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‘We cannot solve our problems with the same thinking we used when we created them’
Albert Einstein

Abstract: Plants have played a major role in the geochemical and climatic evolution
of our planet. Today, in addition to their fundamental ecological importance plants
are essential for humans as the main source of food, provide raw materials for
many types of industry and chemicals for medical applications. It is thus daunting
to realize how little we understand about plant systems. To date, only approxi-
mately 15% of the genes of Arabidopsis thaliana, the most explored model system
for plant biologists, have been characterized experimentally. Systems biology of-
fers the opportunity to increase our understanding of plants as living organisms,
by generating a holistic view of the organism grounded at the molecular level.
In this chapter, we discuss the basics of systems biology, the data and tools we
need for systems research and how it can be used to produce an integrated view
of plant biology. We finish with a discussion of case studies, published examples
of plant systems biology research and their impact on our knowledge of plants as
integrated systems.

Keywords: network; Arabidopsis; genomics; bioinformatics; modelling; data
integration

3



c01 BLBK130-Coruzzi December 30, 2008 16:42 Char Count=

4 � Plant Systems Biology

1.1 Introduction

1.1.1 Systems thinking

What is systems biology? We advocate a definition anchored in the general
systems theory: ‘The exercise of integrating the existing knowledge about bio-
logical components, building a model of the system as a whole and extracting
the unifying organizational principles that explain the form and function of
living organisms.’ Systems thinking is not a new trend, but dates back to the
end of the 1800s and the beginning of the 1900s. One of the pioneers of systems
thinking was the Russian philosopher Alexandr Bogdanov (1873–1928). His
interests and writings ranged from social, to biological and physical sciences.
His work anticipated in many important ways Norbert Weiner’s ‘Cybernetics’
and Ludwig von Bertalanffy’s ‘General Systems Theory’. Bogdanov (1980) pro-
posed that all physical, biological and human sciences could be unified by
treating them as systems of relationships and by seeking the organizational
principles that underlie all systems.

We would like to illustrate systems thinking with the following example.
Imagine you are standing in front of ‘La Grande Jatte’, the painting by the
famous pointillist artist George Seurat. If we are close to the painting, we can
easily distinguish the small coloured spots, but we lose their pattern, in fact
we may not even realize they are part of a composition. Only when we are
standing back far enough, we can appreciate the subject and beauty of the
painting, as people standing by the lake. Most scientists today are standing
very close to their subjects. They know their area of research extremely well,
but cannot easily place their knowledge in the global context. The aim of
systems biology is to move away from the detail and instead produce a global
view of the system under scrutiny. This is achieved not solely by system-
wide data collection, integration and analysis. It is also about a change in
the research focus from the elements to the interactions and to the discovery
of higher levels of organization and the emerging properties at these higher
levels of organization.

1.1.2 Complexity and robustness in biological systems

Everyone agrees that biological systems are complex. But what does com-
plexity mean? Is complexity in biological systems just a consequence of the
inherent difficulty in understanding them? In this chapter, we would like to
use a more precise definition of complexity. We refer to a system as a complex
when it exhibits the following characteristics: (1) It is composed of many dif-
ferent elements. (2) The constituent elements interact. (3) The elements and
their interactions are dynamic, and are often governed by non-deterministic
rules. (4) The elements and/or interactions can be influenced by external
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factors. As a consequence of these properties, complex systems exhibit un-
expected or emergent behaviour that cannot be understood from studying
the parts in isolation. In addition, mathematical models that describe them
usually involve nonlinear behaviour. Even the simplest life forms (e.g. my-
coplasma) are complex by this definition. Living systems are composed of
a large number of elements with diverse chemical properties (nucleic acids,
proteins, carbohydrates, lipids, ions and many small molecules or metabo-
lites) that are intricately interconnected. We all know that these elements and
connections are dynamic and respond to internal or external factors. For in-
stance, the messenger RNA (mRNA) levels of hundreds of genes that code for
hundreds of different proteins can vary over time due to the action of signal
transduction cascades activated by developmental or environmental cues.

In addition to complexity, and perhaps because of it, biological systems
are robust. This key and ubiquitous feature of biological systems refers to
their ability to maintain proper functions despite internal and/or external
perturbations and uncertainty (Stelling et al., 2004; Kitano, 2007). Robustness
is an example of a property that emerges at the system level and that cannot
be understood at the individual part level (Kitano, 2004). The types of per-
turbations encountered by living systems are varied and include: stochastic
noise (e.g. due to low copy number of cellular components), physiological
and developmental signals, environmental change and genetic variation. It is
important to distinguish robustness from homeostasis. As indicated above,
robustness is related to preserving function. In contrast, homeostasis refers
to maintaining the state of the system. A system is robust as long as it main-
tains functionality, even if this is achieved by moving to a new steady state.
For instance, during the diauxic shift yeasts drastically changes from anaero-
bic to aerobic metabolism. This transition involves genome-wide changes in
gene expression and the reprogramming of metabolic pathways (DeRisi et al.,
1997). In this example, the state of the system is dramatically altered. How-
ever, the system is robust as it continues to produce adenosine triphosphate
and grow. Robustness allows for changes in the structure and components
of the system in response to perturbations, but maintains specific functions
(Kitano, 2004).

Robustness can be achieved by multiple mechanisms (for a review see
Kitano, 2004). First, negative or positive feedbacks allow for robust dynamic
responses in regulatory contexts as diverse as the cell cycle, circadian clock
and chemotaxis. Second, robustness can also be achieved by providing mul-
tiple means to achieve a specific function. These alternative or fail-safe mech-
anisms encompass the typically observed phenomena in living systems of
redundancy, overlapping function and diversity. Third, the modularity of
living systems is an effective mechanism of containing perturbations and
damage locally to minimize the effect on the whole system. Fourth, decou-
pling isolates low-level variation from high-level functionalities. All four
different mechanisms are typically found in a living organism.
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1.1.3 Robust evolving systems

How can complex biological systems be both robust to mutational perturba-
tions and at the same time accumulate heritable changes that produce new
adaptive traits during evolutionary time? Intuitively, robustness appears to
act against evolutionary change. The extent of phenotypic change caused
by natural selection depends on phenotypically expressed genetic variation
that is buffered in a robust system. This is true in the short term, but in
the long term silent mutations accumulate that can express under certain
conditions (e.g. a specific environmental stress). This phenomenon was origi-
nally postulated and studied by Waddington (1959). He showed that once the
phenotypic buffering capacity of an organism is exhausted by severe pertur-
bations, altered phenotypes can emerge, that is, the phenotype is no longer
‘canalized’. Molecular evidence for Waddington’s original observations was
presented first in Drosophila melanogaster (Rutherford and Lindquist, 1998)
where Hsp90 (a heat shock-induced chaperone) was shown to be an evolu-
tionary conserved protein affecting phenotypic variation. Inhibiting Hsp90
by mutation or pharmacological means caused an increase in a wide range of
altered phenotypes in Drosophila. Those phenotypes could be fixed through
breeding and interestingly became robust and independent of environmental
perturbations (temperature) or Hsp90 inhibition. Later studies in Arabidopsis
thaliana (Queitsch et al., 2002) showed that in plants, reduction of Hsp90 func-
tion resulted in an increase in phenotypic variation in the absence of genetic
variation. Probably, epigenetic mechanisms are involved in this phenomenon
(Sollars et al., 2003); however, the exact molecular mechanisms are still a mys-
tery (Salathia and Queitsch, 2007). Robustness and phenotypic variability are
not antagonistic forces, but are intimately related concepts. Isalan et al. (2008)
recently addressed this relationship in Escherichia coli. They systematically ex-
plored the effect of adding new edges in the E. coli gene network by expressing
hundreds of promoter-open reading frame combinations. The open reading
frames coded for transcription factors working at different levels of the gene
network hierarchy. Remarkably, nearly 95% of the new edges were tolerated
(i.e. E. coli shows a robust gene network) and some of the new strains grew
better than the wild type under diverse selective pressures (Isalan et al., 2008).

1.2 Network biology

How do we approach the complexity of biological systems? In 1736, the
famous mathematician Leonhard Euler found a solution to an old problem:
‘The seven bridges of Königsberg.’ In those days, Königsberg was a city
of the Kingdom of Prussia, set on the Pregel River. The city included two
large islands that were connected to each other and the mainland by seven
bridges. The problem was to decide whether it was possible to walk by a
route that crossed each bridge exactly once. Euler did not solve the problem
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empirically, but instead made a fundamental abstraction of the problem.
First, he eliminated all the features except the landmasses and the bridges.
Then, he replaced each landmass with a dot (vertex or node) and each bridge
with a line (edge or link). The resulting structure was a graph. Euler realized
that the degrees of the nodes were an important property of the graph and
he could later demonstrate in terms of degrees that the hypothetic walk was
impossible. The degree tells us how many links a particular node has to other
nodes. The key to Euler’s success was that he could abstract the fundamental
elements of the system and their relationships and represent them in a way
that favoured their analysis. He knew, for instance, that parameters such
as the length of the bridges or whether they were made of stone or wood
were irrelevant for his purpose. Similar principles and approaches can apply
to complex systems such as living organisms. By abstracting and focusing
on the important features for system form and function, a detailed and
comprehensive yet tractable view of the system can be obtained. A highly
successful and now widespread abstraction to represent complex biological
systems uses graphs. The following sections will discuss the basics of how
graphs are applied in biological research. (Note: For more details regarding
the subjects covered in this section please see Chapter 2 of this volume.)

