
Chapter 1

Basic Acoustics and Acoustic Filters

1.1 The Sensation of Sound

Several types of events in the world produce the sensation of sound. Examples
include doors slamming, plucking a violin string, wind whistling around a corner,
and human speech. All these examples, and any others we could think of, involve
movement of some sort. And these movements cause pressure fluctuations in the
surrounding air (or some other acoustic medium). When pressure fluctuations
reach the eardrum, they cause it to move, and the auditory system translates these
movements into neural impulses which we experience as sound. Thus, sound is
produced when pressure fluctuations impinge upon the eardrum. An acoustic wave-
form is a record of sound-producing pressure fluctuations over time. (Ladefoged,
1996, Fry, 1979, and Stevens, 1999, provide more detailed discussions of the topics
covered in this chapter.)

Acoustic medium

Normally the pressure fluctuations that are heard as sound are produced in
air, but it is also possible for sound to travel through other acoustic media.
So, for instance, when you are swimming under water, it is possible to hear
muffled shouts of the people above the water, and to hear noise as you blow
bubbles in the water. Similarly, gases other than air can transmit pressure
fluctuations that cause sound. For example, when you speak after inhaling
helium from a balloon, the sound of your voice travels through the helium,
making it sound different from normal. These examples illustrate that
sound properties depend to a certain extent on the acoustic medium, on
how quickly pressure fluctuations travel through the medium, and how 
resistant the medium is to such fluctuations.
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1.2 The Propagation of Sound

Pressure fluctuations impinging on the eardrum produce the sensation of sound,
but sound can travel across relatively long distances. This is because a sound 
produced at one place sets up a sound wave that travels through the acoustic
medium. A sound wave is a traveling pressure fluctuation that propagates through
any medium that is elastic enough to allow molecules to crowd together and move
apart. The wave in a lake after you throw in a stone is an example. The impact of
the stone is transmitted over a relatively large distance. The water particles 
don’t travel; the pressure fluctuation does.

A line of people waiting to get into a movie is a useful analogy for a sound
wave. When the person at the front of the line moves, a “vacuum” is created between
the first person and the next person in the line (the gap between them is
increased), so the second person steps forward. Now there is a vacuum between
person two and person three, so person three steps forward. Eventually, the last
person in the line gets to move; the last person is affected by a movement that
occurred at the front of the line, because the pressure fluctuation (the gap in the
line) traveled, even though each person in the line moved very little. The analogy
is flawed, because in most lines you get to move to the front eventually. For 
this to be a proper analogy for sound propagation, we would have to imagine
that the first person is shoved back into the second person and that this crowding
or increase of pressure (like the vacuum) is transmitted down the line.

Figure 1.2 shows a pressure waveform at the location indicated by the asterisk
in figure 1.1. The horizontal axis shows the passage of time, the vertical axis the
degree of crowdedness (which in a sound wave corresponds to air pressure). At
time 3 there is a sudden drop in crowdedness because person two stepped up and
left a gap in the line. At time 4 normal crowdedness is restored when person 3
steps up to fill the gap left by person 2. At time 10 there is a sudden increase in
crowdedness as person 2 steps back and bumps into person 3. The graph in figure
1.2 is a way of representing the traveling rarefaction and compression waves shown
in figure 1.1. Given a uniform acoustic medium, we could reconstruct figure 1.1
from figure 1.2 (though note the discussion in the next paragraph on sound energy
dissipation). Graphs like the one shown in figure 1.2 are more typical in acoustic
phonetics, because this is the type of view of a sound wave that is produced by
a microphone – it shows amplitude fluctuations as they travel past a particular
point in space.
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An analogy for sound propagation

Figure 1.1 shows seven people (represented by numbers) standing in line to
see a show. At time 2 the first person steps forward and leaves a gap in the
line. So person two steps forward at time 3, leaving a gap between the second
and third persons in the line. The gap travels back through the line until
time 8, when everyone in the line has moved forward one step. At time 9
the first person in the line is shoved back into place in the line, bumping
into person two (this is symbolized by an X). Naturally enough, person two
moves out of person one’s way at time 10, and bumps into person three.
Just as the gap traveled back through the line, now the collision travels back
through the line, until at time 15 everyone is back at their starting points.

