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Reliability of Engineering Systems

1.1. Basic notions and characteristics of reliability

1.1.1. Basic notions

The notions described below correspond to the usual terminology used in

reliability theory and most of the literature sources on reliability. Reliability

theory deals with the following basic notions.

An object in reliability theory means a unit (an element or article), an

apparatus, an engineering product and any system or its part at all,

considering from the point of view of their reliability. Furthermore, the term

unit is used for simple objects, which is considered a single entity. For

complex objects, the term system is used and the term element means the

minimal component of a system.

An exploitation of an object (unit or system) means the collection of all

its existence phases (creation, transportation, storage, using, maintenance and

repair).

Reliability of an object is its complex property, consisting of its possibility

to fulfill assign to it functions under given exploitation conditions1.

1 Under the quality of an object it is understood the set of properties, which determine the degree

of its possibility to be used for designation. Therefore, reliability is one of the components of

the quality of an object.
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According to the definition of Gnedenko [GNE 65], reliability theory is a

scientific discipline about the requirements that should be used for projecting,

producing, testing and exploitation of an object in order to get the maximal

effect from its use. Reliability theory deals with such notions as: reliability,

failure (breakdown), longevity, repair, repair-ability, etc.

Reliability means the possibility of an object to maintain its workability

during a given time period under a given exploitation condition.

A failure is a partial or full loss of the object’s workability. Therefore, we

should distinguish full and partial failures.

In addition, failures are divided into sudden, for which the object suddenly

(unexpected) loses its workability, gradual, for which the workability of an

object is lost gradually (usually as a result of some physical parameters of the

object going out of the admissible level) and halting (temporary loss of the

workability).

Longevity is the ability of an object to be used for a long time under needed

technical service.

Repair is the procedure that renews objects’ reliability.

Repair-ability is the property of an object to predict, detect and remove its

failures.

Safety is the property of an object (system, unit) not to allow situations that

could be dangerous for people and the environment.

Further notions and definitions are introduced in the chapter if necessary.

Given the complex property of an object, the reliability is described by

many different characteristics and indexes. Furthermore, the term

characteristic is used for complex (functional) reliability characteristics, and

the term index is usually used for numerical (simple) characteristics.

Among the different reliability characteristics, we first consider those that

are used for units and systems which work up to the first failure.
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1.1.2. Reliability of non-renewable units

In this section, the reliability of an object is studied independently of the

reliability of its components as a single entity, and therefore instead of the

term “object”, here, the term “unit” is used. Suppose that the unit can be in

only two states from the point of view of its reliability: “workable” (up) and

not workable or “failure” (down). Denote by T the lifetime of the unit. It is a

random variable (r.v.) and its basic characteristic is its cumulative distribution
function (c.d.f.) that is the probability that this time is not greater than the fixed

time t,

F(t) = P{T ≤ t}. [1.1]

Here and later, the symbol P{·} is used for the probability of the event in

brackets. In the case of continuous observations for the unit state, this function

is a continuous one, but in the case of observations for the unit state in discrete

points of time, it is a stepwise one. The function

R(t) = 1 − F(t) = P{T > t}, [1.2]

in reliability theory is known as reliability function2. For continuous

distribution, the graphs of these functions are shown in Figure 1.1.
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Figure 1.1. C.d.f. of lifetime and reliability function of some unit

2 In the biological, medical and actuarial disciplines the term survival function is used for this

function.
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In the case of continuous observation, the r.v. T can also be characterized

by its probability density function (p.d.f.) f (t) = F′(t). At that lifetime c.d.f.

connected with p.d.f. by the equality,

F(t) =

t∫
0

f (u) du. [1.3]

For small values Δt, the quantity f (t)Δt is the probability of a unit’s failure

in time interval (t, t+Δt). Because in practice, the probability is measured with

frequency, this value is also called frequency of failures.

In reliability practice the time is usually measured in discrete units.

Therefore, the discrete distributions are more appropriate models for the

lifetime’s description. However, for theoretical study, the continuous

distributions are more convenient. Therefore, according to these reasons,

mostly continuous distributions will be used for the units’ lifetime

distribution description. By the way, when the time is measured in discrete

units, the discrete distribution can be obtained from the continuous one by

discretization of time,

fk = P{T = kΔ} =
kΔ∫

(k−1)Δ

f (u)du k = 1, 2, . . . , [1.4]

where Δ means the unit of time (in minutes, hours, months or years).

Besides lifetime distribution of a new unit, an important reliability of its

characteristic is its residual lifetime. Conditional distribution, after its reliable

working time t, represents conditional failure probability in time interval

(t, t + x] given up to time t a failure does not occur,

F(x; t) = P{T ≤ t + x|T > t} = P{t < T < t + x}
P{T > t} =

=
F(t + x) − F(t)

1 − F(t)
=

R(t) − R(t + x)

R(t)
. [1.5]

For small values of x, we have:

F(x; t) =
f (t)

1 − F(t)
x + o(x) = λ(t)x + o(x),
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where the function λ(t) represents a conditional probability density of residual

lifetime of a unit under condition that is used without failure during time t.
More precisely, this function is determined by the equality,

λ(t) = lim
Δt→0

1

Δt
F(t + Δt) − F(t)

1 − F(t)
=

F′(t)
1 − F(t)

=
f (t)

1 − F(t)
, [1.6]

and in reliability literature, it is also known as hazard rate function (h.r.f.). This

function allows us to evaluate the failure probability of a unit during a small

time interval Δt after time t as follows:

P{t < T ≤ t + Δt |T > t} = λ(t)Δt + o(Δt)

as an area under the curve, as is shown in Figure 1.2.

t + Δtt

λ

t

λ(t)

0

0

Figure 1.2. Typical hazard rate function

Equality [1.6] allows us to represent the c.p.f. of a unit lifetime and its

reliability function in terms of its h.r.f. In fact, it can be represented as

d ln(1 − F(t)) = −λ(t) dt

which after integration gives

t∫
0

d ln(1 − F(u)) du = −
t∫

0

λ(u) du.
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Supposing that there are no instant failures, which means that F(+0) = 0,

it gives

ln(1 − F(t)) = −
t∫

0

λ(u) du,

or

1 − F(t) = R(t) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
t∫

0

λ(u) du

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . [1.7]

Analogously, for conditional lifetime probability in interval (t, t + x], we

can find

F(x; t) = P{T ≤ t + x| T > t} = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
t+x∫
t

λ(u) du

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . [1.8]

Besides functional characteristics in practice, the lifetime of units is also

measured with some numerical indexes such as:

– mean lifetime, i.e. expectation of lifetime,

μT = E[T ] =

∞∫
0

t f (t) dt =

∞∫
0

(1 − F(t)) dt =

∞∫
0

R(t) dt [1.9]

– variance of lifetime, which shows the variation of the lifetime around its

mean value,

σ2
T = Var[T ] = E

[
T − μT

]2
=

∞∫
0

(t − μT )2 f (t) dt. [1.10]

Here and later, symbols E[·] and Var[·] indicate expectation and variance,

respectively.

One of the main problems of reliability theory is elements and unit lifetime

distribution modeling. Some parametric families of continuous distributions

of non-negative random variables that are usually used for the unit lifetime

modeling are presented in the next section. Some of these distributions
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will also be used later in section 2.3 for modeling of the damage value

distributions.

1.1.3. Some parametric families of continuous distributions of
non-negative random variables

Consider some parametric families of continuous distributions of

non-negative random variables along with their indexes.

1.1.3.1. Exponential distribution

Exponential lifetime is used for modeling the reliability of units, subject to

instantaneous (sudden, unexpected) failures. Its p.d.f. and c.d.f. are

f (t) = λ e−λ t, F(t) = 1 − e−λ t for t ≥ 0, [1.11]

where λ > 0 is its parameter. The reliability function of these units is

R(t) = e−λ t, [1.12]

and their h.r.f. is constant and coincides with the distribution parameter λ,

λ(t) =
f (t)
R(t)
= λ. [1.13]

The graphs of these functions are represented in Figure 1.3.

Moreover, the property of h.r.f. to be constant is a characteristic property
of the exponential reliability law. From relation [1.7] we have

R(t) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
t∫

0

λ du

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = e−λ t. [1.14]

Another characteristic property of an exponential distribution is its

“memoryless” property, which is presented in the following theorem.

Theorem 1.1.– A unit has an exponential reliability law iff the distribution of

its residual lifetime does not depend on the elapsed working time (its age),

P{T > t + x|T > t} = P{T > x}. [1.15]
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Figure 1.3. The p.d.f. f (t), the c.d.f. F(t) and the reliability
function R(t) of an exponential distribution, λ = 0.4

Proof 1.1.– Necessity. Using the conditional probability formula for the

exponential reliability law, we have

P{T > t + x|T > x} = P{T > t + x, T > t}
P{T > t} =

P{t > t + x}
P{T > t} =

=
e−λ(t+x)

e−λ t = e−λx = P{T > x}.

Sufficiency. For R(t) = P{T > t} from relation [1.15], we obtain the

following equation:

R(t + x) = R(t)R(x).

For continuous functions under condition R(0) = 1, this equation has a

unique solution R(t) = e−λ t with a positive parameter λ > 0. �

Note 1.1.– For discrete time distributions (when observations are fixed with

discrete intervals) the analogous property characterizes the geometric

distribution.

Namely this property and the constancy of the h.r.f allows us to consider

this distribution as a distribution of sudden (unexpected) failures because it

means that the residual unit’s lifetime does not depend on its elapsed time.
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Mean and variance of a unit lifetime for this distribution are:

μT = E[T ] = λ−1, σ2
T = Var[T ] = λ−2. [1.16]

Exponential distribution is closely connected with the Poisson process of

failures for reparable systems (see, for example, 1.4 in the section 1.2.5).

1.1.3.2. Shifted exponential distribution

The p.d.f. of this distribution is

f (t) = λ e−λ(t−b)1{t≥b}, b ≥ 0

where λ and b are its form and shift parameters. This is represented in

Figure 1.4.

t

f(t)
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0
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0.15

0.2

0.25

Figure 1.4. The p.d.f. of a shifted exponential
distribution, λ = 0.25, b = 5

The expectation and the variance of r.v. with this distribution are

E[T ] = b +
1

λ
; Var[T ] =

1

λ2
.

This distribution could be used for the sudden failure description in the case

when the unit work beginning with some additional time for “warming up” is

needed.
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1.1.3.3. Truncated normal distribution

Truncated normal distribution, contrarily to the exponential one, is used

for the description of unit lifetime, subject to gradual failures. The following

theorem can explain this assertion.

Theorem 1.2.– If a failure arises as a result of some physical parameter a of a

unit going out admissible limits, and this parameter is changing in time

according to some deterministic law a = f (t, a0), and its initial value a0 is a

r.v., distributed according to the normal law, then the failure time, which is the

parameter a destination time to the critical value a1, has also a normal

distribution.

Proof 1.2.– In fact, under these assumptions, the unit failure time T is a

solution of the equation

f (T, a0) = a1.

Denoted by t = ϕ(a1, a0) inverse to the f (t, a0) function. Then, from this

equation, we can obtain

T = ϕ(a1, a0).

Expansion of the function ϕ(a1, a0) into Taylor series with respect to

variable a = E[a0] in the neighborhood of point a1 up to second order

members gives:

T ≈ ϕ(a1, a) + ϕ′a(a1, a)(a − a0).

From here it follows that if the parameter a0 has a normal distribution,

then the time to failure T also has to be normally distributed. Because the

lifetime cannot be negative for its description, we can use the truncated normal

distribution. For this distribution, the reliability function is

R(t) = P{T > t|T > 0} =
1 − Φ

(
t−μ
σ

)
1 − Φ

(
− μσ

) = Φ
(
μ−t
σ

)
Φ

(
μ
σ

) , t ≥ 0, [1.17]

where here and later the notation

Φ(x) =
1√
2π

x∫
−∞

e−
u2

2 du [1.18]
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is permanently used for standard normal distribution and its parameters μ and

σ are positive. �

Because, in practice, case μ >> σ, the relation Φ
(
μ
σ

)
≈ 1 holds, and we

could use an approximate3

R(t) ≈ Φ
(
μ − t
σ

)
.

Hazard rate function for this distribution equals

λ(t) =
1

σ
√

2π
× e−

(t−μ)2
2σ2

Φ
(
μ−t
σ

) .

Using for the function λ(t) Taylor’s Formula when t → ∞, we get,

λ(t) ≈ t − μ
σ2
+ O

(
1

t

)
,

where symbol O(·) denotes the decreasing rate of the appropriate value. This

equality shows that for t → ∞ h.r.f., the truncated normal distribution has a

slope asymptote y = t−μ
σ2 (see Figure 1.5).

μ

←

t − μ
σ2

t

λ(t)

0

0

Figure 1.5. Hazard rate function for truncated normal reliability law

3 For example, for μ ≥ 3σ, the approximation Φ
(
μ

σ

)
≈ 0.9987 holds.



12 Reliability of Engineering Systems and Technological Risks

Mean and variance of a unit lifetime for this reliability law under the

condition μ >> σ are

μT = E[T ] = μ, σ2
T = Var[T ] = σ2. [1.19]

1.1.3.4. Gnedenko–Weibull distribution

The p.d.f. and the reliability function for this reliability law equals

f (t) = λα tα−1e−λ tα , R(t) = e−λ tα for t ≥ 0 [1.20]

with parameters λ > 0 and α > 0. Its h.r.f. is

λ(t) = αλ tα−1 for t ≥ 0, [1.21]

whose graphs are represented in Figure 1.6.

← α > 2

← α = 2

1 < α < 2 →

α = 1

← α < 1

t

λ(t)

λ
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0

Figure 1.6. Hazard rate functions for Gnedenko–Weibull reliability law

Mean lifetime and variance for this law equals

μT = E[T ] =
Γ
(
1 + 1

α

)
λ

1
α

,

σ2
T = Var[T ] =

Γ
(
1 + 2

α

)
− Γ2

(
1 + 1

α

)
λ

2
α

. [1.22]

Exponential distribution is a special case of the Gnedenko–Weibull

distribution when α = 1.
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The popularity of this distribution in the reliability theory is explained by

its property to be the limiting distribution for the maximum and minimum of

a series of i.i.d. r.v. Therefore, this distribution arises in the calculation of the

reliability characteristics of some complex systems consisting of many

elements in the case when the system failure arises when the first of its

elements fail or in the case when the system failure arises when many of its

elements fail. The details of these situations will be studied in sections 1.4.4

and 1.6.2. Therefore, the following theorem, first obtained by Gnedenko,

explains the wide popularity of this distribution in reliability theory.

Let Ti (i = 1, 2, . . . ) denotes the sequence of some i.i.d. r.v. (for example

lifetimes of elements of some system). Denoted by T(1) = min{Ti : i = 1, n}
minimum and by T(n) = max{Ti : i = 1, n} maximum of n of these variables.

It is supposed that r.v.’s . Ti take any non-negative values (the c.d.f. has a

non-bounded domain R+). In this case, r.v.T(n) unlimitedly increases when n
grows. Therefore, in order to provide the existence of some non-degenerate

distributions, we need to find some sequence of numbers an, bn such that a

limiting distribution of r.v.

Wn = anT(n) + bn for n→ ∞

will be non-degenerate (proper) .

There are two types of limiting distributions for r.v. Wn, which depend on

the behavior of “tails” of r.v. Ti distribution,

1 − F(t) = P{Ti > t}.

We denote

1 −G(t) = lim
n→∞P{Wn > t}.

The following theorem holds:

Theorem 1.3 (Gnedenko).– It is true

– if 1 − F(t) ≈ e−t for t → ∞, then 1 −G(t) = e−et
;

– if 1 − F(t) ≈ t−α for t → ∞, then 1 −G(t) = e−tα .
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Proof 1.3.– This is out of the scope of our course framework. The details can

be found in the special literature (see, for example, [GNE 49, SMI 49]). �

The second part of this theorem leads to the Gnedenko–Waibull

distribution, while the first one leads to the Gomperz distribution, which is

often used for modeling human lifetime distributions in actuarial theory.

Another very helpful property of the Gnedenko–Weibull distribution is

contained in the following theorem.

Theorem 1.4.– Let the i.i.d. r.v.’s Ti, (i = 1, n) have Gnedenko–Waibull

distribution with the parameters (λi, α). Then the r.v.

W = min
1≤i≤n

Ti

also has Gnedenko–Weibull distribution with parameters (λ, α), where

λ =
n∑

i=1
λi. �

Proof 1.4.– This can be done with the help of direct calculations and is

proposed as exercise 1.1.

