
In this chapter and the following, we shall learn lots of things in a short 
time.1 Initially, some of the things we will gain knowledge of may appear 
unrelated to each other, and their overall usefulness might not be clear 
either. However, it will turn out that they are all connected within 
Gödel’s symphony. Most of the work of these two chapters consists in 
preparing the instruments in order to play the music. We will begin by 
acquiring familiarity with the phenomenon of self-reference in logic – a 
phenomenon which, according to many, has to be grasped if one is to 
understand the deep meaning of Gödel’s result. Self-reference is closely 
connected to the famous logical paradoxes, whose understanding is 
also important to fully appreciate the Gödelian construction – a con-
struction that, as we shall see, owes part of its timeless fascination to its 
getting quite close to a paradox without falling into it.

But what is a paradox? A common first definition has it that a paradox 
is the absurd or blatantly counter-intuitive conclusion of an argument, 
which starts with intuitively plausible premises and advances via seem-
ingly acceptable inferences. In The Ways of Paradox, Quine claims that 
“a paradox is just any conclusion that at first sounds absurd but that has 
an argument to sustain it.”2 We shall be particularly concerned not just 
with sentences that are paradoxical in the sense of being implausible, 
or contrary to common sense (“paradox” intended as something 
opposed to the δo¢ ξα, or to what is e’¢νδοξον, entren ched in pervasive 

1

Foundations and Paradoxes

1 This chapter draws on Berto (2006a), (2007a), and (2007b) for an account of the 
basics of set theory and of logical paradoxes.
2 Quine (1966), p. 1. Sainsbury’s definition is: “an apparently unacceptable conclusion 
derived by apparently acceptable reasoning from apparently acceptable premises” 
(1995), p. 1.
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4 The Gödelian Symphony  

and/or authoritative opinions), but with sentences that  constitute 
authentic, full-fledged contradictions. A paradox in this strict sense is 
also called an antinomy.

However, sometimes the whole argument is also called a paradox.3 So 
we have Graham Priest maintaining that “[logical] paradoxes are all argu-
ments starting with apparently analytic principles … and proceeding via 
apparently valid reasoning to a conclusion of the form ‘α and not-α’.”4

Third, at times a paradox is considered as a set of jointly inconsistent 
sentences, which are nevertheless credible when addressed separately.5

The logical paradoxes are usually subdivided into the semantic and 
set-theoretic. What is semantics, to begin with? We can understand the 
notion by contrasting it with that of syntax. Talking quite generally, in 
the study of a language (be it a natural language such as English or 
German, or an artificial one such as the notational systems developed 
by formal logicians), semantics has to do with the relationship between 
the linguistic signs (words, noun phrases, sentences) and their mean-
ings, the things those signs are supposed to signify or stand for. Syntax, 
on the other hand, has to do with the symbols themselves, with how 
they can be manipulated and combined to form complex expressions, 
without taking into account their (intended) meanings.

Typically, such notions as truth and denotation are taken as pertain-
ing to  semantics.6 Importantly, a linguistic notion is classified as (purely) 

3 Beall and van Fraassen (2003), p. 119 claim that “a paradox … is an argument with 
apparently true premises, apparently valid reasoning, and an apparently false (or untrue) 
conclusion.”
4 Priest (1987), p. 9.
5 This definition is taken as having some advantages over the previous ones by 
Sorensen (2003), p. 364.
6 And truth is generally considered as the basic semantic notion. This is because, of the 
various syntactic categories, the dominant paradigm of contemporary philosophy of 
language puts (declarative) sentences at the core, and takes the meaning of sentences 
to consist mainly, if not exclusively, of their truth conditions. The celebrated motto 
comes from Wittgenstein’s Tractatus logico-philosophicus: “To understand a proposi-
tion means to know what is the case if it is true.” Since to understand a sentence is to 
grasp its meaning, the motto says that this amounts to understanding the conditions 
under which the sentence at issue is true. To know what “Snow is white” means is to 
know what the world must be like if this sentence has to be true. And it is true in the 
event that things in the world are as it claims them to be, that is, in the event that snow 
is actually white. Within this semantic perspective (which is therefore called “truth-
conditional”), precisely the notion of truth is placed at center stage.
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 Foundations and Paradoxes 5

syntactic when its specification or definition does not refer to the 
meanings of  linguistic expressions, or to the truth and falsity of 
 sentences. The distinction between syntax and semantics is of the 
greatest importance: I shall refer to it quite often in the following, and 
the examples collected throughout the book should help us under-
stand it better and better.

The set-theoretic paradoxes concern more technical notions, 
such as those of membership and cardinality. These paradoxes 
have cast a shadow over set theory, whose essentials are due to the 
great nineteenth-century mathematician Georg Cantor, and which 
was developed by many mathematicians and logicians in the twen-
tieth century.

Nowadays, set theory is a well-established branch of mathematics. 
(One should speak of set theories, since there are many of them; but 
mathematicians refer mainly to one version, that due to Ernst Zermelo 
and Abraham Fraenkel, to which I shall refer in the following.) But 
the theory has also a profound philosophical importance, mainly 
because of the role it has had in the development of (and the debate 
on) the so-called foundations of mathematics. Between the end of 
the nineteenth century and the beginning of the twentieth, the great 
philosophers and logicians Gottlob Frege and Bertrand Russell 
attempted to provide a definitive, unassailable logical and philosoph-
ical foundation for mathematical knowledge precisely by means of 
set theory. When Gödel published his paper, the dispute on the foun-
dations of mathematics was quite vigorous, because of a crisis pro-
duced by the discovery of some important paradoxes in the so-called 
naïve formulation of set theory.

In these initial chapters, therefore, we shall learn some history and 
some theory. On the one hand, we will have a look at the changes that 
logic and mathematics were undergoing at the beginning of the twen-
tieth century, mainly because of the paradoxes: to know something of 
the logical and mathematical context Gödel was living in will help us 
understand why the Theorem was the extraordinary breakthrough it 
was. But we shall also learn some basic mathematical and set- theoretical 
concepts. Among the most important notions we will meet in this 
chapter is that of algorithm. By means of it, we should come to under-
stand what it means for a given set to be (intuitively) decidable; what 
it means for a given set to be (intuitively) enumerable; and what it 
means for a given  function to be (intuitively)  computable. If this list of 
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6 The Gödelian Symphony  

announcements on the subjects we shall learn sounds alarming, I can 
only say that the initial pain will be followed by the gain of seeing 
these separate pieces come together in the marvelous Gödelian 
jigsaw.

1 “This sentence is false”

I have claimed that the semantic paradoxes can involve different 
semantic  concepts, such as denotation, definability, etc. We shall 
focus only on those employing the notions of truth and falsity, which 
are  usually grouped under the label of the Liar. These are the most 
widely discussed in the literature – those for which most tentative 
solutions have been proposed. They are also the most classical, having 
been on the philosophical market for more than 2,000 years – a fact 
which, by itself, says something about the difficulty of dealing with 
them. The ancient Greek grammarian Philetas of Cos is believed to 
have lost sleep and health trying to solve the Liar paradox, his epitaph 
claiming: “It was the Liar who made me die / And the bad nights caused 
thereby.”

One of the most ancient versions of semantic paradox appears in 
St Paul’s Epistle to Titus. Paul blames a “Cretan prophet,” who was to be 
identified as the poet and philosopher Epimenides, and who was 
believed to have at one time said:

(1) All Cretans always lie.

Actually, (1) is not a real paradox in the strict sense of a sentence which, 
on the basis of our bona fide intuitions, would entail a violation of the 
Law of Non-Contradiction. It is just a sentence that, on the basis of those 
intuitions, cannot be true. It is self-defeating for a Cretan to say that 
Cretans always lie: if this were true – that is, if it were the case that all 
sentences uttered by any Cretan are false – then (1), being uttered by the 
Cretan Epimenides, would have to be false itself, against the initial 
hypothesis. However, there is no contradiction yet: (1) can be just false 
under the (quite plausible) hypothesis that some Cretan sometimes said 
something true.

9781405197663_4_001.indd   69781405197663_4_001.indd   6 7/22/2009   6:33:48 PM7/22/2009   6:33:48 PM



 Foundations and Paradoxes 7

We are dealing with a full-fledged Liar paradox (also attributed to a 
Greek philosopher, and probably the greatest paradoxer of Antiquity: 
Eubulides) when we consider the following sentence:

(2) (2) is false.

As we can see, (2) refers to itself, because it is no. 2 of the sentences 
highlighted in this chapter, and tells something of the very sentence 
no. 2. Also (1) refers to itself, but does it in a different way from (2). This 
is what makes (1) not strictly paradoxical. Sentence (1) claims that all 
the members of a set of sentences (those uttered by Cretans) are false. 
In addition, it belongs to that very set, due to its being uttered by a 
Cretan. Therefore (1) can be simply false, under the empirical hypoth-
esis that some sentence uttered by a Cretan, and different from (1), is 
true. This is also what makes it look so odd: it is unsatisfactory that a 
logical paradox is avoided only via the empirical fact that some Cretan 
sometimes said something true.