1.2.1 General principles

When networks, or graphs in a more formal mathematical language, are ap-
plied to molecular biology nodes (or vertices) represent the molecules present
inside a cell (e.g. proteins, RNAs and/or metabolites) and links (or edges) be-
tween nodes represent their biological relationships (e.g. physical interaction,
regulatory connections, metabolic reactions). For example, in protein inter-
action networks, protein complexes can be represented as networks where
nodes represent proteins and their edges represent the physical interactions
between them. In metabolic networks, nodes can represent metabolites and
the edges the metabolic reactions that transform one metabolite into another
(Wagner and Fell, 2001). In genetic networks, nodes can represent genes
and the link between them a genetic interaction, such as synthetic lethality.
But other abstractions are possible. For instance, nodes can also be used to
represent biological processes and the edges connecting them indicate the
functional relationship between the processes. This network simplification
has uncovered basic principles of the structure and organization of differ-
ent types of molecular networks in many different organisms (Barabasi and
Oltvai, 2004) and has been successful for biological research. Examples of the
use of networks in plant biology are discussed later in this chapter.

1.2.2 Network properties

Networks have diverse structures and topologies. Prior to the work by
Barabasi and Albert (Barabasi and Albert, 1999; Barabasi and Oltvai, 2004),
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networks were generally considered as having either regular (e.g. with a
square lattice) or random topologies. To construct a random network ac-
cording to the classical Erdös–Rényi model, two nodes are chosen randomly
from a pool of N nodes and a link is established between them (Erdös and
Rényi, 1960). This procedure results in a network where the number of edges
for each node (degree) follows a Poisson distribution. In random networks,
there are a few nodes that are lowly or highly connected and most nodes have
roughly the same number of links. In contrast to random networks, one of
the common architectural features of naturally occurring networks including
molecular networks is to present a scale-free topology (Barabasi and Albert,
1999). Networks with scale-free topology are characterized by a power law
degree distribution: P(k) ∼ k−� , where P(k) is the probability that a selected
node has k links and � is the degree exponent. The � value for most natu-
rally occurring networks varies between 2 and 3 (Albert et al., 2000). Whereas
in random networks most nodes have approximately the same degree or
number of connections, in scale-free networks there are many nodes that are
poorly connected and few nodes that are very highly connected (Albert et al.,
2000). The highest degree nodes (highest number of edges) are typically re-
ferred to as ‘hubs’ and are important for the architecture and function of the
network.

One important consequence of the scale-free topology of naturally occur-
ring networks is robustness. Scale-free networks show an extraordinary tol-
erance to perturbations as compared to random networks of equivalent size.
For example, 5% of the nodes in a scale network can fail without affecting the
mean path length (Albert et al., 2000). In contrast, an informed targeting of
5% of the most connected nodes results in a doubling of the mean path length
(Albert et al., 2000). This phenomenon can be understood based on the low
frequency of highly connected nodes. And therefore the probability of ran-
domly targeting a hub in a scale-free network is very low. This observation
is correlated with findings in biological networks. In yeast, approximately
20% of proteins with less than 5 connections are essential, in contrast to
the 62% when considering proteins with more than 15 connections (Jeong
et al., 2001). Removing a hub protein has a high probability of resulting in a
lethal phenotype, supporting their fundamental role. Similarly, a malicious
hacker trying to affect Internet function may have a higher chance of succeed-
ing by damaging servers that are hubs. It was recently shown that human
proteins targeted by the Epstein–Barr virus were enriched for hub proteins
(Calderwood et al., 2007). Viruses could have evolved to attack key hub pro-
teins in their host’s proteomes.

Another interesting feature of naturally occurring networks is their ‘small
world effect’. In order to understand it, we must first introduce the concept
of ‘path’. Distance in networks is measured by the number of links that
we need to pass when travelling from node A to node B (path from A to
B). The path with the smallest number of edges between nodes A and B is
the ‘shortest path’. If we take all possible pair of nodes in a network and
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calculate the average length of all the shortest paths, we obtain a measure
called the ‘mean path length’. The diameter of the network is the maximal
distance (from the shortest path set) between any pair of nodes. Studies
regarding social networks performed by Stanley Milgram in 1967 showed that
the mean number of individuals required to connect one arbitrary person to
another arbitrary person anywhere in the USA is only six; thus the concept of
six degrees of separation. Another example of small mean path lengths within
a large network is the World Wide Web, with over 800 million nodes, it has
a mean path length of only 19 (Albert et al., 1999). The property that every
node in these large networks is separated by a few links from all the other
nodes in the network is known as the ‘small world effect’. The architecture of
Caenorhabditis elegans nervous system, the power grid of the western United
States and the collaboration graph of film actors also show a ‘small world
effect’ (Watts and Strogatz, 1997).

An additional interesting property of networks is clustering. Clustering
in networks can be intuitively explained using social networks as an ex-
ample. In social networks, two of your friends will have a greater chance
of knowing one another than two people chosen at random from the
entire population. This is due to their common acquaintance with you.
This property is quantified with the clustering coefficient. The clustering
coefficient for a node k measures how connected are its neighbours. Math-
ematically, it is calculated as the ratio of the number of edges that exist
between the neighbours of k and the total number of edges possible be-
tween the neighbours. The clustering coefficient is 1 in a fully connected
network. In real-world networks, the clustering coefficient typically has val-
ues of 0.1–0.5. These values are much higher than what obtained from random
networks.

The combined presence of scale-free topologies and the high degree of
clustering in real-world networks is a consequence of their hierarchical struc-
ture. Many real-world networks are fundamentally modular, where groups of
highly connected nodes can be identified that are poorly connected to nodes
outside of the group (for a review see Ravasz et al., 2002). Hartwell et al. (1999)
defined a biological module as a discrete entity of the cell whose function is
separable from those of other modules. Biological network modules have
been correlated with biological function in various organisms from yeast to
animals to plants (Han et al., 2004; Gunsalus et al., 2005; Gutierrez et al., 2007).
An interesting question to be addressed is whether a central control module
exists or the control is shared between all the modules in a cell. In addition,
an evolutionary implication of modularity is that shifting the connections
between modules could potentially change the phenotype of individuals.
Therefore, emphasis must be given in the following years to the study of
hubs proteins (most highly connected nodes) and their regulation from a sys-
temic perspective. These proteins can occupy key places connecting diverse
modules and their study could provide important insights about cellular
regulatory mechanisms.
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1.3 Experimental approaches for plant systems biology

A systems approach to biology is possible today because of the breakthrough
in technologies that allow us to measure and connect the entire complement
of defined molecules inside an organism (e.g. transcriptome, proteome). The
new influx of high-throughput data is shifting biology from a reductionist
to a systems-level view. Practically speaking, systems biology generates and
integrates different types of genome-wide data in living organisms to pro-
duce models of the system as a whole (Kitano, 2002; Shannon et al., 2003).
Ideker, Galitski and Hood (Shannon et al., 2003) described a fundamental
framework to carry out research in systems biology: (1) define all the compo-
nents of the system, (2) systematically perturb and monitor components of
the system, (3) reconcile the experimentally observed responses with those
predicted by the model and (4) design and perform new perturbation ex-
periments to distinguish between multiple or competing hypotheses. Below,
we describe the different data types currently available for plant systems
biology.

1.3.1 Enumerating the parts

1.3.1.1 The genome
The first step to understand a living organism from a systems point of view
is to enumerate its basic components. The genome of an organism is the com-
plete hereditary information encoded in the DNA (or RNA in some viruses).
The first genome of a complex free-living organism to be completed was that
of Haemophilus influenza (Fleischmann et al., 1995). The tremendous advances
in sequencing technologies since then, has catapulted us into the genomic
era. Today, the scientific community benefits from the complete genome se-
quences of many organisms including several plants. In 2000, the complete
genome sequence of the plant A. thaliana was published (Initiative, 2000). In
2005, the first monocotyledoneous plant was sequenced, Oryza sativa (Locke
et al., 2005). To date, in addition to Arabidopsis and rice, the complete se-
quenced genomes of Chlamydomonas reinhardtii (Merchant et al., 2007), Pop-
ulus trichocarpa (Tuskan et al., 2006) and Vitis vinifera (Jaillon et al., 2007) are
available. In addition, at the beginning of 2008, the first genome sequence of
a genetically modified plant was reported, for the SunUp Carica papaya (Ming
et al., 2008). Genomes provide the parts lists as far as genes and their products
(proteins and RNAs) are concerned.