We can translate the terms of the analogy to sound propagation. The 
people standing in line correspond to air molecules, the group of them 
corresponding to an acoustic medium. The excess gap between successive
people is negative air pressure, or rarefaction, and collisions correspond to
positive air pressure, or compression. Zero air pressure (which in sound pro-
pagation is the atmospheric pressure) is the normal, or preferred, distance
between the people standing in line. The initial movement of person one
corresponds to the movement of air particles adjacent to one of the tines of
a tuning fork (for example) as the tine moves away from the particle. The
movement of the first person at time 9 corresponds to the opposite move-
ment of the tuning fork’s tine.

0  1  1  1  1  1  1  1

1  0  2  2  2  2  2  2  X  1  1  1  1  1  1

2  2  0  3  3  3  3  3  3  X  2  2  2  2  2

3  3  3  0  4  4  4  4  4  4  X  3  3  3  3

4  4  4  4  0  5  5  5  5  5  5  X  4  4  4

5  5  5  5  5  0  6  6  6  6  6  6  X  5  5

6  6  6  6  6  6  0  7  7  7  7  7  7  X  6

7  7  7  7  7  7  7  0  0  0  0  0  0  X  7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Time

*

Figure 1.1 Wave motion in a line of seven people waiting to get into a show. Time is
shown across the top of the graph running from earlier (time 1) to later (time 15) in
arbitrary units.
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Sound waves lose energy as they travel through air (or any other acoustic
medium), because it takes energy to move the molecules. Perhaps you have noticed
a similar phenomenon when you stand in a long line. If the first person steps 
forward, and then back, only a few people at the front of the line may be affected,
because people further down the line have inertia; they will tolerate some change
in pressure (distance between people) before they actually move in response to
the change. Thus the disturbance at the front of the line may not have any effect
on the people at the end of a long line. Also, people tend to fidget, so the differ-
ence between movement propagated down the line and inherent fidgeting 
(the signal-to-noise ratio) may be difficult to detect if the movement is small. The
rate of sound dissipation in air is different from the dissipation of a movement 
in a line, because sound radiates in three dimensions from the sound source 
(in a sphere). This means that the number of air molecules being moved by 
the sound wave greatly increases as the wave radiates from the sound source. 
Thus the amount of energy available to move each molecule on the surface of
the sphere decreases as the wave expands out from the sound source; con-
sequently the amount of particle movement decreases as a function of the dis-
tance from the sound source (by a power of 3). That is why singers in heavy metal
bands put the microphone right up to their lips. They would be drowned out by
the general din otherwise. It is also why you should position the microphone 
close to the speaker’s mouth when you record a sample of speech (although it is
important to keep the microphone to the side of the speaker’s lips, to avoid the
blowing noises in [p]’s, etc.).
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Figure 1.2 A pressure waveform of the wave motion shown in figure 1.1. Time is again
shown on the horizontal axis. The vertical axis shows the distance between people.
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1.3 Types of Sounds

There are two types of sounds: periodic and aperiodic. Periodic sounds have a pat-
tern that repeats at regular intervals. They come in two types: simple and complex.

1.3.1 Simple periodic waves

Simple periodic waves are also called sine waves: they result from simple 
harmonic motion, such as the swing of a pendulum. The only time we humans
get close to producing simple periodic waves in speech is when we’re very young.
Children’s vocal cord vibration comes close to being sinusoidal, and usually
women’s vocal cord vibration is more sinusoidal than men’s. Despite the fact that
simple periodic waves rarely occur in speech, they are important, because more
complex sounds can be described as combinations of sine waves. In order to define
a sine wave, one needs to know just three properties. These are illustrated in 
figures 1.3–1.4.