Some form of self-reference can be detected in (almost) all para-
doxes, so that the phenomenon of self-reference as such has been held 
responsible for the antinomies. Nevertheless, lots of self-referential sen-
tences are harmless, in that we seem to be able to ascertain their truth 
value in an unproblematic way. For instance, you may easily observe 
that, among the following, (3) and (4) are true, whereas (5) is false:

(3) (3) is a grammatically well-formed sentence.
(4)  (4) is a sentence contained in There’s Something About 

Gödel!
(5) (5) is a sentence printed with yellow ink.

In contrast, (2) is not harmless at all. Let us reason by cases. Suppose 
(2) is true: then what it says is the case, so it’s false. Suppose then 
(2) is false. This is what it claims to be, so it’s true. If we accept the 
Principle of Bivalence, that is, the principle according to which all 
sentences are either true or false, both alternatives lead to a paradox: 
(2) is true and false! To claim that something is both true and false is 
to produce a denial of the Law of Non-Contradiction. And this is how 
our bona fide intuitions lead us to a contradiction, via a simple rea-
soning by cases.
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8 The Gödelian Symphony  

Other versions of the Liar are called strengthened Liars,7 or also 
revenge Liars (whereas (2) may be called the “standard” Liar):

(6) (6) is not true.
(7) (7) is false or neither true nor false.

The reason why sentences such as (6) deserve the title of strengthened 
Liars is the following. Some logicians (including the best one of our 
times, Saul Kripke) have proposed circumventing the standard Liar 
(2) by dispensing with the Principle of Bivalence, that is, by admitting 
that some sentences can be neither true nor false, and that (2) is among 
them. Sentence (2) is a statement such that, if it were false, it would be 
true, and if it were true, it would be false. But we can avoid the contra-
diction by granting that (2) is neither. Such a solution has some prob-
lems with sentences such as (6), which appear to deliver a contradiction 
even when we dismiss Bivalence. In this case, the set of sentences is 
divided into three subsets: the true ones, the false ones, and those which 
are neither. Now we can reason by cases again with (6): either (6) is 
true, or it is false, or neither. If it’s true, then what it says is the case, so 
it’s not true. If it’s false or neither true nor false, then it is not true. 
However, this is what it claims to be, so in the end it’s true. Whatever 
option we pick, (6) turns out to be both true and untrue, and we are 
back to contradiction. This Liar thus gains “revenge” for its cousin (2).8

2 The Liar and Gödel

A sentence can refer to itself in various ways, so we can have various 
versions of (2). For instance:

(2a) This sentence is false.
(2b) I am false.
(2c) The sentence you are reading is false.

7 As far as I know, the terminology is due to van Fraassen (1968).
8 Some (e.g. Graham Priest, in his classic works on dialetheism) have conjectured that 
any consistent solution to the Liar faces the same destiny: for any version of the Liar 
paradox which is solved by the relevant theory, one can build a revenge paradox by 
exploiting the very notions introduced in the theory in order to address the previous 
one. On these issues, see Berto (2006a), Ch. 2, and Berto (2007b), Ch. 2.
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 Foundations and Paradoxes 9

The paradox can also be produced without any immediate  self- reference, 
but via a short-circuit of sentences. For instance:

(2d) (2e) is true.
(2e) (2d) is false.

This is as old as Buridan (his sophism 9: Plato saying, “What Socrates 
says is true”; Socrates replying, “What Plato says is false”). If what (2d) 
says is true, then (2e) is true. However, (2e) says that (2d) is false … and 
so on: we are in a paradoxical loop.

However, it seems that self-reference is obtained in all cases by means 
of an unavoidable “empirical,” i.e., contextual or indexical, component. 
In fact, in the paradoxical sentences we have examined so far, self- 
reference is achieved via the numbering device, or via indexical expres-
sions such as “I”, “this  sentence,” and so on. Only factual and contextual 
information tells us that the denotation of (those tokens of) such 
expressions is the very sentence in which they appear as the gram-
matical subjects. This holds for the “looped Liar”: suppose (2d) is as 
above, but (2e) now is “Perth is in Australia.” Then (2d) is just true, and 
no paradox is expected. But it happens also with the immediately self-
referential paradoxical statements above: for instance, if I uttered 
(a token of) (2a) by pointing, say, at (a token of) the sentence “2 + 2 = 5” 
written on a blackboard, there would be no self-reference at all, for 
“this sentence,” in the context, would refer to (the token of) “2 + 2 = 5” 
(and, besides, I would be claiming something true). Ditto if I uttered 
(2c) referring to you, while you are reading the false sentence written 
on the blackboard.

Because of this, some (among which the Italian mathematician 
Giuseppe Peano, of whom I shall talk again later) have believed that the 
semantic paradoxes involve some non-logical phenomenon: they depend 
on contextual, empirical factors. Frank Ramsey, to whom the distinction 
between semantic and set-theoretic paradoxes is usually ascribed, 
depicted the situation thus by referring to the list of paradoxes examined 
in Russell and Whitehead’s Principia mathematica:

Group A [i.e., antinomies no. 2, 3, and 4 of the original list of Principia: 
among them, the Russell and Burali-Forti paradoxes, which I will introduce 
later] consists of contradictions which, were no provision made against 
them, would occur in a logical or mathematical system itself. They involve 
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10 The Gödelian Symphony  

only logical or mathematical terms such as class and number, and show 
that there must be something wrong with our logic and mathematics. But 
the contradictions in Group B [i.e., antinomies no. 1, 5, 6, 7 of Principia: 
among them, the Liar] are not purely logical, and cannot be stated in logi-
cal terms alone; for they all contain some reference to thought, language, 
or symbolism, which are not formal but empirical terms.9

However, just after Ramsey had proposed the distinction, Gödel him-
self showed how to build, within a formal logical system, self-referential 
constructions with no empirical trespassers of any kind: self-referential 
statements whose content is as empirical and contextual as that of 
“2 + 2 = 4.” To achieve this, Gödel used the language of mathematical 
logic as nobody had done before; and the apparatus he put to work is 
probably the most inspired aspect of the proof of the Theorem that 
bears his name.

Behind the Gödelian construction hide precisely the simple intui-
tions concerning the conundrum originated by the Liar which made 
the ancient Greeks lose their sleep. However, Gödel did not exploit 
those intuitions to engender a contradiction, via a sentence that claims 
of itself to be false, like (2), or untrue, like (6). He produced a sentence 
that walks on the edge of paradox, without falling into it. I shall talk of 
this mysterious Gödelian sentence at length: it is, in fact, the main char-
acter of the story I have begun to tell.

3 Language and metalanguage

The great Polish logician Alfred Tarski, and many after him, have held 
responsible for such semantic paradoxes as the Liars certain features of 
natural language, grouped under the label of “semantic closure condi-
tions.” Roughly, a semantically closed language is a language capable of 
talking of its own semantics, of the meanings of the expressions of the 
language itself. Less roughly, “a semantically closed language is one with 
semantic predicates, like ‘true’, ‘false’, and ‘satisfies’, that can be applied 
to the language’s own sentences.”10 It is because English can mention 

 9 Ramsey (1931), pp. 36–7.
10 Kirkham (1992), p. 278.
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 Foundations and Paradoxes 11

its own expressions, and ascribe semantic properties to them, that we 
can have such sentences as (2) or (6): some expressions of our every-
day language can somehow refer to themselves; “true” and “false” are 
perfectly meaningful predicates of English; and they can be applied to 
sentences of English.

In a Tarskian approach, the semantic paradoxes are due to a mixture 
of object language and metalanguage. Logicians and philosophers 
usually call “object language” the language we speak about, or we give 
a theory of, this being precisely the object of the theory. However, the 
theory itself will obviously be phrased in some language or other; and 
the language in which the theory is formulated can be labeled as a 
metalanguage, that is to say, a “language on a language.”

That (object) language and metalanguage may be distinct is fairly 
clear. If you are studying a basic French grammar written in English, 
you will find that French figures in it mostly as the object language, 
whereas English is employed mainly as the metalanguage. But in our 
self-referential statements above, the two levels are mixed: these are 
English sentences talking of English sentences (specifically, of them-
selves). And this fusion, according to the Tarskian approach, gives rise 
to the paradox.

