
CHAPTER 1

Fundamentals

1.1 Motivation for this book

Hydrology is the study of water, and in the International Glossary of Hydrology

(UNESCO/WMO 1992) it is defined as ‘Science that deals with the waters above

and below the land surfaces of the Earth, their occurrence, circulation and distri-

bution, both in space and time, their biological, chemical and physical properties,

their reaction with their environment, including their relation to living beings’.

The movement and transformation of water within these processes as described

in the definition, as a fluid, will obey the physical rules of fluid mechanics. Fluid

mechanics, being a quantitative topic, requires heavy use of mathematical con-

cepts, and these concepts are therefore naturally found in hydrology. These quite

basic physical principles can be used effectively to model and hence predict and

understand the behaviour of water under many useful circumstances.

Nonetheless, despite the essentially predictable behaviour of water that

justifies the use of mathematical principles, often, the flow of water in practice

is subject to forces that are beyond our ability to measure with any precision:

for example, water in the atmosphere is heated, cooled, mixed with numerous

gasses, and transported across large distances under the action of turbulent winds.

Eventually, water condenses out of the atmosphere in the form of precipitation

but exactly when, where, and how much water falls to the ground under gravity

is often extremely uncertain. This uncertainty usually makes it useless to apply

the basic physical principles of fluid mechanics to the flow of water in these

circumstances. For this reason, hydrologists often turn to statistics, which can

be considered as the application of mathematics to uncertain phenomena.

Quantitative hydrology is, therefore, based on an interesting mix of the two

great branches of applied mathematics: physical laws (mathematical physics)

and probability (mathematical statistics).

Mathematics is, perhaps, the archetypal example of a composite subject. This

means that more complex concepts are built from many simpler ones, and so, in

order to properly understand the more complex topic, it is necessary to under-

stand the simpler ones from which it is constructed. Not all subjects are like this:

it is possible to gain a deep understanding ofmany aspects of plant biologywithout
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having to know anything aboutmammals, for instance. Butmathematics is unfor-

giving: one cannot understand the true meaning of equations of fluid transport

without knowing calculus. Unfortunately, for many reasons, the chance to learn

the basic mathematical concepts is not afforded to every student or practitioner

of hydrology, and many find themselves at a loss when presented with more

complex mathematical concepts as a result.

This book is therefore, intended as a guide to students and practitioners of

hydrology without a formal or substantive background in either mathematical

physics, or mathematical statistics, who need to gain a more thorough grounding

of these mathematical techniques in practical hydrological applications.

1.2 Mathematical preliminaries

This book refers extensively to many essential, but nonetheless quite simple,

mathematical concepts; we introduce them here. It is assumed that readers will

refer back to this section on reading the later material.

1.2.1 Numbers and operations
Usually when one thinks of ‘mathematics’, one thinks of numbers, along with

operations such as adding, subtracting, multiplying (forming the product) and

dividing them. Numbers and operations are intimately related: for example, with

the simplest of numbers, the whole numbers, we can answer questions such as

‘what number, when added to 5, gives 10?’ Symbolically, we wish to find the

x that satisfies the equation x +5=10, the answer being x =5. But some simple

questions involving whole numbers cannot be answered using whole numbers,

for instance, the problem ‘what number, when added to 10, gives 5?’, or

x +10= 5, has no whole number answer. To solve such a problem, we need to

include negative numbers and zero; mathematicians call these whole numbers that

can be negative, zero, or positive, the integers (all the positive whole numbers are

included in the integers). Still, when faced with whole number problems invol-

ving multiplication, integers may not suffice. For example, the problem ‘what

number, when multiplied by 5, equals 1?’, or 5x =1, has no integer solution.

The answer x =1 5 is called a rational number and all the integers are included

in the rationals. Finally, it turns out that there are yet more problems involving

multiplication that cannot be solved using rationals; consider the problem ‘what

number, when multiplied by itself, equals 2?’ The corresponding equation

x × x =2 is solved by the square root of 2, x = 2, which is an example of a real

number. The set of real numbers includes all the rationals and numbers such as

π=3 14159… (which can never be written out to full precision because it has

an infinite number of decimal places).With the set of all real numbers, a very large

set of problems involving numbers and operations that do actually have a solution

can be answered.
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It is surprising that even in apparently simple situations such asmultiplication

and addition with whole numbers, that there are equations that have no solution

in the rationals, let alone the integers and whole numbers. Such equations

baffled mathematicians until the 19th century when a logically consistent foun-

dation for the real number system was devised. But real numbers do not even

suffice for all whole number equations! Consider the equation x × x +2= 0;

because squaring any number is always positive, there does not seem to be any

way to choose a number for x that, when squared, gives a negative number to can-

cel the 2 and satisfy the equation. Nevertheless, it turns that a consistent solution is

possible using complex numbers; although abstract, these can be useful in physical

problems.