Due to lack of financial support or simply due to the large size, the genomes
of many species are not and may not be completely sequenced. In addition,
much of the DNA in large genomes is thought to correspond to repetitive
DNA and transposable elements (Bennet and Ilia, 1995). There are two main
approaches for ‘sampling’ the gene space of genomes without sequencing
them completely: (1) sequencing expressed sequence tags (ESTs) (Adams et al.,
1991) and (2) sequencing genomic sequences that have been filtered based on
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either hypomethylation (Bennetzen et al., 1994; Rabinowicz et al., 1999, 2003a)
or High-Cot (Yuan et al., 2003). EST sequencing involves preparing cDNA of
the transcribed messages and then randomly sequencing them from either
the 3′ or the 5′. The advantage of EST sequencing is that the sequences ob-
tained represent the transcribed regions of the genome. The disadvantages
are that ESTs typically do not represent the entire cDNA (only about 500 bp)
and they tend to represent only roughly 50% of the total genes in the genome.
Large stretches of repetitive DNA and transposable elements tend to be hy-
permethylated compared to gene coding regions which are unmethylated, for
example 95% of the maize exons are thought to be unmethylated (Rabinowicz
et al., 2003b). Genomic libraries can be prepared enriched for unmethylated
DNA by cloning in bacterial hosts that destroy methylated DNA. Alterna-
tively, the High-Cot method removes repetitive DNA by depending on the
rapid association of repetitive DNA. The advantage of sequencing filtered
genomic sequences over EST sequencing is that it is possible to obtain the
introns and regulatory regions of the gene rather than just the transcribed por-
tion of the gene. Palmer et al. (2003) annotated genes from methyl-filtrated
sequences and compared them to random genome sequences from maize.
They observed a twofold reduction in the number of repetitive reads and
fivefold increase in the number of exonic regions in the methyl-filtrated se-
quences (Palmer et al., 2003). The drawback to this approach is the significant
amount of repetitive DNA obtained. Despite the limitations, the different
genome sampling methods are still the best alternative to sequencing the
entire genome for very large genome sequences. With the advent of highly
parallel sequencing technologies, such as the platforms developed by 454
(Margulies et al., 2005) or Solexa Illumina (Bennett, 2004), these limitations
may be less relevant in the near future. In addition, in the years to come, the
focus may shift from sequencing depth within individual genomes to sam-
pling as many genomes as possible to determine the gene complement of the
biosphere.

The first step after obtaining the genome sequence of an organism is the
annotation of its genes (identification of their basic elements as exons, introns,
regulatory sequences). Several strategies are available for gene discovery: in
silico gene prediction, information obtained from ESTs, full-length cDNA,
tilling and expression arrays, MPSS (massive parallel signature sequencing),
SAGE (serial analysis of gene expression) (Alonso and Ecker, 2006). Today,
many specialized software are available in the market as well as freeware.
Even though in silico predictions are an excellent start, they have to be used
critically because they are not always accurate. Indeed, gene predictions and
genome annotations are typically dynamic improving over time. For exam-
ple, at least 40% of the original predictions made for the Arabidopsis genome
were subsequently found to be wrong and corrected in later releases of the
annotation. The next step after gene discovery is gene functional annotation.
This functional analysis can be done in several ways: computational predic-
tions, gene expression, mutant analysis and protein–protein interactions, just
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to name some of the most common approaches (for an excellent review of
this topic please read Alonso and Ecker, 2006). However, high-throughput
screens of mutants are fundamental for accessing plant gene functions on a
genomic scale (Alonso and Ecker, 2006).

1.3.1.2 Epigenome
Epigenetics is the study of heritable traits that do not involve changes in
the DNA sequence. These changes alter the chromatin structure which af-
fect regulation of gene expression. Two well-studied forms of epigenetic
regulation in plants are methylation of the DNA molecule at the cytosine
base and post-translational modifications of histones (Henderson and Jacob-
sen, 2007). Heterochromatic regions of plants tend to be highly methylated
(Rabinowicz et al., 2003b) which is why sequencing methods such as methyl
filtration produce sequences that are enriched in gene coding regions. To un-
derstand the importance of DNA or histone modifications for gene regulation,
we need to look at DNA or histone modification patterns across the genome
and correlate them with gene expression data. Several research groups have
carried out such studies in plants. The experimental approach involves
isolating nuclear DNA and enriching for the methylated DNA fraction. The
methylated DNA is then hybridized to an Arabidopsis whole genome tiling
microarray to determine global DNA methylation patterns (Zhang et al., 2006;
Zilberman et al., 2007). These studies have uncovered several interesting as-
pects of the epigenome in Arabidopsis. For example, the heterochromatic
regions are heavily methylated, approximately a third of Arabidopsis genes
are methylated within the transcribed region, methylation is biased away
from the 5′ and 3′ regions in Arabidopsis genes, genes that are methylated
in the transcribed regions tend to be expressed at high levels and genes that
are methylated in the promoter region tend to be tissue specific (Zhang et al.,
2006; Zilberman et al., 2007). Additional studies have been carried out to look
at histone modifications (Zhang et al., 2007). Epigenetics adds another level
to the regulatory complexity of gene expression. Elucidating the importance
and function of epigenetic modifications in the years to come will be crucial to
understanding how genomes respond to internal and external perturbations.

1.3.1.3 Transcriptome (including RNAs and small RNAs)
The transcriptome is the set of all the parts of the genome that are expressed
as RNA transcripts in one or several populations of cells in a given time
and a given environmental condition. Not so many years ago, it was un-
thinkable to propose measuring the expression of thousands of genes in one
experiment. Northern blots were the only choice for molecular biologists and
biochemists. Microarray technology has been around since the early 1990s,
but the high cost of this technology precluded widespread utilization by the
scientific community. Patrick Brown and colleagues made this technology
cheaper and easier to do (Schena et al., 1995) and triggered a revolution in
transcriptome studies. Interestingly, Arabidopsis was chosen as a case study
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to demonstrate microarray technology in 1995. Arabidopsis was utilized be-
cause of its small genome and rich EST collection. At the present time, one
of the most widely used systems for gene expression studies in Arabidopsis
is the ATH1 Genome Array, designed by Affymetrix in collaboration with
The Institute for Genome Research. It contains more than 22 000 probes sets
representing approximately 24 000 gene sequences on a single array. This tech-
nology allows the simultaneous quantitative determination of the expression
level of thousands of genes.

Today, the Arabidopsis community benefits from the success of microarray
technology. The bottleneck of research is not longer the acquisition of data,
but often its analysis. There are several public databases containing microar-
ray data: Genevestigator (https://www.genevestigator.ethz.ch/), NASC-
Arrays (http://affymetrix.arabidopsis.info/narrays/experimentbrowse.pl),
ArrayExpress (http://www.ebi.ac.uk/arrayexpress), The Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and Stanford Microarray
Database (http://genome-www5.stanford.edu) perhaps among the most
popular. Hundreds of microarray experiments (available through these re-
sources) have been performed comparing diverse developmental stages, soil
conditions and compositions, pathogen infections, oxidative stress and re-
sponse to diverse chemicals. The information obtained from these experi-
ments has being useful in the detection of new genes or new gene functions
involved in particular processes.

It is important to emphasize that the transcriptome does not refer just
to messenger RNAs. In addition to mRNAs, ribosomal RNAs (rRNAs) and
tRNAs (transfer RNAs), there is great interest in studying the expression of
the large and heterogeneous population of small RNAs in plants (Finnegan
and Matzke, 2003). These small RNAs can have important roles for regulation
of gene expression as well as other roles (Finnegan and Matzke, 2003). Unfor-
tunately, EST libraries and microarray gene chips were not designed to detect
small RNAs such as microRNAs (miRNAs). However, with the advancement
of sequencing technologies, we are now able to measure miRNAs and other
small RNAs (sRNAs), quantify their expression in different cell types and
treatments and begin to understand their functional roles in plants (Lu et al.,
2005). (Note: For more on the role of sRNA see Chapter 7 of this volume.)

1.3.1.4 Proteome
The proteome is the set of all the proteins that are expressed in a given
system in a given time and under a defined environmental condition. This
term was coined by Mark Wilkins and colleagues in 1995 when studying the
smallest known self-replicating organism Mycoplasma genitalium (Wasinger
and Corthals, 2002). There are many questions one would like to address re-
garding proteomes: How abundant are the proteins? Where are the proteins
located? What are the post-translational modifications in these proteins? An-
swering these questions is not an easy task. Low-abundance proteins can
be extremely difficult to detect and there is no polymerase chain reaction
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(PCR)-like method for protein amplification. In addition, the great variability
of structures and chemical properties of proteins compared with nucleic acids
makes their separation and identification a challenge. The most common ap-
proach in proteomics is the use of two-dimensional (2D) gel electrophoresis
for separating the proteins (which typically resolves proteins based on charge
and molecular weight). The separated proteins are then excised from the gel,
fragmented and the fragments analyzed by mass spectrometry. The mass fin-
gerprint of the peptides is then compared with databases for identification
(Yates, 2000).

In Arabidopsis, large-scale proteomic efforts have been carried out, for ex-
ample to determine the proteome of organelles such as the chloroplasts (Friso
et al., 2004), mitochondria (Heazlewood et al., 2004) and vacuoles (Mitreva
et al., 2004). These studies have shown that many in silico predictions of
protein sub-cellular localization are wrong and they must be verified experi-
mentally. These studies also suggest that cellular trafficking is more complex
than previously thought.