Example 1.1.– Consider the system consisting of n identical independently

failed elements whose lifetimes have the Gnedenko–Weibull distribution with

the same parameters λ, α. If the system fails after the failure of at least one

element, then the system lifetime also has the Gnedenko–Weibull distribution

with the parameters nλ, α,

Rsys(t) = R1(t) · · ·Rn(t) = exp
{− (
λtα + · · · + λ tα

)}
= e−nλtα .

1.1.3.5. Gamma-distribution

The Gamma-distribution is determined by its p.d.f. with parameters λ > 0

and α > 0:

f (t) =
λαtα−1

Γ(α)
e−λ t, for t ≥ 0, [1.23]

where Γ(α) =
∞∫
0

xα−1e−x dx is a Γ–function. The p.d.f. of Gamma-distribution

is represented in Figure 1.7.



Reliability of Engineering Systems 15
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Figure 1.7. P.d.f. of Gamma-distribution, λ = 0.25, α = 2

The reliability function for the lifetime Γ-distribution equals

R(t) =

∞∫
λ t

xα−1

Γ(α)
e−x dx for t ≥ 0, [1.24]

There is no analytical expression for the h.r.f of this distribution, but its

mean and variance are

μT = E[T ] =
α

λ
, σ2

T = Var[T ] =
α

λ2
. [1.25]

For α = 1, this distribution coincides with the exponential one, and its

special case for the integer α = k is known as the Erlang distribution of the

order k with parameter λ. Erlang distribution is often used for modeling

failures, arising as a result of stress accumulation. Imagine that the unit is

subjected to some mechanical shocks that arise after random time intervals

having an exponential distribution with parameter λ, and the unit could bear

only k − 1 such shocks, and after the k-th one, the failure arises. In this case,

the lifetime of this unit has an Erlang distribution of the order k with

parameter λ.
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1.1.3.6. Log-normal distribution

This distribution is determined by its p.d.f.

f (t) =
1

tσ
√

2π
e
−

(ln(t − μ)2

2σ2 for t ≥ 0,

with positive parameters shift μ > 0 and form σ > 0. It is represented in

Figure 1.8. The reliability function for the appropriate reliability law is

R(t) =
1√
2π

∞∫
1
σ ln t

μ

e−
x2

2 dx = 1 − Φ
(

1

σ
ln

t
μ

)
= Φ

(
ln μ − ln t
σ

)
, [1.26]

and the mean and the variance of this distribution are:

μT = E[T ] = exp

{
μ +
σ2

2

}
; σ2

T = Var[T ] = (eσ
2 − 1)e2μ+σ2

. [1.27]

Log-normal distribution represents the distribution of r.v. that is an

exponent of normally distributed r.v., i.e. if the r.v. X has a normal

distribution, then the r.v. T = eX is log-normally distributed r.v. In other

words, the logarithm of log-normally distributed r.v. has a normal distribution.

From the definition of this distribution and the Central Limit Theorem of

probability theory, it follows that the log-normal distribution arises as a

distribution of product generally distributed independent r.v.’s. Since,

according to the Central Limit Theorem, the distribution of a sum X =
∑n

i=1 Xi

of independent uniformly small r.v.’s Xi for a large number n tends to the

normal distribution than the r.v.

T = eX = exp

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

Xi

⎫⎪⎪⎬⎪⎪⎭ =
n∏

i=1

eXi =

n∏
i=1

Ti

should have a log-normal distribution.

1.1.3.7. Power and Pareto distributions

The power distribution is determined by its reliability function

R(t) =
(
μ

μ + t

)α
for t > 0 [1.28]
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with the positive parameters μ > 0 and α > 0. Its p.d.f. and h.r.f. are:

f (t) =
α

μ

(
μ

μ + t

)α+1

, λ(t) =
α

μ + t
.

t

f(t)
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0.04

Figure 1.8. P.d.f. of log-normal distribution, μ = 3, σ = 0.5

With the variables changing μ = c, μ + t = x with c > 0, this distribution

transforms to the Pareto–distribution with p.d.f.

f (x) =
α

c

(c
t

)α+1
for t ≥ c,

and parameters α > 0, c > 0. This is represented in Figure 1.9.
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Figure 1.9. P.d.f. of Pareto distribution, α = 3, c = 0.5
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The expectation and the variance of a r.v. with this distribution are:

μT = E[T ] =
αc
α − 1

for α > 1;

σ2
T = Var[T ] =

αc2

(α − 1)(α − 2)
for α > 2. [1.29]

We will turn to this distribution in section 2.2.2.6 in connection with the

study of damage value distributions.

1.1.3.8. Relay distribution

The Relay distribution is determined with its p.d.f.

f (t) =
t
σ2

e−
t2

2σ2 for t ≥ 0

with the positive parameter σ > 0. The reliability function for this distribution

is:

R(t) = e−
t2

2σ2 [1.30]

and mean, variance and h.r.f. for this reliability law equal

μT = ET =
√
π

2
σ, σT =

4 − π
2
σ2, λ(t) =

t
σ2
. [1.31]

Note 1.2.– Relay distribution is a special case of the Gnedenko–Weibull

distribution if we put α = 2 and λ = 1
2σ2 .

1.1.3.9. Uniform distribution

The uniform distribution is determined with its p.d.f.

f (t) =
1

b − a
1{a≤t≤b}, 0 < a < b,

with parameters a and b such that a < b. This function has a rectangular form

(see Figure 1.10), due to which it is often called a rectangular distribution.
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Figure 1.10. p.d.f. of uniform distribution, a = 2, b = 10

The c.d.f. of this distribution is given by the formula

F(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, for t < a;
t − a
b − a

, for a ≤ t ≤ b;

1, for t > b.

[1.32]

The h.r.f. for this reliability law is described by the formula,

λ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t < a;
1

b − t
, a ≤ t ≤ b;

does not defined, t > b,

[1.33]

and its mean and the variance equals

μT = E[T ] =
a + b

2
; σ2

T = Var[T ] =
(b − a)2

12
. [1.34]

This distribution is often used for modeling lifetime of units when there

is not enough information about it. For example, in the case when only the

boundary (minimal and maximal) values of lifetime are known and between

these times, failures can arise with equal probability.
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1.1.3.10. Degenerate distribution

Degenerate is called a distribution of a r.v. that takes only one value, say

b ≥ 0, with probability 1. Its c.d.f. is

F(t) = 1{t≥b} =

⎧⎪⎪⎨⎪⎪⎩
0, for t < b;

1, otherwise,

where the function

1{t∈A} =

⎧⎪⎪⎨⎪⎪⎩
1, t ∈ A;

0, otherwise
[1.35]

is the indicator function of the set A. It has a stepwise form with a jump of the

value 1 in point b (see Figure 1.11). The expectation and the variance of this

r.v. are

E[T ] = b; Var[T ] = 0.

t

F (t)

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

Figure 1.11. c.d.f. of degenerate distribution, b = 1.5

A mixture of these distributions allows us to construct two-points and any

other discrete distributions.

1.1.3.11. Aging units

The units with increasing h.r.f. are usually called aging units. They are

characterized by gradual failures. Using the property of the h.r.f. to increase,

we can get useful estimations for the reliability of aging units.
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In Tables A1.1 and A1.2 of Appendix 1, the models of the commonly used

reliability laws and their appropriate characteristics are presented.

1.1.4. Examples

Example 1.2.– The lifetime of a gyroscope has the Gnedenko–Weibull

distribution [1.20] with parameters α = 1.5, λ = 10−4( hours−1).

Here we calculate the numerical characteristics of this device up to the time

t = 100 hours of its operation.

1) To find the probability of the reliable working time using the

formula [1.20]

R(t) = e−λ tα .

Substituting the values λ, t and α from the problem set gives

R(100) = exp{−10−4 · 1001.5} ≈ 0.905.

2) Frequency and h.r.f. due to formulas [1.3], [1.6] and [1.21] for the

Gnedenko–Weibull distribution have the form

f (t) = αλ tα−1e−λ tα ; λ(t) =
f (t)
R(t)
= αλ tα−1.

Therefore,

f (100) ≈ 10−4 · 1.5 · 1000.5 · 0.905 ≈ 0.00136 hour−1

and

λ(100) =
f (100)

R(100)
≈ 0.00136

0.905
≈ 0.0015 hour−1.

3) Mean time to the first failure according to formula [1.21] is

μT = λ
−1/α · Γ

(
1

α
+ 1

)
≈

(
10−4

)−1/1.5 · 0.9027 ≈ 419 hour.
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Example 1.3.– Suppose that the data about failures of some unit give the

following result for the failure frequency:

f (t) = c1λ1e−λ1t + c2λ2e−λ2t

with some constants c1, c2. Let us calculate all reliability characteristics.

1) Find the reliability function. Based on formulas [1.2], [1.3], we can find

R(t) = 1 −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

t∫
0

c1λ1e−λ1u du +

t∫
0

c2λ2e−λ2u du

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

= 1 −
[
−c1e−λ1t + c1 − c2e−λ2t + c2

]
=

= 1 − (c1 + c2) + c1e−λ1t + c2e−λ2t.

To calculate sum c1 + c2, we can use the relation
∞∫
0

f (t) dt = 1. Thus,

∞∫
0

c1λ1e−λ1t dt +

∞∫
0

c2λ2e−λ2t dt = c1 + c2 = 1.

and, therefore,

R(t) = c1e−λ1t + c2e−λ2t.

2) Calculating the h.r.f. according to [1.6] gives

λ(t) =
f (t)
R(t)
=

c1λ1e−λ1t + c2λ2e−λ2t

c1e−λ1t + c2e−λ2t .

3) Using formula [1.9], we can find the mean unit lifetime as

μT =

∞∫
0

R(t) dt = c1

∞∫
0

e−λ1t dt + c2

∞∫
0

e−λ2t dt =
c1

λ1
+

c2

λ2
.
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1.1.5. Exercises

Exercise 1.1.– Let the r.v’s Ti (i = 1, n) be independent and have the

Gnedenko–Weibull distribution with parameters (λi, α). Prove theorem 1.4

that the r.v.

W = min
1≤i≤n

Ti

also has the Gnedenko–Weibull distribution with parameters (λ, α), where

λ =
n∑

i=1
λi.

Exercise 1.2.– A unit is constant and equals 0.82 · 10−3 hour−1. Find the

reliability of the unit during 6 hours, R(6), frequency of failures in time

100 hours, f (100), and mean unit lifetime μT .

Answer: R(6) = 0.995, f (100) = 0.75 · 10−3 hours−1, μT = 1220 hours.

Exercise 1.3.– The reliability of an automatic line for the production of

cylinders for an automobile engine during 120 hours is 0.9. It is assumed that

the exponential reliability law holds. Calculate the h.r.f. and frequency of

failures for time t = 120 hours and mean lifetime.

Answer: λ = 0.83 · 10−3 hours−1, f (120) = 0.747 · 10−3 hours−1,

μT = 1200 hours.

Exercise 1.4.– Mean lifetime of an automatic control system is 640 hours. It

is assumed that the exponential reliability law holds. Find its reliability during

t = 120 hours, frequency of failures and h.r.f. for this time.

Answer: R(120) = 0.83, f (120) = 1.3 · 10−3 hours−1,

λ(120) = 1.56 · 10−3 hours−1.

Exercise 1.5.– The lifetime of a unit has the truncated normal distribution with

parameters μT = 8000 hours, σT = 1000 hours. Find its reliability during

8000 hours.

Answer: R(8000) = 0.5.

Exercise 1.6.– Using the data from exercise 1.5, calculate the frequency of

failures for time t = 6000 hours.

Answer: f (6000) = 5.4 · 10−5 hours−1.
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Exercise 1.7.– Using the data from exercise 1.5, calculate the h.r.f for time

t = 10000 hours.

Answer: λ(10000) = 2.35 · 10−3 hours−1.

Exercise 1.8.– In failure data analysis, it has been found that its frequency of

failures has a form

f (t) = 2 λ e−λ t(1 − e−λ t).

Find the reliability characteristics R(t), λ(t) and μT .

Answer: R(t) = 2 e−λ t − e−2 λ t; λ(t) =

(
1 − e−λ t

)
λ

1 − 1
2
e−λ t

; μT =
3

2 λ
.

1.2. Reliability of renewable systems

In the previous section reliability characteristics of units (articles) up to the

first failure were considered. In this chapter we attempt to study more complex

objects that are considered as a single entity, which can be repaired or replaced

after failure and, therefore, the term “article” will be used here instead of unit.

We start from the case of instantaneous replacement. Taking into account that

the replacement time is usually much lower than the article lifetime, we can

understand that this model is adequate enough to the real situations.

1.2.1. Reliability of instantaneously renewable articles

1.2.1.1. Renewal process: definition

Consider a system, consisting of an article, which operates continuously in

time and suppose that the failed article is instantaneously replaced by the new

identical one. We denote the sequence of the article lifetimes by

{Tn, n = 1, 2, . . . }. They are assumed to be independent identically distributed

random variables (i.i.d. r.v.’s) and their common cumulative distribution

function (c.d.f.) is given by

F(t) = P{Ti ≤ t}
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with expectation E[Tn] = μ and variance Var[Tn] = σ2. Then the values

S 1 = T1, S 2 = T1 + T2, · · · , S n = T1 + T2 + · · · + Tn [1.36]

form the sequence of the article failure times, and the process

N(t) = max{n : S n ≤ t} [1.37]

represents the number of replacements up to time t.

Definition 1.1.– The sequence {S n, n = 1, 2, . . . } is called the failure flow4 and

the process {N(t), t ≥ 0} is called the renewal process.

Sometimes it is necessary to consider the failure flows {S n, n = 1, 2, . . . },
in which the first failure time T1 distribution differs from others (for example,

in the case when the observation for the replacement process begins not from

the new article). Then, generalized failure flow and the renewal process is

introduced.

Definition 1.2.– The sequence {S n, n = 1, 2, . . . } and the process {N(t), t ≥
0} are called the general failure flow appropriate general renewal process (or

delayed failure flow appropriate delayed renewal process) if all r.v.’s generating

them {Tn, n = 1, 2, . . . } are independent and identically distributed except for

the first one that has a different c.d.f. F1(t). The failure flow {S n, n = 1, 2, . . . }
and the appropriate process {N(t), t ≥ 0} are called stationary (the reason for

this name will be discussed later) if

F1(t) =
1

E[T2]

t∫
0

(1 − F(u))du. [1.38]

In the case of the article state observation in discrete time, the failure flow

and the renewal process transform into discrete time processes and are

called discrete failure flow and discrete renewal process respectively. A

special case of discrete renewal processes – arithmetic ones are usually used

in practice.

4 In general theory of stochastic processes, this type of process is known as a point process.



26 Reliability of Engineering Systems and Technological Risks

Definition 1.3.– The renewal process is called arithmetic if r.v’s Tn that

determine it have an arithmetic distribution.

The distribution F(t) is called discrete if it is concentrated at the discrete

set of points {xk, k = 0, 1, 2, . . . }; it is called lattice if the points xk of the set

have the form xk = a + kΔ, and if a = 0, then the appropriate distribution is

called arithmetic and the maximal possible value of Δ is called the step of the

distribution.

The most interesting characteristics of the failure flow and the renewal

process are the distribution of some, say n-th, time to failure, number of

failures (and replacements respectively) up to a time t and so on. Consider

these characteristics.

1.2.1.2. Distribution of failure time

Denote by F(t) the c.d.f of the r.v’s Tn, and by μ and σ2 their mean value

and variance and suppose that they satisfy the following assumption.

Assumption 1.1.– There are no immediate failures. In mathematical terms this

means that F(+0) = 0.

Because the failure times S n are the sum of i.i.d. r.v., their distributions are

calculated based on the convolution formula:

F1(t) ≡ P{S 1 ≤ t} = P{T1 ≤ t} = F(t),

Fn(t) ≡ P{S n ≤ t} =
t∫

0

Fn−1(t − u) dF(u) ≡

≡ F(∗n)(t), n > 1. [1.39]

The expectation and the variance of these r.v.’s are

E[S n] = n E[T1] = n μ, Var[S n] = n Var[T1] = nσ2. [1.40]

1.2.1.3. Distribution of the failure number

It is not difficult to find the failure number distribution. Because the events

{S n ≤ t} = {“time of n-th failure is not greater than t”}
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and

{N(t) ≥ n} = {“it occurs not less than n failures up to time t”}

are equivalent,

{S n ≤ t} = {N(t) ≥ n}, [1.41]

their probabilities coincide, P{S n ≤ t} = P{N(t) ≥ n}. Therefore,

pn(t) ≡ P{N(t) = n} = P{n ≤ N(t) < n + 1} =
= P{N(t) ≥ n} − P{N(t) ≥ n + 1} =
= P{S n ≤ t} − P{S n+1 ≤ t} =
= F(∗n)(t) − F(∗(n+1))(t), [1.42]

where the function F(∗n)(t) is determined by the equality [1.39].