These days, because of their practical utility, real numbers tend to be the

lifeblood of quantitative sciences including hydrology. For instance, the average

amount of rainfall occurring in one day in one location is often given as a real

number in millimetres, to a couple of decimal places where such precision is

appropriate. Therefore, most practical problems in hydrology involve solu-

tions that are real numbers given to some limited accuracy appropriate to the

problem.

1.2.2 Algebra: rearranging expressions and equations
An important step in the historical development ofmathematics was the leap from

dealing with specific numbers, to dealing with any number by using an abstract

symbol to stand for that number (this conceptual leap is usually credited to the

great Islamic mathematicians of the medieval period). This is the topic of algebra:

the study of what happens to these symbols as they are manipulated as if they

were numbers. Most quantitative problems in the physical sciences can be

expressed and solved algebraically.

Algebra involves very simple rules. Although the rules themselves are ele-

mentary, the consequences of those rules can be extremely complex; in fact,

much research still goes on today to understand the full, logical consequences

of algebra. For this reason, one should not underestimate how difficult it can

be to correctly derive the consequences of any particular application of algebra

in practice, and it is very much worth the effort to become as familiar as possible

with the basic rules.

Today, one usually writes something like x or ywhen one wants to refer to an

abstract number; these are also called variables (as opposed to specific numbers,

which are constants). Then the notation x + y+1 is an algebraic expression using these

two variables and the constant 1.

Expressions on their own do not ‘do’ anything; to make expressions useful

we need to connect them together into equations, for instance, the equation

x + y+1=0 states that if the variables x and y are added to the constant 1, then

the result must be equal to zero. Alternatively, by manipulating (rearranging) this

equation, we can get the exactly equivalent statement x + y= −1, which is
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obtained by subtracting 1 from both sides. This is an example of a basic rule in

algebra: in order to rearrange an equation, one has to apply the same operation

to both sides of an equation, step by step. This rule ensures that before and after

the manipulation, the equation still has the same mathematical meaning.

These algebraic operations come in pairs – subtraction is the inverse of addition

and division is the inverse of multiplication.What this means, roughly, is that sub-

traction ‘undoes’ addition and division ‘undoes’multiplication. So, actually, what

one is doing when rearranging an equation, is applying a sequence of inverse

operation to both sides of an equation.

Rearranging equations is fundamental to the way in which answers to math-

ematical questions are obtained, often by finding the actual number (value) of

some variable. For the equation x + y= −1, we only know the value of x and y

implicitly (through the relationship created between them by the equality). How-

ever, it is often difficult (if not impossible) to find the value of x from an implicit

equation. In this case, the solution is easy of course: rearrange the equation to find

x alone on one side of the equation, for instance, x = −y−1 (note that it does not

matter on which side x appears). Then, we can usually find a unique value for x,

because the right-hand side of the equation is an explicit formula for solving for the

value of x.

The ‘art’ of rearranging equations to solve for a particular variable, then, is

to find a sequence of steps that can be applied to both sides of the equation

such that we end up with that variable alone on one side of the equation. Unfor-

tunately there is no general procedure for the ‘correct’ sequence of steps to apply

to any equation: efficient equation solving is often a matter of experience and

practice.

The operations of addition and multiplication have the important property

that when applied to two or more variables or constants (terms), the order in

which they are applied does not matter. For instance, for the product

2 × x × y=2× y× x = x ×2× y, etc. The same applies if we replace the product with

addition: 2 + x + y=2+ y+ x = x +2+ y. But when combining different algebraic

operations, the order in which variables, constants and operations appear in an

expression is critical. For example, 2 × x + y is not the same as 2 × x + y . The brack-

ets in the second equation indicate that first, x should be added to y, and then the

result should be multiplied by 2. In fact, by expanding the brackets, the second

expression becomes 2 × x +2× y, which makes it clear that it is not the same as

2 × x + y. A tricky example of this is the expression x−y: this is not equal to y−x.

In fact, x−y= −y+ x. The reason is that actually, the expression −y is shorthand

for −1 × y, and we have to take account of the fact that the multiplication of y

by −1 must happen before the addition to x.

The general advice then about rearranging more complex expressions and

equations is that carefully and systematically, examine the order in which the alge-

braic operations are supposed to be applied to the terms. Modern algebraic nota-

tion has some conventions for this (called precedence rules); unless otherwise
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overridden using brackets, multiplication and division occur before addition and

subtraction. As a case in point, consider the following expression:

x + y

3y
1 1

This could be interpreted as follows: first add x to y, then multiply y by 3, and

then divide the first result by the second result. It does not say, for example,multiply

y by 3, divide y by this, and then add x; the following is an example of such kind:

