

g : g o : e o : e s : s e : e

s : s h : h e : e e : e p : p

Observe that each path in this device defines two strings: a concatenation of the
left-hand-side labels of the arcs, and a concatenation of the right-hand-side labels.
The upper path of the above transducer thus defines the pair goose:geese, whereas
the lower path defines the pair sheep:sheep.

What constitutes a computation with a transducer? Similarly to the case of
automata, a computation amounts to “walking” a path of the transducer, start-
ing from the initial state and ending in some final state. Along the path, edges
bear bi-symbol labels: one can view the left-hand-side symbol as an “input” sym-
bol and the right-hand-side symbol as an “output” symbol. Thus, each path of
the transducer defines a pair of strings, an input string (over Σ1) and an output
string (over Σ2). This pair of strings is a member of the relation defined by the
transducer.

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 26 — #16

26 Shuly Wintner

DEFINITION 9. Let T = 〈Q, q0, Σ1, Σ2, δ, F〉 be a finite state transducer. Define δ̂ ⊆
Q × Σ∗

1 × Σ∗
2 × Q as follows:

• for each q ∈ Q, δ̂(q, ε, ε, q);
• if δ̂(q1, w1, w2, q2) and δ(q2, a, b, q3), then δ̂(q1, w1 · a, w2 · b, q3).

Then a pair 〈w1, w2〉 is accepted (or generated) by T if and only if δ̂(q0, w1, w2, wf) holds
for some final state qf ∈ F. The relation defined by the transducer is the set of all the
pairs it accepts.

As a shorthand notation, when an edge is labeled by two identical symbols, we
depict only one of them and omit the colon.

The above definition of finite state transducers is not very useful: since each arc
is labeled by exactly one symbol of Σ1 and exactly one symbol of Σ2, any rela-
tion that is implemented by such a transducer must relate only strings of exactly
the same length. This should not be the case, and to overcome this limitation we
extend the definition of δ to allow also ε-labels. In the extended definition, δ is a
relation over Q, Σ1∪{ε}, Σ2∪{ε} and Q. Thus a transition from one state to another
can involve “reading” a symbol of Σ1 without “writing” any symbol of Σ2, or the
other way round.

Example 23 (Finite state transducer with ε-labels). With the extended definition of
transducers, we depict below an expanded transducer for singular–plural noun
pairs in English.

g o : e o : e s e

s h e e p

o
x ε : e ε : n

m

o : i u : ε s : c e

Note that ε-labels can occur on the left or on the right of the ‘:’ separator. The
pairs accepted by this transducer are goose:geese, sheep:sheep, ox:oxen, and
mouse:mice.

4.9 Properties of regular relations
The extension of automata to transducers carries with it some interesting results.
First and foremost, finite state transducers define exactly the set of regular rela-
tions. Many of the closure properties of automata are valid for transducers, but
some are not. As these properties bear not only theoretical but also practical
significance, we discuss them in more detail in this section.

Given some transducer T, consider what happens when the labels on the arcs
of T are modified such that only the left-hand symbol remains. In other words,

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 27 — #17

Formal Language Theory 27

consider what is obtained when the transition relation δ is projected on three of its
coordinates: Q, Σ1, and Q only, ignoring the Σ2 coordinate. It is easy to see that
a finite state automaton is obtained. We call this automaton the projection of T to
Σ1. In the same way, we can define the projection of T to Σ2 by ignoring Σ1 in the
transition relation. Since both projections yield finite state automata, they induce
regular languages. Therefore the relation defined by T is a regular relation.

We can now consider certain operations on regular relations, inspired by similar
operations on regular languages. For example, union is very easy to define. Recall
that a regular relation is a subset of the Cartesian product of Σ∗

1 × Σ∗
2 , that is,

a set of pairs. If R1 and R2 are regular relations, then R1 ∪ R2 is well defined,
and it is straightforward to show that it is a regular relation. To define the union
operation directly over transducers, extend the construction of FSA delineated in
Section 4.5, namely add a new initial state with two edges labeled ε : ε leading
from it to the initial states of the given transducers. In a similar way, concatenation
can be extended to regular relations: if R1 and R2 are regular relations then R1 ·
R2 = {〈w1 · w2, w3 · w4〉 | 〈w1, w3〉 ∈ R1 and 〈w2, w4〉 ∈ R2}. Again, the construction
for FSA can be straightforwardly extended to the case of transducers, and it is easy
to show that R1 · R2 is a regular relation.

Example 24 (Operations on finite state transducers). Let R1 be the following relation,
mapping some English words to their German counterparts: R1 ={tomato:Tomate,
cucumber:Gurke, grapefruit:Grapefruit, pineapple:Ananas, coconut:Koko}. Let R2
be a similar relation: R2 = {grapefruit:Pampelmuse, coconut:Kokusnuß }. Then:
R1 ∪ R2 = {tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:
Pampelmuse, pineapple:Ananas, coconut:Koko, coconut:Kokusnuß }.