1.2.1.4. Moment generating function of the renewal process

The previous expressions are not convenient enough for calculation.

Therefore, the renewal process distribution can be represented in terms of its

m.g.f.

p(z, t) = E
[
zN(t)

]
=

∑
0≤n≤∞

zn pn(t),

and its Laplace transform (LT)

p̃(z, s) =

∞∫
0

e−st p(z, t) dt.

Substituting m.g.f. and then LT in formula [1.42], we can obtain

p̃(z, s) =

∞∫
0

e−st p(z, t) dt =

∞∫
0

e−st
∑

0≤n<∞
zn pn(t) =

=
∑

0≤n<∞
zn

(
F(∗n)(t) − F(∗(n+1))(t),

)
.
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Taking into account that the LT of the convolution equals the product of LT

and its components, and that the LT of a c.d.f. connected with LT of its p.d.f.

(Laplace–Stieltjes transform of c.d.f.) by the relation

F̃(s) =

∞∫
0

e−st F(t) dt = −1

s
e−stF(t)

∣∣∣∣∞
0
+

1

s

∞∫
0

e−st dF(t) =

=
1

s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∞∫

0

e−st dF(t) + F(+0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1

s
[ f̃ (s) + F(0)],

and paying attention to assumption 1.1 about F(+0) = 0, we can obtain

p̃(z, s) =

∞∫
0

e−st p(z, t) dt =
1

s

∑
0≤n<∞

zn(1 − f̃ (s)) f̃ n(s) =

=
1 − f̃ (s)

s(1 − z f̃ (s))
. [1.43]

We state this result as a theorem.

Theorem 1.5.– LT of the renewal process m.g.f. is given by formula [1.43].

�

In general, this expression can be used for the moments of the process N(t)
calculation or for its asymptotic analysis. However, sometimes (although not

enough often) with its inversion and expansion in Taylor series, we can find

explicit expressions for the number of failure distribution. This will be done

with the help of an example about the Poisson process in section 1.2.3.

1.2.1.5. Asymptotic properties of the renewal process

The Large Number Law (LNL) and the Central Limit Theorem (CLT) for

sums of i.i.d. r.v. are known from Probability Theory. Because the intervals

between failures are i.i.d. r.v. and the failure flow is their sum, the LNL and

CLT are true.
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Theorem 1.6 (LNL for S n).– It holds

lim
n→∞

S n

n
= μ,

if μ < ∞, then convergence in probability holds, and if σ2 < ∞, then the

convergence with probability 1 takes place.

Theorem 1.7 (CLT for S n).– If μ < ∞ and σ2 < ∞, then for t → ∞ time to the

n-th failure S n after the usual normalization tends (in distribution) to normal

r.v.,

lim
n→∞P

{
S n − n μ
σ
√

n
≤ x

}
= Φ(x),

where Φ(x) is the c.p.f. of standard normal distribution [1.18].

Concerning the asymptotic behavior of the renewal process, we can

understand that relation [1.41], connecting the renewal process N(t) with the

failure flow S n, also allows the transformation of these results (LNL and

CLT) to the renewal process.

Theorem 1.8 (LNL for N(t)).– The following limiting relation holds

lim
n→∞

N(t)
t
=

1

μ
,

if μ < ∞, then convergence in probability holds, and if σ2 < ∞, then

convergence with probability 1 takes place.

Theorem 1.9 (CLT for N(t)).– If μ < ∞ and σ2 < ∞, then for t → ∞, the

number of failures N(t) after appropriate normalization tends (in distribution)

to normal r.v.,

lim
n→∞P

⎧⎪⎪⎨⎪⎪⎩
N(t) − μ−1t

σ
√

tμ−3
≤ x

⎫⎪⎪⎬⎪⎪⎭ = Φ(x).

As it was mentioned above, the proofs of theorems 1.6 and 1.7 are known

from Probability Theory; and the proofs of theorems 1.8 and 1.9 can be

obtained by using the events equivalence, see formula [1.41].
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The last relation allows us to propose enough precise evaluation of the 99%

confidence interval for number of failures after enough long time t with the

help of “3σ–rule”, namely:

P{μ−1t − 3σ2
√

tμ−3 ≤ N(t) ≤ μ−1t + 3σ2
√

tμ−3} = 0.99

1.2.2. Renewal function

1.2.2.1. Definition

Definition 1.4.– Expectation of the renewal process (mean renewal numbers

during time t) is called renewal function,

H(t) = E[N(t)]. [1.44]

This is one of the most important characteristics of the renewal process. For

its calculation, it is convenient to use equality [1.41] and the following relation

H(t) =
∞∑

n=1

npn(t) =
∞∑

n=1

∑
k≥n

pk(t) =

=

∞∑
n=1

P{N(t) ≥ n} =
∞∑

n=1

F∗n(t). [1.45]

From this relation, it follows that the renewal function must satisfy the

integral equations that are known as forward and backward renewal
equations:

H(t) = F(t) +

t∫
0

F(t − u) dH(u) = [1.46]

= F(t) +

t∫
0

H(t − u) dF(u). [1.47]
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If lifetime of an article has a p.d.f. f (t) = F′(t), then the renewal function

H(t) can be differentiable and its derivative

h(t) = H′(t) [1.48]

is called renewal density. In applications, this function represents

(instantaneous) failure flow intensity, which is one of the most important

reliability characteristics of the renewable articles. Practically, this means the

mean number of failures per unit of time, or more accurately it can be

determined as

h(t) = lim
Δt→0

H(t + Δt) − H(t)
Δt

that is the definition of the renewal density.

By differentiation of relations [1.46], [1.47], we can find that the renewal

density satisfies the integral equations

h(t) = f (t) +

t∫
0

f (t − u)h(u) du = [1.49]

= f (t) +

t∫
0

h(t − u) f (u) du, [1.50]

which are, respectively, known as forward and backward renewal equations
for renewal density.

For the solution of these equations, we can use the operational method (or

the Laplace transform method). In other words, by applying to these equations

Laplace transform

h̃(s) =

∞∫
0

e−sth(t) dt, f̃ (s) =

∞∫
0

e−st f (t) dt,
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we can obtain the equation5

h̃(s) = f̃ (s) + f̃ (s)h̃(s)

and its solution can be obtained in the form

h̃(s) =
f̃ (s)

1 − f̃ (s)
. [1.51]

This relation can be used in theoretical study of the reliability function as

well as in its concrete calculation.

Note 1.3.– If the time is measured with discrete units, and the r.v.’s Tn and S n

have an arithmetic distributions, then the reliability function and density are

transformed into appropriate sequences Hn and hn. Analogously to the

previous case as an exercise 1.9, it can be proposed to rewrite appropriate

reliability equations and their solutions for the arithmetic renewal process.

1.2.2.2. Renewal theorems

Study of the renewal process asymptotic behavior for a large time t is one of

the most important practical problems. In section 1.2.1.5 some theorems about

renewal process N(t) asymptotic behavior have been considered. In this section

some results about asymptotic behavior of renewal function will be presented

without proof. Proofs of these theorems can be found in the literature (see the

bibliography).

We start with the asymptotic behavior of the mean value of the renewal

process. The expected number of failures during long time t is a fraction of the

time to mean inter-failures time μ,

H(t) ≈ t
μ

for t → ∞.

Formally, this property consists of the assertion of the so-called elementary
renewal theorem.

5 The same result and the following solution can be obtained by applying the Laplace–Stieltjes

transform to equations [1.46], [1.47]
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Theorem 1.10 (Elementary renewal theorem).– If E[Tn] = μ < ∞, then

lim
t→∞

H(t)
t
=

1

μ
. [1.52]

In the case when lifetime distribution has a density, the theorem assertion

can be reinforced.

Consequence 1.1.– If c.d.f. F(t) is differentiable (i.e. there exists its p.d.f.), then

the renewal function H(t) is also differentiable, and for its density h(t) = H′(t)
under theorem 1.10 conditions, the following assertion holds

lim
t→∞ h(t) =

1

μ
. [1.53]

The elementary renewal theorem allows significant generalizations for

mostly applicable cases of the lifetime absolutely continuous and discrete

distributions.

Theorem 1.11 (Key renewal theorem or Smith’s theorem).– If c.d.f. F(t) is

differentiable, μ < ∞ and g(t) is some integrable function, i.e.
∞∫
0

g(u) du < ∞,

then the following relation holds

lim
t→∞

t∫
0

g(t − u) h(u) du =
1

μ

∞∫
0

g(u) du. [1.54]

Analogous assertion takes place for arithmetic distributions that is used in

the case, when the time is measured in discrete units.

Consequence 1.2.– If lifetime has an arithmetic distribution and g(n) is a

summing function, i.e.
∑

n≥0
g(n) < ∞, then analogous to equality [1.54] holds

lim
n→∞

n∑
k=0

g(n − k) hk =
1

μ

∞∑
k=0

g(k). [1.55]

Many characteristics of the renewal process can be represented in terms of

renewal function. Particularly it can be used for the study of two very important

processes, connected with renewable articles.
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1.2.3. Age and residual lifetime of an article

Considering the renewal process as an article replacement process, we can

see that the age and residual lifetime of an article are continuously changing.

Thus, its reliability characteristics are also changing. Therefore together with

the failure flow {S n, n = 1, 2, . . . } and the renewal process {N(t), t ≥ 0}, it is

also necessary to consider two more processes

Z−(t) = t − S N(t), Z+(t) = S N(t)+1 − t, [1.56]

the first process is called an age and the second process is called a residual
lifetime of an article operating in time t.

For calculation of the processes Z−(t) and Z+(t), one-dimensional

distributions are denoted by G±(t, x) c.d.f. of appropriate distributions at the

separate random interval Tn,

G±(t, x) = P{Z±(S n−1 + t) ≤ x, t < Tn}. [1.57]

The following theorem represents one-dimensional distributions of the

processes Z±(t) in terms of its appropriate distributions G±(t, x) at the

separate intervals Tn and renewal function H(t).

Theorem 1.12.– The age and the residual lifetime of an article’s

one-dimensional distribution have a form

P{Z±(t) ≤ x} = G±(t, x) +

t∫
0

G±(t − u, x) dH(u), [1.58]

where H(u) is the renewal function, generated by the failure flow {S n, n =
1, 2, . . . }.
Proof 1.5.– The complete probability formula with respect to a system of

events {S n ≤ t < S n+1} is given by

P{Z±(t) ≤ x} = G±(t, x) +

∞∑
n=1

P{Z±(t) ≤ x, S n ≤ t < S n+1}.
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Then using the complete probability formula with respect to r.v.’s S n in the

second summand, changing the order of summing and integration and taking

into account that H(t) =
∞∑

n=1
P{S n ≤ t}, we can obtain

P{Z±(t) ≤ x} = G±(t, x) +

+

∞∑
n=1

t∫
0

P{Z±(t) ≤ x, S n ≤ t < S n+1 | S =u} dP{S k ≤ u} =

= G±(t, x) +

+

t∫
0

∞∑
n=1

P{Z±(t − u) ≤ x, t − u < Tn+1} dP{S n ≤ u} =

= G±(t, x) +

t∫
0

G±(t − u, x) dH(u)

which proves the theorem. �

We now consider the distributions of the processes at the separate inter-

failure times Tn.

Lemma 1.1.– For the processes Z±(t) at separate failure time Tn, the following

representations hold

G−(t, x) = P{Z−(S n−1 + t) ≤ x, t < Tn} =
= 1{t≤ x}(1 − F(t)); [1.59]

G+(t, x) = P{Z+(S n−1 + t) ≤ x, t < Tn} =
= F(t + x) − F(t), [1.60]

where 1{t≤ x} denotes the indicator function of the set {t ≤ x} defined by

formula [1.35] in section 1.1.3.10,

1{t≤ x} =

⎧⎪⎪⎨⎪⎪⎩
1, t ≤ x;

0, otherwise.
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Proof 1.6.– Indeed, for the processes Z−(t), Z+(t) at the separate interval Tn,

i.e. jointly with the event {t < Tn}, the following representations hold

{Z−(S n−1 + t), t < Tn} = {t, t < Tn},
{Z+(S n−1 + t), t < Tn} = {Tn − t, t < Tn}.

Thus, for G±(t, x), it is true:

G−(t, x) = P{Z−(S n−1 + t) ≤ x, t < Tn} =
= P{t ≤ x, t < Tn} = 1{t≤ x}(1 − F(t));

G+(t, x) = P{Z+(S n−1 + t) ≤ x, t < Tn} =
= P{Tn − t ≤ x, t < Tn} = F(t + x) − F(t),

which proves the lemma. �

For t → ∞, the age and the residual lifetime processes tend to a stationary

regime, or in other words, there exist the limits

lim
t→∞P{Z±(t) ≤ x}.

The limiting distributions for both processes coincide and have the form of

the initial time distribution [1.38] for a stationary renewal process.

Theorem 1.13.– When t → ∞, the distributions of the age and the residual

lifetime processes converge to the stationary one, whose distribution is given

by

lim
t→∞P{Z±(t) ≤ x} = 1

μ

x∫
0

(1 − F(u)) du. [1.61]

Proof 1.7.– Because F(t) → 1 for t → ∞, then it is evident that there exists

the limit

lim
t→∞G±(t, x) = 0.



Reliability of Engineering Systems 37

Moreover, the functions G±(t, x) satisfy Smith’s key renewal theorem 1.11.

Thus, there exist the limits:

lim
t→∞P{Z−(t) ≤ x} = 1

μ

∞∫
0

1{t≤x} (1 − F(t)) dt =
1

μ

x∫
0

(1 − F(t)) dt;

lim
t→∞P{Z+(t) ≤ x} = 1

μ

∞∫
0

(F(t + x) − F(t)) dt =

=
1

μ

∞∫
0

[
(1 − F(t)) − (1 − F(t + x))

]
dt =

1

μ

x∫
0

(1 − F(u)) du.

The theorem is thus proved. �

1.2.4. Reliability characteristics with regard to replacement time

In reality, for fault detecting, localization and real repair or replacement

of some article, additional time is needed. Suppose that besides the article

lifetime {Tn, n = 1, 2, . . . }, there is also some sequence of renovation (repair,

replacement) times {T ′n, n = 1, 2, . . . }, which are i.i.d. r.v.. Their common

c.d.f. is denoted by

G(t) = P{T ′n ≤ t}
From the point of view of workability of a renewable article, the main

characteristic of its reliability is the availability coefficient, Kav(t).

Definition 1.5.– An availability coefficient of some article is part of the time

for which the article is in up state during the whole active time t,

Kav(t) =
Up time of an article time during active time t

t
.

An additional value

Kfail(t) =
Down time of an article time during active time t

t
=

= 1 − Kav(t)

is known as failure coefficient of an article.
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With increasing time t to infinity according to the ergodic theorems of the

probability theory, these values tend to some non-random stationary values

lim
t→∞Kav(t) = Kav =

E[T1]

E[T1] + E[T ′
1
]
, [1.62]

lim
t→∞Kfail(t) = Kfail =

E[T ′
1
]

E[T1] + E[T ′
1
]
. [1.63]

Another reliability characteristics of renewable articles or systems and the

methods of their investigation will be considered in section 1.6, where

reliability renewable redundant systems are considered.

1.2.5. Examples

Example 1.4 (Poisson process).– We consider the failure flow (and

appropriate renewal process) whose lifetimes have the exponential

distribution with p.d.f. f (t) = λ e−λ t. Failure times S n in this case are the sums

of independent identically exponentially distributed r.v.’s and according to

[1.39] they have Erlang distributions,

P{S n ≤ t} ≡ F(∗n)(t) = 1 − e−λ t
n−1∑
k=0

(λ t)k

k!
. [1.64]

As in exercise 1.12, it is proposed to check this formula.

Then the distribution of the renewal (replacements number) process N(t),
calculated by formula [2.7], is given by

P{N(t) = n} ≡ pn(t) =
(λ t)n

n!
e−λ t. [1.65]

This is a Poisson distribution and therefore the appropriate process is called

the Poisson process.