x +
y

3y
1 2

Another way of explaining the difference is that (1.1) can also be written using

brackets as x + y 3y – then the ordering becomes clear. In (1.1) and (1.2), we

can apply some rearrangements that might be useful, for example, by expanding

out the ‘brackets’ in (1.1), we get that
x + y

3y
=

x

3y
+

y

3y
(applying the rule that divid-

ing by some expression is equivalent to multiplying by 1 divided by that whole

expression). Next, we can apply the rule that dividing an expression by itself

is equal to 1 (unless that expression is equal to zero – see below); so
x + y

3y
=

x

3y
+
1

3
. For (1.2), we get x +

y

3y
= x +

1

3
for the same reason. Slightly more

complex is the situation where the top and bottom expressions both involve addi-

tion, for instance, as follows:

x + y

3x +3y
1 3

To rearrange this expression, we consider factoring the bottom part of the divi-

sion as a rearrangement step. A factor is a number (or variable) that multiplies

another expression, for instance, the expression 6xy has the factors 6, x and y

(actually, since 6 =2× 3, it is also reasonable to argue that there are four factors

2, 3, x and y). The factored bottom expression is then 3x +3y=3 x + y . Effectively,

we have changed the order of themultiplication by 3 and the addition: this is what

factoring achieves. So, factoring undoes expanding out brackets. Now it is clear to

see that if x + y is not zero, (1.3) has the value 1/3, that is the x + y expression can-

cels completely.

The number zero has a special importance in algebra. Firstly, note that adding

zero to some expression leaves that expression unchanged, for example

x +0=0+ x = x (An interesting observation is that 1 plays the same role in multi-

plication as 0 takes in addition, namely, it leaves the expression unchanged:

x ×1=1x = x.) The second property of zero is that multiplying some expression

by zero results in zero, for example 0x = x ×0= 0. Sometimes, we end up with

an equation such as 0 = xy. Using the second property, we can see that one ormore

of x and y must be zero for this equation to be satisfied. Another consequence of

these properties is that dividing anything by zero is undefined (effectively, there is
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no meaningful result). Consider what it means to write x = y 0. For the moment,

treating 0 as a symbol, we could rearrange this equation to 0x = y, and applying the

second property of zero y must be zero. However, then the equation becomes

0x =0, and this is true for any value of x! In other words, the original equation,

even though it is an explicit formula for x, does not tell us what value x should

take. Because of this, (1.1) and (1.2) are meaningless in the special case where

y=0 and (1.3) is meaningless if x + y=0.

Often, we have the situation where there are two or more variables whose

value we need to find in order to solve a practical problem. In general, we need

as many equations as there are variables in order to find a solution that gives the

unique values of all the variables. For instance, to solve the following pair of equa-

tions for x and y,

x + y=0 1 4a

3x + y=1 1 4b

We might want to solve for x in (1.4a), x = −y, and then substitute this expres-

sion for x into (1.4b), 3 −y + y=1. We can then factor out y in this to obtain

−3+1 y=1, and we get an explicit formula y=1 −2 = −1 2. Now, using the

explicit formula for x, it must be that x =1 2, and we have a solution for both vari-

ables. This is a simple example that illustrates how to apply sequential rearrange-

ment and substitution in order to solve a pair of equations; this basic principle can

be attempted for more complex equations but it usually becomes very difficult in

practice to solve equations involving three or more variables. Typically, one then

turns to computer algebra software, or, instead uses numerical methods to obtain

approximate solutions.

Repeated self-multiplication of some term or expression has a special name:

exponentiation (‘raising to the power’) and is written using the superscript notation

as xn, where n is called the power or exponent. If n is awhole number, this justmeans

that wemultiply x by itself n times. So, that means that x1 = x. If we have powers n

andm that are both whole numbers, then it is fairly easy to see that xn × xm = xn+m.

In a sense, we can see that this rule ‘converts’multiplication into addition. When

applied to expressions, there are some simple consequences, for instance when

n=2, the expression x + y 2 = x2 + 2xy+ y2 (which one can check by expanding

out the brackets – there is a general formula called the binomial expansion that

works for any general value of n).

If we allow n=0, then x0 × xm = x0+m = xm =1× xm, so it is reasonable to claim

that x0 = 1 (to be consistent with the role that 1 plays inmultiplication, as discussed

above). Similarly, if we allow that n= −m, then we get x−m × xm = xm−m = x0 = 1, so

we can claim that x−m =1 xm to be consistent with the idea that dividing some

expression by itself is equal to 1. It follows then that x−1 = 1/x. In fact, it can be

shown that this rule converting multiplication into addition works quite gener-

ally: n and m can be any fraction or real number and thus exponentiation is a
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general algebraic operation. Certain rational powers are given special names: x1/2

is called the square root and written x, and more generally, x1/n is the nth root

written xn .