A rather surprising fact is that regular relations are not closed under intersec-
tion. In other words, if R1 and R2 are two regular relations, then it very well
might be the case that R1 ∩ R1 is not a regular relation. It will take us beyond
the scope of the material covered so far to explain this fact, but it is important to
remember it when dealing with finite state transducers. For this reason exactly it
follows that the class of regular relations is not closed under complementation: since
intersection can be expressed in terms of union and complementation, if regular
relations were closed under complementation they would have been closed also
under intersection, which we know is not the case.

A very useful operation that is defined for transducers is composition. Intuitively,
a transducer relates one word (“input”) with another (“output”). When we have
more than one transducer, we can view the output of the first transducer as the
input to the second. The composition of T1 and T2 relates the input language of
T1 with the output language of T2, bypassing the intermediate level (which is the
output of T1 and the input of T2).

DEFINITION 10. If R1 is a relation from Σ∗
1 to Σ∗

2 and R2 is a relation from Σ∗
2 to Σ∗

3
then the composition of R1 and R2, denoted R1 ◦ R2, is a relation from Σ∗

1 to Σ∗
3 defined

as {〈w1, w3〉 | there exists a string w2 ∈ Σ∗
2 such that w1R1w2 and w2R2w3}.

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 28 — #18

28 Shuly Wintner

Example 25 (Composition of finite state transducers). Let R1 be the following rela-
tion, mapping some English words to their German counterparts: R1 = {tomato:
Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:Pampelmuse, pine-
apple:Ananas, coconut:Koko, coconut:Kokusnuß }. Let R2 be a similar relation,
mapping French words to their English translations: R2 = {tomate:tomato,
ananas: pineapple, pamplemousse:grapefruit, concombre:cucumber, cornichon:
cucumber, noix-de-coco:coconut}. Then R2 ◦ R1 is a relation mapping French
words to their German translations (the English translations are used to
compute the mapping, but are not part of the final relation): R2 ◦ R1 =
{tomate:Tomate, ananas:Ananas, pamplemousse:Grapefruit, pamplemousse:
Pampelmuse, concombre:Gurke, cornichon:Gurke, noix-de-coco:Koko, noix-de-
coco:Kokusnuße}.

5 Context-Free Languages

5.1 Where regular languages fail
Regular languages and relations are useful for various applications of natural lan-
guage processing, but there is a limit to what can be achieved with such means.
We mentioned in passing that not all languages over some alphabet Σ are regular;
we now look at what kind of languages lie beyond the regular ones.

To exemplify a non-regular language, consider a simple language over the
alphabet Σ = {a, b} whose members are strings that consist of some number, n,
of ‘a’s, followed by the same number of ‘b’s. Formally, this is the language L =
{an · bn | n > 0}. Assume towards a contradiction that this language is regular, and
therefore a deterministic finite state automaton A exists whose language is L. Con-
sider the language Li = {ai | i > 0}. Since every string in this language is a prefix
of some string (ai · bi) of L, there must be a path in A starting from the initial state
for every string in Li. Of course, there is an infinite number of strings in Li, but by
its very nature, A has a finite number of states. Therefore there must be two dif-
ferent strings in Li that lead the automaton to a single state. In other words, there
exist two strings, aj and ak, such that j �= k but δ̂(q0, aj) = δ̂(q0, ak). Let us call this
state q. There must be a path labeled bj leading from q to some final state qf , since
the string ajbj is in L. This situation is schematically depicted below (the dashed
arrows represent paths):

q0 q qf

a j

ak

b j

Therefore, there is also an accepting path akbj in A, and hence also akbj is in L, in
contradiction to our assumption. Hence no deterministic finite state automaton
exists whose language is L.

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 29 — #19

Formal Language Theory 29

We have seen one language, namely L = {an · bn | n > 0}, which cannot be
defined by a finite state automaton and therefore is not regular. In fact, there are
several other such languages, and there is a well-known technique, the so-called
pumping lemma, for proving that certain languages are not regular. If a language is
not regular, then it cannot be denoted by a regular expression. We must look for
alternative means of specification for non-regular languages.

5.2 Grammars
In order to specify a class of more complex languages, we introduce the notion of
a grammar. Intuitively, a grammar is a set of rules that manipulate symbols. We
distinguish between two kinds of symbols: terminal ones, which should be thought
of as elements of the target language, and non-terminal ones, which are auxiliary
symbols that facilitate the specification. It might be instructive to think of the non-
terminal symbols as syntactic categories, such as Sentence, Noun Phrase, or Verb
Phrase. However, formally speaking, non-terminals have no “special,” external
interpretation where formal languages are concerned. Similarly, terminal symbols
might correspond to letters of some natural language, or to words, or to something
else: they are simply elements of some finite set.

Rules can express the internal structure of “phrases,” which should not nec-
essarily be viewed as natural language phrases. A rule is a non-empty sequence
of symbols, a mixture of terminals and non-terminals, with the only requirement
that the first element in the sequence be a non-terminal one (alternatively, one
can define a rule as an ordered pair whose first element is a non-terminal symbol
and whose second element is a sequence of symbols). We write such rules with a
special symbol, ‘→,’ separating the distinguished leftmost non-terminal from the
rest of the sequence. The leftmost non-terminal is sometimes referred to as the head
of the rule, while the rest of the symbols are called the body of the rule.