According to [1.51], the Laplace transform of the renewal density of this

process is given by

h̃(s) =
f̃ (s)

1 − f̃ (s)
=
λ/(λ + s)

1 − λ/(λ + s)
=
λ

s
. [1.66]
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Using an inverse Laplace transform from this relation, we can obtain the

expression for renewal density and by integration, we can also obtain the

expression for renewal function

h(t) = λ, H(t) = λ t. [1.67]

Thus, the intensity of failures for the Poisson process coincides with the

h.r.f. of the separate unit and the parameter of its exponential lifetime

distribution.

Finally, calculations with formula [1.58], according to formulas [1.59] and

[1.60], show that the age and residual lifetime distributions of an article with

this lifetime distribution do not depend on the observation time t and coincide

with the initial distribution,

P{Z±(t) ≤ x} = 1 − e−λ x. [1.68]

At this point, it is reasonable to focus on some paradox, connected with the

processes Z±(t). In fact, because the values Z±(t) have the same distributions

that coincide with the failure lifetime distribution, according to the very evident

relation

Z−(t) + Z+(t) = TN(t)+1, [1.69]

it follows, for example,

E[Z−(t)] + E[Z+(t)] = E[TN(t)+1]

and thus it does not follow that EZ−(t) ≤ μ, EZ+(t) ≤ μ or E
(
Z−(t) + Z+(t)

)
=

μ. It follows that in the right side of relation [1.69], the random interval has

a random index, and the expectation of the inter-failure interval, covering the

fixed point t, is twice the usual failure interval. Thus, E[TN(t)+1] � E[Tn] =

λ−1, because the intervals with the random index distributed different from

intervals with the fixed index.

Example 1.5.– We now calculate the failure flow intensity for a renewable

article with failure frequency from example 1.3 of section 1.1.4.
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In order to use formula [1.51], we first find the LT of the failure frequency

f (t):

f̃ (s) =

∞∫
0

f (t)e−st dt =

∞∫
0

c1λ1e−λ1te−stdt +

∞∫
0

c2λ2e−λ2te−st dt =

= c1λ1

∞∫
0

e−t(λ1+s) dt + c2λ2

∞∫
0

e−t(λ2+s) dt =
c1λ1

λ1 + s
+

c2λ2

λ2 + s
.

Substitution of this expression into formula [1.51] gives

h̃(s) =
f̃ (s)

1 − f̃ (s)
=

s(c1λ1 + c2λ2) + λ1λ2

s[s + λ1(1 − c1) + λ2(1 − c2)]
=

=
c1λ1 + c2λ2

s + λ1(1 − c1) + λ2(1 − c2)
+

λ1λ2

s [s + λ1(1 − c1) + λ2(1 − c2)]
.

Using inverse Laplace transform tables, for example, we can find

h(t) = (c1λ1 + c2λ2)e−[λ1(1−c1)+λ2(1−c2)]t +

+ λ1λ2

[
1

λ1(1 − c1) + λ2(1 − c2)
− e−[λ1(1−c1)+λ2(1−c2)]t

λ1(1 − c1) + λ2(1 − c2)

]

After some simple algebra, it is given by

h(t) =
1

λ1c2 + λ2c1

[
λ1λ2 + c1c2(λ1 − λ2)2e−(λ1c2+λ2c1)t

]
.

Example 1.6 (Alternating renewal process).– We consider a renewable system

with regard to the replacement times (see section 1.2.3). We denote by F(t) and

G(t) the c.d.f.’s of the unit lifetimes Tn and replacement times T ′n, respectively,

F(t) = P{Tn ≤ t}, G(t) = P{T ′n ≤ t}.
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The system behavior from its reliability point of view can be described by

the process {X(t), t ≥ 0}, with two states:

X(t) =

⎧⎪⎪⎨⎪⎪⎩
1, if the system is up;

0, otherwise.

This relation stochastic process with two states is called the alternating
renewal process.

Supposing that in the initial time, the system is in the “up” state, its failures

occur in random times

S 1 = T1, S 2 = (T1 + T ′1) + T2, . . . , S n+1 =

n∑
i=1

(Ti + T ′i ) + Tn+1,

and its renovations, respectively, occur in time epochs

S ′1 = T1 + T ′1, S
′
2 = (T1 + T ′1) + (T2 + T ′2), . . . , S ′n+1 =

n+1∑
i=1

(Ti + T ′i ).

In general, the times between failures and renovations are i.i.d. r.v.’s

T ′′n = Tn + T ′n,

while the sequence {S n, n = 1, 2, . . . } is a delayed and the sequence {S ′n, n =
1, 2, . . . } is a simple failure flow.

We denote by f̃ (s) and g̃(s) the m.g.f.’s of life and replacement times (LT

of their p.d.f.’s), respectively,

f̃ (s) = E e−sT =

∞∫
0

e−st f (t) dt,

g̃(s) = E e−sT ′ =

∞∫
0

e−stg(t) dt.
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Then according to [1.51] and taking into account that the m.g.f. of sum of

the independent r.v.’s is equal to the product of the m.g.f. of its summands, the

LT of the renewal density of this process is given by

h̃(s) =
f̃ (s)g̃(s)

1 − f̃ (s)g̃(s)
.

With the help of this expression, some other characteristics of this process

can be calculated.

To calculate time-dependent state probabilities of the considered process,

we denote by π0(t) and π1(t) the probability of its states,

πi(t) = P{X(t) = i}, (i ∈ {0, 1}).

Suppose that in the initial time, the system is in the up state. Then in some

time epoch t, it can be in the up state in the following ways:

i) up to time t there is no failures;

ii) the last failure before time t occurs in time u ≤ t, and after that there are

no failures.

Then, with the help of the same argumentation that has been used in

section 1.2.2, for the probability π1(t), we can obtain the following expression

π1(t) = P{0 ≤ t ≤ T1} +
t∫

0

P{t − u ≤ T1}h(u) du. [1.70]

The expression for π0(t) can be obtained by analogous reasons or by using

an evident relation

π0(t) + π1(t) = 1.

Passing to LT in relation [1.70] and taking into account that the LT of the

reliability function

P{0 ≤ t ≤ T1} = 1 − F(t) = R(t)
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is

R̃(s) =
1 − f̃ (s)

s
,

we can find

π̃1(s) =
1 − f̃ (s)

s(1 − f̃ (s)g̃(s))
. [1.71]

Finally, using the connection between asymptotic behavior, a function at

infinity and its Laplace transform in zero, we can find, for example, by using

L’Hospital’s rule

lim
t→∞ π1(t) = lim

s→0
s π̃1(s) =

μF

μF + μG
. [1.72]

Remark 1.1.– The same result can be obtained using the Smith theorem 1.11

by passing to limit when t → ∞ in formula [1.70].

1.2.6. Exercises

Exercise 1.9.– Find the mean number of renovations of an article during time

t and per unit of time if its life and repair times have exponential distributions

with parameters λ and μ, respectively. Perform a calculation for the case, when

t = 10 000 h, λ−1 = 1000 h, μ−1 = 10 h.

Exercise 1.10.– Solve the previous exercise in the case if the article lifetime

has Erlang distribution with p.d.f.

f (t) = λ2t e−λ t.

Exercise 1.11.– Find a stationary availability coefficient Kav of some

computer that consists of n blocks. Life and repair times of the i-th block have

the exponential distributions with parameters λi and μi (i = 1, n),

respectively. All blocks have to work simultaneously and have enough repair

facilities.

Answer:

Kav = Av =
n∏

i=1

μi

λi + μi
.
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Exercise 1.12.– Check formula [1.64].

1.3. Statistical analysis of reliability characteristics

1.3.1. Introductory notes

The main problem of reliability analysis consists of obtaining the initial

information about it. Because the reliability of complex systems depends on

the reliability of their components, thus to calculate the reliability

characteristics of complex system, some initial information about the

reliability of its components (elements, units) is usually needed. Usually the

information about minimal components is preferable; however, sometimes the

knowledge about reliability characteristics of some more complicated

components is also sufficient. Therefore, the term “unit” for the reliability

object will be used in this section.

The initial information is very rarely known in practice. Some theoretical

reasons (such as constancy of h.r.f. or theorem 1.1 for exponential

distribution, theorem about truncated normal distributions 1.2, or Gnedenko

theorem 1.3) can only give some assumptions about the class of lifetime

distribution. The element producers can usually give only a very approximate

information about mean lifetimes of their production and they are also needed

in special methods for obtaining this information. Mathematical statistics is

the instrument for measuring probabilistic characteristics. It deals with

elaborations of the methods for the estimation of unknown distributions and

their parameters, and different hypothesis testing based on the observation.

The observations about units’ reliability data represent the material for their

statistical analysis. Therefore, the initial information about system reliability

can be obtained from collection and statistical analysis of the observations for

lifetimes of units and systems. It is too expensive and not effective enough to

subject complex systems to statistical analysis. Thus, the main direction of the

complex systems reliability evaluation is its calculation based on the

reliability of their components. Therefore, the collection and analysis of

statistical data about lifetime of units (articles and elements) is needed for

obtaining the initial reliability information.

There are many specific problems in the statistical analysis of reliability

data, and the trials for reliability data organization. Thus, some statistical



Reliability of Engineering Systems 45

procedures for the estimation of elements reliability indexes and

characteristics should be included in the textbook on reliability.

It is necessary to note that the lifetime of elements for highly reliable

systems is usually commensurable with or greater than their obsolescence

time that leads to impossibility of long time experiments for the necessary

statistical material collection. It stimulates to develop some special models for

accelerated testing of the units and special methods of the appropriate data

elaboration (for details and further references, see [BAG 02]). This problem

represents a separate direction of the reliability theory, so it might be a scope

of special issue that should be included in this series.

In any case, the methods of statistical data collection and retrieving from it

the maximal information about units’ reliability characteristics depend on the

information available and the methods of the unit’s reliability testing. There

are many different procedures of the element’s reliability indexes and

characteristic observations and methods of their elaboration. In this section

only some basic notions and traditional methods of elements and articles for

statistical analysis of reliability characteristics and indexes will be considered.

We first consider some plans of the trials for obtaining reliability data.

1.3.2. Observations and the plans of reliability trials

The statistical material about element lifetimes can be obtained in the

following different ways: by simple uncontrollable passive observations or

by specially organized observation plan. In spite of the seemingly evident

advantages of collection and elaboration of data about failures of operating

equipment, the analysis of these data has significant disadvantages, of which

the main advantage is heterogeneity of appropriate data that demands some

special additional methods for the data separation. Thus, to obtain the

trustworthy information about unit lifetime distributions, we should use some

specially planned and organized trials with elements. Therefore, different

plans for the experiments are possible, whose results also demand different

elaboration methods. Briefly, we consider some basic plans of the experiment

realization and their results processing methods. There are different ways of

carrying out reliability trials: dealing with non-renewable or renewable units.

In both cases, a fixed number, say n units, is subject to test, and in the first

plan, the units are not replaced after the failure of each of them, while in the
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second plan, each failed unit is replaced by a new one with the same properties;

moreover, trials with only one unit n = 1 is also possible. In both plans, the

different possibilities of observations can be used:

– Up to all unit failure (only for the non-renewable plan), this plan will be

called a basic plan (BP); according to this plan, the fixed number n of unit

lifetimes ti (i = 1, n) is observed.

– During a fixed time, say t0, this plan will be called as a fixed time plan
(FTP); according to this plan the random number N(t0) of units lifetimes ti (i =
1,N(t0)) are observed.

– Up to the time of some fixed, say m-th failure, this plan will be called as

a fixed number plan (FNP); according to this plan, the fixed number m of unit

lifetimes ti (i = 1,m) is observed during the random time T(m) to m-th failure.

As a result of observations, different data may be fixed:

– the lifetimes ti,

– number of failures ni = n(Δti) during some time intervals Δti.

Note 1.5.– The basic plan can also be used in the case of passive observations

under operating equipment with renewable units. However, in this case, the

observable information represents enough complex functionals from the initial

lifetime distributions and it is not so easy to extract useful information from

these observations.

All these differences in observation of reliability data demand different

types for their elaboration. Here only a short review of the reliability trial

plans and of the elaboration of appropriate statistical data will be presented.

More detailed and in-depth information on this topic can be found in the

literature, especially in monographs [BAR 75, HER 00, GBS 65, BAG 02]

and so on. We start with statistical analysis of non-renewable units.

1.3.3. Statistical analysis of reliability characteristics for trials
under the basic plan

1.3.3.1. Lifetime observations

Let us consider the basic plan of trials when n units are tested up to failure of

each of them. Let there be independent measurement t1, t2, . . . , tn of n identical
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unit lifetimes. For statistical analysis of these data, it is very convenient to first

represent these data in their increment order

t(1) ≤ t(2) ≤ · · · ≤ t(n).

The set of data arranged in order of increasing is called the variation series
and its elements are called the order statistics or variants.

Then the statistical estimation of an unit lifetime c.d.f. is its empirical or

sample distribution function (s.d.f.). Let us denote by N(t) the number of units

that failed at the time t. Then the s.d.f. is determined by the relation (note that

all statistical estimations of some function or parameter are usually indicated

by cap.)

F̂n(t) =
N(t)

n
. [1.73]

Accordingly, empirical (sample) reliability function is determined by the

number of workable articles at time t (see Figure 1.12),

R̂n(t) =
n − N(t)

n
= 1 − F̂n(t). [1.74]

← R̂(t)

← F̂ (t)

F (t) →

R(t) →

t
0

0

0.2

0.4

0.6

0.8

1

Figure 1.12. Sample distribution function of an
unit lifetime and its sample reliability function

The statistical estimation of the p.d.f. f (t) is the histogram f̂ (t), which in

reliability statistics is called the failure frequency. For its construction, the
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interval between minimal and maximal observations (its length R = t(n) − t(1)

is known as a sample span) is divided for some number k < n (usually of

equal length) segments Δi, (i = 1, k), and a stepwise function f̂ (t) as shown in

Figure 1.13, is constructed,

f̂ (t) =
ni

n |Δi| for t ∈ Δi, [1.75]

where ni is the number of observations that lies in the interval Δi, and |Δi| is its

length.

← f̂(t)

← f(t)

t
0 1 2 3 4 5 6 7 8

0

0.05

0.1

0.15

0.2

0.25

Figure 1.13. Failure frequency f̂ (t) and p.d.f. of some article lifetime f (t)

The statistical estimation of a h.r.f. can be calculated according to the

formula

λ̂(t) =
f̂ (t)
R̂(t)
=

ni

n(t)|Δi| for t ∈ Δi, [1.76]

where n(t) is the number of articles that do not fail at time t (beginning of the

interval Δi) and by |Δi|, as before, the length of the time interval Δi is denoted.

The examples of the h.r.f. λ̂(t) and failure frequency f̂ (t), estimation for

data from example 1.7 from section 1.3.5, is shown in Figure 1.15
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(see section 1.3.5). Finally, the estimations of the expectation and the variance

are given by the formulas

μ̂ = m = t̄ =
1

n

n∑
i=1

ti; σ̂2 = S 2 =
1

n − 1

n∑
i=1

(ti − t̄)2. [1.77]

1.3.3.2. Number of failure observations

However, in real practice, and in the case of bench testing on reliability,

the registration of exact times of failures is often quite impossible. Instead,

only the numbers ni of failed units during some time intervals Δi = [ti−1, ti),
are observed. This means that the statistical material for elaboration is, in fact,

represented in groups for the histogram construction. Therefore, for the

calculation of failure frequency and h.r.f. estimation, the same formulas [1.75]

and [1.76] are used, while for the calculation of the sample lifetime c.d.f. and

sample reliability function as well as the estimation of lifetime mean and

variance, some corrections are needed. These corrections are reduced as

follows. It is advisable to smooth (linearly interpolate) the s.d.f. between

points ti−1 and ti, and for the calculation of sample mean and variance, all

observations should be put in the center of the appropriate interval

t̂i = 1
2
(ti−1 + ti); as a result, it leads to the formulas

μ̂ = m = t̄ =
1

n

n∑
i=1

nit̂i; σ̂2 = S 2 =
1

n − 1

n∑
i=1

ni(t̂i − t̄)2, [1.78]

where ni is the number of observations in the interval (ti−1, ti].

According to one of the basic probability theory laws – Large Number

Law – these sample characteristics converge to the appropriate theoretical

values when the sample size n tends to infinity that allows us to measure

reliability characteristics and indexes with statistical methods.

Another plans when the observations are going on not for the last failure,

but during fixed time (FTP), or up to fixed failure number (FNP) leads to

biased in side of decreasing estimations because in the estimation participate

only failed units and therefore the reliable units are mostly excluded from the

estimation process.