Being a general algebraic operation, exponentiation has an inverse called

the logarithm (a key mathematical discovery credited to John Napier in the

16th century). We write this as logxy, where x is called the base of the logarithm,

which has the meaning that if n= logxy, then xn = y: the logarithm to base x

recovers the power of x (so, for example, logx x =1 2). As we demonstrated

above, since exponentiation ‘converts’ multiplication into addition, we can

explain that the logarithm converts addition back to multiplication. Consider

the power rule xn × xm = xn+m, then taking the logarithm to base x on both sides,

we get logx xn × xm = logx xn+m = n+m= logxx
n + logxx

m. As with exponentia-

tion, this rule actually works for general numbers, not just whole numbers,

and we can derive some consequences worth memorizing: logx1= 0 (which is

the inverse of x0 = 1), logxx =1 (which is the inverse of x1 = x), logxx
n =n, and

the general rule logx an × bm = nlogxa+mlogxb for any numbers a, b, n, m and x,

provided only that neither a nor b is zero. The last rule has a useful special case:

logx a b = logx a× b−1 = logxa− logxb.

In practice, since logarithms in one base can be converted to any other base

using the formula logxa= logya logyx, one tends to work in a standard base such

as 10. The other commonly used base is the natural logarithm which uses the base

e=2 71828… (wewill see later that this has a very important origin),written as ln x.

The inverse to the natural logarithm, ex = exp x , plays a very important role in

much of mathematics: as the inverse it follows that ln exp x = x.

1.2.3 Functions
Expressions are very often ‘packaged up’ into convenient shorthand notation

known as functions, such as f(x) or g(x). Examples of functions include the expo-

nential function exp x = ex and ln(x) above but also familiar functions such as

the trigonometric functions sin(x), cos(x) and tan(x). Use of functions in expres-

sions can improve the readability of equations considerably. Very often there is

an associated inverse function: as we have seen, exp(x) has ln(x) as its inverse.

Sometimes, consideration of the range of acceptable values that a function can

take tells us about the range of output values of its inverse: for example, the

sin(x) function takes all possible real angles as input, but its output is restricted

to the range −1 to 1. So, the inverse function sin−1x can only accept numbers in

the range −1 to 1.

Plotting a function as a graph can be very useful; typically this is done by

drawing a curve on axes where x is on the horizontal and y= f x is on the ver-

tical. Then, since a function only outputs one value per unique input value, the

curve must be a single, non-self-intersecting line. In addition, very often that

line can be drawn without taking the ‘pen’ off the paper, so the function has

no discontinuities. Functions can take more than one number as input, for
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example f x,y = x2 + 3y3; this makes it much harder to plot a graph of the function

(which would appear as a surface in 3D with z = f x,y being the height of the

surface).

1.2.4 Calculus
The name given to the theory ofmathematics that deals with the abstract concepts

of area (including length and volume more generally) and gradient (slope) is

called calculus. Although the mathematicians of the ancient world knew how to

calculate these quantities for simple shapes (for example, working out how to

divide up a rectangular field into equal areas for the purpose of probate law), they

did not know how to do this for general geometric objects, particularly if they had

arbitrarily curved boundaries. This had to wait until the 17th century for the

mathematical innovations of Newton and Leibniz, who saw the potential for

applying and extending these concepts to predicting the motion of the planets.

It is probably fair to say that the vast majority of physical applied maths revolves

around the use of concepts from calculus.

Summation plays a central role in calculus: we write
N

i = 0
xi to denote the sum

from 0 to N of the values in the N + 1 variables xi (we use the subscript notation

to index each of these different variables). We can apply this to the problem of

calculating areas – the area of a rectangle is just A=w ×h where w is the width

and h is the height. Now, if a given shape can be approximately broken down into

N + 1 small rectangles, then the area of the complete shape is approximately as

follows:

A≈
N

i =0

wihi 1 5

In words, ‘the sum of the product of the width of each rectangle times the

height of rectangle is approximately the total area of the shape’.

If we can assume that the width of all these rectangles is the same, we can

simplify this to
N

i = 0
whi. Of course, this will only be an approximation to the

area, for example some of the area might not be counted.

Assuming, for the sake of simplicity, that one edge of the object is straight and

lies on the x-axis of graph and the other side is represented by a functionwith arbi-

trary curves (this requirement might seem contrived but it turns out that calculus

can be defined in more flexible ways for different geometric situations, using

essentially the same ideas). Figure 1.1 shows this idea for finding the area (inte-

grating) under the curve f x = x2. In the upper panel, we have a relatively coarse

set of rectangles with equal width w attempting to fill the area; the bottom panel

has a much slimmer set of rectangles, again of fixed width. It is easy to see that the

amount of uncounted area in the bottom panel is smaller than that in the top

panel, so the bottom panel is a better approximation to the area. In calculus,
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the idea is to calculate what happens as the width of the rectangles becomes arbi-

trarily small, following from the intuition that slimmer rectangles give better

approximations: of course, the number of rectangles will become arbitrarily large

as a result. The approach aims to convert the problem of finding the area under the

curve to a problem of finding the ultimate value of a sequence of better and better

approximations.

To do this, we will need the idea of limits, one of the core concepts of calculus.

Mathematicians use the shorthand notation ‘a= limx c f x ’ for the limiting value

of the function a= f x as x takes on values that are always getting closer to c.