The Tarskian treatment maintains that the truth predicate cannot be 
univocal. A single surface grammar expression, “is true,” has an ambigu-
ous function for different languages, each of which is semantically 
open at the level of some deep logical grammar. Instead of a unique 
language, we would have a hierarchy, more or less with the following 
structure. For any ordinal n we have a language Ln, and n is the order 
of Ln. Let us begin with L0, taken as our “basic” level language. The 
semantic concepts concerning L0 cannot be expressed within L0 itself, 
but must be expressed in a language, say L1, which is its metalanguage. 
L1 will contain predicates that refer to the semantic concepts of L0 
(and, in particular, by means of which we can provide a definition of 
truth for sentences of L0: I shall come to the details of the Tarskian defi-
nition of truth in Chapter 9). However, L1 is itself “semantically open”: 
it cannot express its own semantic concepts. So a definition of truth 
for L1 will be expressed in a language, L2, which is the metalanguage of 
L1; and so on.11 The Tarskian solution parameterizes the semantic predi-
cates along the hierarchy of the metalanguages: the metalinguistic 

11 See Sainsbury (1995), pp. 118–19.
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12 The Gödelian Symphony  

“true” and “false” are now abbreviations for “true in the object language,” 
“false in the object language.” In particular, the standard Liar turns into 
“This sentence is false in the object language.” Its place is in the 
 metalanguage, and it is just false there, not paradoxical: since metalin-
guistic sentences do not belong in the object language at all, the Liar 
does not have the property it claims to have.12

In point of fact, however, Tarski proposed his hierarchy as a structure 
for the artificial languages of formal logic, and did not claim his strategy 
to be applicable to natural languages (though others after him have 
been less restrained on this). Tarski’s prudence is easily understood. 
First, there is no evidence that the predicate “true” performs some 
ambiguous function along some hidden hierarchy of languages, meta-
languages, metametalanguages, etc. This makes the proposal to apply 
the theory to ordinary English look like a form of revisionism: a sugges-
tion to the effect that ordinary English be somehow regimented. If the 
idea came to Tarski’s mind, he certainly found it unsatisfactory.13

Second, a decisive difference between such a hierarchy and English is 
that there does not seem to be any metalanguage for English. This 
becomes manifest if we accept the principle according to which ordi-
nary language is, so to speak, “transcendental”: anything that is linguisti-
cally expressible can be expressed within ordinary language – there is 
no limit to it. In Tarski’s own words:

A characteristic feature of colloquial language (in contrast to various 
scientific languages) is its universality. It would not be in harmony with 
the spirit of this language if in some other language a word occurred 
which could not be translated into it; it could be claimed that “if we can 
speak meaningfully about anything at all, we can also speak about it in 
colloquial language.”14

12 See Kirkham (1992), p. 280.
13 “Whoever wishes, in spite of all difficulties, to pursue the semantics of colloquial 
language with the help of exact methods will be driven first to undertake the thankless 
task of a reform of this language. He will find it necessary to define its structure, to over-
come the ambiguity of the terms which occur in it, and finally to split the language into 
a series of languages of greater and greater extent, each of which stands in the same rela-
tion to the next in which a formalized language stands to its metalanguage. It may, how-
ever, be doubted whether the language of everyday life, after being ‘rationalized’ in this 
way, would still preserve its naturalness and whether it would not rather take on the 
characteristic features of the formalized languages” (Tarski (1936), p. 406).
14 Tarski (1956), p. 164.
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 Foundations and Paradoxes 13

We need not enter into subtle issues in the philosophy of language, 
though. Two important things to be kept in mind in following this book 
are (a) the idea of the distinction between (object) language and meta-
language, and (b) the basic intuition behind the kind of self-reference 
taking place when we can see a certain linguistic expression as talking 
of itself, and as ascribing to itself some features and properties.

4 The axiomatic method, or how to get 
the non-obvious out of the obvious15

We have seen that the Liar has been around since the ancient Greeks. 
We also need to start from ancient Greece to understand what the axi-
omatic method is, and why this method has enjoyed an almost spotless 
reputation throughout Western thought. We need to refer, in fact, to 
Euclidean geometry – a theory we all know from elementary school, 
and which has been the paradigm of axiomatization for centuries.

In his Elements of Geometry, the Greek mathematician Euclid intro-
duced some simple geometrical definitions (such as “A point is that 
which has no part”), and the celebrated five postulates, or axioms, that 
bear his name (for instance, the first says, “Any two points can be joined 
by a straight line”; the fourth says, “All right angles are congruent”). In the 
axiomatic approach, axioms are sentences accepted without a proof, as 
principles of deduction – principles from which we can infer other 
sentences, via purely deductive reasoning. The sentences with which 
the various deductive chains come to an end are called the theorems of 
Euclidean geometry. Such deductive chains are the proofs of Euclidean 
geometry; the closures of such chains, i.e., the theorems, are what are 
properly said to have been demonstrated, or proved, from the axioms.

Axioms, proofs, theorems: this beautifully simple and powerful pat-
tern of knowledge has always fascinated scholars. Beginning with a 
small amount of what Quine would have called “ideology,” that is, with 
a few intuitive notions and the initial postulates, Euclidean geometry 
delivered a large amount of theorems by means of deductive proce-
dures which appeared to be fairly clear and rigorous. And the axioms 

15 This comes from the Leibnizian motto: spernimus obvia, ex quibus tamen non 
obvia sequuntur.
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14 The Gödelian Symphony  

were considered – keep this in mind for the following – as (manifestly) 
true. In the so-called classical conception of axiomatic systems, axioms 
were taken as evident, if not trivial, truths. This is exactly how we 
wanted them, so that we could accept them without further argumen-
tation. The chain of deductions and inferences has to come to an end 
somewhere, and what better place to append it than the obvious? The 
proofs of Euclidean geometry being valid proofs, truth could go 
 downstairs from the axioms to often more complex and less evident 
theorems. This, after all, is the fundamental virtue of valid deductive 
reasoning: transmitting truth from premises to conclusions.

For these reasons, numerous philosophers (from Descartes to 
Spinoza and Kant) took Euclidean geometry as a paradigm of rigor-
ous knowledge. They sometimes even tried to export the model and 
its successful features to other compartments of science, so as to 
raise them to a comparable level of certitude and precision. The case 
of “export” we are most interested in takes the stage in the next 
paragraph.

5 Peano’s axioms …

A closer ancestor of Gödel’s results is constituted by the amazing devel-
opments of mathematics in the nineteenth century. Some of them had 
to do with the so-called arithmetization of analysis, which allowed the 
reduction of higher parts of mathematics to elementary arithmetic, 
that is, to the theory of natural numbers (the positive integers, includ-
ing zero: 0, 1, 2, …). Thanks to the work of mathematicians like 
Weierstrass, Cantor, and Dedekind, other kinds of number were referred 
to rational numbers (the numbers representable as ratios of integers) 
and, via these, to the natural numbers.

The two mathematical results we are most interested in, however, 
are (a) the aforementioned theory of infinite numbers and sets due to 
Cantor, and (b) an axiomatic achievement: the formulation of the axi-
oms for arithmetic due to Dedekind and Peano. While the axiomatiza-
tion of geometry dated back to the ancient Greeks, an analogue account 
for arithmetic became available only at the end of the nineteenth cen-
tury, when Dedekind provided the recursive equations for addition and 
multiplication (which will be met and explained in a later chapter), 
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and immediately afterwards Peano proposed the famous axioms for 
arithmetic that bear his name.

Only three notions appear in Peano’s axioms – three notions taken 
as primitive and fundamental: zero, (natural) number, and (immedi-
ate) successor, the (immediate) successor of a number being the one 
that follows it immediately in the ordering of the naturals, i.e., 1 is 
the successor of 0, 2 is the successor of 1, and so on. In the Arithmetices 
principia, nova methodo exposita Peano employed the three basic 
notions to formulate the following five principles:

(P1) Zero is a number.
(P2) The successor of any number is a number.
(P3) Zero is not the successor of any number.
(P4)  Any two numbers with the same successor are the same 

number.
(P5)  Any property of zero that is also a property of the successor 

of any number having it is a property of all numbers.

Peano’s fifth axiom, (P5), is usually called the (mathematical) induc-
tion principle. I’ll come back to it repeatedly in the following (as we 
will see, “induction” here has little to do with inductive reasoning; on 
the contrary, it is a typical procedure of deductive sciences).

6 … and the unsatisfi ed logicists, Frege 
and Russell

Peano’s axiomatization of arithmetic, just like Euclid’s for geometry, 
was still considered by some scholars to be an inadequate account. 
They complained especially about the insufficient logical rigor in the 
proof chains. In fact, in his Elements Euclid had formulated some so-
called “common notions” which looked like general rules of logical 
inference (“Two things identical to a third one are identical to each 
other,” for instance). However, Euclid’s language lacked the rigor of 
modern logical languages. To establish that a given deductive chain is 
valid (that is, that it will never lead us from true premises to a false 
conclusion), one has to look at the meanings of (some of) the words 
and phrases used to express it. But ordinary language expressions, as 
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we noted when we mentioned Tarski’s position on natural language, 
are often vague, equivocal, or both. Because of this, at least since 
Leibniz’s Characteristica universalis, philosophers have been envisag-
ing artificial, formal languages to serve as antidotes to the deficiencies 
of natural language, and in which rigorous science could be formu-
lated: languages whose syntax was to be absolutely precise, and whose 
expressions were to have completely precise and univocal meanings.

Now, some of Euclid’s proofs appeared to include notions captured 
neither by the explicit definitions, nor by the postulates; and they cer-
tainly adopted principles of logical inference which were not listed 
among the common notions. As for Peano, he had already introduced a 
formal notation in 1888 (in fact, one including symbols which are nowa-
days embedded in the canonical logical and set-theoretical notation). 
However, his axiomatization of arithmetic lacked a rigorous specification 
of the logical principles employed in the deductions from the axioms. 
Peano’s proofs were rather informal, and the task of establishing the cor-
rectness of the deductive passages was often simply left to the reader. By 
contrast, since the introduction to his 1879 Ideography – the text whose 
publication is considered the founding act of modern logic – Gottlob 
Frege had begun to show how arithmetical claims could be proved by 
means of precise, explicitly stated logical rules. On the one hand, arith-
metical proof sequences had to be translated into an artificial symbolic 
language. On the other hand, the logical rules operating in the proofs had 
to be made rigorously explicit. Frege provided a first precise characteri-
zation of what we nowadays call a formal system – a notion to which 
I will return again and again, and whose richness will be explored little 
by little as this book develops.