The method of reliability characteristics and indexes of non-renewable

article calculation based on the statistical data is demonstrated in example 1.7
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from section 1.3.5. In the same section some additional statistical data for the

estimation of non-renewable articles’ reliability characteristics are proposed.

1.3.4. Statistical estimation of the reliability characteristics and
indexes for trials with renewable units

Analogously to the trials with non-renewable units, the basic reliability

characteristics can also be estimated with passive observations using the

results of failure registration of operating units or with active specially

organized bench trials.

Note that the basic difference between trials with renewable and

non-renewable units involves the fact that in the first case, a fixed number

n = n0 of patterns (specimens) participate in the trials, while in the second

case, the number n(t) of patterns, participating in the experiment, varies

because during trials some of the fixed n(0) = n0 in the beginning of the

experiment patterns fail and leave the experiment.

For independent observations of some patterns lifetimes t1, t2, . . . tn, the

estimations of main reliability characteristics such as c.d.f. of lifetime,

reliability function, frequency of failure, etc. for trials with renewal and

non-renewal patterns of unit coincide. Turns to the differences. The basic

additional characteristic of the renewable system is its failure flow intensity

h(t). Its estimation is calculated by the formula

ĥ(t) =
ni

n |Δi| for t ∈ Δi, [1.79]

where ni is the number of failed patterns in the time interval Δi, |Δi| is its

length, and n is the constant number of patterns, participating in the

experiment. Note that in spite of this formula formally coinciding with the

analogous formula [1.75] for the frequency of failure estimation of

non-renewable units, substantially these formulas lead to different results. As

was pointed out above, for the frequency of failure estimation, the fixed

number n0 of patterns decreases with time in the beginning of the experiment,

because the number ni failed in the interval Δi patterns leave the experiment,

while for the intensity of failure flow, the number of patterns during the

experiment remains constant due to the replacement of the failed specimens

with the new one.
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For the estimation of the stationary intensity of failure flow, we can use

asymptotic properties of the renewal density function (see section 1.2.1.5),

according to which

lim
t→∞ h(t) = lim

t→∞
n(t)

t
= h =

1

μ
.

Thus, if there are information about number n(t) of failures during the

“long” time interval t, then

ĥ ≈ n(t)
t
, from which μ̂ =

1

ĥ
≈ t

n(t)
. [1.80]

Another important characteristic of failure flow, observed under the

renewable units plan, is the estimation of mean time between failures (MTBF)

and appropriate estimation of variance of the time between failures (VTBF).

This index can also be calculated by formula [1.77]; however, it coincides

with the estimation of mean to the first failure in essence only for “simple”

units, for which the failures are homogeneous, because for “complex” units

(articles), the failures could be the results of different reasons (with failures of

its different components) that leads to heterogeneity of statistical data.

In the case of MTBF and VTBF estimation by trials with several specimens,

formulas [1.77] should be replaced by another:

μ̂ = m = t̄ =

k∑
j=1

n j∑
i=1

ti j

k∑
j=1

n j

; σ̂2 = S 2 =

k∑
j=1

n j∑
i=1

(ti j − t̄)2

k∑
j=1

n j

, [1.81]

where k is the number of testing specimens, ti j is the time between (i − 1)-th

and i-th failures of the j-th pattern and n j is the number of the j-th pattern

failures during the testing time t.

Finally, for the estimation of availability and failure coefficients, additional

observations are needed for separate specimen replacement times t′
1
, t′

2
, . . . , t′n;
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therefore, the appropriate estimations can be calculated by the following

formulas:

K̂av =

n∑
i=1

ti

n∑
i=1

(ti + t′i )
; K̂fail =

n∑
i=1

t′i
n∑

i=1
(ti + t′i )

. [1.82]

1.3.5. Examples

Example 1.7.– Suppose that n0 = 1000 specimens of some unit are tested

under non-renewal up to fixed time plan. The failures are fixed over each

Δt = 100 hours. The data about number ni of failures at the i-th time interval

are given in Table A2.1 in Appendix 2. As the reliability characteristics of the

unit, the estimations of reliability function R(t), failure frequency f (t), hazard

rate function λ(t), mean μ and variance σ2 of lifetime are calculated.

The estimations t̄ and S 2 of mean μ and variance σ2 of lifetime, calculated

by formulas [1.78], taking into account only the failed patterns, which is Nfail =

575, give the following results:

t̄ =
1

Nfail

n∑
i=1

nit̂i =
50 · 50 + 40 · 150 + · · · + 40 · 2950

575
= 1400 hours.

σ̂2 = S 2 =
1

Nfail

n∑
i=1

ni(t̂i − t̄)2 ≈ 40860 hours2.

Thus, for both indexes, a low estimate will be obtained, because in the

calculation, the most reliable patterns that operated more than 3000 hours

were not taken into account. There are different possible ways to improve

these estimations; however, these possibilities are not discussed here, and the

reader is referred to the special literature (see [GNE 65]). The graphs of

functional characteristics for statistical estimations, calculated according to

formulas [1.73]–[1.76], are shown in Figures 1.14 and 1.15.

Example 1.8.– During a time interval [t1, t2], the large number n >> 1 of

failures of a renewable article has been fixed. Estimate the mean time between

failures (MTBF) t̄.
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t

R̂(t)
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Figure 1.14. Sample reliability function (example 1.7)

Considering the number of failures, it is possible to believe that the articles

are observed for a long time. Therefore, using relation [1.80], we can obtain

ĥ =
n(t2) − n(t1)

t2 − t1
, or t̄ =

t2 − t1
n(t2) − n(t1)

.

λ̂(t) →

f̂(t) →

t
0 500 1000 1500 2000 2500

0

0.002

0.004

0.006

0.008

Figure 1.15. Frequency f̂ (t) and h.r.f. estimation λ̂(t) (example 1.7)

Example 1.9.– Suppose that k renewable patterns of an article are tested over a

period of time. Each example is observed for ti hours and failed ni times. Find

the mean lifetime of the unit using observations for all pattern operations.
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Because several patterns of the same type of article are tested, for the MTBF

estimation, we should use relation [1.81]. Because the summary operating time

of the i-th pattern equals to ti, the last formula gives

μ̂T = t̄ =

k∑
i=1

ti

k∑
i=1

ni

.

1.3.6. Exercises

The data for calculation are given in Table A2.2 in Appendix 2.

Exercise 1.13.– A renewable unit has been observed during the time Δt, and it

has been fixed n(Δt) failures. Before the start of observations, the unit operates

during t1 hours, and the full operating time to the end of observations was

t2 hours.

Find the mean lifetime (MTBF). The data for the exercise solution are given

in Table A2.4.

Exercise 1.14.– Find the estimation of the variance using the data from

Table A2.4.

Exercise 1.15.– During a period of time, some number of patterns of some

renewable article are tested. The i-th pattern is observed over ti hours and

failed (and changed) ni times. The data for the exercise solution are given in

Table A2.5.

Find the MTBF using the observation data for the operation of all patterns.

1.4. Structural reliability

In this and the following two sections of this chapter, the system reliability

depending on the reliability of their parts is studied. Therefore, instead of the

term “unit” (or “article”), the term “system” is used here for complex object,

the terms “component” or “subsystem” is used for their parts and the term

“elements” is used for their minimal non-divisible parts.
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1.4.1. System structure function

Let us consider a system consisting of n components (or elements as a

special case), each of which can be in one of two states in the sense of their

reliability: workable (up) and non-workable, or failed (down). We denote by

xi (i = 1, n) the indicator of the i-th component state,

xi =

⎧⎪⎪⎨⎪⎪⎩
0, if i-th component down;

1, otherwise.

Definition 1.6.– The structure function of a system (in the sense of its

reliability) is called the function, which shows whether the system is

workable or not depending on the states of its components,

ϕ(x1, . . . , xn) =

⎧⎪⎪⎨⎪⎪⎩
0, if the system is down;

1, otherwise.

Let x = (x1, . . . , xn) denote the vector of the system element’s state. The

relation x < y means that xi ≤ yi for all i, and for at least one of its components,

say j-th, the inequality is strong, x j < y j.

Example 1.10 (Series connection).– The scheme of a system from n
components in series (in the sense of its reliability) is shown in Figure 1.16.

n21

Figure 1.16. System in series

This system is workable if all its elements are in up states. Therefore, the

system structure function is

ϕ(x1, . . . , xn) =

n∏
i=1

xi. [1.83]

Example 1.11 (Parallel connection).– The scheme of a system from n
components connected in parallel (in sense of reliability) in Figure 1.17 is

shown.
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n

2

1

Figure 1.17. Parallel system

This system is workable if at least one of its components is workable.

Therefore, its structure function is

ϕ(x1, . . . , xn) = 1 −
n∏

i=1

(1 − xi). [1.84]

Example 1.12 (“k from n”—system).– Consider the system that is workable if

at least any k of its n components are workable. Its structure function is

ϕ(x1, . . . , xn) =

⎧⎪⎪⎨⎪⎪⎩
1, if k of its n components are workable,

0, otherwise.

The structure scheme of the special case, when n = 3, k = 2, is shown in

Figure 1.18; the structure function in this case can be represented analytically

as

ϕ(x1, x2, x3) = x1x2x3 + x1x2(1 − x3) + x1(1 − x2)x3 + (1 − x1)x2x3. [1.85]

3

3

2

2

1

1

Figure 1.18. Structure scheme of the “2 from 3”–system
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Example 1.13 (Cable TV transmitter).– Consider a system, whose structure

scheme is shown in Figure 1.19. It can be treated as a simplified model of

a cable TV transmission. Here S is a central station and S 1, S 2, S 3 are three

local stations. All stations are connected by cables numbered by integers from

1 to 5. The system is workable if all stations are connected directly or through

another station to the central one.

5

4

3

2

1

S3

S2

S1

S

Figure 1.19. Cable TV system

It is possible to show (the methods for that will be presented later) that the

system structure function equals

ϕ(x) = 1 − (1 − x2x3x5)(1 − x2x4x5)(1 − x2x3x4) ×
×(1 − x1x3x4)(1 − x1x3x5)(1 − x1x2x5)(1 − x1x2x4).

1.4.2. Monotone structures

Say that the system has a monotone structure, if

– it is not operable, when all its elements fail;

– it is operable if all its elements are operable;

– the system state cannot have value if any of its elements change its state

from “down” to “up”;

– all system elements are essential.
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Definition 1.7.– An element is non-essential for the system if its structure

function does not depend on its state. Otherwise, the element is known as

essential for the system.

The notion of the monotone structure shows that all real systems are

monotone. Formally, the monotone structure can be defined in the following

way:

Definition 1.8.– The system is monotone if its structure function satisfies the

following conditions:

i) ϕ(0, . . . , 0) = 0; ϕ(1, . . . , 1) = 1,

ii) x < y⇒ ϕ(x) ≤ ϕ(y).

For the investigation and construction of a system structure function, some

additional notions will be needed.

Definition 1.9.– A state vector x is called a cut vector if ϕ(x) = 0. Then, the

set C(x) = {i : xi = 0} is called a cut set. If additionally for any y, such that

y > x, the relation ϕ(y) = 1 holds, then the cut set is called a minimal cut set.

Definition 1.10.– A state vector x is called a path vector if ϕ(x) = 1. Then the

set A(x) = {i : xi = 1} is called a path set. If additionally for any y, such that

y < x, the relation ϕ(y) = 0 holds, then the corresponding path set is called a

minimal path set.

A minimal cut set is a minimal set of components whose failure causes

the failure of the whole system. On the other hand, a minimal path set is a

minimal set of elements whose workability provides the workability of the

whole system. If all elements of a path set are up then the system is up. The

minimal path set cannot be reduced, as it has no redundant elements.

An important property of structure function is given below.

Theorem 1.14 (Structure function representation).– Let A1, . . . , As be the

minimal path sets of some system. Then

ϕ(x) = 1 −
s∏

j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
∏
i∈A j

xi

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . [1.86]
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Let C1, . . . ,Ck be the minimal cut sets of a system. Then

ϕ(x) =

k∏
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
∏
i∈C j

(1 − xi)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . [1.87]

Proof 1.8.– If there exists at least one minimal path set, say A1, with all

workable elements, then
∏

i∈A1

xi = 1. Therefore, ϕ(x) = 1. Otherwise, if the

system is workable, then there exists at least one minimal path set, whose

elements are workable. Thus, the right hand side of [1.86] equals 1.

Therefore, ϕ(x) = 1 if there exists at least one minimal path set, whose

elements are workable. This proves [1.86]. The proofs of formula [1.87] are

analogous. �

This theorem shows that any monotone system can be represented in two

equivalent ways:

– as a series connection of parallel subsystems with each being a minimal

cut set, or

– as a parallel connection of series subsystems with each being a minimal

path set.

After some simplifications, both representations become identical. It is

necessary to note here that after structure function transformations, it can

contain the powers of some structure variables such as xki
i , which should be

changed to xi, because for binary variables, the following property holds

x2
i = xi. Thus, the final form of the structure function should not contain

powers of variables.

In order to exclude the structure variable powers, we can use the following

decomposition rule. Let us denote

(1i, x) = (x1, . . . , xi−1, 1, xi+1, . . . , xn);

(0i, x) = (x1, . . . , xi−1, 0, xi+1, . . . , xn).

Theorem 1.15.– The following decomposition rule holds:

ϕ(x) = xiϕ(1i, x) + (1 − xi)ϕ(0i, x). [1.88]
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Proof 1.9.– This can simply can be checked with the substitution appropriate

values xi = 0 or xi = 1. �

By repeating the decomposition procedure, any structure function ϕ(x) can

be represented in the form

ϕD(x) =
∑

a
ϕ(a)

n∏
i=1

xai
i (1 − xi)

(1−ai), [1.89]

where the vector a takes all the possible values of the vector x.

In Boolean algebra, this representation is known as normal disjunctive form
(NDF) for a Boolean function.

Example 1.14.– For the system “bridge”, shown in Figure 1.20, the

decomposition rule with respect to the third element gives

ϕ(x) = x3[1 − (1 − x1)(1 − x2)][1 − (1 − x4)(1 − x5)] +

+ (1 − x3)[1 − (1 − x1x4)(1 − x2x5)].

5

4

3

2

1

Figure 1.20. Scheme “bridge”

For checking this representation, we should understand that if the third

element is up, then the system looks like a series of parallel systems (1, 2) and

(4, 5), but if it fails, then the system becomes the parallel connections of

subsystems (1, 4) and (2, 5).

With exercises 1.16, 1.17 given at the end of this section, the structure

function of this system can be represented in the normal disjunctive form.
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1.4.3. Reliability of monotone systems from independent
elements

In this section it is supposed that the system operates in a stationary regime

and that the structure variables are binary r.v. Xi, taking the values 1 and 0 with

probabilities pi and qi = 1 − pi, respectively,

pi = P{Xi = 1}; qi = P{Xi = 0} = 1 − pi.

This means that the i-th component is up with probability pi and down

with probability qi. Since the whole system is up, when ϕ(x) = 1, then the

probability of its workability is

psys = P{ϕ(X1, . . . , Xn) = 1} = Eϕ(X1, . . . , Xn). [1.90]

Due to the properties of expectation, the last formula is very useful for the

calculation of system reliability. However, we should take into account that

for the real systems, the structure function construction and thus the use of

this formula is not a simple problem, for which special methods and computer

tools are used for solving. Let us consider some simple examples of system

reliability calculation.

Example 1.15 (Reliability of a system in series).– For the system in series,

shown in Figure 1.16, the structure function is [1.83]

ϕ(x1, . . . , xn) =

n∏
i=1

xi,

reliability of the system according to [1.90] is

psys = E
n∏

i=1

Xi =

n∏
i=1

P{Xi = 1} =
n∏

i=1

pi [1.91]

and for the case of equally reliable components, p1 = p2 = · · · = pn = p takes

the form psys(p) = pn.

Example 1.16 (Reliability of a system in parallel).– For the system in parallel,

shown in Figure 1.17, the structure function is [1.84],

ϕ(x1, . . . , xn) = 1 −
n∏

i=1

(1 − xi).
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Thus, according to [1.90], the reliability of such a system is

psys = E[1 −
n∏

i=1

(1 − Xi)] = 1 −
n∏

i=1

E(1 − Xi) =

= 1 −
n∏

i=1

P{Xi = 0} = 1 −
n∏

i=1

(1 − pi) [1.92]

and for the case of equally reliable components, p1 = p2 = · · · = pn = p takes

the form psys(p) = 1 − (1 − p)n.