Example 26 (Rules). Assume that the set of terminals is {the, cat, in, hat} and the
set of non-terminals is {D, N, P, NP, PP }. Then possible rules over these two sets
include:

D → the NP → D N
N → cat PP → P NP
N → hat NP → NP PP
P → in

Note that the terminal symbols correspond to words of English, and not to letters
as was the case above.

Consider the rule NP → D N. If we interpret NP as the syntactic category noun
phrase, D as determiner, and N as noun, then what the rule informally means is that
one possible way to construct a noun phrase is by concatenating a determiner with
a noun. More generally, a rule specifies one possible way to construct a “phrase” of

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 30 — #20

30 Shuly Wintner

the category indicated by its head: this way is by concatenating phrases of the cat-
egories indicated by the elements in the body of the rule. Of course, there might be
more than one way to construct a phrase of some category. For example, there are
two rules which define the structure of the category NP in Example 26: either by
concatenating a phrase of category D with one of category N, or by concatenating
an NP with a PP.

In Example 26, rules are of two kinds: the ones on the left have a single terminal
symbol in their body, while the ones on the right have one or more non-terminal
symbols, but no rule mixes both terminal and non-terminal symbols in its body.
While this is a common practice where grammars for natural languages are con-
cerned, nothing in the formalism requires such a format for rules. Indeed, rules
can mix any combination of terminal and non-terminal symbols in their bodies.

Formal language theory defines rules and grammars in a much broader way
than that which was discussed above, and the definition below is actually only
a special case of rules and grammars. For various reasons that have to do with
the format of the rules, this special case is known as context-free rules. This has
nothing to do with the ability of grammars to refer to context; the term should not
be taken mnemonically. In the next section we discuss other rule-based systems. In
this section, however, we use the terms rule and context-free rule interchangeably,
as we do for grammars, derivations, etc.

DEFINITION 11. A context-free grammar is a four-tuple G = 〈V, Σ , P, S〉, where V
is a finite set of non-terminal symbols, Σ is an alphabet of terminal symbols, P ⊆
V × (V ∪ Σ)∗ is a set of rules and S ∈ V is the start symbol.

Note that this definition permits rules with empty bodies. Such rules, which
consist of a left-hand-side only, are called ε-rules, and are useful both for formal
and for natural languages. Example 33 below makes use of an ε-rule.

Example 27 (Grammar). The set of rules depicted in Example 26 can constitute the
basis for a grammar G = 〈V, Σ , P, S〉, where V = {D, N, P, NP, PP }, Σ = {the, cat,
in, hat}, P is the set of rules, and the start symbol S is NP.

In the sequel we depict grammars by listing their rules only, as we did in Exam-
ple 26. We keep a convention of using uppercase letters for the non-terminals and
lowercase letters for the terminals, and we assume that the set of terminals is the
smallest that includes all the terminals mentioned in the rules, and the same for
the non-terminals. Finally, we assume that the start symbol is the head of the first
rule, unless stated otherwise.

5.3 Derivation
In order to define the language denoted by a grammar we need to define the
concept of derivation. Derivation is a relation that holds between two forms, each a
sequence of grammar symbols (terminal and/or non-terminal).

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 31 — #21

Formal Language Theory 31

DEFINITION 12. Let G = 〈V, Σ , P, S〉 be a grammar. The set of forms induced by G is
(V ∪ Σ)∗. A form α immediately derives a form β, denoted by α ⇒ β, if and only if
there exist γl, γr ∈ (V ∪ Σ)∗ such that α = γlAγr and β = γlγcγr, and A → γc is a rule
in P. A is called the selected symbol.

A form α immediately derives β if a single non-terminal symbol, A, occurs in α,
such that whatever is to its left in α, the (possibly empty) sequence of terminal and
non-terminal symbols γl, occurs at the leftmost edge of β; and whatever is to the
right of A in α, namely the (possibly empty) sequence of symbols γr, occurs at the
rightmost edge of β; and the remainder of β, namely γc, constitutes the body of
some grammar rule of which A is the head.

Example 28 (Immediate derivation). Let G be the grammar of Example 27. The set of
forms induced by G contains all the (infinitely many) sequences of elements from
V and Σ , such as 〈〉, 〈NP〉, 〈D cat P D hat〉, 〈D N 〉, 〈the cat in the hat〉, etc.

Let us start with a simple form, 〈NP〉. Observe that it can be written as γlNPγr,
where both γl and γr are empty. Observe also that NP is the head of some grammar
rule: the rule NP → D N. Therefore, the form is a good candidate for derivation:
if we replace the selected symbol NP with the body of the rule, while preserving
its environment, we obtain γlD Nγr = D N. Therefore, 〈N 〉 ⇒ 〈D N 〉.

We now apply the same process to 〈D N 〉. This time the selected symbol is D
(we could have selected N, of course). The left context is again empty, while the
right context is γr = N. As there exists a grammar rule whose head is D, namely
D → the, we can replace the rule’s head by its body, preserving the context, and
obtain the form 〈the N〉. Hence 〈D N 〉 ⇒ 〈the N〉.