The first is frequency: the number of times the sinusoidal pattern repeats per
unit time (on the horizontal axis). Each repetition of the pattern is called a cycle,
and the duration of a cycle is its period. Frequency can be expressed as cycles per
second, which, by convention, is called hertz (and abbreviated Hz). So to get the
frequency of a sine wave in Hz (cycles per second), you divide one second by the
period (the duration of one cycle). That is, frequency in Hz equals 1/T, where T
is the period in seconds. For example, the sine wave in figure 1.3 completes one

Basic Acoustics and Acoustic Filters 11

0

A
m

pl
it

ud
e

pe
ak

one cycle

0.020.0150.010.005
Time (sec)

Figure 1.3 A 100 Hz sine wave with the duration of one cycle (the period) and the peak
amplitude labeled.
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cycle in 0.01 seconds. The number of cycles this wave could complete in one 
second is 100 (that is, one second divided by the amount of time each cycle takes
in seconds, or 1/0.01 = 100). So, this waveform has a frequency of 100 cycles per
second (100 Hz).

The second property of a simple periodic wave is its amplitude: the peak 
deviation of a pressure fluctuation from normal, atmospheric pressure. In a sound
pressure waveform the amplitude of the wave is represented on the vertical axis.

The third property of sine waves is their phase: the timing of the waveform
relative to some reference point. You can draw a sine wave by taking amplitude
values from a set of right triangles that fit inside a circle (see exercise 4 at the end
of this chapter). One time around the circle equals one sine wave on the paper.
Thus we can identify locations in a sine wave by degrees of rotation around a 
circle. This is illustrated in figure 1.4. Both sine waves shown in this figure 
start at 0° in the sinusoidal cycle. In both, the peak amplitude occurs at 90°, the
downward-going (negative-going) zero-crossing at 180°, the negative peak at
270°, and the cycle ends at 360°. But these two sine waves with exactly the same
amplitude and frequency may still differ in terms of their relative timing, or phase.
In this case they are 90° out of phase.

1.3.2 Complex periodic waves

Complex periodic waves are like simple periodic waves in that they involve a repeat-
ing waveform pattern and thus have cycles. However, complex periodic waves are
composed of at least two sine waves. Consider the wave shown in figure 1.5, for
example. Like the simple sine waves shown in figures 1.3 and 1.4, this waveform
completes one cycle in 0.01 seconds (i.e. 10 milliseconds). However, it has an 

12 Fundamentals

0

A
m

pl
it

ud
e

0.020.0150.010.005

0°

180°

90°

Time (sec)

Figure 1.4 Two sine waves with identical frequency and amplitude, but 90° out of phase.
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additional component that completes ten cycles in this same amount of time. Notice
the “ripples” in the waveform. You can count ten small positive peaks in one cycle
of the waveform, one for each cycle of the additional frequency component in
the complex wave. I produced this example by adding a 100 Hz sine wave and a
(lower-amplitude) 1,000 Hz sine wave. So the 1,000 Hz wave combined with the
100 Hz wave produces a complex periodic wave. The rate at which the complex
pattern repeats is called the fundamental frequency (abbreviated F0).
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Fundamental frequency and the GCD

The wave shown in figure 1.5 has a fundamental frequency of 100 Hz and
also a 100 Hz component sine wave. It turns out that the fundamental fre-
quency of a complex wave is the greatest common denominator (GCD) of the
frequencies of the component sine waves. For example, the fundamental 
frequency (F0) of a complex wave with 400 Hz and 500 Hz components 
is 100 Hz. You can see this for yourself if you draw the complex periodic
wave that results from adding a 400 Hz sine wave and a 500 Hz sine wave.
We will use the sine wave in figure 1.3 as the starting point for this graph.
The procedure is as follows:

1 Take some graph paper.
2 Calculate the period of a 400 Hz sine wave. Because frequency is equal

to one divided by the period (in math that’s f = 1/T ), we know that the
period is equal to one divided by the frequency (T = 1/f ). So the period
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Figure 1.5 A complex periodic wave composed of a 100 Hz sine wave and a 1,000 Hz sine
wave. One cycle of the fundamental frequency (F0) is labeled.