Once “higher” mathematics had been reduced to the natural num-
bers, and secure (or so it seemed) logical rules to reason on them were 
available, one might have gained the impression that mathematical 
knowledge had reached safe ground. Infinitesimals and irrational num-
bers had a problematic status. For a long time, mathematicians and phi-
losophers had had qualms concerning the consistency of mathematical 
analysis; but everyone considered the good old integers to be reliable 
guys. However, Frege had a deeper ambition: that of providing a foun-
dation, on pure logic, for arithmetic itself. Such an ambition was 
shared, between the end of the nineteenth century and the beginning 
of the twentieth, by Bertrand Russell. It was Russell, in fact, who brought 
Frege’s work to the attention of a wider audience; and “ logicism” was 

9781405197663_4_001.indd   169781405197663_4_001.indd   16 7/22/2009   6:33:49 PM7/22/2009   6:33:49 PM



 Foundations and Paradoxes 17

the name given to the project, precisely because of its  aiming at a 
 rigorous logical foundation of arithmetic. Both Frege and Russell 
believed there to be no theoretical distinction between the two domains. 
The notions of zero, (natural) number, and (immediate) successor, taken 
by Peano as primitive for arithmetic, and its fundamental principles as 
captured by Peano’s axiomatization, were to be defined and deduced in 
their turn from still more fundamental and purely logical principles. 
Specifically, they were to be obtained precisely from the principles of 
set theory, which at the time was considered a limb of logic.16

7 Bits of set theory

To understand what the logicist program consisted of – and, most 
importantly, what major obstacle it stumbled upon – we need to swal-
low some of the medicine of set theory. What’s a set, to begin with? In 
the first instance, a set is just a collection of objects. In the following, 
I will usually refer to sets by means of capital Latin letters: A, B, C, ….17 
The fundamental and primitive relation at issue in set theory is that 
of an object belonging to a set, or being a member of a set. This 
is expressed by the symbol “∈” (and non-membership is expressed 
by “Ï”). I will write, then, such things as “x ∈ A” (“x Ï A”), to mean that 
a given object x is (is not) a member or an element of set A, that is, it 
belongs (does not belong) to the set.

One can sometimes specify a set simply by providing a complete list 
of its elements, which is usually written thus: {x1, …, xn} is the set whose 

16 Nowadays the border between logic and arithmetic is much more precise, mainly 
because of Gödel’s Theorem. When logicians talk about “logic,” with no further quali-
fication, they usually refer to the so-called elementary or first-order logic: the predi-
cate calculus with quantifiers and identity, familiar to anyone who has attended a 
course in basic logic. The so-called “higher-order” logic has quite a different status, 
and fuzzy borders with set theory. We shall come back to these notions and acquire 
more familiarity with them in the following; but we should bear in mind that the 
sharp distinction between elementary logic and set theory is due to their quite dif-
ferent features, and that such differences emerged mainly thanks to Gödel’s work.
17 Sometimes taken as variables (“For any set A …”), sometimes as constants, that is, as 
names for specific sets (“Russell’s set R …,” “the set N of natural numbers …”). Context 
will disambiguate.
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members are indeed x1, …, xn. For instance, one can specify the set 
whose sole elements are Frege, Juliette Binoche, and the city of 
Melbourne, thus:

{Gottlob Frege, Juliette Binoche, Melbourne}.

Notice that what is properly listed are the elements’ names, not the ele-
ments themselves (similarly, when one lists the players of AC Milan, one 
doesn’t actually put in a row Kaka, Pirlo, Shevchenko, … , but writes 
down their names).

The only things that matter about sets are their members. It is 
 irrelevant in what order (the names of) the members are listed, or 
whether they occur more than once. This means that, for instance, the 
following sets:

{Juliette Binoche, Melbourne, Gottlob Frege}
{Gottlob Frege, Melbourne, Melbourne, Gottlob Frege, Juliette 
Binoche, Juliette Binoche}

are still the same set as the one introduced above.
When we deal with sets having an infinity of elements, such as the 

set of natural numbers (which I shall call “N”), we cannot in practice 
specify (the names of) all these elements in a list: we could never finish 
the job.18 Therefore sets are often introduced via a condition: one spec-
ifies some feature, or shared property, or characteristic enjoyed by all 
and only the elements of the set at issue. A standard notation is the 
following:

{ },x x¼ ¼|

to be read in English as: “The set of all the x, such that … x ….” For 
instance, the set of odd numbers is {x | x is an odd number}.

Now, Frege had based his logicist program, aimed at defining num-
bers via set-theoretic notions, on a version of what is nowadays called 

18 Which doesn’t mean that one cannot think about the elements of an infinite set, 
such as N, as arranged in an infinite list with a first element, a second one, etc., as we do 
when we write: “0, 1, 2, 3, …” – on the contrary, the theoretical possibility of arranging 
the naturals in one such list will prove of great importance in the following.
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“naïve set theory.” This is built upon two fundamental principles 
 (supposedly) capturing our intuitive conception of set.19 The 
Extensionality Principle spells out the sufficient conditions for iden-
tity between sets. In the canonical notation, it goes like this:

( ) ( .x x y x z y z" Î « Î ® =EP )

Reading this in English, it says: “If y and z have precisely the same ele-
ments, they are the same set” (x, y and z being variables ranging over 
objects and/or sets).20 This captures the aforementioned idea that only 
members matter to the identity of sets.21

A consequence of (EP) is that all the sets to which nothing belongs, 
that is, all sets with no elements, are the same. If there are no winged 
horses and no unicorns, it can be conjectured that the set of unicorns 
and the set of winged horses exist; they both lack members. (EP) says 
that x and y are the same set iff no member of the former is a member 
of the latter and vice versa – and this is always the case when they are 
empty. We can therefore talk of the empty set, which is usually labeled 
with the symbol “∅”.

19 The formulation provided below is not Frege’s, who used what we nowadays would 
call a higher-order language. This is a complication we can skip here, but, as announced, 
I shall have something to say on higher-order languages and theories in the following.
20 One of the features that render set theory important for mathematics is the fact that 
sets can be members or elements of sets in their turn. In this sense, sets are not just col-
lections of objects, but objects themselves – taking “object” to mean “something which 
is capable of set membership.” As we will see quite soon, Frege and Russell based their 
logicist approach on the possibility of reducing numbers to sets by considering them as 
sets of sets. On the other hand, in many contemporary theories of sets (often called 
“pure” theories), only sets figure in the domain of the theory; there are no Urelemente, 
objects that aren’t sets. To put it otherwise, within the range of the things the inter-
preted theory talks about there are no such things as Gottlob Frege, Juliette Binoche, or 
the city of Melbourne, and then sets, but only sets. In this case, the only objects the vari-
ables of the theory, such as x, y, and z , range over, are sets. These specifications, in any 
case, are not essential in order to understand what follows.
21 Consequently, different properties can originate the same set. To recycle the classical 
Fregean example: the property of being an animal with a heart and the property of being 
an animal with kidneys are intuitively different (having a heart does not seem to be the 
same thing as having kidneys). However, they correspond to a unique set, for any animal 
with a heart also has kidneys, and vice versa. This is the mark of the difference between 
such “intensional” entities as properties, and sets.
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8 The Abstraction Principle

The second fundamental principle of (what was later to be called) 
naïve set theory was the Abstraction or Comprehension Principle 
(AP). It can be expressed, via the notation with set abstracts introduced 
above, thus:

(AP1) { | ( )} ( )x y P y P xÎ « .

Translating into English, this says: “x is a member of the set of the Ps iff 
x is (a) P” (e.g., Jeffery Deaver is a member of the set of writers if and 
only if Jeffery Deaver is a writer). Otherwise, it can be formulated with-
out set abstracts, thus:

(AP2) ( [ ]),y x x y x$ " Î « a

where α is a metavariable for formulas of the formal language, that is, 
a placeholder for any of those formulas.22 Specifically, “α[x]” can be 
replaced by any formula with one free variable x (perhaps occurring 
more than once), expressing a property or condition on x.23 (AP2) thus 
says something like: “There’s a (set) y such that, for all x, x is a member 
of y iff x has the property (satisfies the condition expressed by) α[x].” 
(AP) was supposed to express the idea of set included in Cantor’s cel-
ebrated definition:

By an “aggregate,” we are to understand any collection into a whole M of 
definite and separate objects m of our intuition or of our thought.24

The basic insight was that any “collection into a whole” is a set, which 
means that any property P in (AP1), or any condition α[x] in (AP2), is 
taken as defining one. When we think of something as a thing of a 
 certain sort (and taking “sort” in a broad sense, not in the strict sense of 

22 In the following I will use Greek letters, sometimes as (meta-) variables for formulas 
(“for some formula α …”), sometimes as names of famous sentences, such as “the Gödel 
sentence γ ….” Again, context will disambiguate.
23 With the proviso: y must not be free in α(x).
24 Cantor (1895), p. 85.
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sortal concepts), at the same time we appear to think of it as being one 
of a group, which is itself a thing of a certain sort. More specifically, 
given any multiplicity with some characterizing condition, the 
Abstraction Principle seems to guarantee that there exists a set of all 
and only those objects, and that the set is itself an object. “Object” 
should be taken as meaning, more or less: something we can refer to as 
a unity, which is the subject of attributions and predications, and has 
properties. All this is intuitive if anything is.