Given the form 〈the N〉, there is exactly one non-terminal that we can select,
namely N. However, there are two rules that are headed by N: N → cat and
N → hat . We can select either of these rules to show that both 〈the N〉 ⇒ 〈the cat〉
and 〈the N〉 ⇒ 〈the hat〉.

Since the form 〈the cat〉 consists of terminal symbols only, no non-terminal can
be selected and hence it derives no form.

We now extend the immediate derivation relation from a single step to an
arbitrary number of steps by considering the reflexive transitive closure of the
relation.

DEFINITION 13. The derivation relation, denoted ‘ ∗⇒,’ is defined recursively as follows:
α

∗⇒ β if α = β, or if α ⇒ γ and γ
∗⇒ β.

Example 29 (Extended derivation). In Example 28 we showed that the following
immediate derivations hold: 〈NP〉⇒〈D N 〉; 〈D N 〉⇒〈the N〉; 〈the N〉⇒〈the cat〉.
Therefore, 〈NP〉 ∗⇒ 〈the cat〉.

The derivation relation is the basis for defining the language denoted by a gram-
mar. Consider the form obtained by taking a single grammar symbol, say 〈A〉; if
this form derives a sequence of terminals, this string is a member of the language
denoted by A. The language of a grammar G, L(G), is the language denoted by its
start symbol.

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 32 — #22

32 Shuly Wintner

DEFINITION 14. Let G = 〈V, Σ , P, S〉 be a grammar. The language of a non-terminal
A ∈ V is

LG(A) = {a1 · · · an | ai ∈ Σ for 1 ≤ i ≤ n and 〈A〉 ∗⇒ 〈a1, . . . , an〉}

The language of the grammar G is L(G) = LG(S).

Example 30 (Language of a grammar). Consider again the grammar G of Exam-
ple 27. It is fairly easy to see that the language denoted by the non-terminal symbol
D, LG(D), is the singleton set {the}. Similarly, LG(P) is {in} and LG(N) = {cat, hat}.
It is more difficult to define the languages denoted by the non-terminals NP and
PP, although it should be straightforward that the latter is obtained by concatenat-
ing {in} with the former. We claim without providing a proof that LG(NP) is the
denotation of the regular expression (the · (cat + hat) · (in· the · (cat + hat))∗).

5.4 Derivation trees
Sometimes two derivations of the same string differ only in the order in which
they were applied. Consider again the grammar of Example 27. Starting with the
form 〈NP〉 it is possible to derive the string the cat in two ways:

(1) 〈NP〉 ⇒ 〈D N 〉 ⇒ 〈D cat〉 ⇒ 〈the cat〉
(2) 〈NP〉 ⇒ 〈D N 〉 ⇒ 〈the N〉 ⇒ 〈the cat〉

Derivation (1) applies first the rule N → cat and then the rule D → the whereas
derivation (2) applies the same rules in the reverse order. But since both use
the same rules to derive the same string, it is sometimes useful to collapse such
“equivalent” derivations into one. To this end the notion of derivation trees is
introduced.

A derivation tree (sometimes called parse tree, or simply tree) is a visual aid
in depicting derivations, and a means for imposing structure on a grammatical
string. Trees consist of vertices and branches; a designated vertex, the root of the
tree, is depicted on the top. Branches are connections between pairs of vertices.
Intuitively, trees are depicted “upside down,” since their root is at the top and
their leaves are at the bottom. An example of a derivation tree for the string the cat
in the hat with the grammar of Example 27 is given in Example 31.

Example 31 (Derivation tree).

NP

NP PP

D N P NP

D N

the cat in the hat

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 33 — #23

Formal Language Theory 33

Formally, a tree consists of a finite set of vertices and a finite set of branches
(or arcs), each of which is an ordered pair of vertices. In addition, a tree has a
designated vertex, the root, which has two properties: it is not the target of any arc,
and every other vertex is accessible from it (by following one or more branches).
When talking about trees we sometimes use family notation: if a vertex v has a
branch leaving it which leads to some vertex u, then we say that v is the mother
of u and u is the daughter, or child, of v. If u has two daughters, we refer to them
as sisters. Derivation trees are defined with respect to some grammar G, and must
obey the following conditions:

(1) every vertex has a label, which is either a terminal symbol, a non-terminal
symbol, or ε;

(2) the label of the root is the start symbol;
(3) if a vertex v has an outgoing branch, its label must be a non-terminal symbol;

furthermore, this symbol must be the head of some grammar rule; and the
elements in the body of the same rule must be the labels of the children of v,
in the same order;

(4) if a vertex is labeled ε, it is the only child of its mother.

A leaf is a vertex with no outgoing branches. A tree induces a natural “left-to-
right” order on its leaves; when read from left to right, the sequence of leaves is
called the frontier, or yield, of the tree.

Derivation trees correspond very closely to derivations. In fact, it is easy to show
that a non-terminal symbol A derives a form α if and only if α is the yield of some
parse tree whose root is A. In other words, whenever some string can be derived
from a non-terminal, there exists a derivation tree for that string, with the same
non-terminal as its root. However, sometimes there exist different derivations of
the same string that correspond to a single tree. The tree representation collapses
exactly those derivations that differ from each other only in the order in which
rules are applied.