Another problem in proteomic studies has been the coverage of the avail-
able techniques. Giavalisco et al. (2005) carried out a large-scale study in the
hope of achieving a complete coverage of Arabidopsis cells proteome using
2D gel electrophoresis and matrix-assisted laser desorption/ionization-time
of flight (MALDI-TOF) mass fingerprinting. Despite sampling different tis-
sues in order to increase the probability of finding novel peptides, they could
only find 663 different proteins from 2943 spots. Recently, a proteomic study
of A. thaliana was carried out (Baerenfaller et al., 2008), giving valuable in-
sights into the proteomic map of diverse organs, developmental stages and
undifferentiated cultured cells. The authors identified around 13 000 proteins,
which accounts for almost 50% of all Arabidopsis predicted gene models. This
study not only allowed the corroboration of gene annotations, but also en-
riched the genome annotation. For example, the authors provided expression
evidence for 57 genes models that were not present in the TAIR7 database.
Another interesting result was the identification of 571 organ-specific pro-
teins, which could be useful for the mapping of gene regulatory networks
that drive the differentiation programmes in plants. (Note: For more on pro-
teomics in plants see Chapter 8 of this volume.)

1.3.1.5 Metabolome
The metabolome refers to the complete set of small molecule metabolites
(such as metabolic intermediates, hormones and other signalling molecules,
and secondary metabolites) to be found within a biological system (Oliver
et al., 1998). One of the main problems when studying the metabolome is
the extreme heterogeneous chemical nature of the compounds considered as
constituents of the metabolome. This is especially true in plants. Plants are
known to have a tremendous enzymatic capacity, allowing for the production
of an estimated ∼200 000 different small molecules (Fiehn, 2002). Finding the
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equilibrium between coverage and accuracy of measurement is therefore key
in the metabolomics field.

With respect to the technology used to explore the metabolome, classical
approaches use gas chromatography–mass spectrometry (GC–MS). This tech-
nology detects >300 metabolites in plant tissues (Hirai et al., 2004). One of the
first studies of this kind was carried out to determine the mechanism of action
of herbicides like acetyl CoA carboxylase and acetolactate synthase inhibitors,
using GC–MS (Schauer and Fernie, 2006). They could obtain the metabolic
profiles of the treated and control seedlings. These metabolic profiles have
also been achieved recently using H-1 NMR (proton nuclear magnetic reso-
nance) (Ott et al., 2003). A new technology used in metabolomics is the Fourier
transform-ion cyclotron MS that separates metabolites based on differences
in their isotopic masses (Hirai et al., 2004). Crude plant extracts without prior
separation of metabolites by chromatography are injected directly in this sys-
tem. The mass resolution (>100 000) and accuracy (<1 ppm) is superior to
other technologies.

Metabolite profiling has evolved from a diagnostic tool used in agricul-
ture to a valuable source of information for gene function prediction in
plants. Classically, gene function prediction was made based on studies at
the mRNA or protein levels. In the year 2000, Fiehn and co-workers devel-
oped a novel tool for plant functional genomics (Fiehn, 2002). Using GC–MS,
they automatically quantified 326 distinct compounds from A. thaliana leaf
extracts, half of those whose chemical structure could be assigned. Four Ara-
bidopsis genotypes were compared (two homozygous ecotypes and a mutant
of each ecotype) and distinctive metabolite profiles of each genotype were
reported. Data mining tools enabled the assignment of ‘metabolic pheno-
types’. Metabolite profiling studies have been performed in a diverse array
of plant species (Schauer and Fernie, 2006) including: Arabidopsis (Fiehn,
2002), tomato (Schauer et al., 2005), potato (Roessner et al., 2001), rice (Young
et al., 2005), strawberry (Aharoni et al., 2002) and eucalyptus (Merchant et al.,
2007). Metabolic profiling is also being used in studies of environmental per-
turbations in order to understand the complex shifts under nutrient limitation
and biotic stress. The use of forward and reverse genetics in conjunction with
metabolite profiling plays an important role in gene annotation, characteriza-
tion of biochemical pathways and the identification of new genes for their use
in biotechnological applications. (Note: For more details on metabolomics in
plants, see Chapter 9 of this volume.)

1.3.1.6 Ionome
The ionome was first described to include all the metals, metalloids and
non-metals present in an organism (Lahner et al., 2003), which are involved
in a broad range of important biological phenomena including: electrophys-
iology, signalling, enzymology, osmoregulation and transport (Hesse and
Hoefgen, 2006). There is a small and sometimes diffuse boundary between
ions and metabolites. Take for example macronutrients (essential elements
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used by plants in relatively large amounts for plant growth) like nitrogen,
sulfur and phosphorus and metals like manganese, iron, zinc and copper es-
sential for metalloprotein’s activity. High-throughput ion-profiling strategies
for genomic scale profiling of nutrient and trace element have been utilized
for ionome studies (Lahner et al., 2003). Using inductively coupled plasma
mass spectrometry (ICP-MS) technology, it was possible to profile shoots
from more than 40 000 plant samples (at a rate of 1000/per month) including
diverse transferred DNA (T-DNA) insertional mutants and also mutants gen-
erated by fast neutron treatment. They have also characterized the ionome
of Arabidopsis shoot and seed under standard soil growth conditions. (Note:
For more information on ionomics in plants, see Chapter 10 of this volume.)

1.3.2 Systematic characterization of interactions
between components

In the previous section, we briefly outlined some of the components that
constitute a biological system and for which we have a substantial amount of
global experimental data. However, even if we had a complete set of accurate
measurements for every molecular component of the cell, we would not be
able to reconstruct the system. We cannot think of these components as apart
in space and time. The essence of biological systems is to understand not
only what the parts are, but also how these parts interact. As discussed in
other sections and chapters in this book, it is from the interactions of the parts
that the properties typically associated with biological systems emerge. In this
section, we shall briefly review the interactions that are better understood at a
genome-wide level. It is important to emphasize that Arabidopsis and plants,
in general, lag behind other systems in the systematic characterization of the
interactions between molecular components. As a community, we should
attack this limitation in order to advance plant systems research.

1.3.2.1 Metabolic pathways
Metabolic pathways were classically studied by isotopic radiolabelling of
metabolites and biochemical isolation and characterization of the enzymes
involved in those pathways. All these efforts resulted in the establishment of
linear or cyclic pathways, where metabolites are continuously transformed
by enzyme-catalyzed reactions with a defined stoichiometry. One way to
represent all those reactions is constructing a network where each node rep-
resents a metabolite and a link between two nodes represents the enzymatic
reaction that converts one into the other. These metabolic networks show
a scale-free topology and small world which probably reflects the need of
the system to have a wide and plastic response to environmental perturba-
tions (Wagner and Fell, 2001; Ravasz et al., 2002). Metabolic pathways for
plants are stored in public databases such as AraCyc (Mueller et al., 2003) and
KEGG (Aoki and Kanehisa, 2005). These databases are built from knowledge
in Arabidopsis but also from the enzymes and pathways studied in other
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species. Another important source of information is the Arabidopsis Re-
actome (www.arabidopsisreactome.org), inspired by the human Reactome
project. It covers biological pathways ranging from the basic processes of
metabolism to high-level processes such as hormonal signalling, and it in-
cludes also metabolic pathways for other plant species.

1.3.2.2 Co-expression networks
At the present time, one of the major sources of genome-wide information
for Arabidopsis is microarray technology. By comparing gene expression pat-
terns obtained in experiments across a wide range of treatments, networks of
co-expression relationships can be built. Basically, the similarity of gene ex-
pression between two genes is calculated using a statistic such as the Pearson
correlation coefficient. The nodes in the network represent the transcripts and
the link between two nodes corresponds to the correlation coefficient between
these two genes. Typically, a similarity cut-off is used to decide whether two
expression patterns are similar or not and to draw or not the edges between
nodes. Alternatively, weighted edges can be used to record the value of the
statistic. Gene expression networks are useful to hypothesize gene function.
But how many microarray experiments do we need in order to have a robust
co-expression network? This issue was recently addressed for Arabidopsis
(Aoki et al., 2007). Aoki et al. (2007) found that the density of networks derived
from microarray experiments from Arabidopsis reached equilibrium when
more than 100 arrays were used. This result suggests that 100 experiments are
sufficient to build a robust co-expression network. It remains to be determined
whether this is insensitive to the experimental factors tested in the microarray
experiments utilized. Is the Arabidopsis co-expression network different from
the network of another model organism? Bergmann et al. (2004) compared the
global features of co-expression networks from Saccharomyces cerevisiae, C. el-
egans, E. coli, A. thaliana, D. melanogaster and Homo sapiens. The co-expression
networks built for all these organisms showed a power law degree distri-
bution indicative of scale-free networks. In addition, all these networks ex-
hibited high modularity. The modules were defined as sets of co-expressed
genes that share a common function. A number of these core modules were
conserved throughout evolution. Examples of core modules identified were:
rRNA processing machinery, heat shock response and the proteosome. More
recently, it was reported that hub genes from co-expression networks in A.
thaliana tend to be single-copy genes (Wei et al., 2006). For the positive co-
expression network studied, 65% of the hub genes (having 20 or more con-
nections) were found to be single-copy. On the other hand, only 37% of genes
having fewer than 20 connections were single-copy genes. Co-expression
networks are powerful as they provide a mechanism to relate genes without
known function to known genes and help build testable hypothesis.