But intuition betrays us. In fact, (AP) originated the major crisis in 
the foundations of mathematics – and the logical milieu in which Gödel 
grew up. Before we turn to this, we need a few more set-theoretic 
notions which will prove useful in the following.

9 Bytes of set theory

Another basic relation in set theory is that of inclusion, usually expressed 
by the symbol “⊆”. A set, say A, is said to be included in a set B if and only 
if each element of A is also an element of B. In this case, A is also called a 
subset of B. For instance: the set constituted by (all and only) the Germans 
is a subset of the set of Europeans, since all Germans are Europeans. The 
set of (all and only) AC Milan midfielders is a subset of the set of AC Milan 
players, and so on.

Never confuse ∈ and ⊆, that is, membership and inclusion. Juliette 
Binoche is a member of the set of Frenchmen, and since all Frenchmen 
are European, the set of Frenchmen is included in the set of Europeans. 
But the set of Frenchmen does not belong to the set of Europeans, for 
it is a set, not a European (the set of Frenchmen, being a set, is an abstract 
object: it is not a person, therefore it cannot be a European, even though 
its members, the Frenchmen, are Europeans). The membership relation 
can hold between objects and sets; the inclusion  relation can hold 
between sets. This does not rule out sets having other sets as members, 
as I have already said above. The fact that one can have sets whose mem-
bers are sets, that is, sets of sets, made set theory mathematically signifi-
cant from Frege and Russell’s viewpoint; their basic insight, as we shall 
see soon, was to define natural numbers precisely as sets of sets.

Another notion we will need in the following is that of ordered 
n-tuple: an ordered couple (or pair), triple, etc. I will write “<x1, …, xn>” 
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to signify an ordered n-tuple of objects x1, …, xn. n-tuples are said to be 
ordered because, unlike sets, the order in which the elements are listed 
matters: if x is different from y, <x, y> isn’t the same thing as <y, x>, 
whereas {x, y} is the same thing as {y, x}.25 For instance, the triple 
<Gottlob Frege, Juliette Binoche, Melbourne> is different from the  triple 
<Juliette Binoche, Melbourne, Gottlob Frege>.

One can define the Cartesian product of sets via the notion of 
ordered n-tuple; let us label it with the spot “·”. Given two sets A and B, 
their Cartesian product A · B is the set constituted by all and only the 
ordered couples whose first element is a member of A and whose sec-
ond element is a member of B. Generalizing, given n sets A1, … , An, their 
Cartesian product A1 · … · An is the set of all the n-tuples <x1, … , xn> 
such that x1 ∈ A1, x2 ∈ A2, … , and so on. One can build the Cartesian 
product of a set with itself, and in this case one talks of a Cartesian 
power: given a set A, its Cartesian square, A2, is the set of all the ordered 
couples of elements of A. Generalizing, the n-ary Cartesian power of a 
given set A, An, is the set of all the n-tuples of elements of A.

Never confuse Cartesian powers with power sets. The power set of 
a given set A, usually written as “P(A),” is the set of all subsets of A. For 
instance, given the set {Gottlob Frege, Juliette Binoche}, its power set is 
the following:

{∅, {Gottlob Frege}, {Juliette Binoche}, {Gottlob Frege, Juliette 
Binoche} }.

This is because (a) the empty set is included, by definition, in any set, 
and (b) each set is a subset of itself (although not, as is sometimes 
specified, a proper subset).

10 Properties, relations, functions, 
that is, sets again

In the following, I shall talk quite often of properties, relations, and func-
tions – mainly, although not only, of properties of numbers, relations 

25 The notion of ordered n-tuple can itself be defined in terms of sets, by means of a 
procedure due to K. Kuratowski. One can define <x, y> as the set { {x}, {x, y} }, and <y, x> 
as the set { {y}, {x, y} }.
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between numbers, and numerical functions. In mathematics, a function 
is just a correspondence between one or more numbers called argu-
ments (the input), and a unique number called the value (the output) 
given by the function for those arguments (the set of arguments of a 
function is usually called its domain, and the set of values associated 
with those arguments is usually called its range or its image).26 Sometimes 
people use “function” as a synonym for “operation,” and I will follow this 
usage. For instance, such an operation of elementary arithmetic as addi-
tion is a function: when I add 2 to 3 I have a unique value, that is their 
sum 2 + 3, that is 5, which corresponds to the two numbers 2 and 3 taken 
as arguments.

We can now begin to put to work our bits and bytes of set theory: it 
turns out, in fact, that the notions of (numerical) property, relation, and 
function can be captured set-theoretically. For instance, the property of 
being a  mammal, or that of being an odd number, can be associated 
with, or considered as, the sets of objects which enjoy the properties 
(the set of mammals, the set of odd numbers) and which constitute 
their extension. Therefore in the following I will often say, indifferently, 
that an object (an animal, a number) has a certain property, or that an 
object belongs to the set of all and only the objects having the property 
(the set of mammals, the set of odd numbers).

Similarly, an n-ary relation can be expressed set-theoretically as a set 
of ordered n-tuples: those between which the relation holds. For 
instance, one can take the binary or two-place relation between father 
and son (the relation … is the father of …) as the set constituted by all 
and only the ordered pairs whose first member is the father of the sec-
ond. The binary relation … is greater than …, holding between num-
bers, can be identified with the (infinite) set of all and only the ordered 
pairs of numbers, <m, n>, such that m is greater than n. The ternary or 
three-place relation … is halfway between … and … can be  considered 
as the set of ordered triples such that the first element of the triple is 
halfway between the second and the third (<Milan, the north pole, the 
equator>, for instance); and so on.

Also functions can be characterized by means of set-theoretical 
notions: there exists an easy inter-definability between functions and 

26 I’ll most often talk of total functions, that is, functions that are defined for all argu-
ments, that is, functions that assign a value to all of them. Functions that are undefined 
for some arguments are called partial functions.
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sets. With each n-ary relation – say R (which, as I have just said, can be 
considered set-theoretically as a set of ordered n-tuples) – one can 
 associate a function with n arguments – say cR – called its characteristic 
function. This is a function, whose range is {1, 0}, such that:

1 1

1

If , , R,then ( , , ) 1
Otherwise : ( , , ) 0 .

n n

n

x x c x x
c x x

< ¼ >Î =
¼ =

R

R

: …

That is to say: the characteristic function cR for the relation R is the 
function such that, if R holds between the objects x1, … , xn (in this 
order), then cR gives 1 as its value for the arguments x1, … , xn (in 
this order); if, on the other hand, the relation does not hold between 
those objects, then cR gives 0 as its value. Properties are just a special 
case: given a set M, corresponding to a property, its characteristic 
 function is the unary function cM, such that:

M

M

If M, then : ( ) 1
Otherwise : ( ) 0.

x c x
x

Î =
=c

That is, it is the function which maps the given argument x to 1 if x has 
the property at issue (that is, if x belongs to M), and to 0 if x does not 
have the property at issue (does not belong to M).

Conversely, with each n-ary function f one can associate an n+1-ary 
relation Gf , usually called its graph relation. This is the relation holding 
exactly between the arguments of the function and its values, that is, a 
relation such that:

1 1 1 1, , , G iff , ,n n n nx x x + +< ¼ >Î =( … ) .f f x x x

When all’s said and done, discourses on properties and relations on the 
one hand, and functions on the other, are reducible to each other. We 
can talk only in terms of sets by explaining away functions in terms of 
their graph relations; or, conversely, we can talk only in terms of 
 functions by explaining away sets (that is, properties and relations) in 
terms of their characteristic functions.

If you are beginning to wonder what is the purpose of all this 
 apparatus, remember: we’re still just setting up the instruments to 
 perform the Gödelian symphony!
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11 Calculating, computing, enumerating, 
that is, the notion of algorithm

Talking about setting up instruments, we shall now take on board 
another group of definitions, whose importance for our Gödelian 
piece of music cannot be overestimated. All the notions we will 
meet in this section are related to that of algorithm. Roughly, this is 
the name given in mathematics to a mechanical (also called effec-
tive) procedure which, when applied to a number or to a sequence 
of numbers, terminates after a finite number of steps, providing 
some information on the number or sequence of numbers.27 Such a 
procedure has to be specifiable as a finite series of totally explicit, 
simple, and deterministic instructions. The instructions must tell 
you what is to be done at each step of the procedure, so that no 
creativity, ingenuity, or free choice is required. The procedure is 
labeled “mechanical” to evoke the idea that a machine, such as a 
computer, could carry it out: in fact, the connection is so close that 
I will often use computers as intuitive examples when explaining 
algorithmic notions.

Now a (say unary) function f is said to be (effectively) computable 
when there is some algorithm that in principle allows to calculate its 
value for each of its arguments – that is, when it is possible to specify 
a series of instructions (for instance, in the form of some computer 
software) following which one can, in principle, determine mechani-
cally and effectively the output f(x) for each input x. Generalizing to 
functions with n arguments is straightforward. For instance, addition is 
a two-argument function which is computable in this sense: at school 
we learn algorithms, that is, mechanical procedures, to calculate, given 
two numbers m and n, their sum m + n.