Let us denote by p = (p1, . . . , pn)′ the probability vector of the system

components up states. Then, using the system structure decomposition formula

[1.88], we can obtain the following result:

Theorem 1.16.–

psys = piϕ(1i, p) + (1 − pi)ϕ(0i, p). [1.93]

Proof 1.10.– Using the independence of the components to be in their states,

we can obtain

psys = Eϕ(X) = E[Xiϕ(1i,X)] + E[(1 − Xi)ϕ(0i,X)] =

= piϕ(1i,p) + (1 − pi)ϕ(0i,p),

which proves the theorem. �

In general, for the reliability of the monotone system with independent (in

the sense of their reliability) elements, the following theorem holds.

Theorem 1.17.– The reliability of the monotone system with independent (in

the sense of its reliability) components equals the value of its structure function

in NDF, in which instead of structure variables, the probabilities of their up

states are substituted,

psys = ϕD(p).
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Proof 1.11.– Using NDF of the system structure function due to independent

system elements (and structure variables), we can obtain

psys = EϕD(X) =
∑

a
ϕ(a)E

⎡⎢⎢⎢⎢⎢⎣
n∏

i=1

Xai
i (1 − Xi)

(1−ai)

⎤⎥⎥⎥⎥⎥⎦ =

=
∑

a
ϕ(a)

n∏
i=1

E
[
Xai

i (1 − Xi)
(1−ai)

]
.

Since ai equals 0 or 1, the right hand side of this formula takes the form

E
[
Xai

i (1 − Xi)
(1−ai)

]
= pai

i q(1−ai)
i ,

and, therefore,

psys =
∑

a
ϕ(a)

n∏
i=1

pai
i q(1−ai)

i = ϕD(p) [1.94]

which proves the theorem. �

1.4.4. Reliability function for monotone structures

The result considered above for stationary system reliability can also be

used for time-dependent reliability. For this case, it is sufficient for any time

t to fix each component probability up state to this time pi = Ri(t) and to use

them as stationary component probabilities to substitute into corresponding

formulas of their reliability functions (element reliability for a fixed time t).

Especially for the reliability function Rsys(t) of a system from n components

in series with reliability functions Ri(t), (i = 1, n), according to [1.84], we can

obtain

Rsys(t) =
n∏

i=1

Ri(t).
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Representing components reliability functions Ri(t) in terms of their h.r.f.

λi(t) from this relation, we have

Rsys(t) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
t∫

0

λsys(x) dx

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
t∫

0

n∑
i=1

λi(x) dx

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

This representation gives a very simple and useful rule for the h.r.f. of the

reliability system in series (which is commonly known as a main connection),

λsys(t) =
n∑

i=1

λi(t).

In other words, this rule can be formulated as follows: under the main
connections of the system h.r.f. equals the sum of its components’ h.r.f.’s.

This formula is more simplified for the immediate failures (when h.r.f. is

constant), λi(t) = λi = const,

λsys =

n∑
i=1

λi.

Example 1.17.– Let us calculate the reliability of the system “2 from 3-õ”,

considered as an example 1.12 and shown in Figure 1.18. The structure

function of this system is

ϕ(x1, x2, x3) = x1x2x3 + x1x2(1 − x3) + x1(1 − x2)x3 + (1 − x1)x2x3.

Therefore, the reliability of this system under assumption about equal

reliability of its elements is

psys(p) = p3 + 3p2(1 − p) = p2(3 − 2p).

1.4.5. Exercises

Exercise 1.16.– Opening the parenthesis, find NDF of this system “bridge”

structure function.

Exercise 1.17.– Find the same result with the help of minimal path and cut

sets.
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Exercise 1.18.– Scheme for some system reliability calculation is shown in

Figure 1.21. Write the system structure function and calculate the system

reliability psys if reliability of its elements equal

p1 = 0.9, p2 = 0.8, p3 = 0.85, p4 = 0.94.

Answer: psys = 1 − (1 − p1 p2)(1 − p3 p4) ≈ 0.944.

4

2

3

1

Figure 1.21. Scheme for reliability calculation for
exercises 1.18 and 1.19

Exercise 1.19.– Scheme for some system reliability calculation is shown in

Figure 1.21. Calculate the system mean time to the first failure, its reliability

function and hazard rate at the time t = 100 hours if its elements’ hazard rates

are constant and equal to

λ1 = λ3 = 0.3 · 10−3 hours−1; λ2 = λ4 = 0.7 · 10−3 hours−1.

Answer:

Rsys(t) = 1 −
[
1 − e−(λ1+λ2)t

]2
; Rsys(100) ≈ 0.99;

μsys =
3

2(λ1 + λ2)
= 1500 hours;

fsys(t) = 2(λ1 + λ2)e−(λ1+λ2)
[
1 − e−(λ1+λ2)t

]
;

fsys(100) ≈ 1.8 · 10−4 hours−1;

λsys(100) =
fsys(100)

Rsys(100)
≈ 1.8 · 10−4 hours−1.

Exercise 1.20.– Scheme for some system reliability calculation is shown in

Figure 1.22. Write the system structure function and calculate the system

reliability psys if failure probabilities of its elements equal

q1 = q3 = 0.1; q2 = q4 = 0.2.
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Answer: psys = (1 − q2
1
)(1 − q2

2
) = 0.950.
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Figure 1.22. Scheme for reliability calculation for
exercises 1.20 and 1.21

Exercise 1.21.– Scheme for some system reliability calculation is shown in

Figure 1.22. Calculate the system mean time to the first failure, its reliability

function and hazard rate at the time t = 100 hours if its elements’ hazard rates

are constant and equal to

λ1 = λ3 = 0.3 · 10−3 hours−1; λ2 = λ4 = 0.7 · 10−3 hours−1.

Answer:

Rsys(t) =
[
1 −

(
1 − e−λ1t

)2][
1 −

(
1 − e−λ2t

)2]
;

Rsys(100) ≈ 0.995;

fsys(t) = 2 e−(λ1+λ2)t
[
(λ1 + λ2)(2 + e−(λ1+λ2)t)˘

− (2 λ1 + λ2)e−λ1t − (λ1 + 2 λ2)e−λ2t
]
;

fsys(100) ≈ 1.05 · 10−4 hours−1;

λsys(100) =
fsys(100)

Rsys(100)
≈ 1.05 · 10−4 hours−1;

μsys =
4.5

(λ1 + λ2)
− 2

(
1

2 λ1 + λ2
+

1

λ1 + 2 λ2

)
≈ 1785 hours.
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Exercise 1.22.– A scheme for a system reliability calculation is shown in

Figure 1.23. Write the system structure function and calculate the system

reliability psys if failure probabilities of its elements equal

q1 = q3 = q5 = 0.05; q2 = q4 = q6 = 0.1.

Answer: psys = 1 − [1 − (1 − q1)(1 − q2)]3 = 0.997.
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Figure 1.23. Scheme for the system reliability
calculation for exercise 1.22

Exercise 1.23.– A scheme for a system reliability calculation is shown in

Figure 1.24. Write the system structure function and calculate the system

reliability psys and failure probability qsys if reliability of its elements is equal

to

p1 = p2 = p3 = 0.9; p4 = p5 = p6 = 0.8.

Answer: psys = [1 − (1 − p1)3][1 − (1 − p4)3] ≈ 0.991;

qsys = 1 − psys = 0.009.
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Figure 1.24. Scheme for the system reliability
calculation for exercise 1.23
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Exercise 1.24.– An automobile engine has four candles, one for each cylinder.

The h.r.f. of each candle is constant and equals λ = 10−3hours−1. It is supposed

that if one of the candles fails, the automobile can move.

1) Calculate the reliability function of the engine and show its grahical

representation.

2) Find the probability that the traveling during t = 20 hours will be

successful (without candles changing).

1.5. System life tree and its structure function

In this section one of methods for system structure function construction is

considered. However, we start with more general notion of the event tree that

has more wide applications not only in reliability theory.

1.5.1. Event tree

In many applications, connected with investigations of complex phenomena

function, such as a complex object in technique, biology, medicine, business,

etc., it is very convenient to use the event tree notion.

Definition 1.11.– An event tree is a graph of the turned over tree type, the root

of which is a resulting event. Its branches represent generated events and leaves

represent minimal initial events.

For the system reliability analysis of an event tree, the fault tree, which

fixes non-workable system states, is usually used. Thus, the failures of the

system, its subsystems, components and elements are considered as events.

However, in this section, which is devoted to system reliability, we will

consider workability of elements, components, subsystems and the whole

system as events, and therefore the life tree will be used as an appropriate

tree. The elements, subsystem and the whole system operable states are

considered as the events in the life tree. The indicators of appropriate events

are structure variables for the elements, subsystem and the whole system.

This tree is a dual to the fault tree (which is often also considered in reliability

theory) and it allows a direct calculation of the structure function and different

reliability characteristics and indexes of a system. Later in the section devoted

to the technological risk analysis, the analogous approach will be used for risk

tree construction.
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# Symbol Name Description

1 Circle
Basic event with sufficient
data

2 Diamond Undeveloped event

3 Rectangle Event represented by a gate

4 Oval
Conditional event used
with inhibit gate

5 House
House event. Either occur-
ring or not occurring

6
Triangle (input
from above)

Transfer symbol

7
Triangle (input
from the left)

Transfer symbol

Table 1.1. The event symbols

For any event tree, especially for the life tree, construction of the special

notations of different types of events and connections has been proposed, as

shown in Tables 1.1 and 1.2, following the book of Henley and Kumamoto

[HEN 91].

In the next section the problems of the system life tree construction, system

structure function and its basic reliability characteristics and index calculation

are considered.

1.5.2. An object structure scheme

For the life tree of some object construction, it is very convenient to begin

with its structure scheme consideration and the following analysis of its

elements, components and subsystems workability. Most of the up-to-date

complex technical systems have an hierarchical structure, which should be
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taken into account for the system reliability investigation. The life tree, in

fact, duplicates the system structure, and the structure function can be simply

calculated using the life tree.

#
Gate
symbol

Gate name: structure
function φ(x) Causal relation

1

AND gate;

n∏

i=1

x
i

Output events occurs if
all input events occur
simultaneously.

2

OR gate;

1−

n∏

i=1

(1 − x
i

)

Output events occurs if
any one of input events
occurs.

3

Inhibit gate;

x · u

Input x produced out-
put when conditional
event u occurs.

4

Priority AND gate;

n∑

k=1

x
k

k−1∏

i=1

x
i

Output events occurs if
all input events occur
in the order from left to
right.

5

Exclusive OR gate;

x1(1− x2) + (1− x1)x2

Output event occurs if
one, but not both, of
the input events occur.

6
m

n

“m out of n” gates
(voting or sample

gate);

1{ n∑
i=1

xi≥m

}

Output event occurs if
m out of n input events
occur.

Table 1.2. The gate symbols
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A hierarchical structure of the system can be visualized as a turned over

tree-type graph, whose root is the system, vertex is its subsystems of different

levels, and arcs show the connections between the system and different level

subsystems in the sense of their workability. For the complex systems, this

procedure can be divided into the life trees of different subsystem

constructions.

For representation of a complex hierarchical system, the vector notation

will be used. Let us denote the system elements by vectors i = (i1, i2, . . . , ir),
where i1 is the number of the first subsystem system considered, i2 is the

number of its subsystem (i.e. the subsystem of the second level) to which the

element belongs; ir is the number of the element of the (r − 1)-st level

subsystem ir−1 = (i1, i2, . . . , ir−1), and r is the hierarchical level of considering

element (its rank), in which the ranks of different elements can be different.

The k-th level subsystems will be denoted by truncated vectors

ik = (i1, i2, . . . , ik), and the j-th component of subsystem ik will be denoted by

j(ik). Thus, the system elements are identified with the vectors

i = (i1, i2, . . . , ir) and appropriate subsystems with truncated vectors

ik = (i1, i2, . . . , ik).

1.5.3. An example: the auto engine structure scheme

Consider a simplified model of an auto engine that contains only two

subsystems: electric and fuel supply subsystems. In Figure 1.25, a simplified

scheme of an auto engine is shown with appropriate notations. For example,

the following notations are used:

(0) – the system: auto engine;

(1) – the electric equipment subsystem:

(1, 1) – accumulator battery component;

(1, 2) – starter component:

(1, 2, 1) – relay element,

(1, 2, 2) – motor element,

(1, 2, 3) – bendix element;

(1, 3) – ignition component:
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(1, 3, 1) – ignition coil element,

(1, 3, 2) – bearing element;

(1, 4) – four candles (four homogeneous elements);

(2) – fuel supply subsystem:

(2, 1) – fuel pump element,

(2, 2) – filter element,

(2, 3) – carburetor element,

(2, 4) – gasoline tank.

In the next section this example will be used to demonstrate the system

structure function construction.

(2,4)
Gasoline tank

(2,3)
Carburetor

(2,2)
Filter

(2,1)
Fuel pump

(1,4)
Candles

(1,3,2)
Bearing

(1,3,1)
Ignition coil

(1,3)
Ignition

(1,2,3)
Bendix

(1,2,2)
Motor

(1,2,1)
Relay

(1,2)
Starter

battery (1,1)
Accumulator

Fuel supply system (2)Electric equipment (1)

Auto engine (0)

Figure 1.25. The structure scheme of an auto engine

1.5.4. Life tree and the system structure function

It is very convenient to begin a system reliability study with its structure

function construction, which involves the analysis of the system and its

subsystems of different levels up to elementary one workability conditions.

These conditions should be represented in the form of appropriate
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connections (gates) and these connections in the algebraic form are described

in Table 1.2. If workability of some units, components or subsystems depends

on several reasons (failures of different types are possible), then for

construction of the life tree based on the system structure scheme, we should

add appropriate events that provide workability of corresponding chains.

In Figure 1.26, the life tree of an auto engine is shown which structure

scheme in Figure 1.25 has been shown. Based on the analysis of separate

subsystem workability, “simple connections” are changed to corresponding

gates. Because the workability of components such as the accumulator

battery, the ignition subsystem and the candles depends on several reasons

(these components allow several types of failures), the life tree is

implemented with additional conditions for the workability of these elements,

namely the events A(1,1,1) A(1,1,2) A(1,2,3) component (1, 1) (accumulator

battery), the events A(1,3,3) and A(1,3,4) for ignition subsystem (1, 3) and events

A(1,4,k,i) (k = 1, 4) for each candle i = 1, 4 (see below).

For different events (up states) of elements, components, subsystem and

the whole system, the notations A(ik) are used, with an index corresponding

to the appropriate element, components, subsystems and the whole system6.

Therefore, for the auto engine life tree, the notations shown below should be

used; however, for the sake of simplicity and space limitation, the notations for

events without brackets and commas are used in the figure.

A(0) – auto engine is up;

A(1) – electric equipment is up:

A(1,1) – accumulator battery is up:

A(1,1,1) – battery is charged;

A(1,1,2) – no circuiting between plates;

A(1,1,3) – there is contact in clam terminals;

A(1,2) – starter is up:

6 Usually for complex systems the number of some level subsystems can be more than 10;

therefore, the only integers may not be enough for subsystem notations, and thus the commas

are needed in elements and subsystem notations. Nevertheless, for the sake of simplicity and

space limitation, the notations without brackets and commas are used in figures considered in

the example below.
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A(1,2,1) – relay is up;

A(1,2,2) – motor is up;

A(1,2,3) – bendix is up;

A(1,3) – ignition is up:

A(1,3,1) – ignition coil is up;

A(1,3,2) – bearing is up;

A(1,3,3) – the gap is not broken;

A(1,3,4) – the ignition is not broken;

A(1,4) – at least three of four candles are up, i.e. for each of them:

A(1,4,1,i) – no closure, i = 1, 4;

A(1,4,2,i) – gap is not brought down;

A(1,4,3,i) – no dirt;

A(1,4,4,i) – contacts are up;

A(2) – fuel supply system is workable:

A(2,1) – fuel pump is up;

A(2,2) – the filter is not dirty;

A(2,3) – carburetor is up;

A(2,4) – there is gasoline.

The next step consists of the system structure function calculation. It should

be noted that the element and subsystem structure variables xik are indicator

functions appropriate events xik = 1Aik
and are equal to

xik =

⎧⎪⎪⎨⎪⎪⎩
1, if subsystem ik is up;

0, otherwise.