1.3.2.3 The interactome
The interactome is defined as the complete physical interaction map between
the proteins in an organism. Molecular machines (e.g. ribosome, proteasome,
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DNA or RNA polymerases), structural protein complexes, signalling cas-
cades are just a few of the many examples of situations in which these in-
teractions are relevant. Thus, defining protein complexes is critical to under-
standing virtually all aspects of cell function. Interactomes can be generated
by various experimental approaches. The most widely used approaches are
high-throughput yeast 2-hybrid binding assays and co-affinity purification
followed by MS. In Arabidopsis, Van Leene et al. (2007) recently reported
the development and application of a high-throughput tandem affinity pu-
rification (TAP)/MS platform for cell suspension cultures to analyze cell
cycle-related protein complexes. Key for their methodology was the fast gen-
eration of transgenic cultures overproducing tagged fusion proteins, TAP
adapted for plant cells. Using this strategy, they were able to validate 14
interactions that were previously reported and identified 28 new molecular
associations. The building of interactomes (protein–protein interaction net-
work) has been useful in the study of many model organisms (Schwikowski
et al., 2000; Walhout et al., 2000; Giot et al., 2003) as well as humans
(Lehner and Fraser, 2004). Due to the lack of an experimentally determined
interactome network for Arabidopsis, several strategies have been tried to
predict interactomes. For example, Yu et al. proposed transferring annota-
tions between genomes (Yuan et al., 2003). Based on sequence similarity, they
could transfer protein–protein and protein–DNA interactions from model or-
ganisms (whose interactome was partially available) to Arabidopsis. A sim-
ilar approach was utilized to predict interactomes for Arabidopsis based on
orthologs in S. cerevisiae, C. elegans, D. melanogaster and H. sapiens (Geisler-Lee
et al., 2007; Gutierrez et al., 2007). Predictions are useful for systems research
but far from satisfactory. It is known that experimental approaches for de-
termining protein–protein interactions are not perfect and high-throughput
data sets contain a high rate of false positives. Even if they were com-
pletely error free, transferring this information to another organism will cer-
tainly introduce errors. In addition, it has been reported that at least 14% of
Arabidopsis proteins are likely to be found just in the plant lineage (Gutierrez
et al., 2004) and homology-based approaches will not predict interactions for
these proteins. Small-scale interactome efforts have been reported. For ex-
ample, the protein interaction map of the MADS Box family of transcription
factors (de Folter et al., 2005). It is not necessary to explain this acronym as it
is well known in plant biology. Explaining its origin in this context confuses
the discussion about protein interactions. A promising new strategy is the
use of protein arrays (Popescu et al., 2007). A high confidence Arabidopsis
protein interactome defined experimentally is a must in order to advance
plant systems biology.

1.3.2.4 Regulatory interactions
The transcriptional circuits underlying genetics programmes are character-
ized by interactions between transcription factors (TFs) and cis-regulatory
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regions in the promoter regions of target genes. Large-scale efforts to char-
acterize regulatory interactions in Arabidopsis have not been performed.
Regulatory interaction predictions have been attempted and at least in a
few cases the predictions have been experimentally validated (e.g. Gutierrez
et al., 2008). To build regulatory networks, a very useful tool for the plant
community is the Arabidopsis Gene Regulatory Information Server (AGRIS;
http://arabidopsis.med.ohio-state.edu/). AGRIS contains all Arabidopsis
promoter sequences, TFs, and their target genes and functions (Palaniswamy
et al., 2006). AGRIS currently houses three linked databases: AtcisDB (Ara-
bidopsis thaliana cis-regulatory database), AtTFDB (Arabidopsis thaliana TF
database) and AtRegNet (Arabidopsis thaliana regulatory network). AtcisDB
currently contains 25 516 promoter sequences of annotated Arabidopsis
genes with a description of putative cis-regulatory elements (Molina and
Grotewold, 2005). AtTFDB contains information on approximately 1770 TFs.
These TFs are grouped into 50 families, based on the presence of conserved
DNA-binding domains.

1.3.2.5 The phenome: large-scale phenotypic analysis of mutants
Classic genetic approaches aim to understanding gene function by the study
of the phenotypes caused by mutations of the gene. Generally speaking,
mutations in genes that result in similar phenotypes often imply that the
genes function in the same process. This rationale has led to the development
of large-scale initiatives to characterize phenotypes caused by the systematic
inactivation of genes in the genome of model organisms. Integrating this phe-
nome data with other genome-wide data has led to important advances, for
example in the understanding of animal developmental processes (Gunsalus
et al., 2005). Currently, the Arabidopsis community benefits from large popu-
lations of T-DNA and transposon insertional mutants (Scholl et al., 2000). The
location of the T-DNA elements in the genome has been determined using
PCR-based amplification of flanking sequences and sequencing (Bevan and
Walsh, 2005). To date, there are ∼320 000 sequenced mutant lines in the ref-
erence Arabidopsis Columbia genome. The Arabidopsis Biological Resource
Centre and the Nottingham Arabidopsis Stock Centre (NASC) contain seed
banks where the global community can request individual knockout lines for
functional studies. Many protein-coding genes (around 1600) do not possess
insertions in exonic or intronic sequences. According to a simulation (Bevan
and Walsh, 2005), if the number of random insertions is doubled, a raise
from 94% to 98% is expected in the number coding genes with insertions.
RNA interference (RNAi) and targeting induced local lesions in genomes
(TILLING) are alternatives to isolate mutants in individual genes. Recently,
Shinozaki and co-workers (Kuromori et al., 2006) carried out a pilot study to
characterize the Arabidopsis phenome. They constructed 18 000 transposon-
insertion lines of Arabidopsis. They selected approximately 4000 transposon-
insertional lines which had a Ds transposon inserted in the coding region of
genes and visually analyzed their phenotypes. About 140 lines were found
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with reproducible and distinguishable phenotypes. They established 8 cate-
gories and 43 secondary categories for the description of those mutant lines.
The images of the morphological phenotypes observed have been entered
into a searchable database (http://rarge.gsc.riken.jp/phenome/) (Kuromori
et al., 2006). Although this work is based mainly in observation and de-
scription of phenotypes, the information obtained is very important for the
functional characterization of new genes. In addition, phenotypic informa-
tion can be used together with transcriptome and interactome data sets for
the construction of powerful functional networks (Gunsalus et al., 2005). A
promising approximation has been reported that uses 3D (three dimensional)
laser scanners for the collection of morphological information (Kaminuma
et al., 2005). Phenome efforts like the ones described will undoubtedly play a
key role for understanding gene function in Arabidopsis.

1.3.2.6 Genetic interactions
Some single mutations or gene deletions do not have an obvious altered phe-
notype, but the phenotype is uncovered when two of those are combined.
These epistatic relationships are used to define interactions (edges) between
genes (nodes) and build genetic interaction networks. Building genetic in-
teraction networks is important because most heritable traits are affected
by interactions between multiple genes. Most of the studies involving ge-
netic interactions have focused on synthetic lethal interactions because they
are much easier to score and detect as compared to other subtle changes
in phenotype. A synthetic lethal interaction between two genes is defined
when the survival of the combined mutations is less than the product of
the survival of the two single mutations (Lehner, 2007). If these interactions
are carried out in a systematic way, it is possible to construct genetic in-
teraction networks. Nowadays, S. cerevisiae is the model organism in which
most of the genetic interactions have been mapped (Ooi et al., 2006; Ming
et al., 2008). There are two main experimental strategies in yeast: synthetic
genetic arrays (SGA) and synthetic lethal analysis of microarrays (SLAM).
In the first approach, the starting point is a yeast strain carrying a query
mutation that is systematically mated to a library of viable deletion strains
and subsequently evaluated phenotypically in parallel. On the other hand,
in the second approach, double mutants are constructed (integrative trans-
formation) and assayed as a single pool. Later, microarrays are used to detect
the relative growth rates making use of a barcode that each double mutant
has in its genome. In addition, genetic interaction screenings (Baugh et al.,
2005) and a genetic interaction network have also been generated for C. el-
egans, taking advantage of the bacterial RNAi feeding system (Lehner et al.,
2006). It is also possible, although less practical, to do this in mammalian
and fly cell cultures (Wheeler et al., 2004). Genetic interaction screenings have
also been described in Arabidopsis (Parker et al., 2000), although it is more
complicated and laborious to develop a systematic test of all the possible
genetic interactions in plants. Genetic interactions can be used to understand
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gene function. For instance, the higher the number of shared genetic inter-
actions partners between two genes, the higher the probability that both
genes interact physically and share a biological function (Ming et al., 2008).
However, a genetic interaction can have diverse explanations and a systemic
interpretation of those is lacking. Although the transfer of genetic interac-
tion between species using orthology relationships is a possibility in order
to obtain a genetic interaction network in Arabidopsis, preliminary evidence
suggests that this step may not be so direct. In contrast to gene essential-
ity, genetic interactions seem not to be so widely conserved across species
(Lehner, 2007). Another strategy consists in the prediction of genetic interac-
tions. Zhong and Sternberg integrated information about anatomical expres-
sion patterns, phenotypes, functional annotations, microarray co-expression
and protein interactions to predict C. elegans genetic interactions (Zhong and
Sternberg, 2006). With their model, they could identify 12 genetic interaction
partners of the let-60/Ras gene and 2 of the itr-1 gene. It would be a challenge
worth pursuing to construct an analogous genetic interaction network for
Arabidopsis.