Sometimes, however, different derivations (of the same string!) correspond to
different trees. This can happen only when the derivations differ in the rules which
they apply. When more than one tree exists for some string, we say that the string
is ambiguous. Ambiguity is a major problem when grammars are used for certain
formal languages, in particular for programming languages. But for natural lan-
guages, ambiguity is unavoidable as it corresponds to properties of the natural
language itself.

Example 32 (Ambiguity). Consider again the grammar of Example 27, and the
string the cat in the hat in the hat. Intuitively, there can be (at least) two readings
for this string: one in which a certain cat wears a hat-in-a-hat, and one in which a
certain cat-in-a-hat is inside a hat. If we wanted to indicate the two readings with
parentheses, we would distinguish between

((the cat in the hat) in the hat)

and

(the cat in (the hat in the hat))

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 34 — #24

34 Shuly Wintner

This distinction in intuitive meaning is reflected in the grammar, and two different
derivation trees, corresponding to the two readings, are available for this string:

NP

NP

NP PP PP

D N P NP P NP

D N D N

the cat in the hat in the hat

NP

NP PP

D N P NP

NP PP

P NP

D N D N

the cat in the hat in the hat

Using linguistic terminology, in the left tree the second occurrence of the preposi-
tional phrase in the hat modifies the noun phrase the cat in the hat, whereas in the
right tree it only modifies the (first occurrence of) the noun phrase the hat. This
situation is known as syntactic or structural ambiguity.

5.5 Expressiveness
Context-free grammars are more expressive than regular expressions. In
Section 5.1 we claimed that the language L = {anbn | n > 0} is not regular; we now
show a context-free grammar for this language. The grammar, G = 〈V, Σ , P, S〉, has
two terminal symbols, Σ = {a, b}, and one non-terminal symbol, V = {S}. The idea
is that whenever S is used recursively in a derivation (rule 1), the current form is
extended by exactly one a on the left and one b on the right, hence the number of
‘a’s and ‘b’s must be equal.

Example 33 (A context-free grammar for L = {anbn | n ≥ 0}).

(1) S → a S b
(2) S → ε

DEFINITION 15. The class of languages that can be generated by context-free grammars
is the class of context-free languages.

The class of context-free languages properly contains the regular languages:
given some finite state automaton which generates some language L, it is always
possible to construct a context-free grammar whose language is L. We conclude
this section with a discussion of converting automata to context-free grammars.

Let A = 〈Q, q0, δ, F〉 be a deterministic finite state automaton with no ε-moves
over the alphabet Σ . The grammar we define to simulate A is G = 〈V, Σ , P, S〉,

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 35 — #25

Formal Language Theory 35

where the alphabet Σ is that of the automaton, and where the set of non-terminals,
V, is the set Q of the automaton states. The idea is that a single (immediate) deriva-
tion step with the grammar simulates a single arc traversal with the automaton.
Since automata states are simulated by grammar non-terminals, it is reasonable to
simulate the initial state by the start symbol, and hence the start symbol S is q0.
What is left, of course, are the grammar rules. These come in two varieties: first,
for every automaton arc δ(q, a) = q′ we stipulate a rule q → a q′. Then, for every
final state qf ∈ F, we add the rule qf → ε.

Example 34 (Simulating a finite state automaton by a grammar). Consider the automa-
ton 〈Q, q0, δ, F〉 depicted below, where Q = {q0, q1, q2, q3}, F = {q3}, and δ is
{〈q0, m, q1〉, 〈q1, e, q2〉, 〈q2, o, q2〉, 〈q2, w, q3〉, 〈q0, w, q2〉}:

q0 q1 q2 q3
m e

o

w

w

The grammar G = 〈V, Σ , P, S〉 which simulates this automaton has V = {q0, q1,
q2, q3}, S = q0, and the set of rules:

(1) q0 → m q1
(2) q1 → e q2
(3) q2 → o q2
(4) q2 → w q3
(5) q0 → w q2
(6) q3 → ε

The string meoow, for example, is generated by the automaton by walking along
the path q0 − q1 − q2 − q2 − q2 − q3. The same string is generated by the grammar
with the derivation

〈q0〉 1⇒ 〈mq1〉 2⇒ 〈meq2〉 3⇒ 〈meoq2〉 3⇒ 〈meooq2〉 4⇒ 〈meoowq3〉 6⇒ 〈meoow〉
Since every regular language is also a context-free language, and since we have

shown a context-free language that is not regular, we conclude that the class of
regular languages is properly contained within the class of context-free languages.

Observing the grammar of Example 34, a certain property of the rules stands
out: the body of each of the rules either consists of a terminal followed by a
non-terminal or is empty. This is a special case of what are known as right-
linear grammars. In a right-linear grammar, the body of each rule consists of a
(possibly empty) sequence of terminal symbols, optionally followed by a sin-
gle non-terminal symbol. Most importantly, no rule exists whose body contains
more than one non-terminal; and if a non-terminal occurs in the body, it is
in the final position. Right-linear grammars are a restricted variant of context-
free grammars, and it can be shown that they generate all and only the regular
languages.