This is also written as ‘f x a as x c’. A critical point to understand is that in

most useful cases, the limiting value a cannot be calculated directly. For example,

it makes intuitive sense (and it is logically correct as we will show next) that

limx ∞ 1 x =0. But since infinity does not have a definite value, algebraic expres-

sions such as 1 ∞ do not have a definite result either.

Limits are a (indirect) way of computing definite answers in these situations.

For example, we know that the function f x =1 x is continuous (see above) at all

values of x except 0. Also, the function is decreasing, that is if we pick any two num-

bers x and y such that x < y, then 1/x > 1/y. Additionally, we know that if x is pos-

itive, then 1/x is also positive. These pieces of information allow us to conclude

that 1 x 0 as x ∞ . In other words, we have shown that as we keep increasing

the (positive) value of x, 1/x always gets smaller, and since it cannot be negative,

as x becomes arbitrarily large (infinite), 1/xmust ultimately take on the value zero.

At root, this is typical of limit value arguments: nonetheless, most problems

1

0.5

0
0 0.2 0.4 0.6 0.8 1

x

0 0.2 0.4 0.6 0.8 1
x

x2

1

0.5

0

x2

Figure 1.1 Approximate integration of the area under the curve x2 (black) using rectangles (grey),

over the interval 0–1, with coarse partition (top) and finer partition (bottom).
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encountered in practice are reducible to an algebraic combination of known

results about the limits of basic functions.

We now return to the problem of finding the limit of sequence of approxima-

tions to the area under the curve. We can construct a grid of x-values as xi =wi

and the corresponding height of the rectangles is hi = wi 2. Then the number

of rectangles in the interval 0–1 is N =1 w. So, the area is written as:

A= lim
w 0

N

i =0

w wi 2 1 6

This equation states that first, we sum up all the areas of the rectangles fitting

underneath the curve. Then, we take the limit of these sums, as the width of

these rectangles becomes arbitrarily small. For every rectangle width, there will

be a corresponding number of rectangles N, which therefore must go to infinity

as the width goes to zero.

Here we make the remark that in this specific case (1.6) does have an exact

answer,A = 1/3, that we can compute using well-known, but somewhat complex,

algebraic manipulations.

If we want to compute the area under an arbitrary function f(x) over any

chosen range of values of the x-axis, say, from a to b, we need the definite integral:

b

a

f x dx = lim
N ∞

N

i =0

f a+ iw w 1 7

where we choose N = b−a w (note the w is often written as Δx, because w is a

‘small difference in x’). In Equation (1.7), the left-hand side is just shorthand for

the right-hand side, which states that the area is computed by summing up rec-

tangles of width w, placed at each position on a grid of spacing w covering from a

and b on the x-axis. The particular choice of N means that when i =N, a+ iw = b,

the right-most grid position. Each rectangle has height f a+ iw .

Note this is only a definition: there is no guarantee that we can actually find the

limit of the sequence of approximations to find the exact answer by some straight-

forward algebra. In fact, the somewhat disappointing news is that the number of

functions f(x) that we cannot integrate in this way vastly outnumbers the functions

that can be integrated like (1.6). This usually happens because the kind of algebraic

tricks used to remove the summation in situations such as (1.6) work only in spe-

cial cases. Nonetheless, under certain conditions that are not too restrictive, we can

say that the limit in (1.7) is useful, in that, it has a definite value, and we can

approximate this to any desired accuracy using a computer program, for example.

The inverse operation to integration is differentiation. It is relatively simple to

find the gradient of a straight line. Imagine finding the slope of a straight road run-

ning up a hill with constant angle to the horizontal: it is just the rise over the run
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or the change in vertical height (Δy) you go through as you travel over some

horizontal distance (Δx):

m=
Δy
Δx

1 8

This is how to calculate the gradient of a function if it is a straight line. How can

we do this if the function is not a straight line? One way is to assume that over

small enough distances, the slope of any function at a particular fixed point can

be approximated by the slope of a straight line that goes through that point. This

will be a good assumption if the function is smooth enough. As the distance over

which we make this assumption gets smaller, the approximation to the slope at

that point gets better. For a given function f(x), the change in ‘height’ at x over

the distance Δx is f x +Δx − f x , and therefore, using the idea of limits to define

the derivative, we get:

m x = lim
Δx 0

Δy
Δx

= lim
Δx 0

f x +Δx − f x

Δx
1 9

(Note that the slope of a general function is itself a function of x, the chosen point,

unlike a straight line, which has the same slope at every point.) In this way, dif-

ferentiation solves the problem of how to find the slope of a function which is arbi-

trarily curvy. The derivative is also commonly written as df/dx or also f (x) when it

is clear that we are differentiating with respect to x.

Algebra that arises from differentiating is usually a lot simpler than algebra

that arises as a result of integration. For this reason, many more functions can

be algebraically differentiated than integrated. Aswith integration, under not very

restrictive conditions, the limit in (1.9) is useful and can be calculated approxi-

mately to any desired precision numerically.