Calculation of the structure function for subsystems and the whole system

follows the reliability theory rules, beginning from the top level. For the
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structure function calculation, we can use Table 1.2, where appropriate

symbols and corresponding structure functions in terms of their structure

variables are represented. Calculation of a subsystem ik−1 structure function is

performed by changing the gate to an appropriate algebraic operation,

xik−1
= ϕik (x(ik , 1), . . . , x(ik, n(ik))).
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Figure 1.26. Auto engine life tree

We demonstrate the system structure function calculation with the help of

the example auto engine, whose life tree is shown in Figure 1.26. Beginning

from the top level for the structure function of the system, we have

ϕ = ϕ(1)ϕ(2);

ϕ(1) = ϕ(1,1)ϕ(1,2)ϕ(1,3)ϕ(1,4); ϕ(2) = x(2,1)x(2,2)x(2,3)x(2,4);
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ϕ(1,1) = x(1,1,1)x(1,1,2)x(1,1,3); ϕ(1,2) = x(1,2,1)x(1,2,2)x(1,2,3);

ϕ(1,3) = x(1,3,1)x(1,3,2)x(1,3,3)x(1,3,4).

However, because the reliability of subsystem (1, 4) depends on the state

each of four elements, its structure function is

ϕ(1,4) =

4∏
i=1

ϕ̂(1,4,i) +

4∑
j=1

(1 − ϕ̂(1,4, j))

4∏
i=1,i� j

ϕ̂(1,4,i),

where

ϕ̂(1,4,i) =

4∏
j=1

x(1,4,i, j)

which is the structure function of one of the candles due to homogeneity of

subsystem (1,4) elements, and x(1,4,i, j) are its structure variables.

1.5.5. Calculation of the system reliability

In order to calculate the system reliability characteristics, the life tree

should be provided with the necessary information. Depending on the

investigation goals and admissible data, it may be:

– elements’ reliability during fixed time interval;

– elements’ reliability functions.

The system reliability characteristics and indexes are calculated according

to the rules described in the previous section by changing structure variables

with appropriate reliability indexes. In particular, we demonstrate the

calculation of the auto engine reliability with the help of the above example,

using initial information given at the elementary level. In this case it is

supposed that the probabilities of workable (up) states are given, pi = P{Ai}:
(1,1) accumulator battery reliability:

– p(1,1,1) – the probability of the battery is charged;

– p(1,1,2) – the probability of plates are up;

– p(1,1,3) – the probability of contacts present in terminals;
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(1,2) starter reliability:

– p(1,2,1) – relay up probability;

– p(1,2,2) – starter motor up probability;

– p(1,2,3) – probability of bendix serviceability;

(1,3) reliability of the ignition system components:

– p(1,3,1) – the probability of ignition coil up;

– p(1,3,2) – the probability of bearing up;

– p(1,3,3) – the probability of gap;

– p(1,3,4) – the probability of ignition serviceability;

(1,4) candles reliability:

– p(1,4,i,1) – probability of circuit absence (i = 1, 4);

– p(1,4,i,2) – probability of gap up (i = 1, 4);;

– p(1,4,i,3) – probability of dirt absence (i = 1, 4);;

– p(1,4,i,4) – probability of contacts are up (i = 1, 4);;

(2) reliability of the fuel system elements:

– p(2,1) – probability of gasoline pump up;

– p(2,2) – probability that the filter is not dirty;

– p(2,3) – probability of carburetor up;

– p(2,4) – probability that the tank contains enough gasoline.

Thus, according to theorem 1.17 of the previous section and due to

monotonicity of the system under consideration, the appropriate reliability

system characteristics are calculated by substitution of components’

reliability indexes instead of respective structure variables, namely beginning

from the lower level:

(1,1) accumulator battery reliability (probability up state) is

p(1,1) = ϕ(1,1)(p(1,1,1), p(1,1,2), p(1,1,3)) = p(1,1,1) p(1,1,2) p(1,1,3);
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(1,2) reliability (probability up state) of the starter is

p(1,2) = ϕ(1,2)(p(1,2,1), p(1,2,2), p(1,2,3)) = p(1,2,1) p(1,2,2) p(1,2,3);

(1,3) reliability (probability up state) of ignition is

p(1,3) = ϕ(1,3)(p(1,3,1), p(1,3,2), p(1,3,3), p(1,3,4)) =

= p(1,3,1) p(1,3,2) p(1,3,3) p(1,3,4);

(1,4) probability of at least three of four candles are operable is

p(1,4) = p̂4
(1,4, j) + 4(1 − p̂(1,4, j))p̂3

(1,4, j),

where p̂(1,4, j) = p(1,4, j,1) p(1,4, j,2) p(1,4, j,3) p(1,4, j,4) is the reliability one of the

candles;

(2) fuel supply system reliability is

p(2) = ϕ(2)(p(2,1), p(2,2), p(2,3), p(2,4)) = p(2,1) p(2,2) p(2,3) p(2,4).

Denoting by p1 = (p(1,1), p(1,2), p(1,3), p(1,4)) and p2 = (p(2,1), p(2,2), p(2,3),

p(2,4)) vectors of the first and the second subsystems’ reliability, we can find

that:

(1) the reliability of electric equipment is

p1 = ϕ1(p1) = ϕ1(p(1,1), p(1,2), p(1,3), p(1,4)) =

4∏
i=1

ϕ1,i =

4∏
i=1

p1,i;

(2) the reliability of the fuel supply subsystem is

p2 = ϕ2(p2) = ϕ2(p(2,1), p(2,2), p(2,3), p(2,4)) =

4∏
i=1

ϕ2,i =

4∏
i=1

p2,i;

(0) and thus the reliability of the auto engine is

psys = p1 p2 = ϕ1(p1)ϕ(2)(p2).
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In the next section the case when the initial information about the system is

given in the form of their elements’ reliability functions will be considered.

1.5.6. System reliability function calculation

As has been shown in section 1.4.4, the system reliability function is also

simply calculated with the help of structure function of a system by

substitution of appropriate elements and components reliability functions

instead of their structure variables. We then illustrate the procedure of a

system reliability function Rsys(t) calculation with the help of the example

about an auto engine using the elements reliability functions Ri(t) as an initial

information.

For numerical calculation, special numerical values of these indexes are

determined. Let us denote by μi the mean i-th element lifetime. The numerical

data do not represent any real situation, but are used only to illustrate the

numerical calculations.

(1,1) mean lifetime of an accumulator battery:

a) μ(1,1,1) = 95 hours is the mean intercharging battery time;

b) μ(1,1,2) = 187 hours is the mean plates lifetime;

c) μ(1,1,3) = 215 hours is the mean miscommunication terminal time;

(1,2) mean lifetime of starter elements:

a) μ(1,2,1) = 225 hours is the mean relay lifetime;

b) μ(1,2,2) = 178 hours is the mean of the starter’s motor lifetime;

c) μ(1,2,3) = 315 hours is the mean bendix lifetime;

(1,3) mean lifetime of ignition system elements;

a) μ(1,3,1) = 295 hours is the mean of an ignition coil lifetime;

b) μ(1,3,2) = 415 hours is the bearing lifetime;

c) μ(1,3,3) = 170 hours is the mean gap inter-correction time;

d) μ(1,3,4) = 280 hours is the mean ignition inter-correction time;
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(1,4) candles mean lifetime:

a) μ(1,4,i,1) = 193 hours is the mean time to circuit, i = 1, 4;

b) μ(1,4,i,2) = 427 hours is the mean time gap violation;

c) μ(1,4,i,3) = 115 hours is the mean time to dirty of candles;

d) μ(1,4,i,4) = 217 hours is the mean time to contact violation;

(2) mean lifetime of the fuel subsystem elements:

a) μ(2,1) = 193 hours is the mean gasoline pump lifetime;

b) μ(2,2) = 157 hours is the mean time to filter dirty;

c) μ(2,3) = 281 hours is the mean carburetor lifetime;

d) μ(2,4) = 301 hours is the mean time to absence of gasoline.

Under the assumption of elements’ exponential reliability law, their

parameters (hazard rates) are equal to λi = 1/μi:

λ(1,1) = λ(1,1,1) + λ(1,1,2) + λ(1,1,3) ≈ 0.021;

λ(1,2) = λ(1,2,1) + λ(1,2,2) + λ(1,2,3) ≈ 0.013;

λ(1,3) = λ(1,3,1) + λ(1,3,2) + λ(1,3,3) + λ(1,3,4) ≈ 0.015;

λ(2) = λ(2,1) + λ(2,2) + λ(2,3) + λ(2,4) ≈ 0.018.

Concerning subsystem (1, 4), it is necessary to note that the failure of each

candle occurs due to one of the four reasons, and under the assumption that

their exponential distribution time to one candle failure also has an exponential

distribution with parameter

λ(1,4,i,·) =
∑

1≤ j≤4

λ(1,4,i, j) ≈ 0.021.

The reliability functions of all subsystems, except for subsystem (1, 4), are

exponential with the above given parameters:

R(1,1)(t) =
3∏

i=1

R(1,1,i)(t) =
3∏

i=1

e−λ(1,1,i)t = e−λ(1,1)t;
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R(1,2)(t) =
3∏

i=1

R(1,2,i)(t) =
3∏

i=1

e−λ(1,2,i)t = e−λ(1,2)t;

R(1,3)(t) =
4∏

i=1

R(1,3,i)(t) =
4∏

i=1

e−λ(1,3,i) t = e−λ(1,3)t;

R(2)(t) =
3∏

i=1

R(2,i)(t) =
3∏

i=1

e−λ(2,i)t = e−λ(2)t.

However, subsystem (1, 4) reliability function due to its structure is equal

to

R(1,4)(t) = R4
(1,4,i)(t) + 4(1 − R(1,4,i)(t))R3

(1,4,i)(t) =

= e−4 λ(1,4,i)t + (1 − e−λ(1,4,i)t)e−3 λ(1,4,i)t =

= 4 e−3 λ(1,4,i)t − 3 e−4 λ(1,4,i)t,

where R(1,4,i)(t) is the reliability function of the i-th candle, which is also

exponential

R(1,4,i)(t) =
4∏

i=1

R(1,4,i, j)(t) =
4∏

i=1

e−λ(1,4,i, j)t = e−λ(1,4,i)t,

with parameter

λ(1,4,i) = λ(1,4,i,1) + λ(1,4,i,2) + λ(1,4,i,3) + λ(1,4,i,4) ≈ 0.021.

Thus, the reliability function of the electric equipment subsystem is

R(1)(t) = R(1,1)(t)R(1,2)(t)R(1,3)(t)R(1,4)(t) =

= e−λ(1)t
(
4 e−3 λ(1,4,i)t − 3 e−4 λ(1,4,i)t

)
,

where λ(1) = λ(1,1) + λ(1,2) + λ(1,3) ≈ 0.049.
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Therefore the reliability function of the whole system is

Rsys(t) = R(1)(t)R(2)(t) =

= R(1,1)(t)R(1,2)(t)R(1,3)(t)R(1,4)(t)R(2)(t) ≈
≈ 4 e−0.130 t − 3 e−0.151 t.

In particular, the system reliability over 10 hours is Rsys(10) ≈ 0.43.

In section 2.3, which is devoted to risk analysis, a more detailed analysis

of reliability indexes will be proposed, and in section 2.3.5.11, this example

investigation will be continued.

1.6. Non-renewable redundant systems

One of the basic possibilities to increase the system reliability involves the

creation of redundancy (reserve). Nature provides us with numerous examples

of redundancy: we have two eyes, two ears, two legs and arms, most of animals

have four legs, etc. These redundancies provide the reliability and safety of

organisms.

By constructing new articles and systems, we follow nature and provide

them with some redundancy. In this and the next section we consider different

redundancy models and methods for reliability calculation of redundant

systems. In this section the methods of structure reliability calculation are

used for the calculation of non-renewable redundant systems. The next

section deals with the reliability analysis of renewable redundant systems.

However, we start with the classification of redundancy means.

1.6.1. Basic redundancy means – terms

Definition 1.12.– The redundancy is a means to increase the reliability of units

(elements, articles and systems) by using a reserve. under the term redundancy
it is understood some additional facilities and possibilities over the minimal

needed for fulfillment by the unit of its functions.
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With respect to facilities, we should distinguish structural, times, functional

and other types of redundancy.

Definition 1.13.– Structural redundancy is a redundancy for which some

additional (reserve) units, components or subsystems are used.

Functional redundancy uses the system or its components (units) capability

to fulfill some additional functions except the basic ones.

Time redundancy uses an object free time for fulfillment of some additional

functions.

With respect to level, we should distinguish common and separate

redundancy (reservation).

Definition 1.14.– Common redundancy reserves the whole system (or article)

while separate redundancy reserves some components of the system (its

subsystems or elements).

With respect to switching means we should distinguish hot, cold and warm

redundancy.

Definition 1.15.– Hot redundancy uses the reserve (standby) unit in the same

regime as the basic one. In this case, each unit has the same failure rate

regardless of whether it is in standby or in operation.

Cold redundancy switches reserve (standby) units only after the failure of

the basic unit. In this case, components in standby do not fail.

Lastly, warm redundancy reserves the components that are not used jointly

with the basic one, but partially spend their resources in standby. This option is

used when switching on the standby components that demand some additional

time, and warm redundancy tends to decrease the switching time for reserve

elements. The standby components can fail, but their failure rates are smaller

than those of the basic component.

Another type of redundancy is proposed in the next definition.

Definition 1.16.– Group-wise redundancy is those for which the function of

some group of basic units can be fulfilled by one or several standby

components, each of which can change any of the failed basic components of

the group.
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With respect to further using the failed units, we consider non-renewable

and renewable redundancies.

Definition 1.17.– In the case of non-renewable redundancy, the failed unit is

lost and the system operates only for a short period of time, and thus all

reserves will be exhausted. In the case of renewable redundancy, the failed

unit is restored or replaced with the new one that has the same characteristics

and the system continues to work.

Different possibilities of restoration should also be taken into account:

only one, some part or all failed elements could be restored simultaneously

depending on the number of restoration facilities.

We cannot consider all possible redundancy schemes, and thus focus only

on the main ones beginning from the non-renewable redundancy scheme.

1.6.2. Hot redundancy

The structure scheme of the hot redundancy system, shown in Figure 1.27,

coincides with the parallel connection components of the system.

n

2

1

Figure 1.27. The structure scheme of hot redundancy

The structure function of such a system (see example 1.11) is

ϕ(x1, x2, . . . , xn) = 1 −
n∏

i=1

(1 − xi).
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Thus (see section 1.4), the reliability function Rsys(t) of the hot redundant

system from n components with the reliability functions Ri(t) is

Rsys(t) = 1 −
n∏

i=1

(1 − Ri(t)). [1.95]

On the other hand, it is clear that the lifetime Tsys of such a system is equal

to the maximal lifetimes Ti of its components,

Tsys = max{T1, T2, . . . ,Tn}.
Thus, the system lifetime distribution is

Fsys(t) = P{Tsys ≤ t} = P{max
1≤i≤n

Ti ≤ t} =

= P{T1 ≤ t, . . . , Tn ≤ t} =
n∏

i=1

Fi(t). [1.96]

Of course, both approaches give the same result. All the other system

reliability characteristics can be obtained from this result.

1.6.3. Cold redundancy

The structure scheme of the non-renewable cold redundant system is shown

in Figure 1.28.

n

2

1

Figure 1.28. The structure scheme of cold redundancy

For this redundancy scheme, there exists only one basic operating

component and n − 1 redundant components in standby that are switching on
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and passing in the operating state one by one only when the basic (operating)

component fails. The system operating time Tsys for the cold redundant

system is equal to the sum of operating times of its components Ti,

Tsys =

n∑
i=1

Ti.

Therefore, the system lifetime c.d.f. is calculated by using the convolution

formula

Fsys(t) = P{Tsys ≤ t} = P{T1 + · · · + Tn ≤ t} = F(∗n)(t), [1.97]

where the function F(∗n)(t) is given by the equality

F(∗1)(t) = P{T1 ≤ t} = F(t),

F(∗n)(t) =

t∫
0

F(∗(n−1))(t − u) dF(u), n > 1. [1.98]

Appropriate mean and variance of the system lifetime are

E[Tsys] =

n∑
i=1

E[Ti] = n μ; Var[Tsys] =

n∑
i=1

Var[Ti] = nσ2, [1.99]

where μ and σ2 are expectation and variance of the components’ lifetime,

respectively.