1.4 Strategies for genomic data integration

Here is an interesting question: What do Belgium and systems biology have
in common? Well, definitely not their 500 varieties of beer. Interestingly, they
both share a motto: ‘L’union fait la force’ (‘Strength through unity’). Our uni-
verse is a noisy place. By noise, we are not just talking about an unintended
sound that reaches our ears, but it can also be something unpleasant, unex-
pected and undesired. The word ‘noise’ can be traced back to the Latin word
nausea (feeling of sickness), and there is no doubt that some scientists feel that
way when facing it. Noise is a random and generally persistent disturbance
that obscures or reduces the clarity of a signal or the result of an experi-
ment. Nowadays, it is common to read in scientific literature that one of the
biggest problems when constructing genome-scale models of biological sys-
tems is that the underlying data is noisy. This is an inherent property of the
high-throughput techniques used for the acquisition of massive data, interac-
tions between proteins, etc. As a consequence of this noise, data sets contain
false positives. This occurs, for example due to self-activators in the yeast 2-
hybrid technique, and much effort has been invested in solving this problem
(Margulies et al., 2005). False-positive interactions can also be ‘biological’.
This means that the physical interaction between proteins A and B can be
true, but maybe this interaction does not make sense in a cellular context, be-
cause protein A and B are expressed in different tissues or different cell types
or different organelles or even in different periods of times in the same cell
during development. That is why special caution must be taken, for example
when trying to predict the function of a gene based on a single global data set.
When we say ‘Strength through unity’, we mean that it is possible to increase
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the confidence of the edges in a network by integrating different sources of
information. The rationale behind this is that it is unlikely that false-positive
interactions are reproducible in data sets acquired through different experi-
mental or in silico approaches. Data integration is also important as we try to
build comprehensive models of a system. The sheer amount of information
published daily for any of the model organisms makes it almost impossi-
ble to manually store, classify and integrate the data for systems modelling.
Bioinformatics tools are key for systems research. Ideally, a high quality inte-
grated model of the organism of choice will speed up the discovery process
by allowing experimental scientists to spend time addressing important bio-
logical questions in the laboratory instead of navigating through an ocean of
genomic information on their computers.

1.4.1 Integration strategies

There are generally four methods that are used as a solution for data in-
tegration: (1) Hypertext Navigation, (2) Data Warehouse, (3) Unmediated
MultiDB queries and (4) Federated Databases (Karp, 1996). Hypertext Navi-
gation allows the user to query only one database but the results often contain
hyperlinks to the equivalent entry in another database. This method is more
common for websites that are based on information retrieval. A Data Ware-
house retrieves data from multiple resources, translates the formats and puts
them in one database. This allows for much faster and more complex queries
taking advantage of all the data loaded in the one database; however, trans-
lating database formats from one to another is a challenge in itself. The major
drawback of this method is that it would be very difficult to keep up with
all the new resources becoming available and keeping it all updated. The
Unmediated MultiDB Queries allow the databases to remain separate but
the query itself extends across all of the databases. The Federated Database
is a combination of Data Warehouse and Unmediated MultiDB Queries; it
allows the databases to be separate but it contains a federated schema, which
dynamically translates to queries in the individual schemas. For a detailed
discussion about these methods see Peter Karp’s (1996) review.

In addition to simply providing data, many websites also provide appli-
cations that analyze the data for the user. Integrating these services has the
same obstacles as integrating data, but instead of only querying the data you
are also launching an application. Two recent efforts, iSYS (Siepel et al., 2001)
and BioMOBY (Wilkinson et al., 2003), provide infrastructure that allows in-
tegration of applications. Both are designed to be ‘plug and play’ and generic
to allow for compatibility with practically any application or data.

1.4.2 Case studies on data integration

A good example of an integration strategy (Hwang et al., 2005) is the data inte-
gration methodology called ‘Pointillist’. This methodology handles multiple
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data types from technologies with different noise characteristics. Pointillist
integrated 18 data sets containing information about the galactose utilization
in yeast. The data included global changes in mRNA and protein abundance,
genome-wide protein–DNA interaction data, database information and com-
putational predictions. Even though, the galactose biochemical pathway has
been studied for more than 40 years and is one of the best understood in
eukaryotic systems, they managed to predict and corroborate experimentally
a new relationship between the fructose and the galactose pathways.

Kelley et al. (2003) proposed an integration strategy to face the problem
of yeast genetic interaction analysis. There are many types of genetics in-
teractions. For example, synthetic lethal interactions in which mutations in
two non-essential genes result in a lethal phenotype. Genetic interactions
are useful to study pathway organization. Some high-throughput methods
for discovering genetic interactions have been developed such as SGA or
SLAM. Although these processes can be mostly automated, the bottleneck
is the interpretation of the functional significance of each interaction found.
In order to find a solution to this problem, Kelley et al. assembled a ge-
netic interaction network and a physical interaction network. The former
was generated by SGA large-scale screen data and interactions culled from
Munich Information Center for Protein Sequences, and the latter was con-
nected by interactions of three types: protein–protein interactions (A and B
interact physically), protein–DNA (A binds to regulatory sequence of B) and
shared-reaction metabolic relationships (enzymes A and B have a substrate
in common). They defined three different interpretations of genetics interac-
tions: (1) between-pathways in which the genetic interaction bridges genes
operating in two pathways with redundant or complementary functions,
(2) within-pathways in which genetic interactions occur between proteins
subunits within a pathway and (3) indirect effects in which the lethal pheno-
type involves many diverse pathways. The researchers could uncover mech-
anisms behind many of the observed genetics interactions that were prefer-
entially between-pathway and they could predict new functions for 343 yeast
proteins based on the models generated (not validated experimentally).

Another practical example of an integration strategy is the recent work
of Hirai et al. (2004) in plants in which they integrated transcriptome and
metabolomic data. They focused on the study of glucosinolates (GSLs) which
are produced by Brassicaceae family. GSLs apparently provide anticarcino-
genic, antioxidative and antimicrobial activity. Despite the high biotechno-
logical importance of these compounds, before this research, there was no
previous report on the genes regulating methionine-derived aliphatic GSL
biosynthesis. The authors used an integrated strategy based on transcriptome
co-expression analysis for public data sets and their own data sets together
with metabolic profiling. They first generated a data set of condition indepen-
dent co-expression profiles by calculating the Pearson correlation between
all paired combinations of 22 263 Arabidopsis genes. Then they visualized
the co-expression network including only pairs of genes whose correlation
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coefficient was >0.65. They found that genes involved in aliphatic GSL
biosynthesis were clustered in a discrete module together with two un-
characterized genes that coded for TFs: Myb28 and Myb29. Further exper-
iments revealed that Myb28 is a positive regulator for basal-level produc-
tion of aliphatic GSL and Myb29 presumably plays an accessory function
integrating JA signalling and GSL biosynthesis. Interestingly, they could in-
duce the biosynthesis of large amounts of GSLs by overexpressing Myb28 in
Arabidopsis-cultured suspension cells that do not normally synthesize them.
In addition, they predicted many of the genes involved in the pathway by
examining the obtained co-expression network. This clearly shows that it is
possible to find genes involved in particular plant processes using integrative
systems biology strategies.

1.4.3 Software tools for systems biology

The large-scale genomic data available to biologists today require the use
of a variety of software tools to process and analyze the data. A systems
approach to understanding biology involves an iterative process of data inte-
gration, building a model, designing experiments to support the model and
generating new hypothesis based on new data (Gutierrez et al., 2005). There
are several tools that are specific for each stage, however, few of them span
across several stages and even fewer allow for the iterative analysis. In Chap-
ter 5, several systems biology tools are discussed in detail: Sungear (Poultney
et al., 2007), Genevestigator (Zimmermann et al., 2004), MapMan (Thimm
et al., 2004) and Cytoscape (Shannon et al., 2003). In this section, we will
highlight some additional tools that help biologists perform systems-level
analysis. Please note that in no way are we providing a comprehensive list
of all software tools available. In addition, this is an active and dynamic field
with new tools constantly being generated.

Several environments have been developed in the past years that permit
data integration and modelling (Endy and Brent, 2001). Such software al-
lows detailed mathematical representation of cellular processes (e.g. Gepasi
(Mendes, 1997) and Virtual Cell (Loew and Schaff, 2001)), as well as quali-
tative representations of cellular components and their interactions (e.g. Cy-
toscape (Shannon et al., 2003) and Osprey (Breitkreutz et al., 2003)). The Ara-
bidopsis eFP browser (Winter et al., 2007) provides a graphical representation
of gene expression plotted on drawings of the different tissue and develop-
mental stages based on data from AtGenExpress (Schmid et al., 2005). Gen-
erally, quantitative models are directed towards specific cellular processes of
interest and are built by representing existing literature as a system of math-
ematical equations. Quantitative models are powerful because they describe
a system in detail (Endy and Brent, 2001). Unfortunately, they require a very
detailed understanding of the system under scrutiny. This information is not
readily obtained for every component in a biological process, and less so in
every model organism. In fact, there are still many gaps in our qualitative
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understanding of biological systems. For example, most of the genes in Ara-
bidopsis have not yet been experimentally characterized. The crucial first
stage in building quantitative models is constructing a map of the interaction
network to be analyzed (Schwender et al., 2003).