There is a theorem in calculus that relates integration and differentiation

(called, appropriately enough, the ‘fundamental theorem of calculus’). This the-

orem can be stated in many different ways, but it is instructive to provide geomet-

ric intuition. Firstly, consider the area under the function f(x) from 0 to x written

as F(x). Now the area under the curve between x and x +Δx can be found as

F x +Δx −F x , which is the area from 0 to x +Δx minus the area from 0 to x.

However, as above, when defining the integral, we could also approximate the

area between x and x +Δx with the small rectangle of area f(x)Δx. It follows that

F x +Δx −F x ≈ f x Δx or

f x ≈
F x +Δx −F x

Δx
1 10

Taking the limit of both sides as Δx 0 gives us f x = F' x , using the defini-

tion of the derivative above. So, this says that the original function f(x) is what we

get by finding the slope of the area under the curve of that function.
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The following is the most common statement of the fundamental theorem:

b

a

f x dx =F b −F a 1 11

This says that the definite integral of the function f(x) is the area under the

function from 0 to b minus the area under the function from 0 to a. This allows

us to introduce the indefinite integral, useful when integrating from 0 to the value

of some variable x:

f x dx =

x

0

f x dx = F x −F 0 =F x + c 1 12

(Note that we had to use a dummy variable x to avoid a conflict between variable

names, because x normally does not appear in the integration range). The replace-

ment of −F 0 with the generic constant c indicates that an arbitrary constant is

always introduced when performing indefinite integration.

Yet another statement of the fundamental theorem is:
b

a

f x dx = f b − f a 1 13

We get this from (1.11) by replacing the function f(x) with the derivative of

the function f (x) instead. This form of the theorem tells us something quite

profound about calculus that has far-reaching consequences in many areas of

mathematics: the definite integral of the slope of the function is just the difference

of the function value at the far end of the range, minus the function value at the

near end.

The derivative and integral have certain important algebraic properties of

their own that are consequences of the way they are defined. The first is the fact

that they are both linear operations:

af x + bg x dx = a f x dx + b g x dx 1 14a

d

dx
af x + bg x = a

df

dx
x + b

dg

dx
x 1 14b

In the above, f(x) and g(x) are arbitrary functions, and a, b are constants, and

the equations state that it is possible to swap the order of scaling, addition and inte-

gration, and the same with differentiation. This means that we can first multiply

two functions by constants, add the results together and then integrate, or we can

first integrate the functions separately, multiply the results by constants and then

add the results together. The same applies to differentiation. It is critical to note

that the above rules only apply if a, b do not change as x changes.
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More algebraic properties apply to differentiation, for example, the product rule

states what happens when differentiating the product of two functions:

d

dx
f x g x = f x

dg

dx
x + g x

df

dx
x 1 15

Similarly, the chain rule explains what happens if we differentiate a function of

a function:

d

dx
f g x =

df

dx
g x

dg

dx
x 1 16

There are further ‘rules’ that occur in more complex combinations. It is impor-

tant to grasp that (1.14a) is the only genuine algebraic property of differentiation

shared by integration – properties (1.15), (1.16) have no direct counterparts in

integration. There are other integration ‘rules’, such as the integration by parts

and integration by substitution, but these are actually obtained by ‘undoing’

the rules of differentiation (1.15) and (1.16).

Differentiating a function twice gives the second derivative (also known as the

curvature of a function):

d

dx

d

dx
f x =

d2

dx2
f x = f x 1 17

Similarly, the nth derivative is written as dn/dxn, for n>0, or sometimes f(n)(x).

It is helpful to list a few specific derivatives and integrals. Perhaps the most

important is the exponential function encountered earlier:

d

dx
exp x = exp x 1 18a

exp x dx = exp x + c 1 18b

This explains one important reason behind the special place of the exponential

function in mathematics as it is the only function that is simultaneously its

own integral and derivative. Other important functions include the powers of x

(polynomials in x):

d

dx
xn = nxn−1 1 19a

xndx =
1

n+1
xn+1 + c 1 19b

Many other functions are explicitly differentiable and integrable in this way,

notably the trigonometric functions (sine, cosine, tangent), but most functions do

not have simple integrals andwe usually turn to numerical algorithms to compute

them for particular ranges in practice.
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1.2.5 Differential equations
Having defined differentiation as the slope of a function with arbitrary ‘curviness’,

since the slope depends on the chosen value of x, the derivative of a function is a

new function of x. So, as with any function, it can usefully appear in an equation

alongside other functions, operations, and constants. The resulting differential

equations have been the cornerstone of modern physical appliedmathematics ever

since Newton’s Principia: the sheer number of physical problems that can be for-

malized using differential equations is truly staggering.