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 36 — #26

36 Shuly Wintner

5.6 Formal properties of context-free languages
Context-free languages are more expressive than regular languages; this addi-
tional expressive power comes with a price: given an arbitrary context-free
grammar G and some string w, determining whether w ∈ L(G) takes time pro-
portional to the cube of the length of w, O(|w|3) (in the worst case). In addition,
context-free languages are not closed under some of the operations that the regular
languages are closed under.

It should be fairly easy to see that context-free languages are closed under union.
Given two context-free grammars G1 = 〈V1, Σ1, P1, S1〉 and G2 = 〈V2, Σ2, P2, S2〉,
a grammar G = 〈V, Σ , P, S〉 whose language is L(G1) ∪ L(G2) can be constructed
as follows: the alphabet Σ is the union of Σ1 and Σ2, the non-terminal set V is a
union of V1 and V2, plus a new symbol S, which is the start symbol of G. Then,
the rules of G are just the union of the rules of G1 and G2, with two additional
rules: S → S1 and S → S2, where S1 and S2 are the start symbols of G1 and G2
respectively. Clearly, every derivation in G1 can be simulated by a derivation in
G using the same rules exactly, starting with the rule S → S1, and similarly for
derivations in G2. Also, since S is a new symbol, no other derivations in G are
possible. Therefore L(G) = L(G1) ∪ L(G2).

A similar idea can be used to show that the context-free languages are closed
under concatenation: here we only need one additional rule, namely S → S1 S2,
and the rest of the construction is identical. Any derivation in G will “first” derive
a string of G1 (through S 1) and then a string of G2 (through S 2). To show clo-
sure under the Kleene-closure operation, use a similar construction with the added
rules S → ε and S → S S1.

However, it is possible to show that the class of context-free languages is
not closed under intersection. That is, if L1 and L2 are context-free languages,
then it is not guaranteed that L1 ∩ L2 is context-free as well. From this fact
it follows that context-free languages are not closed under complementation
either. While context-free languages are not closed under intersection, they are
closed under intersection with regular languages: if L is a context-free lan-
guage and R is a regular language, then it is guaranteed that L ∩ R is context-
free.

In the previous section we have shown a correspondence between two spec-
ification formalisms for regular languages: regular expressions and finite state
automata. For context-free languages, we focused on a declarative formalism,
namely context-free grammars, but they, too, can be specified using a computa-
tional model. This model is called push-down automata, and it consists of finite
state automata augmented with unbounded memory in the form of a stack. Com-
putations can use the stack to store and retrieve information: each transition
can either push a symbol (taken from a special alphabet) onto the top of the
stack, or pop one element off the top of the stack. A computation is success-
ful if it ends in a final state with an empty stack. It can be shown that the class
of languages defined by push-down automata is exactly the class of context-free
languages.

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 37 — #27

Formal Language Theory 37

5.7 Normal forms
The general definition of context-free grammars stipulates that the body of a rule
may consist of any sequence of terminal and non-terminal symbols. However, it is
possible to restrict the form of the rules without affecting the generative capacity
of the formalism. Such restrictions are known as normal forms and are the topic of
this section.

The best-known normal form is the Chomsky normal form (CNF): under this
definition, rules are restricted to be of either of two forms. The body of any rule in
a grammar may consist either of a single terminal symbol, or of exactly two non-
terminal symbols (as a special case, empty bodies are also allowed). For example,
the rules D → the and NP → D N can be included in a CNF grammar, but the
rule S → a S b cannot.

Unlike the right-linear grammars defined in Section 5.5, which can only gen-
erate regular languages, CNF grammars are equivalent in their weak generative
capacity to general context-free grammars: it can be proven that for every context-
free language L there exists a CNF grammar G such that L = L(G). In other words,
CNF grammars can generate all the context-free languages.

The utility of normal forms is in their simplicity. When some property of context-
free languages has to be proven, it is sometimes much simpler to prove it for
the restricted version of the formalism (e.g., for CNF grammars only), because
the result can then extend to the entire class of languages. Similarly, processing
normal-form grammars may be simpler than processing the general class of gram-
mars. Thus, the first parsing algorithms for context-free grammars were limited
to grammars in CNF. In natural language grammars, a normal form can embody
the distinction between “real” grammar rules and the lexicon; a commonly used
normal form defines grammar rules to have either a single terminal symbol or any
sequence of zero or more non-terminal symbols in their body (notice that this is a
relaxation of CNF).

6 The Chomsky Hierarchy

6.1 A hierarchy of language classes
We focus in this section on grammars as formalisms which denote languages. We
have seen two types of grammars: context-free grammars, which generate the class
of context-free languages; and right-linear grammars, which generate the class of
regular languages. Right-linear grammars are a special case of context-free gram-
mars, where additional constraints are imposed on the form of the rules. More
generally, constraining the form of the rules can constrain the expressive power
of the formalism. Similarly, more freedom in the form of the rules can extend the
expressiveness of the formalism.