9781405194662_4_001.qxd  5/19/11  10:22 AM  Page 13



14 Fundamentals

of a 400 Hz sine wave is 0.0025 seconds. In milliseconds (1/1,000ths of
a second) that’s 2.5 ms (0.0025 times 1,000).

3 Calculate the period of a 500 Hz sine wave.
4 Now we are going to derive two tables of numbers that constitute

instructions for drawing 400 Hz and 500 Hz sine waves. To do this, add
some new labels to the time axis on figure 1.3, once for the 400 Hz sine
wave and once for the 500 Hz sine wave. The 400 Hz time axis will have
2.5 ms in place of 0.01 sec, because the 400 Hz sine wave completes one
cycle in 2.5 ms. In place of 0.005 sec the 400 Hz time axis will have 1.25 ms.
The peak of the 400 Hz sine wave occurs at 0.625 ms, and the valley at
1.875 ms. This gives us a table of times and amplitude values for the 400 Hz
wave (where we assume that the amplitude of the peak is 1 and the ampli-
tude of the valley is -1, and the amplitude value given for time 3.125 is
the peak in the second cycle):

ms 0 0.625 1.25 1.875 2.5 3.125
amp 0 1 0 -1 0 1

The interval between successive points in the waveform (with 90°
between each point) is 0.625 ms. In the 500 Hz sine wave the interval
between comparable points is 0.5 ms.

5 Now on your graph paper mark out 20 ms with 1 ms intervals. Also mark
an amplitude scale from 1 to -1, allowing about an inch.

6 Draw the 400 Hz and 500 Hz sine waves by marking dots on the graph
paper for the intersections indicated in the tables. For instance, the first
dot in the 400 Hz sine wave will be at time 0 ms and amplitude 0, the
second at time 0.625 ms and amplitude 1, and so on. Note that you may
want to extend the table above to 20 ms (I stopped at 3.125 to keep the
times right for the 400 Hz wave). When you have marked all the dots
for the 400 Hz wave, connect the dots with a freehand sine wave. Then
draw the 500 Hz sine wave in the same way, using the same time and
amplitude axes. You should have a figure with overlapping sine waves
something like figure 1.6.

7 Now add the two waves together. At each 0.5 ms point, take the sum of
the amplitudes in the two sine waves to get the amplitude value of the
new complex periodic wave, and then draw the smooth waveform by eye.

Take a look at the complex periodic wave that results from adding a 400 Hz
sine wave and a 500 Hz sine wave. Does it have a fundamental frequency
of 100 Hz? If it does, you should see two complete cycles in your 20 ms long
complex wave; the waveform pattern from 10 ms to 20 ms should be an
exact copy of the pattern that you see in the 0 ms to 10 ms interval.
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Figure 1.6 shows another complex wave (and four of the sine waves that were
added together to produce it). This wave shape approximates a sawtooth pattern.
Unlike in the previous example, it is not possible to identify the component sine
waves by looking at the complex wave pattern. Notice how all four of the 
component sine waves have positive peaks early in the complex wave’s cycle and
negative peaks toward the end of the cycle. These peaks add together to produce
a sharp peak early in the cycle and a sharp valley at the end of the cycle, and tend
to cancel each other over the rest of the cycle. We can’t see individual peaks 
corresponding to the cycles of the component waves. Nonetheless, the complex
wave was produced by adding together simple components.
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Figure 1.6 A complex periodic wave that approximates the “sawtooth” wave shape, and the
four lowest sine waves of the set that were combined to produce the complex wave.
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Now let’s look at how to represent the frequency components that make up
a complex periodic wave. What we’re looking for is a way to show the component
sine waves of the complex wave when they are not easily visible in the wave-
form itself. One way to do this is to list the frequencies and amplitudes of the
component sine waves like this:

frequency (Hz) 100 200 300 400 500
amplitude 1 0.5 0.33 0.25 0.2

In this discussion I am skipping over a complicated matter. We can describe the
amplitudes of sine waves on a number of different measurement scales, relating
to the magnitude of the wave, its intensity, or its perceived loudness (see chapter
4 for more discussion of this). In this chapter, I am representing the magnitude
of the sound wave in relative terms, so that I don’t have to introduce units of 
measure for amplitude (instead I have to add this long apology!). So, the 200 Hz
component has and amplitude that is one half the magnitude of the 100 Hz 
component, and so on.