A set M is called decidable (sometimes also computable) if, for every 
x, some algorithm provides a positive or negative answer to the ques-
tion “x ∈ M?” – that is, the algorithm allows one to decide, in principle, 
if x belongs to M or not (for instance, one can set up a computer so 

27 Sometimes the term “algorithm” is also used in the literature to name procedures 
that do not necessarily terminate. As we shall see, discourses concerning algorithms can 
be applied also to domains that are not, so to speak, “immediately” numerical – thanks 
to Gödel’s work. We will learn these things little by little, in any case.
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that, once asked “x ∈ M?”, after a finite amount of time it will answer 
with a “Yes” or a “No”).

Equivalently, one will claim that a property is decidable in the case 
when some algorithm can establish whether a given object x has that 
property or not. For instance, we have arithmetical algorithms to decide 
whether a given natural number has the property of being divisible by 
2, whether it has the property of being prime (i.e., it belongs to the set 
of prime numbers, the numbers – bigger than 1 – divisible only by 
themselves and by 1), and so on. Also in this case, generalizing to rela-
tions is straightforward: an n-ary relation R is decidable if and only if, 
for each n-tuple <x1, …, xn>, there is some algorithm for deciding …; 
and so on. The terminology is extended to predicates, that is, to those 
linguistic entities that denote decidable sets (properties, relations).

One could describe the notions of computable function and decida-
ble set (property, relation) in more verbose and exhaustive ways. But 
when the chips are down, it remains the case that we are dealing with 
intuitive and, in this sense, slightly vague notions. One may wonder, in 
fact, which operations and instructions are intrinsically simple, and 
which combinations of such operations or instructions are admissible in 
order to preserve the mechanical nature of the procedure. Later in the 
development of this book, we will see that the mathematical market 
offers different theories taken as delivering precise and systematic 
accounts of the notion of algorithm (computable function, decidable 
set). We will mainly focus on one of them: the theory of recursive 
 functions. For the time being, however, we can stick to our quick, intui-
tive characterization. This should be enough to immediately understand 
that a set (a property, a relation) is decidable if and only if its charac-
teristic function is effectively computable. If there exists an algorithm 
to decide, for any x, whether x belongs to the given set M or not, then 
that algorithm allows us to figure whether the value of the correspond-
ing characteristic function cM(x) is 1 or 0. Conversely, a function is (effec-
tively) computable if and only if its graph relation is decidable. Discourses 
concerning the computability of functions and the decidability of sets 
(properties, relations), therefore, can be phrased only in terms of func-
tions, or only in terms of sets (so I will sometimes talk only of sets, some-
times only of functions, and sometimes of both kinds of things).

A set M is called enumerable or effectively enumerable (sometimes 
computably enumerable, or also semi-decidable) when there is a 
mechanical procedure such that, given some object x, if x belongs to M, 
the procedure will deliver a “Yes” as its output after a finite amount of 
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time; but if x does not belong to M, an answer may not be forthcoming 
(extending to relations is easy also in this case). This means that, with 
such sets as M, there is a mechanical procedure that generates all the 
elements of the set (the objects having the relevant property, etc.). For 
instance, one can program a computer to compute, and print out one 
after the other, the (names of the) members of the set – not taking into 
account the limitations due to time, resources,  available memory, etc.

The notions of decidable and of (computably) enumerable or semi-
decidable sets are not coextensive: as we shall see, there exist (comput-
ably) enumerable or semi-decidable sets that are not decidable (and 
some such set will play a major role in the development of the Gödelian 
symphony). The two notions are, nevertheless, closely connected in 
two important ways.

 (1) The first connection is the following: every decidable set is 
enumerable. If we have an algorithm, that is, an effective procedure, to 
decide in a finite number of steps whether a given x is a member or 
element of a given set M or not, then certainly we also have a mechani-
cal procedure to generate all the (names of) the elements of M one 
after the other (once again, the generalization to relations is obvious). 
We can make the point quite simply by resorting, again, to the example 
from computers: if we can program a computer so that, for each x, it 
can decide in a finite amount of time whether x ∈ M or not, then we 
can certainly program it in such a way that (a) the computer prints (the 
name of) x when, once the computing process is done, it turns out that 
x actually belongs to M, and (b) the computer discards x if it turns out 
that x doesn’t belong to M. This way, the computer will print in 
sequence, and therefore enumerate in a list, all the elements of M.
 (2) To understand the second link between decidable and (com-
putably) enumerable sets, let us consider that, given any set M, by the 
(set-theoretic) complement of M is meant the set of all and only the 
x such that x Ï M (let us label such a complement set “−M”).28 Now 

28 Mainstream set theories usually make or presuppose a distinction between the abso-
lute complement of M and its complement relative to a pre-specified set (say U) of which 
M is a subset. The relative complement of M with respect to U is the set of all elements of 
U that are not elements of M. The distinction between absolute and relative complement 
is required because in most of the current theories an absolute complement of a given 
set M, that is, the set of just anything not belonging to M, cannot be admitted. This is one 
of the consequences of the set-theoretic paradoxes we are about to meet.
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the second connection goes like this: a set is decidable if and only 
if both the set and its complement are enumerable. First, if a given 
set M is decidable, then its complement −M obviously is too; there-
fore both sets are computably enumerable because of connection 1 
(that is, any decidable set is enumerable). Second, if both a set M and 
its complement are enumerable, this means that (a) there exists a 
mechanical procedure to produce all the elements of M in succes-
sion – a procedure which sooner or later will let us know (with a 
“Yes,” or by printing its name, etc.) if a given x belongs to M, although 
it will remain silent if x does not; and (b) there exists a mechanical 
procedure to produce all the elements of −M in succession – a pro-
cedure which sooner or later will let us know if a given x does not 
belong to M, although it will say nothing if x belongs to it. Therefore 
a computer will always be able to decide, given some object x, 
whether x Ï M or not, by combining the procedures (a) and (b), 
 perhaps by alternating one step of the former with one step of the 
latter. The computer, that is, applies a step of the procedure which 
enumerates the element of M: if x shows up, x belongs to M and we 
are home already. Otherwise, it applies a step of the procedure which 
enumerates the elements of −M, and if x shows up now, then x Ï M. 
If x didn’t show up either way, the computer applies a second step of 
the first procedure; then a second step of the second one; and so on. 
Eventually, x will show up as belonging to M or to −M, and the com-
puter will let us know, or print, its positive or negative answer.

I have used several times the expression “in principle.” When the 
general notions of algorithm, computable function, etc., are specified, 
one typically disregards the factual and practical limitations of the 
 calculus. Pragmatic  considerations concerning the time required to per-
form the calculus successfully, the energy expended in the process, the 
amount of memory a computer would need to carry it out, or the paper 
needed to print the output, and so on, are not taken into account: the 
general, abstract notion of algorithm or effective procedure is, in this 
sense, deliberately “idealized.” Even the systems of symbols actually 
adopted in the calculus are irrelevant – which does not mean, of course, 
that calculating with certain notations may never turn out in practice to 
be more convenient than with certain others. The symbols which 
 designate numbers are called numerals, and should not be confused 
with the numbers themselves. A numeral is not a number, but a linguistic 
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sign designating a number – and the same number, of course, can be 
 designated by different linguistic signs. For instance, in our ordinary 
written language we can designate the number four with such numer-
als as “4” or “four.” But we could adopt different notational conventions: 
for instance, we could express the number n by using n strokes, so the 
number four as | | | | (this is the so-called tally notation). Now, it is 
 certainly easier for us to add 34 to 8 than XXXIV to VIII. But translating 
from one notational system to another is itself an effective procedure, 
so the fact that numbers (arguments, values, etc.) are presented in some 
numeric notation or other changes nothing from the viewpoint of the 
idealized notion of algorithm.

12 Taking numbers as sets of sets

Back to history now. We have seen how Peano axiomatized arithme-
tic via the three basic notions and the five axioms which now bear 
his name. You should remember that the notion of (natural) number 
was taken as a primitive, intuitive one. But the logicist enterprise 
pursued by Russell and Frege required numbers themselves to be 
reduced to something even more fundamental and basic: specifically, 
it required numbers to be definable in terms of sets, and of proper-
ties of or relations between sets. The basic idea was to the effect that 
numbers be taken as properties of sets, and therefore (given that, as 
we have seen, properties can be reduced to sets in their turn) as sets 
of sets.

To grasp the basic intuition, we have to buy the following definition: 
two given sets A and B are said to have the same cardinality, or to be 
equinumerous, when it is possible to put their elements in a one-to-
one connection – that is, it’s possible to pair each element of A with 
one and only one element of B, so that nothing is left “unpaired.” In 
this case, one also claims that there is a one-to-one correspondence or 
mapping between the two sets, or a bijective function, or bijection, pair-
ing each element of A to each element of B. For instance, assume that 
A is the set of all husbands, and B is the set of all wives, and assume also 
that the only admissible marriage prescribes monogamy. Then we know 
that A and B have the same number of elements, even when we don’t 
know exactly what that number is, that is, how many married couples 
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there are. The reason is precisely that we know we can pair one-to-one 
each husband to the respective wife, so that no husband remains with-
out wife, and no wife without husband: there is a one-to-one mapping 
between the two sets.