Because genes encoding proteins that participate in the same pathway or
are part of the same protein complex are often co-regulated in their expression
patterns, clustering techniques (e.g. Eisen et al., 1998) are commonly applied
to genome-wide expression measurements to hypothesize the role of unchar-
acterized genes. In addition, in experiments where the biologist is comparing
a treated versus a control sample, statistical methods such as Rank Products
(Breitling et al., 2004) can be used to determine the genes that are differen-
tially expressed between the experimental conditions. To learn the biological
significance of such lists of genes (e.g. co-regulated genes or differentially
expressed genes), a common next step is to evaluate the frequency of occur-
rence of functional attributes using structured functional annotations such as
the gene ontology (GO) (Ashburner et al., 2000). Several software packages
to automate this type of analysis now exist (e.g. Onto-Express (Khatri et al.,
2002), GoMiner (Zeeberg et al., 2003), GOSurfer (Zhong et al., 2004), FatiGO
(Al-Shahrour et al., 2004)). While advanced data analysis tools for exploiting
genomic data are rapidly emerging, one of the drawbacks of current software
tools is that they are highly specialized to each platform. This translates in
the need to travel through several different web services or to use various
stand-alone applications to be able to analyze the large data sets characteristic
of genomic research, a cumbersome and inefficient process not amenable to
iterative in silico exploration and experimentation.

Due to the increased use of networks to represent interaction data, view-
ers and graph drawing software such as Pajek (Batagelj and Mrvar, 1998),
daVinci (Wilkinson and Links, 2002), Graphlet (Wilkinson and Links, 2002)
and Graphviz (Wilkinson and Links, 2002), developed for general purpose
graph drawing and visualization, are now used to organize and display
biological data as graphs. Other tools such as MintViewer (Zanzoni et al.,
2002), GeneInfoViz (Zhou and Cui, 2004), PIMRider (Hybrigenics, 2004),
GenMAPP (Dahlquist et al., 2002), MAPPFinder (Doniger et al., 2003),
TopNet (Yu et al., 2004), MAPMAN (Thimm et al., 2004) and PaVESy
(Ludemann et al., 2004), each developed in the context of specific applica-
tions, allow certain data types to be displayed and provide some data analysis
tools. Other advanced software environments such as Cytoscape (Shannon
et al., 2003), Osprey (Breitkreutz et al., 2003), VisANT (Hu et al., 2004), Path-
wayAssist (Wilkinson and Links, 2002) and PathBlazer (Wilkinson and Links,
2002) include various methods to layout the network graphs, support connec-
tion to external databases and include more sophisticated data analysis tools
(Shannon et al., 2003).

In many cases, biologists need to use many if not all of the tools mentioned
and data management becomes an issue. Several institutions, for example
MetNet (Wurtele et al., 2007) and The Bio-Array Resource for Arabidopsis
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Functional Genomics who created Arabidopsis eFP browser (Winter et al.,
2007), have created entire suites of wonderful applications to analyze ge-
nomic data but there is absolutely no interaction between them. VirtualPlant
is an attempt to provide a platform for systems biology where biologists
can maintain their genomic data and execute different data visualization and
analysis tools. VirtualPlant’s GeneCart supports the iterative nature of sys-
tems biology analysis and allows users to save results from one analysis and
feed it into another. Applications available on VirtualPlant range from sim-
ple list functions, microarray data analysis to gene network visualization and
analysis.

1.5 Systems biology in plant research

The development of systems biology approaches and tools for Arabidopsis
has enabled the generation of testable biological hypotheses derived from the
integration and analysis of genomic data within a network context. In this sec-
tion, we briefly discuss proof of principle studies where a systems approach
has uncovered testable hypotheses for regulatory networks in Arabidopsis.

1.5.1 Qualitative network models and genome-wide
expression data define carbon/nitrogen molecular
machines in Arabidopsis

In plants, there is ample evidence that C-signals interact with nitrogen (N) sta-
tus (Gutierrez et al., 2007) to control genes in metabolic pathways, including
N-assimilation and amino acid synthesis (e.g. Gutierrez et al., 2007; Palenchar
et al., 2004) as well as broad kinds of developmental mechanisms such as
germination (Alboresi et al., 2005), shoot growth (Walch-Liu et al., 2000, 2005;
Rahayu et al., 2005; Krouk et al., 2006), root growth (Forde, 2002) or flowering
(Raper et al., 1988; Rideout et al., 1992). While these studies confirm the ex-
istence of a complex CN-responsive gene regulatory network in plants, the
possible mechanisms for CN sensing and signalling remain unknown. While
transcriptome studies conducted in the pre-systems biology era, confirmed
the existence of genome-wide CN-responses (Palenchar et al., 2004; Price
et al., 2004), those studies were not able to model responses or reveal under-
lying mechanisms. For example, at least four general mechanisms for CN
sensing can be proposed: (1) N-response independent of C, (2) C-response
independent of N, (3) C- and N-interaction or (4) a unified CN-response
(Gutierrez et al., 2007). To support or reject these models for C/N sensing,
plants subjected to a systematic matrix of C and N treatments were analyzed
using a systems approach (Gutierrez et al., 2007). Hierarchical cluster analysis
(≥0.5 correlation) of transcriptome data generated in this study uncovered
many gene clusters whose average expression patterns showed statistically
significant CN interactions (analysis of variance, p < 0.01), suggesting that
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C and N interaction (Model 3) is a prominent mode of regulation by N in
Arabidopsis roots. To gain a global but detailed view of how transcriptional
responses to carbon and N nutrient treatments affects plants as a system,
an Arabidopsis multi-network was created and used to query gene clusters
whose members respond to C/N according to Models 1–3, for highly con-
nected sub-networks defined using a graph clustering algorithm developed
by (Ferro et al., 2003). This analysis revealed a set of ‘molecular machines’
comprised of highly connected genes involved in metabolic, cellular or sig-
nalling pathways, whose expression is regulated by C and N metabolites.
One such CN-responsive sub-network is involved in responses to auxin, as
it contains 13 genes in the auxin response pathway (including the auxin re-
ceptor), 5 auxin efflux carriers and 2 auxin transport proteins. Validation
using time-course studies suggest that the phytohormone auxin acts as a reg-
ulator of plant growth in response to C and/or N availability. In addition,
the CN-responsive gene network was shown to contain a significant propor-
tion of regulatory proteins including: 299 TFs and 27 genes that are known
targets of miRNAs. This latter result implicated a new role for miRNAs in
post-transcriptional regulation of gene expression by CN metabolite signals
in plants.

1.5.2 A systems approach identifies an organic
nitrogen-responsive gene network regulated
by the master clock gene CCA1

A second systems biology study, addressed the mechanisms by which dis-
tinct forms of N are sensed as signals for N status (Gutierrez et al., 2008).
There is growing evidence that the N ‘input’ (nitrate) and ‘output’ (Glu/Gln)
of the N-assimilatory pathway serve not only as N-metabolites, but also as
N-signals that are sensed and transduced, to control genes regulating plant
metabolism and development (for NO3

− see Forde, 2002; Sollars et al., 2003;
Scheible et al., 2004; for Glu/Gln see Oliveira and Coruzzi, 1999; Rawat et al.,
1999). Studies with nitrate reductase nulls, unable to reduce nitrate, have
shown that nitrate can serve as a ‘metabolic N-signal’, to regulate genes
in N-uptake/assimilatory pathway and to control root development in re-
sponse to nitrate availability in the soil (Forde, 2002). There is also ample,
though less direct evidence, that the assimilated forms of organic-N such as
glutamate (Glu) or glutamine (Gln) serve as signals for levels of organic-N
or C:N status, to repress further N-assimilation, or lateral root growth, when
organic-N stores are replete (Oliveira and Coruzzi, 1999; Rawat et al., 1999). To
identify the regulatory networks regulated by these N-signals, transcriptome
analysis identified a set of 834 genes regulated in response to inorganic-N
and/or organic-N treatments. To identify the global processes regulated by
these N-signals, the Arabidopsis multi-network (Gutierrez et al., 2007) was
queried for network connectivity between these N-regulated genes. Of the
834 N-regulated genes, 368 were connected by a variety of edges including
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metabolic and regulatory connections. To identify potential ‘master’ regula-
tors of this N-responsive gene sub-network, N-regulated TFs were ranked
based on their number of predicted regulatory connections. At the top of the
list, with 47 connections to targets in the N-regulated gene network, is a Myb
family TF which is the central clock control gene CCA1 (Daniel et al., 2004).
Exploration of the network ‘neighbourhood’ surrounding the CCA1 hub pre-
dicts that CCA1 is an important regulator of an N-assimilation gene network.
Specifically, the model predicts that overexpression of CCA1 would induce
the expression of the GLN1.3 gene and repress the expression of ASN1 and
GDH1, a result which was validated using 35S::CCA1 lines (CCA1-ox) (Sollars
et al., 2003). Chromatin-IP assays using CCA1 antibodies confirmed binding
of CCA1 to the promoter regions of GLN1.3, GDH1 and bZIP1 and ASN1.
These results indicate that the circadian clock regulates N-assimilation (Farre
et al., 2005) in response to N availability by transcriptional control by CCA1
which in turn targets genes central to the N-assimilatory pathway in plants.
Specifically, in this model Glu-repression of CCA1 leads to downregulation of
GLN1.3, and upregulation of ASN1. This regulation leads to the conversion
of metabolically reactive Gln to inert Asn, used for N-storage, when levels of
Glu/Gln are abundant.