Figure 1.7 shows a graph of these values with frequency on the horizontal axis
and amplitude on the vertical axis. The graphical display of component frequen-
cies is the best method for showing the simple periodic components of a complex
periodic wave, because complex waves are often composed of so many frequency
components that a table is impractical. An amplitude versus frequency plot of the
simple sine wave components of a complex wave is called a power spectrum.

Here’s why it is so important that complex periodic waves can be constructed
by adding together sine waves. It is possible to produce an infinite variety of 

16 Fundamentals

R
el

at
iv

e 
am

pl
it

ud
e

Frequency (Hz)
800

1

0.5

0
6004002000

Figure 1.7 The frequencies and amplitudes of the simple periodic components of the
complex wave shown in figure 1.6 presented in graphic format.
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complex wave shapes by combining sine waves that have different frequencies,
amplitudes, and phases. A related property of sound waves is that any complex
acoustic wave can be analyzed in terms of the sine wave components that could
have been used to produce that wave. That is, any complex waveform can be decom-
posed into a set of sine waves having particular frequencies, amplitudes, and phase
relations. This property of sound waves is called Fourier’s theorem, after the 
seventeenth-century mathematician who discovered it.

In Fourier analysis we take a complex periodic wave having an arbitrary number
of components and derive the frequencies, amplitudes, and phases of those com-
ponents. The result of Fourier analysis is a power spectrum similar to the one
shown in figure 1.7. (We ignore the phases of the component waves, because these
have only a minor impact on the perception of sound.)

1.3.3 Aperiodic waves

Aperiodic sounds, unlike simple or complex periodic sounds, do not have a 
regularly repeating pattern; they have either a random waveform or a pattern that
doesn’t repeat. Sound characterized by random pressure fluctuation is called
white noise. It sounds something like radio static or wind blowing through trees.
Even though white noise is not periodic, it is possible to perform a Fourier 
analysis on it; however, unlike Fourier analyses of periodic signals composed of 
only a few sine waves, the spectrum of white noise is not characterized by sharp
peaks, but, rather, has equal amplitude for all possible frequency components (the
spectrum is flat). Like sine waves, white noise is an abstraction, although many
naturally occurring sounds are similar to white noise; for instance, the sound of
the wind or fricative speech sounds like [s] or [f ].

Figures 1.8 and 1.9 show the acoustic waveform and the power spectrum, respec-
tively, of a sample of white noise. Note that the waveform shown in figure 1.8 is
irregular, with no discernible repeating pattern. Note too that the spectrum
shown in figure 1.9 is flat across the top. As we will see in chapter 3 (on digital
signal processing), a Fourier analysis of a short chunk (called an “analysis window”)
of a waveform leads to inaccuracies in the resultant spectrum. That’s why this
spectrum has some peaks and valleys even though, according to theory, white noise
should have a flat spectrum.