One way to achieve this is to allow more than a single non-terminal symbol
in the head of the rules or, in other words, restrict the application of rules to a

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 38 — #28

38 Shuly Wintner

specified context. In context-free grammars, a rule can be applied during a deriva-
tion whenever its head, A, is an element in a form. In the extended formalism such
a derivation is allowed only if the context of A in the form, that is, A’s neighbors to
the right and left, are as specified in the rule. Due to this reference to context, this
formalism is known as context-sensitive grammars. A rule in a context-sensitive
grammar has the form α1 A α2 → α1βα2, where α1, α2, and β are all (possibly
empty) sequences of terminal and non-terminal symbols. The other components
of context-sensitive grammars are as in context-free grammars.

As usual, the class of languages that can be generated by context-sensitive gram-
mars is called the context-sensitive languages. Considering that every context-free
grammar is a special case of context-sensitive grammars (with an empty con-
text), it should be clear that every context-free language is also context-sensitive
or, in other words, that the context-free languages are contained in the set of the
context-sensitive ones. As it turns out, this containment is proper, and there are
context-sensitive languages that are not context-free.

This establishes a hierarchy of classes of languages: the regular languages are
properly contained in the context-free languages, which are properly contained
in the context-sensitive languages. These, in turn, are known to be properly con-
tained in the set of languages generated by the so-called unrestricted or general
phrase-structure grammars (this set is called the recursively enumerable languages).
Each of the language classes in this hierarchy is associated with a computational
model: FSA and push-down automata for the regular and context-free languages
respectively; linear bounded Turing machines for the context-sensitive languages;
and Turing machines for the recursively enumerable languages.

This hierarchy of language classes is called the Chomsky hierarchy of languages,
and is schematically depicted in Figure 1.1.

6.2 The location of natural languages in the hierarchy
The Chomsky hierarchy of languages reflects a certain order of complexity: in
some sense, the lower the language class is in the hierarchy, the simpler are its
possible constructions. Furthermore, lower language classes allow for more effi-
cient processing (in particular, the recognition problem is tractable for regular and
context-free languages, but not for higher classes). If formal grammars are used
to express the structure of natural languages, then we must know the location of
these languages in the hierarchy.

Chomsky presents a theorem that says “English is not a regular language” (1957:
21); as for context-free languages, he says “I do not know whether or not English
is itself literally outside the range of such analyses” (1957: 34). For many years,
however, it was well accepted that natural languages were beyond the expres-
sive power of context-free grammars. This was only proven in the 1980s, when
two natural languages (Dutch and a dialect of Swiss German) were shown to
be trans-context-free (that is, beyond the expressive power of context-free gram-
mars). Still, the constructions in natural languages that necessitate more than

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 39 — #29

Formal Language Theory 39

Phrase-structure
languages

Context-sensitive
languages

Context-free
languages

Regular
languages

Figure 1.1 Chomsky’s hierarchy of languages.

context-free power are few and very specific. (Most of these constructions boil
down to patterns of the form anbmcndm, known as cross-serial dependencies; with
some mathematical machinery, based mostly on closure properties of the context-
free languages, it can be proven that languages that include such patterns cannot
be context-free.) This motivated the definition of the class of mildly context-sensitive
languages, which we discuss in Section 7.

6.3 Weak and strong generative capacity
So far we have only looked at grammars as generating sets of strings (i.e., lan-
guages), and ignored the structures that grammars impose on the strings in their
languages. In other words, when we say that English is not a regular language
we mean that no regular expression exists whose denotation is the set of all and
only the sentences of English. Similarly, when a claim is made that some natu-
ral language, say Dutch, is not context-free, it should be read as saying that no
context-free grammar exists whose language is Dutch. Such claims are propo-
sitions about the weak generative capacity of the formalisms involved: the weak
generative capacity of regular expressions is insufficient for generating English;
the weak generative capacity of context-free languages is insufficient for Dutch.
Where natural languages are concerned, however, weak generative capacity might

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 40 — #30

40 Shuly Wintner

not correctly characterize the relationship between a formalism (such as regular
expressions or context-free grammars) and a language (such as English or Dutch).
This is because one expects the formalism not only to be able to generate the strings
in a language, but also to assign them “correct” structures.

In the case of context-free grammars, the structure assigned to strings is a
derivation tree. Other linguistic formalisms may assign other kinds of objects to
their sentences. We say that the strong generative capacity of some formalism is
sufficient to generate some language if the formalism can (weakly) generate all
the strings in the language, and also to assign them the “correct” structures. Unlike
weak generative capacity, which is a properly defined mathematical notion, strong
generative capacity is poorly defined, because no accepted definition of the
“correct” structure for some string in some language exists.

7 Mildly Context-Sensitive Languages

When it was finally proven that context-free grammars are not even weakly ade-
quate as models of natural languages, research focused on “mild” extensions of
the class of context-free languages. In a seminal work, Joshi (1985) coined the term
mildly context-sensitive languages, which is loosely defined as a class of languages
that:

(1) properly contains all the context-free languages;
(2) can be parsed in polynomial time;
(3) can properly account for the constructions in natural languages that context-

free languages fail to account for, such as cross-serial dependencies; and
(4) has the linear-growth property (this is a formal property that we ignore here).