As an example, consider the following differential equation:

d

dx
f x =m 1 20

wherem is just a constant that we know. This states that the equation is satisfied if

f(x), when differentiated, is constant. A moment’s thought will lead to the answer

that f(x) must describe a straight line on the graph of the function: there is no

other function whose slope is always the same constant. We can also prove this

by integrating both sides of (1.20), finding that f x =mx + c, which is indeed an

expression for a line on the graph of x against f(x), called the general solution to

the differential Equation (1.20). We can check that we have the right solution

by differentiating f(x), and testing that this satisfies the equation. One important

point to note is that an arbitrary constant c appears in the solution (because we are

performing indefinite integration) so, without specifying this constant, we cannot

find the value of the solution for a given x. In this case, the constant can be set

by specifying an initial condition: that is what we expect f(x) to be when x =0.

For instance, the initial condition f 0 = −2 leads to the specific solution f x =mx−2.

Perhaps the most famous of all elementary differential equations is the simpli-

fied model of the mass on a spring, ignoring friction:

mf t = −kf t 1 21

wherem is the mass, and k is the spring stiffness, and t represents time. In physics,

the quantities f(t), f (t) and f (t) have special names: position, velocity, and accele-

ration (those with a physics background might recognise (1.21) as an application

of Newton’s second law). So, (1.21) states that the acceleration, multiplied by the

mass, is equal to the negative of the position multiplied by the spring constant.

We will also assume that the position at time zero is some constant A: f 0 =A,

and the initial velocity is zero: f 0 =0. Special algebraic techniques have been

developed to find solutions to equations such as (1.21), when applied, the specific

solution is:

f t =A cos
k

m
t 1 22
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The cosine arises because it can be shown that if f x = cos x , then

f x = −cos x , that is the cosine function is the negative of its’ own second deriv-

ative, which is, essentially, what is required to satisfy (1.21). The character of this

solution is oscillatory: that is, themass vibrates at a rate of k m, with amplitudeA.

So, if the mass is increased, the vibration becomes slower, and if the spring stiff-

ness is increased, the vibration speeds up (an intuitive result). Note that the rate

of vibration is not dependent upon the initial position A.

Differential equations used in quantitative hydrology can be a lot more

complex than (1.21), but the principles are the same. Most of the complexity

arises when dealing with functions of more than one variable. For example, a

function Q(x, t) might represent the quantity of water in a channel in both time

and position. Then, we need to introduce partial differential equations that involve

the derivative of the function in one or more variable at a time, for example, the

(one-way) kinematic wave equation in hydrological flow routing is:

c
∂Q

∂x
x, t = −

∂Q

∂t
x, t 1 23

The notation ∂Q ∂x is shorthand for the derivative of the function Q(x, t) with

respect to x alone:

∂Q

∂x
x, t = lim

Δx 0

Q x +Δx, t −Q x, t

Δx
1 24

Equation (1.23) states that the rate of change of the quantity in space, multi-

plied by c is the negative of the rate of change of the quantity in time. Again, tech-

niques have been developed to solve such equations to find an explicit expression

for Q(x, t). This equation has some similarities to (1.21): except that it involves

only first derivatives, and two variables instead of one.

Many of the equations of quantitative hydrology are partial differential equa-

tions such as (1.23). A large number of useful ones (such as the shallow water

wave equation) are, unfortunately, unsolvable using the kind of algebraic tricks

that are available for solving (1.21) and (1.23). For this reason, computational

algorithms involving purely numerical calculations have been devised and are

an important tool in modern quantitative hydrology.

1.2.6 Probability and statistics
Statistical techniques form a critical part of the material in Chapters 2, 6 and 7.

Statistics is based on the mathematics of uncertainty, known as probability. By

comparison to the other areas of mathematics covered above, probability as a

mathematical topic is a relative newcomer, having origins in the 17th century.

As with algebra, the basic rules of probability are elementary and intuitive: but

the logical consequences of these rules, particularly when applied to real-world

data, can be complex and often counter-intuitive. For instance, consider the
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chance of rain falling on the city of Oxford in the UK in any one day. The (exten-

sive) historical data suggests that it is as likely to rain on any day as not, and that

whether it rained yesterday or the day before has almost no influence on

whether it rains today. So it is quite accurate to model this situation as the

flipping of an unbiased coin: the probability of rainfall in one day is 1/2, and

previous coin flips do not influence the current one. When this is explained

to people, most will surmise, correctly (presumably from experience), that

the probability of there being 30 rain days in a row is extremely small. Because

of this, if, in the unlikely event that 30 days of rain did actually occur, many will

assume that the next 30 days will have to be dry in order to maintain the

expected probability of 1/2. But this belief is false: according to the coin-flipping

model, whether it rained yesterday or on any previous day has no bearing on

whether it rains today. We have simply witnessed an extraordinarily unusual

event. Of course, if such an event did occur in the historical record, it would dis-

tort the statistics so much that we might decide that the unbiased coin model is

not actually appropriate.