The other main type of aperiodic sounds are transients. These are various types
of clanks and bursts which produce a sudden pressure fluctuation that is not 
sustained or repeated over time. Door slams, balloon pops, and electrical clicks
are all transient sounds. Like aperiodic noise, transient sounds can be analyzed
into their spectral components using Fourier analysis. Figure 1.10 shows an 
idealized transient signal. At only one point in time is there any energy in the 
signal; at all other times pressure is equal to zero. This type of idealized sound is
called an impulse. Naturally occurring transients approximate the shape of an
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impulse, but usually with a bit more complicated fluctuation. Figure 1.11 shows
the power spectrum of the impulse shown in figure 1.10. As with white noise, the
spectrum is flat. This is more obvious in figure 1.11 than in figure 1.9 because 
the “impulseness” of the impulse waveform depends on only one point in time,
while the “white noiseness” of the white noise waveform depends on every point
in time. Thus, because the Fourier analysis is only approximately valid for a short
sample of a waveform, the white noise spectrum is not as completely specified as
is the impulse spectrum.
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Figure 1.8 A 20 ms section of an acoustic waveform of white noise. The amplitude at any
given point in time is random.
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Figure 1.9 The power spectrum of the white noise shown in figure 1.8.
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1.4 Acoustic Filters

We are all familiar with how filters work. For example, you use a paper filter to
keep the coffee grounds out of your coffee, or a tea strainer to keep the tea leaves
out of your tea. These everyday examples illustrate some important properties of
acoustic filters. For instance, the practical difference between a coffee filter and a
tea strainer is that the tea strainer will allow larger bits into the drink, while the
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Figure 1.10 Acoustic waveform of a transient sound (an impulse).
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Figure 1.11 Power spectrum of the transient signal shown in figure 1.10.
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coffee filter captures smaller particles. So the difference between these filters can
be described in terms of the size of particles they let pass.

Rather than passing or blocking particles of different sizes like a coffee filter,
an acoustic filter passes or blocks components of sound of different frequencies.
For example, a low-pass filter blocks the high-frequency components of a wave,
and lets through the low-frequency components. Earlier I illustrated the difference
between simple and complex periodic waves by adding a 1,000 Hz sine wave to a
100 Hz sine wave to produce a complex wave. With a low-pass filter that, for instance,
filtered out all frequency components above 300 Hz, we could remove the 
1,000 Hz wave from the complex wave. Just as a coffee filter allows small particles
to pass through and blocks large particles, so a low-pass acoustic filter allows low-
frequency components through, but blocks high-frequency components.

You can visualize the action of a low-pass filter in a spectral display of the filter’s
response function. For instance, figure 1.12 shows a low-pass filter that has a 
cutoff frequency of 300 Hz. The part of the spectrum shaded white is called the
pass band, because sound energy in this frequency range is passed by the filter,
while the part of the spectrum shaded gray is called the reject band, because 
sound energy in this region is blocked by the filter. Thus, in a complex wave with
components at 100 and 1,000 Hz, the 100 Hz component is passed, and the 1,000 Hz
component is blocked. Similarly, a high-pass filter blocks the low-frequency com-
ponents of a wave, and passes the high-frequency components. A spectral display
of the response function of a high-pass filter shows that low-frequency components
are blocked by the filter, and high-frequency components are passed.
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Figure 1.12 Illustration of the spectrum of a low-pass filter.
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Band-pass filters are important, because we can model some aspects of articu-
lation and hearing in terms of the actions of these filters. Unlike low-pass or high-
pass filters, which have a single cutoff frequency, band-pass filters have two cutoff
frequencies, one for the low end of the pass band and one for the high end of 
the pass band (as figure 1.13 shows). A band-pass filter is like a combination of a
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Filter slopes

The low-pass filter illustrated in figure 1.12 has a very sharp boundary at
300 Hz between the frequencies that are blocked by the filter and those that
are passed. The filter has the same effect on every component below (or above)
the cutoff frequency; the slope of the vertical line separating the pass band
from the reject band is infinitely steep. In real life, acoustic filters do not
have such sharp boundaries. For instance, it is more typical for the transi-
tion between pass band and reject band to extend over some range of 
frequencies (as in the band-pass filter illustrated in figure 1.13), rather than
to occur instantaneously (as in the low-pass filter illustration). A very steep
slope is like having very uniform-sized holes in a tea ball. A shallow filter
slope is like having lots of variation in the size of the holes in a tea ball.
Some particles will be blocked by the smaller holes, though they would have
got through if they had found a bigger hole.
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Figure 1.13 Illustration of a band-pass filter. Note that the filter has skirts on either
side of the pass band.
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low-pass filter and a high-pass filter, where the cutoff frequency of the low-pass
filter is higher than the cutoff frequency of the high-pass filter.