One formalism that complies with these specifications (and which motivated
their design) is tree adjoining grammars (TAGs). Motivated by linguistic consider-
ations, TAGs extend the scope of locality in which linguistic constraints can be
expressed. The elementary building blocks of the formalism are trees. Whereas
context-free grammar rules enable one to express constraints among the mother in
a local tree and its immediate daughters, the elementary trees of TAG facilitate the
expression of constraints between arbitrarily distant nodes, as long as they are part
of the same elementary tree. Two operations, adjunction and substitution, construct
larger trees from smaller ones, so that the basic operations that take place dur-
ing derivations are not limited to string concatenation. Crucially, these operations
facilitate nesting of one tree within another, resulting in extended expressiveness.

The class of languages generated by tree adjoining grammars is naturally called
the tree adjoining languages. It contains the context-free languages, and several
trans-context-free ones, such as the language {anbmcndm | n, m ≥ 0}. As usual, the
added expressiveness comes with a price, and determining membership of a string
w in a language generated by some TAG can only be done in time proportional
to |w|6.

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 41 — #31

Formal Language Theory 41

Several linguistic formalisms were proposed as adequate for expressing the
class of natural languages. Noteworthy among them are three formalisms: head
grammars, linear indexed grammars, and combinatory categorial grammars. All three
were developed independently with natural languages as their main motivation;
and all three were proven to be (weakly) equivalent to TAG. The class of tree
adjoining languages, therefore, may be just the correct formal class in which all
natural languages reside.

8 Further Reading

Much of the material presented in this chapter can be found in introductory text-
books on formal language theory. Hopcroft and Ullman (1979, chapter 1) provide
a formal presentation of formal language theory; just as rigorous, but with an
eye to linguistic uses and applications, is the presentation of Partee et al. (1990,
chapters 1–3). For the ultimate reference, consult the Handbook of Formal Languages
(Rozenberg & Salomaa 1997).

A very good formal exposition of regular languages and the computing machin-
ery associated with them is given by Hopcroft and Ullman (1979, chapters 2–3).
Another useful source is Partee et al. (1990, chapter 17). Theorem 1 is due to Kleene
(1956); Theorem 2 is due to Rabbin and Scott (1959); Theorem 3 is a corollary of the
Myhil–Nerode theorem (Nerode 1958). The pumping lemma for regular languages
is due to Bar-Hillel et al. (1961).

For natural language applications of finite state technology refer to Roche and
Schabes (1997a), which is a collection of papers ranging from mathematical prop-
erties of finite state machinery to linguistic modeling using them. The introduction
(Roche & Schabes 1997b) can be particularly useful, as will be Karttunen (1991).
Kaplan and Kay (1994) is a classic work that sets the very basics of finite state
phonology, referring to automata, transducers, and two-level rules. As an example
of an extended regular expression language, with an abundance of applications to
natural language processing, see Beesley and Karttunen (2003). Finally, Karttunen
et al. (1996) is a fairly easy paper that relates regular expressions and relations
to finite automata and transducers, and exemplifies their use in several language
engineering applications.

Context-free grammars and languages are discussed by Hopcroft and Ullman
(1979, chapters 4, 6) and Partee et al. (1990, chapter 18). The correspondence
between regular languages and right-linear grammars is due to Chomsky and
Miller (1958). A cubic-time parsing algorithm for context-free languages was first
proposed by Kasami (1965); see also Younger (1967). Push-down automata were
introduced by Oettinger (1961); see also Schützenberger (1963). Chomsky (1962)
proved that they were equivalent to context-free grammars.

A linguistic formalism that is based on the ability of context-free grammars to
provide adequate analyses for natural languages is generalized phrase-structure
grammars, or GPSGs (Gazdar et al., 1985).

“9781405155816_4_001” — 2010/5/14 — 17:13 — page 42 — #32

42 Shuly Wintner

The Chomsky hierarchy of languages is due to Chomsky (1956, 1959). The
location of the natural languages in this hierarchy is discussed in several
papers, of which the most readable, enlightening, and amusing is Pullum and
Gazdar (1982). Several other works discussing the non-context-freeness of nat-
ural languages are collected in Part III of Savitch et al. (1987). Rounds et al.
(1987) inquire into the relations between formal language theory and linguistic
theory, in particular referring to the distinction between weak and strong gen-
erative capacity. Works showing that natural languages cannot be described by
context-free grammars include Bresnan et al. (1982) (Dutch), Shieber (1985) (Swiss
German), and Manaster-Ramer (1987) (Dutch). Miller (1999) is dedicated to gener-
ative capacity of linguistic formalisms, where strong generative capacity is defined
as the model theoretic semantics of a formalism.

Tree adjoining grammars were introduced by Joshi et al. (1975) and are dis-
cussed in several subsequent papers Joshi (1985; 1987; 2003). A polynomial-time
parsing algorithm for TAG is given by Vijay-Shanker and Weir (1993) and Satta
(1994). The three formalisms that are equivalent to TAG are head grammars
(Pollard 1984), linear-indexed grammars (Gazdar 1988), and combinatory cate-
gorial grammars (Steedman 2000); they were proven equivalent by Vijay-Shanker
and Weir (1994).