The mathematical ingredients of probability are easy to state. There is the

set of all possible outcomes relevant to the physical situation. For example, the

cloudiness at any one time in one location can be observed as clear, scattered

clouds (~25%), partly cloudy (50% coverage), mostly cloudy (75% covered)

or overcast; or it can rain or not on any one day at a specific location; or

the rainfall in any one day in one location can be zero or more millimetres,

in steps of one-tenth of a millimetre. From these outcomes, we form events

of interest, the probability of which we want to know. For example, the event

that the rainfall depth is greater than or equal to 10.0 mm, or the event that

there are scattered clouds.

To these basic ingredients are added three rules (known as axioms by

mathematicians):

Rule 1. To each possible event is attached a real number called the probability value

that must not be negative;

Rule 2. Since one of the outcomes is certain to occur, the event that any one of the

outcomes is observed is assigned the probability value 1. From this, and the pre-

vious condition, we can conclude that probabilities of events lie between 0 and 1

inclusive, with 0 meaning impossible, and 1 denoting inevitable;

Rule 3. The probability of any compound event obtained by joining mutually

exclusive (that is, non-overlapping) events together, is just the sum of the prob-

abilities of the individual events.

Some examples are useful. Consider the event that rainfall is at least 10.0mm,

and assume that the probability of this event is known to be 0.01. The complemen-

tary event is that the rainfall is less than 10.0mm. These two events are mutually

exclusive because any outcome (rainfall depth in 0.1mm steps) satisfies one of the
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events, but not both simultaneously. In fact, these two events are also exhaustive

because joined together, they cover any outcome. The probability of the ‘joint’

event, which is just ‘some rainfall depth occurs’ is 1 (from rule 2). This means

that the probability of the complement event (rainfall depth is <10.0) must be

1−0 01= 0 99 (to satisfy rule 3).

As another simple example: if we know that any of the five categories of cloud

cover are equally likely, then the probability of any category is just 1/5. Then,

since it cannot be both clear and overcast at the same time, the probability of

the location being overcast or clear is 1/5 + 1/5 = 2/5 (using rule 3).

Usually, when dealing with random quantities in physical problems, there is

an intuitive numerical label for each possible outcome. If this label is a whole

number or integer, then the randomquantityX can be associatedwith a probability

mass function P (PMF – also known as a distribution), that determines the probability

value assigned to each event, which lies between 0 and 1. From the rules above,

it must be the case that the sum of the distribution of each outcome must be 1.

For example, if the outcomes are labelled as integers from zero and above, then
∞

i =0
P X = i =1 to satisfy rule 2.

When the random quantity is a real number, say, depth of a river, then the

quantity X is associated with a probability density function p (PDF – although it is

common to call this a distribution as well). With real-valued variables, some

subtleties occur. Firstly, the PDF itself does not represent a probability value:

we need to invoke calculus to find the area under the PDF which gives the prob-

ability. For example, the probability that X lies between 2 and 3, for instance, is
3
2 p x dx. From the property of the integral that a

a p x dx =0, we can infer that

the probability that X takes on some single value a is always actually zero. Also,

the probability density function can be larger than 1: this does not violate rule 2,

because the area under the PDF must sum to 1, that is p x dx =1. Therefore,

the area under any smaller range of values than all possible values of X will be

less than 1.

Statistical hydrology is often interested in calculating the probability of

some event based on a probability density model for that variable. Many of the mod-

els have parameters: constants that affect the shape of the density function. Some-

how, these parameters have to estimated for a particular data record. Parameter

estimation is one of the main topics of statistics, which has led to a large range

of techniques. Perhaps the most widely-used technique is maximum likelihood,

which proposes that the optimum parameter values are those that maximize

the probability density given the data record.

Particular quantities of distributions have special significance in probability

and statistics. The mean (often called the average) is the first moment often written

E[X] or x, and the variance, which is the second (central) moment written as

E X−E X 2 or var(X). Note that the standard deviation is the square root of

the variance.
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If we know a model distribution for the random variable X, say, p(x), then

these quantities can be calculated using integration:

x =E X = x p x dx 1 25

var X =E X−E X 2 = x−x 2 p x dx 1 26

We can also estimate these quantities from data. Technically, this is usually

done by constructing a distribution based on the data, which places equal weight

at each of the N data points x1, x2… xN, and having no density anywhere else.

Then, the integrals in Equations (1.25) and (1.26) simplify to:

x =E X =
1

N

N

i =1

xi 1 27

var X =E X−E X 2 =
1

N

N

i =1

xi−x
2 1 28

When calculating these values from data, the accuracy of the estimates is very

much tied to the amount of data available: however, inmost cases it can be shown

that the estimated mean improves as the length of the data record improves.

Finally, another important value is the median, which is the special value a

such that the probability of X being less than a is the same as the probability of it

being larger than a: it can be estimated as the value that lies ‘in the middle’ when

all the data is sorted numerically. Similarly, themaximum is the largest valuewhen

the data is sorted.
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