Now we can define the number of a given set as the set of all sets 
equinumerous to it. Any number is then characterized as a property of 
sets which have the same cardinality, and therefore as a set of equinu-
merous sets. For instance: which feature is shared by the set of Hercules’ 
labors, the set of Apostles, and the set of months in a year? Twelve 
immediately comes to mind, and the number twelve can be seen as 
the property of all and only the sets which are equinumerous to those 
sample sets, and therefore as a set of sets. When we claim that 
the months in a year are twelve, we are attributing a property not to 
the months taken individually (January, February, etc.) but to their set: 
it’s a property of that set, and of various others (such as the set of 
Apostles, etc.); so it’s a set of sets. This is how discourses on numbers 
can be reduced to discourses on sets of sets. And the notions of set, and 
of belonging to a set, unlike that of number, appear to be definitely 
primitive ones, irreducible to anything still more fundamental.

This reduction of numbers to sets was just the first half of the story 
for the logicist project. The second half was to consist in obtaining all 
of mathe matics from the primal set-theoretic notions, taken in those 
times as logical concepts, by means of purely logical inferences. 
Logicists aimed at deriving mathematics from logic via deductive 
chains going from the premises of symbolic logic, down to geometry, 
through finite and infinite arithmetic.

But the logicists’ confidence was doomed to be deeply shaken.

13 It’s raining paradoxes

Russell discovered that set theory, which was supposed to provide the 
foundational machinery for arithmetic (and therefore for the whole of 
mathematics), actually provided a devastating contradiction. In fact, set 
theory quickly found itself caught in a storm of contradictions. Let us 
see how.

All the things I have been saying so far on sets will be needed in the 
remainder of this book; and almost all the set-theoretic notions  presented 
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so far are nowadays customary mathematics. But at least one of the 
principles we have met brings trouble. This is the Abstraction or 
Comprehension Principle (AP): no matter exactly how one phrases it, 
(AP) appears to grant that to any property or condition there corre-
sponds a set. This seemingly intuitive and obvious idea produces  various 
set-theoretic paradoxes in the so-called naïve (version of) set theory. 
These paradoxes struck the foundations of mathematics as an earth-
quake at the beginning of the twentieth century.

The simplest and most celebrated of the set-theoretic paradoxes hit 
Frege on June 16, 1902, in the form of a letter sent by Russell – a letter 
which belongs to the history of contemporary thought. The paradox 
exploits a bunch of beautifully simple insights. First, it is intuitive that 
some sets do not belong to themselves – do not include themselves as 
members or elements. The set of Frenchmen, for instance, is not French 
itself (it’s not a person of French nationality, for it is a set, an abstract 
object). Therefore such a set does not belong to the set of Frenchmen. 
The set whose only member is Juliette Binoche is not Juliette Binoche 
(a French actress, thank God, is not a set), so it does not belong to itself 
either. But, still intuitively speaking, it seems that some sets do belong 
to themselves: the set of all sets with more than one element, for 
instance, has more than one element, so it should be a member of itself. 
The set of anything but Juliette Binoche is not Juliette Binoche (thank 
God), so it should also be a member of itself. (Don’t you scent in these 
self-membered sets the fragrance of self-reference? Recalling the Liar, 
you should also smell the danger.)

The sets which don’t belong to themselves are often called “normal.” 
This leads us naturally to consider the set of all normal sets, which is 
usually called “R” after Russell:

R x x x= { Ï }| .

Translating into English: “R is the set of all and only those things x that 
are not members of themselves.” This set of non-self-members originates 
the paradox that caused Frege’s sorrow – with the decisive help of the 
Abstraction Principle. Since the schematic α[x] in (AP2) stands for any 
condition or property, we can take precisely the property of not being 
a member of oneself, x Ï x, and we get:

( ).y x x y x x$ " Î « Ï
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Translating into English: “There is a (set) y, to which any (set) x belongs 
if and only if x does not belong to itself.” So there exists a set and, by the 
Extensionality Principle, the set, corresponding to such a condition, i.e., 
y is precisely R:

( R ).x x x x" Î « Ï

Translation: “For all x, x belongs to R if and only if x does not belong to 
itself.” Now, R in its turn is something about which we can speculate, 
given any property or condition, whether it has that property or satisfies 
that condition, or not. This is the case also with the property of not being 
a member of oneself. Since what holds for any x holds for R, we have:

R R R RÎ « Ï ,

that is, R belongs to itself if and only if it doesn’t. This is “the contradic-
tion,” as Russell called it (it has the shape of a biconditional, but we eas-
ily get an explicit contradiction of the form R ∈ R ∧ R Ï R via elementary 
logical steps). It follows via simple reasoning from the Abstraction 
Principle, which was assumed to be a quite obvious basic principle of 
set theory. Logicists discovered that if (AP) is assumed without restric-
tions, allowing any property or characterizing condition to deliver the 
corresponding set, then the consideration of some properties, such as 
non-self-membership, leads straightforwardly to paradoxes.

14 Cantor’s diagonal argument

Russell’s paradox is a simplified variant of a paradox deducible within 
naïve set theory and known to Cantor since 1899, even though it was 
published only in 1932. This begins with consideration of the univer-
sal set, which is most often indicated (after Peano) as V. V is usually 
characterized by means of a condition anything is expected to satisfy, 
such as self-identity:

29V { | }.x x x= =

29 See e.g. Fraenkel, Bar-Hillel, and Levy (1973), p. 124.
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This is just the set of everything. But V can be taken as the set of all sets 
if we take a pure theory of sets, that is to say, if we assume that the 
domain described by the theory does not include Urelemente, objects 
that are not sets. It is not difficult to have V afford us a contradiction, via 
a line of reasoning just slightly more complex than that involved in 
Russell’s paradox. To obtain this new paradox, one has to consider 
Cantor’s Theorem: the fundamental theorem due to Cantor, claiming that 
the power set P(A) of any given set A (that is, as we know, the set of all 
subsets of A) has larger cardinality than (so is “bigger than”) A: P(A) > A.

The key to the theorem lies in Cantor’s ingenious construction called 
the diagonal argument. Cantor initially used the argument to show 
that the set of natural numbers is not the largest infinite set, for it is 
exceeded by the set of real numbers (informally, the numbers repre-
sented by an infinite decimal expansion, such as the famous π: 
3.141593…). Before Cantor, mathematicians were aware of the fact 
that the real numbers are somehow more numerous than the natu-
rals,30 even though there are infinitely many natural numbers. But to 
make full sense of the intuition one has to clarify the idea that one 
infinity can be “greater” than another, and therefore not “equinumer-
ous” with it. It was precisely the idea of equinumerous sets, that is, of 
sets whose elements can be paired one-to-one via a bijective corre-
spondence, that provided the required clarification.

Cantor’s diagonal argument begins by assuming, for the sake of a 
reductio ad absurdum (that is, a refutation of the assumed thesis), that 
there is such a one-to-one mapping between natural and real numbers. 
An infinite set whose members can be paired one-to-one with the 
 naturals is said to be countably infinite, or (d)enumerably infinite, or 
denumerable. The elements of such a set can theoretically be arranged 
in a list – an infinite one, of course, and therefore one that we could 
never finish writing down in practice, but such that (the name of) 
every member of the set will appear sooner or later in the list, an 
acceptable list being such that each member appears as the nth entry 
for some finite n.

Now, let us assume that the set of real numbers is enumerable. This 
means that we could have a list of all the (numerals for) real numbers, 

30 Or than the rational numbers, which, despite having the property of density (that is, 
the property that between any two rationals there sits another – infinitely many others, 
in fact) are “as many as” the naturals.
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which would look like an “infinite square” or matrix, such as the 
following:

1 3 0. 3 3 3

1 2 0. 5 0 0

0. 3 1 2

0. 7 0 7

= ¼
= ¼

Ö = ¼
Ö = ¼
¼ = ¼ ¼ ¼ ¼ ¼ ¼

3

0

6

1

0.1

0.5

Of course, we could list the real numbers in a different order, thereby 
having different squares, but this is irrelevant. What matters is that, 
were such a list possible, we would have enumerated them all. Then we 
could easily have each item correspond one-to-one to a natural number. 
But consider the real number – call it r – whose decimal expansion is 
as follows: the first decimal digit is equal to the decimal digit of the first 
number in the list, increased by 1 (when we have a 9, we always turn 
it into a 0); the second digit equals the second digit of the second 
number in the list, increased by 1; … ; the nth digit equals the nth digit 
of the nth number in the list, increased by 1; and so on. We are inter-
ested in the bold-faced decimals in the square (which make us see why 
Cantor’s argument is labeled “diagonal”). So the number at issue is 
r = 0.4172… . Now r cannot be in the list: for it differs from the first 
number in the list at least in the first decimal; it differs from the second 
at least for the second decimal; …; from the nth at least for the nth 
decimal; and so on. The list does not include r, and so is incomplete, 
against the initial assumption. The procedure holds for whichever way 
one tries to constrict the real numbers in a list: we can always produce 
an element (whose identity, certainly, will vary according to the way in 
which the list is constructed) that cannot appear as an item in the list. 
All in all, the set of real numbers is not enumerable: it is actually larger 
than the set of natural numbers.