When the high and low cutoff frequencies of a band-pass filter equal each other,
the resulting filter can be characterized by its center frequency and the filter’s
bandwidth (which is determined by the slopes of the filter). Bandwidth is the width
(in Hz) of the filter’s peak such that one-half of the acoustic energy in the filter
is within the stated width. That is, considering the total area under the curve of
the filter shape, the bandwidth is the range, around the center frequency, that encloses
half the total area. In practice, this half-power bandwidth is found by measuring
the amplitude at the center frequency of the filter and then finding the width 
of the filter at an amplitude that is three decibels (dB) below the peak amplitude
(a decibel is defined in chapter 4). This special type of band-pass filter, which is
illustrated in figure 1.14, is important in acoustic phonetics, because it has been
used to model the filtering action of the vocal tract and auditory system.

Recommended Reading

Fry, D. B. (1979) The Physics of Speech, Cambridge: Cambridge University Press. An older
but still useful introduction to the basics of acoustic phonetics.

Ladefoged, P. (1996) Elements of Acoustic Phonetics, 2nd edn., Chicago: University of
Chicago Press. A very readable introduction to acoustic phonetics, especially on the
relationship between acoustic waveforms and spectral displays.

Stevens, K. N. (1999) Acoustic Phonetics, Cambridge, MA: MIT Press. An authoritative, 
engineering introduction to the acoustic theory of speech production.
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Figure 1.14 A band-pass filter described by the center frequency and bandwidth of the
filter.
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Exercises

Sufficient jargon

Define the following terms: sound, acoustic medium, acoustic waveform, sound
wave, rarefaction, compression, periodic sounds, simple periodic wave, sine
wave, frequency, cycle, period, hertz, amplitude, phase, complex periodic wave,
fundamental frequency, component waves, power spectrum, Fourier’s 
theorem, Fourier analysis, aperiodic sounds, white noise, transient, impulse,
low-pass filter, pass band, reject band, high-pass filter, filter slope, band-pass
filter, center frequency, bandwidth.

Short-answer questions

1 What’s wrong with the statement “You experience sound when air
molecules move from a sound source to your eardrum”?

2 Express these times in seconds: 1,000 ms, 200 ms, 10 ms, 1,210 ms.
3 What is the frequency in Hz if the period of a sine wave is 0.01 sec, 10 ms,

0.33 sec, 33 ms?
4 Draw a sine wave. First, draw a time axis in equal steps of size 45, so that

the first label is zero, the next one (to the right) is 45, the next is 90, and
so on up to 720. These labels refer to the degrees of rotation around a
circle, as shown in figure 1.15 (720° is twice around the circle). Now plot
amplitude values in the sine wave as the height of the vertical bars in the
figure relative to the line running through the center of the circle from
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Figure 1.15 Degrees of rotation around a circle.
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0° to 180°. So the amplitude value at 0° is 0; the amplitude at 45° is the
vertical distance from the center line to the edge of the circle at 45°, and
so on. If the line descends from the center line (as is the case for 225°),
mark the amplitude as a negative value. Now connect the dots freehand,
trying to make your sine wave look like the ones in this chapter.

5 Draw the waveform of the complex wave produced by adding sine waves
of 300 Hz and 500 Hz (both with peak amplitude of 1).

6 Draw the spectrum of a complex periodic wave composed of 100 Hz and
700 Hz components (both with peak amplitude of 1).

7 Draw the spectrum of an acoustic filter that results from adding two band-
pass filters. Filter 1 has a center frequency of 500 Hz and a bandwidth of
50 Hz, while filter 2 has a center frequency of 1,500 Hz and a bandwidth
of 150 Hz.

24 Fundamentals
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