CCA1 is a key component involved in a negative feedback loop at the
centre of the circadian clock (Locke et al., 2005; McClung, 2006). The finding
that CCA1 mRNA levels are regulated by organic N-sources, suggest that
N-signals act as an input to the circadian clock. To test this new hypothesis
derived from the systems approach, Arabidopsis seedlings were subject to
pulses of inorganic-N or organic-N at intervals spanning a circadian cycle
and determined the effects on the phase of the oscillation in CCA1::LUC
expression. Each N-treatment resulted in subtle (2 h) but stable phase shifts
in CCA1::LUC expression, indicating that N-status serves as an input to the
circadian clock. These alterations in phase response curves are consistent
with N-signals mediating a weak (type 1) clock resetting observed for other
metabolic signals (Bunning and Moser, 1973; Bollig et al., 1978; Kondo, 1983).
The emerging view of the circadian clock as a key integrator of metabolic
and physiologic processes (Farre et al., 2005; McClung, 2006) is that it receives
input not only from environmental stimuli but also from metabolic pathways,
many of which are subject to circadian regulation. Thus, the clock is known
to regulate genes in N-assimilation (Pilgrim et al., 1993; Farre et al., 2005), this
systems study suggests a new hypothesis that N in turn feeds back to the
circadian clock, at least in part through the N-regulation of CCA1 expression.

1.5.3 Cell-specific nitrogen responses mediate
developmental plasticity

In this application of systems biology to Arabidopsis development, cell-
specific transcriptome analysis was analyzed using a systems approach to ask
how N-nutrient signals coordinate expression of gene networks in specific
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cell types of roots (Gifford et al., 2008). Green fluorescent protein (GFP)-marked
transgenic lines spanning the cell types of the root were transiently treated
(2 h) with nitrate (5 mM) or control KCl treatments, and GFP expressing cells
were sorted and isolated using fluorescence-activated cell sorting (Gifford
et al., 2008). Five thousand three hundred ninety-six N-regulated transcripts
were identified in which 87% were significantly N-regulated in at least one,
but not all cell-types profiled. Only 771 transcripts responded to N-treatment
across all cell-types examined. Thus, cell sorting greatly increased the sensi-
tivity to detect transcriptional regulation in specific cell types by N treatment
that were largely hidden in studies of whole roots from nitrate-treated plants
(Sollars et al., 2003; Scheible et al., 2004; Gutierrez et al., 2007). This cell-specific
N-response transcriptome data also revealed new mechanisms by which N
regulates developmental processes in roots. One example is the cell-specific
regulation of a transcriptional circuit derived from a systems analysis of the
data and validated to mediate lateral root outgrowth in response to N. Impor-
tantly, the N-regulated response of the miR167 targets (Wu et al., 2006) was
only detectable with cell-specific resolution. Validation studies showed that
miR167 is specifically expressed and N-regulated in the pericycle (PmiR:GUS
line and mature RNA) and that N-regulation of its target ARF8 is abrogated
in a mutant in which the miR167 binding site of ARF8 is mutated (Wu et al.,
2006). These findings fill a gap in our knowledge of how multi-cellular or-
ganisms cope with N-responses at the cellular level.

1.5.4 Quantitative models of defined molecular processes

One of the best examples of systems biology in action in plants was demon-
strated by James Locke and colleagues (reviewed in Ueda, 2006) where they
studied the circadian clock in Arabidopsis. The first molecular component of
the Arabidopsis central oscillator identified was the feedback loop between
the genes LHY (late elongated hypocotyl), CCA1 (circadian clock associated) and
TOC1 (timing of cab expression) (for a historical perspective on the clock see
(McClung, 2006). LHY and CCA1 are partially redundant genes that are ac-
tivated by light and their products repress TOC1. Locke and colleagues an-
alyzed experimental data from various circadian studies (Matsushika et al.,
2000; Mizoguchi et al., 2002; Kim et al., 2003) including cca1/lhy double mutant
(Locke et al. 2005), and determined that the feedback loop was not sufficient to
explain many of the circadian rhythms observed. For example, the feedback
loop does not explain why there is a 12-h delay in LHY/CCA1 after activa-
tion of TOC1. The feedback model also does not explain why TOC1 levels
drop much earlier (dusk) than LHY/CCA1 activation. Locke and colleagues
proposed a new model with two loops and two new factors, X and Y, to
account for the experimental observations. In the new model, factor Y is light
induced and activates TOC1 and factor X activates LHY/CCA1 and itself is ac-
tivated by TOC1. They next looked at experimental data to identify candidate
genes to carry out the X or Y functions. The data analyzed suggested that GI
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(GIGANTEA) could play the role of Y. X remains to be identified. Circadian
study of gi/lhy/cca1 showed a decreased level of expression of TOC1 (Locke
et al., 2006). Similar studies allowed Locke and colleagues to create another
model with three loops to incorporate other genes Pseudo Response Regula-
tory (PRR7) and PRR9 that have also circadian rhythmic expression patterns
(Farre et al., 2005). The new loop is a feedback loop between PRR7/PRR9 and
LHY/CCA1. The work by Locke and colleagues contains an iterative nature
of analyzing data, building a model, validating a model and then developing
new hypotheses, which is a trademark of systems biology.

1.5.5 Modelling the behaviour and tissue and organs

One of the beautiful aspects of development is the creation of shapes and
patterns. How do single cells develop into multi-cellular organisms? This is
a key question in plant biology that can benefit from systems approaches.
Several examples of tissue, organ or plant modelling have been reported. For
example, the growth dynamics underlying the development of Antirrhinum
petals were modelled (Prusinkiewicz and Rolland-Lagan, 2006). They deter-
mined three types of parameters: the rate of increase in size (growth rate), the
degree to which growth occurs preferentially in any direction (anisotropy)
and the orientation angle of the main direction of growth (direction). The
model allowed them to conclude that the key parameter determining
the petal asymmetry of the Antirrhinum is the direction of growth rather than
the regional differences in growth rate. In a different study, Mundermann
et al. (2005) systematically took thousands of measurements, such as length,
width and other parameters that describe shapes, in frequent time intervals
and created a model representing plant development. In their model the plant
is broken into four basic parts: apices, internodes, leaves and flowers, and
each flower is further broken into pedicel, carpel, sepals, petals and stamens.
The measurements are taken for each of the individual parts and the simula-
tion of the model assembles all the components into a 3D growing plant. The
model is written in L-system-based modelling language L +C (Karwowski
and Prusinkiewicz, 2003). The validation of the model was the generation
of a simulated image that looked very similar to a wild-type Arabidopsis.
A similar model is also available for rice (Watanabe et al., 2005). These plant
models can serve as references for future studies in plant development and
morphology.

There are several different computational techniques that have been de-
veloped for processing of data, such as images and experimental measure-
ments, and construction of simulation models (reviewed in Prusinkiewicz
and Rolland-Lagan, 2006). One such model is reaction-diffuse where the pat-
tern forming substance is assumed to diffuse across cells (Turing, 1952; Gierer
and Meinhardt, 1972). Meyerowitz and colleagues used this model to study
the shape and size of the shoot apical meristem (SAM) and expression do-
mains of the WUSCHEL (WUS) gene (Jonsson et al., 2005). WUS is known to be
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involved in SAM development and is known to induce the ligand CLAVATA3
(CLV3) which binds to the CLAVATA1 (CLV1) receptor kinase. CLV1 then ac-
tivates a signalling cascade that represses WUS (Sharma et al., 2003). In this
study, the authors used in vivo confocal microscopy and image-processing
algorithms to obtain quantitative measurements of gene expression. The mea-
surements were subsequently used as input for the reaction-diffuse model,
which allowed them to predict the outcome of laser cell ablation experiments
(Reinhardt et al., 2003) and removal of CLV3 signal (Fletcher et al., 1999). The
model correctly simulated creation of two new WUS domains after the abla-
tion of the central cells from the SAM and the expansion of WUS expression
with the removal of CLV3. (Note: For more on systems biology applications
to plant development and evolution, see Chapters 11 and 12 of this volume.)

1.6 Conclusion

Hodgkin and Huxley (1952) described a model that explained in mathemati-
cal terms the ionic mechanisms underlying the initiation and propagation of
action potentials in the squid giant axon. They could even predict with some
success how a neuron works. Both researchers integrated their chemical, bi-
ological, physical and mathematical knowledge in order to understand this
phenomenon, and they can be fairly called pioneers of systems biology. One
of the main problems today when integrating diverse disciplines like biology,
physics or computer science is actually the integration of the people who work
in those fields. These scientists have, for example diverse backgrounds and
cultures for publishing, communicating their results and doing research. In
addition, their ‘languages’ can differ substantially, making communication
a difficult task. This is another challenge systems biology must overcome
in the coming years, and new educational strategies are definitely needed
in universities. Wilson (2000) wrote: ‘The love of complexity without reduc-
tionism makes art; the love of complexity with reductionism makes science.’
This is clearly a challenge for a new generation of scientists and students
who must coherently and elegantly integrate the vast amount of biological
information available in order not only to make and validate predictions, but
to understand the underlying principles of living matter. Perhaps art and sci-
ence are different worlds, but they have something in common: the creative
process. You may call it inspiration or scientific induction, but those will only
favour the prepared minds. Are you prepared for systems biology?
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