But this is just the beginning. Given any infinite set, Cantor’s Theorem 
in its general version tells us that we can always have a larger infinity: we 
just have to consider the power set of the infinite set we began with.31

31 Here is a general account. I have said that two sets x and y have the same cardinality 
(let’s write: x @ y), or are equinumerous, iff there is a one-to-one correspondence 
between them: a function mapping each member of x to a member of y, and such that
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Now consider the universal set V, i.e., the set of all (pure) sets, and 
take its power set P(V). Since all members of P(V) are sets, P(V) is a 
subset of V. But V is itself a subset of P(V). Therefore, P(V) = V. So there 
is a one-to-one correspondence between V and P(V) (namely, iden-
tity), and P(V) ≅ V. But Cantor’s theorem rules this out for any set, so 
we have:

P(V) V (P(V) V).@ Ù Ø @

Even more rapidly: given Cantor’s theorem, P(V) is bigger than V. 
This is inconsistent with the fact that V is, by definition, the most 

each member of y is mapped to by a single member of x. Then, x is bigger than or equal 
to y (x ≥ y) iff there is a subset of x which has the same cardinality of y; and x is bigger 
than y (x > y) if x ≥ y but it is not the case that x @ y. Now Cantor’s Theorem says that 
there are no functions from x onto its power set P(x) (the set of all subsets of x), that is 
to say, P(x) has a greater cardinality than x: P(x) > x. It is easy to see that P(x) ≥ x; the 
tricky part consists in showing that it is not the case that P(x) @ x. Cantor’s proof begins 
by assuming – again, for the sake of a reductio – that there is a one-to-one function f 
from x to P(x), so that they have the same cardinality. Now the diagonal argument goes 
as follows: consider the set z of all the elements of x that are not members of the set 
assigned to them by f – so z = {y ∈ x | y Ï f(y)}. z is a member of P(x), since it is a subset 
of x. So there must (by supposition) be an element w of x, such that z = f(w). The ques-
tion is: is w a member of z, i.e., f(w), or not? We have:

( ) { | ( )} ( ).w w w y x y y w wÎ « Î Î Ï « Ïf f f

Given the Law of Excluded Middle, either w is a member of f(w) or not, hence:

( ) ( ).w w w wÎ Ù Ïf f

The contradiction so deduced leads us to conclude that there cannot be such a one-to-
one mapping. Roughly, the strategy is always the same: given a group of objects of a 
certain kind, the diagonal construction allows us to define an object that cannot be in 
the group “by systematically destroying the possibility of its identity with each object 
on the list. The new object may be said to ‘diagonalise out’ of the list” (Priest (1995), 
p. 119), as happened with our allegedly complete enumeration of the real numbers 
with respect to the number r, which was so constructed as to be distinct from each 
item in the list.
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 inclusive of all sets: V would have to be bigger than itself! And this is 
Cantor’s paradox.32

Another paradox I shall introduce very quickly is Burali-Forti’s. This 
is important both historically, since it was the first to be discovered, 
and theoretically, since its proof is a direct one (no excluded middle is 
required). The paradox concerns ordinal numbers. Cantor’s initial idea 
was that ordinals should index well-ordered sets. A well-ordered set is 
a set such that each of its non-empty subsets has a least element 
( following von Neumann’s later idea, an ordinal can correspond to the 
set of the preceding ordinals: so if 0 is ∅, 1 is {0}; 2 is {0, 1}; 3 is {0, 1, 2}; 
and so on). Now consider the set Ω of all ordinals. One can give inde-
pendent arguments for both Ω ∈ Ω and Ω Ï Ω. By construction, Ω is 
itself well-ordered, so since any well-ordered set has an ordinal number, 
Ω must have an ordinal too. However, this ordinal must be greater than 
any member of the set, and therefore it cannot be in the set.33

15 Self-reference and paradoxes

I have dealt with the details of the proofs quite quickly and informally, 
but this rapid presentation of the most famous set-theoretic paradoxes 
might nevertheless look a bit technical. What matters to us is that these 
paradoxes were at the origin of the crisis in the foundations of mathe-
matics at the beginning of the twentieth century. The correspondence 
with Dedekind shows that Cantor was aware of the paradoxes – 
 particularly of the fact that the universal set was an anomaly with 
respect to the diagonal argument. I should also add that he wasn’t too 
bothered. Being a religious man, he had a certain tendency to see the 
whole situation with a mystical eye:

32 Thus Fraenkel, Bar-Hillel, and Levy (1973), p. 7. Cantor’s paradox is nothing but 
Russell’s, once one chooses as f the identity function (therefore, sometimes scholars 
speak of a unique Cantor–Russell paradox). In this case, f (w) just is w, i.e., {y ∈ x | y Ï y}, 
and the thing goes like:

{ | } .w w w y x y y w wÎ « Î Î Ï « Ï

33 See ibid., p. 8.
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I have no doubt at all that in this way we extend ever further, never 
reaching an insuperable barrier, but also never reaching any even 
approximate comprehension of the Absolute. The Absolute can only be 
recognized, never known, not even approximately.34

But Russell (who was not a man of faith) saw the implications of 
Cantor’s theory of infinite sets and numbers going down in flames. 
I have claimed that the distinction between semantic and set-theoretic 
paradoxes, due to Ramsey, came after the publication of Russell and 
Whitehead’s Principia mathematica. Russell believed that all the logi-
cal paradoxes had their root in some form of circularity, or self- 
referentiality, which he had named “reflexiveness”:

In all the above contradictions … there is a common characteristic, 
which we may describe as self-reference or reflexiveness. The remark of 
Epimenides must include itself in its own scope. If all classes, provided 
they are not members of themselves, are members of [R], this must also 
apply to [R]; and similarly for the analogous relational contradiction … In 
the case of Burali-Forti’s paradox, the series whose ordinal number causes 
the difficulty is the series of all ordinal numbers. In each contradiction 
something is said about all cases of some kind, and from what is said a 
new case seems to be generated, which both is and is not of the same 
kind as the cases of which all were concerned in what was said.35

Russell’s solution came with his theory of logical types, which he pro-
posed in various papers, and incorporated in the Principia. The theory 
developed a rigid hierarchy of types of objects: individuals, sets, sets of 
sets, sets of sets of sets … (something quite similar to the Tarskian hierar-
chy of metalanguages).36 What belongs to a certain logical type can be 
(or not be) a member only of what belongs to the immediately superior 
logical type. The membership relation can hold, or fail to hold, only 
between an individual and a set of individuals; or between a set of indi-
viduals and a set of sets of individuals; and so on. The construction allows 
any set to contain only things of one order: it allows only sets composed, 
so to speak, of objects that are homogeneous with respect to the hierar-
chy. Therefore, there is no set of all sets, or of all ordinals, etc. Such sets 

34 Hallett (1984), p. 42.
35 Russell and Whitehead (1910–25), pp. 61–2.
36 Of course, the historical succession is reversed with respect to my exposition. Tarski 
presented his theory of truth and his hierarchic approach several years after Russell.
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would have to be constituted by members of totally heterogeneous kinds, 
that is, by things belonging to different levels in the hierarchy. As is clear, 
the whole construction aims at ruling out self-referential expressions 
such as “x ∈ x”, or “x Ï x”. These are now rejected as ill-formed: they are 
taken as simply meaningless. For instance, Russell’s paradox disappears 
because a set can neither be, nor not be, a member of itself. For the same 
reason, Cantor’s paradox disappears because there can be no set V of all 
sets: we cannot even say within the theory that a set contains all sets.

Other rigorously axiomatized theories of sets, developed at the same 
time as Russell’s as well as later, are based upon a general principle that 
has come to be called the principle of the limitation of size, and which, 
roughly, prohibits some very comprehensive sets. The mainstream and 
most popular axiomatic set theory nowadays is that proposed by 
Zermelo, developed and modified by Fraenkel, known as ZF, or as 
ZFC,37 depending on whether or not it includes a set-theoretic axiom 
called the Axiom of Choice (but we can skip the details). Other axi-
omatic theories, such as those proposed by von Neumann, Bernays, 
and Gödel himself, introduce a distinction between sets and classes.38 
It is claimed that classes, as the extensions of some very comprehen-
sive predicates, cannot be taken as full-fledged mathematical objects 
capable of set membership. Things can be members of sets or classes, 
and sets can be members of classes, but classes can be members of 
nothing. Most of these theories, despite avoiding the known paradoxes, 
have to abandon intuitively plausible or philosophically important sets, 
such as the total set V (an exception is Quine’s system NF, which how-
ever is not particularly popular among mathematicians). In all the 
mainstream accounts, the Abstraction-Comprehension Principle has to 
go, and its work is now carried out as far as possible by weaker and 
more limited principles. But we don’t need to go into the details of axi-
omatic set theories, for now we have more or less all the set-theoretical 
notions required to understand the rest of this book.

Before we begin to play the Gödelian symphony, however, we have to 
take into account another chapter in the story of the crisis in the foun-
dations of mathematics, concerning a development indispensable to an 
understanding of Gödel’s position: the advent of Hilbert’s Program.

37 In the following I will use boldfaced capital letters to label famous formal systems 
and theories.
38 The terminology is not uniform: sometimes in this context sets are also called 
classes, and classes in the strict sense are called proper classes.
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