1.6.4. Markov process for system reliability investigations

In this section, one more approach based on the theory of Markov random

processes for the system reliability investigation will be considered, and here

it will be applied for the non-renewable warm redundant model investigations,

while in the next section the renewable system will be studied based on this

approach.
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Consider a warm redundant system, containing one basic and n− 1 standby

units, and suppose that the lifetimes of basic T and standby T (st) units have

exponential distributions with parameters λ and ν, respectively,

F(t) = P{Tn ≤ t} = 1 − e−λ t,

F(st)(t) = P{T (st)
n ≤ t} = 1 − e−ν t. [1.100]

It is necessary to note that the models for hot and cold redundant systems

follow from this model if we put ν = 0 or ν = λ, respectively. Let us denote by

X(t) the number of non-workable (failed) units of the system in time t7. It

means that X = {X(t), t ≥ 0} is a random process with a finite set of states

E = {0, 1, . . . , n}. Under the above assumption that the element lifetimes have

an exponential distribution, due to its memoryless property (see theorem 1.1)

in the section 1.1.3.1, the process X is a homogeneous Markov one

[GNE 65, CHU 60, ROS 96]. These processes are characterized by the

property that their future behavior does not depend on the past given presence

state and its transition probabilities

p jk(s, t) = P{X(s + t) = k
∣∣∣X(s) = j}

and also does not depend on time s, but only on the interval t and the presence

and future states, namely:

p jk(s, t) = p jk(t).

The matrix P(t) =
[
pi j(t)

]
i, j∈E is known as the transition matrix of the

process X. Any Markov process is fully determined by its transition matrix

and the initial state distribution. Moreover, due to the Markov property, the

transition matrix satisfies the semi-group property, P(s + t) = P(s)P(t), and as

a result of this property, it also satisfies the equality

P(t) = Pn
( t
n

)
, for any n = 1, 2, . . . .

7 It is also possible to use the dual process “number of workable at time t units”.
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The last equality means that the transition matrix can be determined by its

value in infinity small neighboring of its value in zero, namely by the right

hand side derivatives (if they exists) of transition probabilities,

λi j = lim
h→+0

δi j − pi j(h)

−h
=

d
dt

pii(t)
∣∣∣
t=+0
. [1.101]

Definition 1.18.– If the right hand side derivatives λi j exist, they are called

transition intensities, which are derived from the matrixΛ = [λi j]i, j∈E , which is

known as the transition intensity matrix or infinitesimal matrix of the process.

The process in this case is known as the standard Markov process.

Remark 1.2.– It is possible to show (see [CHU 60]) that the assumption about

differentiability of transition probabilities is not required; for its

differentiability, it is sufficient to take (not show) the natural assumption about

the continuity of the transition probabilities at zero.

lim
t→+0

P(t) = P(0) = I.

Transition probabilities of the standard Markov processes satisfy the

Kolmogorov differential equations

d
dt

P(t) = ΛP(t) = P(t)Λ

where the initial condition P(0) = I indicates that this process is determined

by its transition intensity matrix.

Together with the transition intensity matrix, the Markov process is also

convenient to determine with the help of the so-called marked transition
graph. It is the oriented graph, whose vertices are the process states and the

edges show the possible direct transitions while the marks of edges indicate

the appropriate transition intensities.

In our case of a non-renewable warm redundant system, there is only one

possibility of reaching directly to the state k + 1, namely from the state k,

because in the case of some element failure, the process X is increased by

1. Thus, only λk,k+1 � 0, i.e. for the transition intensities, only one index is

needed, λk = λk,k+1. This kind of Markov process is called the birth process,

because the process was first used for animal population investigation.
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It is possible to show that from warm redundancy appropriate transition

intensities equal λk = λ+ (n− k − 1) ν, the cold and hot redundant systems can

be obtained if we put ν = 0 or ν = λ, respectively. The marked transition graph

of the process X is shown in Figure 1.29.

λ
n−1λ1λ0

n10

Figure 1.29. Marked transition graph for non-renewal
system from n elements

Denote by pk(t) the probability of the k-th state of the process at time t,

pk(t) = P{X(t) = k}.

Using the complete probability formula and Markov property of the process

X for its state probabilities, we can get the following difference equations:

pk(t + Δt) = λk−1Δt pk−1(t) + (1 − λkΔt) pk(t) + o(Δt). [1.102]

To explain these equations, we should take into account that in order to

process X that occurs in time t + Δt in the state k, it should be in time t in the

state k (the probability of this event is pk(t)) and should not leave this state

during the time interval Δt (with probability 1 − λkΔt), or should be in time t
in the state k − 1 (whose probability is pk−1(t)) and pass to the state k (with

probability λk−1Δt).

After the simple algebra, equation [1.102] gives

pk(t + Δt) − pk(t)
Δt

= λk−1 pk−1(t) − λk pk(t) + o(1),

and passing to the limit when Δt → 0, we get

dpk(t)
dt

= λk−1 pk−1(t) − λk pk(t) (k ∈ E). [1.103]

The following rule allows us to write the differential equations for the

probability states by directly using the marked transition graph for the
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Markov process. The derivative of a state probability equals the algebraic
sum of product state probabilities by transition intensities with sign “+” for
input arrows and with sign “−” for output from this state arrows.

Under the assumption that in the initial time all components are in the up

state, the solution of system [1.103] with the initial conditions

p0(0) = 1, pk(0) = 0 for k ∈ E [1.104]

gives the possibility of finding the system reliability function. Really, the

probability pn(t) represents the c.d.f. of the system lifetime that coincides

with the distribution of the sum of n independent exponentially distributed

with the parameters λi, (i = 1, n) r.v.’s. The formula for this distribution in the

general case is cumbersome; however, its m.g.f. φ(s) is the product of

summand m.g.f.’s φi(s) and has a simple form

φ(s) =
∏

1≤i≤n

φi(s) =
∏

1≤i≤n

λi

s + λi
.

The lifetime c.d.f. for the cold redundant non-renewable system coincides

with the Erlang distribution (see section 1.1.3.1). The reliability function in

this case has the form

R(t) = e−λ t
n∑

i=0

(λ t)i

i!
. [1.105]

For the hot redundant system and the more general cases of redundancy,

when there exist several basic and several standby units, the formulas are

cumbersome. We can find them in some reference books, for example in

[KOZ 75].

1.6.5. Reliability properties of redundant systems

Consider some properties of the redundant systems.

1.6.5.1. Dependence of the system reliability on the redundancy level

Consider the problem of the redundancy level influence on the system

reliability. In Figure 1.30, two schemes of redundancy are presented: more

high and more low redundancy levels.
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Figure 1.30. More high a) and more low b) redundancy levels

For the parallel-series redundancy (Figure 1.30(a)), the structure functions

of components in series are

ϕ1(x1, x2) = x1x2; ϕ2(x3, x4) = x3x4.

Therefore, the structure function ϕa(x) of this system is

ϕa(x) = 1 − (1 − ϕ1(x1, x2))(1 − ϕ2(x3, x4)) = 1 − (1 − x1x2)(1 − x3x4).

In the case when pi = p for the reliability of the a-system pa
sys(p), we can

get the expression

pa
sys(p) = 1 − (1 − p2)2 = p2(2 − p2). [1.106]

Analogous reasons for the second system (Figure 1.30(b)) give

ϕb(x) = ϕ1(x1, x2)ϕ2(x3, x4) = (1 − (1 − x1)(1 − x3))(1 − (1 − x2)(1 − x4)),

and thus,

pb
sys(p) = (1 − (1 − p)2)2 = p2(2 − p)2. [1.107]

The graphs of functions pa
sys(p) and pb

sys(p), shown in Figure 1.31, indicate

that increasing the redundancy level decreases the system reliability.

Consider one more example of systems with different levels of redundancy.

Example 1.18.– Consider the system from three equal-reliable units, as shown

in Figure 1.32.

The reliability psys(p) of the system is

psys(p) = p
(
1 − (1 − p)2

)
= p2(2 − p), [1.108]
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where p is the reliability of a separate unit. Consider two variants of the system

redundancy.

a) Reservation of the whole system. In this case, the reliability of the

system is

p(a)
sys(p) = 1 −

(
1 − (p2(2 − p))

)2
= p2(2 − p)

(
2 − p2(2 − p)

)
. [1.109]

b) Reservation of each unit. In this case, the system reliability is

p(b)
sys(p) =

(
2p − p2

) (
1 − (1 − p)4

)
= p2(2 − p)2 (2 − p(2 − p)) . [1.110]

p
b

sys

(p) →
← p
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sys

(p)
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p
sys

(p)
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Figure 1.31. The graphs of system reliability versus its
unit reliability for different redundancy levels

The graphs of the functions p(a)
sys(p) and p(b)

sys(p) have an S -type form and

are analogous to the graphs shown in Figure 1.31. As in exercise 1.25, it is

proposed to the reader to check formulas [1.109, 1.110] and draw the graphs

of these functions.

3

2

1

Figure 1.32. Three-element system
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1.6.5.2. Dependence of the system reliability on the number of
components

Analogous situation takes place with increasing number of the system units.

Consider the system consisting of k units in series and denote its reliability by

p. If all units have the same reliability, then the reliability of each unit has

to be equal to k
√

p. The reliability of the analogous system with such double

redundant units is

psys(p) =
[
1 − (1 − k√p)2

]k
=

[
1 −

(
1 − k

√
1 − (1 − p)

)2 ]k
.

From here it follows that in the case of enough reliable units, p = 1 − ε for

sufficiently small ε, the Taylor expansion of the expression k
√

1 − (1 − p) gives

psys(p) ≈
[
1 −

(
ε

k

)2
]k

≈ e−
ε2

k → 1 for k → ∞. [1.111]

The last expression indicates that the reliability of complex systems,

consisting of a large enough number of reliable units, could be made as high

(close to one) as needed. It can also be represented as the assertion.

Theorem 1.18.– Redundancy increases the reliability of systems, consisting of

enough reliable units.

Note that the above arguments can also be used for the evaluation of the

system’s time-dependent reliability.

1.6.5.3. Separate and common reservation

Consider two variants of a redundant system, consisting of k units: separate

(individual) and common (joint) redundancy. These two types of reservations

are shown in Figures 1.33 and 1.34.

k
∗

k

2∗

2

1∗

1

Figure 1.33. Separate redundancy
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Find the mean system lifetime for these methods of redundancy.

1) For the system with separate redundancy units, having an exponential

lifetime distribution with parameter λ for each unit, the mean system lifetime

is

μsep =
1

λ

(k + 1)!

kk

k∑
i=0

ki

i!
. [1.112]

2) In the case of common redundancy, units in standby begin to work in the

case of some basic unit failure, and the system fails in time when all k units in

standby fail. Under the assumption about exponential unit lifetime distribution,

the mean system lifetime is

μcom =
k + 1

λ k
, [1.113]

where λ k is the summary element failure rate.

k
∗

k

2∗

2

1∗

1

Figure 1.34. Common redundancy

To compare these two methods of redundancy, we denote by Wk the

efficiency coefficient

Wk =
μcom

μsep
=

(k + 1)kk

k!
∑k

i=0
ki

i!

. [1.114]

The values of the efficiency coefficient for k = 1, 2, 3 are

W1 = 1; W2 = 1.2; W3 = 1.38.
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It is possible to show that the efficiency coefficient Wk increases when the

number of elements k increases. Moreover, the following asymptotic formula

can be used when k → ∞:

Wk ≈
√

k
2π
. [1.115]

The results of this section show that the system reliability increases with

joining of the units in standby.

1.6.5.4. Rate of reliability increasing under reservation

Consider a redundant system, consisting of k identical units. Thus, in the

best case of the cold redundancy, the system lifetime Tsys will be equal to the

sum of all standby unit lifetimes,

Tsys =

n∑
i=1

Ti, [1.116]

The mean system lifetime is

μsys = n μ, [1.117]

where μ is the mean lifetime of each unit. This equality shows the linear growth

of the mean lifetime of the system under the cold redundancy. This means that

the non-renewal redundant systems can increase their reliability not more than

linearly to the number of standby units.

1.6.6. A unit warranty operating time calculation

During the projection of industrial objects, the constructor should predict

with given probability its warranty operating time. We define the

(1 − α)-warranty operating time twar of an object as the time that it can

operate without failure with probability 1 − α. It is expected that after this

time, the object is degraded and must be cardinally upgraded or replaced. To

find this time, it is necessary to determine the limiting failure probability (the

greatest allowed failure probability) α or the smallest allowed reliability

1 − α, and solve one of the two equations

F(t) = α or R(t) = 1 − α. [1.118]
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The values of α depend on the destination of the object and can be varied

between 10−6 ≤ α ≤ 10−2

Solutions cα of both equations are the same value that is known as

α-quantile, or – 100(1 − α)-percent point.

twar = cα = F−1(α) = R−1(1 − α)

For continuous distributions, the solutions of these equations exist and are

unique. For stepwise or discrete distributions as α-quantile, the following value

is usually considered:

cα = inf{t : F(t) = α}. [1.119]

However, the quantile is very rarely represented in a closed form. In this

case, the numerical solution can be obtained, for example, with the help of

some special computer tools, for example MS Excel, Statistica, MatLab,

MatCad and so on.

The tables of 100α% percentiles for commonly used distributions and some

values of α can be found in most books on probability theory, statistics and

reliability theory.

Example 1.19.– Find the (1−α)-warranty operating time for α = 0.01 of a unit,

which has a constant h.r.f. and mean lifetime equal to 200 years. Constant h.r.f.

means that the unit lifetime distribution is exponential. For μ = 200 years, we

find λ = 1
μ = 0.005 year−1. Equation [1.119]

R(t) = e−λ t = 1 − α,

indicates that the 99%-warranty operating time twar value is equal to

twar = −1

λ
ln(1 − α) = −200 ln(0.99) ≈ 2 year.

1.6.7. Exercises

Exercise 1.25.– Please check formulas [1.109, 1.110] and draw the graphs of

the functions represented there.
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Exercise 1.26.– The cold redundant system consists of two units: basic and

standby. When switching on the standby unit, the unit can fail with

probability p = 0.025. Calculate the system reliability function, if the unit’s

h.r.f. is constant and equal to 0.003−1.

Exercise 1.27.– The system consists of three units: one of the redundant units

is in hot standby and the other is in standby. Draw the graphs of the system

reliability function and h.r.f., if the unit’s h.r.f. is constant and equal to 0.002−1.

Exercise 1.28.– Cold redundant system contains of eight identical units.

Lifetime of each unit has the exponential distribution with parameter

λ = 0.001 hour−1. Draw the graphs of the system reliability function.

Exercise 1.29.– Consider two unit hot redundant systems. Find the mean

system lifetime (in years), if the lifetime of each unit has the exponential

distribution with parameter λ = 0.13.46 · 10−7 hours−1.

Exercise 1.30.– Find 99% warranty operating time of an object that has normal

reliability law with parameters μ = 300 years and σ = 50 years.

1.7. Renewable redundant systems

1.7.1. The model

Here we consider the redundant system under the assumption that the

failed units can be renewed (repaired or replaced). Concerning the

redundancy method, the previous assumptions are preserved, i.e. the

redundancy can be hot, cold or warm. Concerning the number of

simultaneously repaired units, different assumptions can be used: only one,

several (limited number) or all failed units can be repaired simultaneously.

Here, we demonstrate the methods of renewable redundant systems

reliability investigation for the model of warm double redundant system with

only one repair facility (when only one of failed units can be repaired

simultaneously). The repaired unit is returned back to the system as a standby

unit.

For renewable redundant system, the lifetimes of basic, standby units as

well as their renewal times form sequences of r.v.’s. Denote these r.v.’s by Tn,
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T (st)
n and T (ren)

n , respectively, and suppose that they all are independent and

identical for each sequence distributed r.v.’s, which have exponential

distributions with parameters λ, ν and μ respectively,

F(t) = P{Tn < t} = 1 − e−λ t;

F(st)(t) = P{T (st)
n < t} = 1 − e−ν t;

G(t) = P{T (ren)
n < t} = 1 − e−μ t.

To construct the mathematical model of the considered phenomenon,

denote as before by X(t) the number of failed (down) elements in time t8.

Under the given assumptions, the random process X = {X(t), t ≥ 0} is a

Markov one, i.e. the process, whose future behavior does not depend on its

past behavior given its present state. This property follows from theorem 1.1

(see section 1.1.3.1) about the memoryless property of the exponential

distribution.

As was mentioned in section 1.6, it is convenient to determine the Markov

processes with the help of its marked transition graph. For the considered

model of the warm double redundant system with one renewal facility, the

marked transition graph is shown in Figure 1.35.

210

μ

λ

μ

λ + ν

Figure 1.35. Marked transition graph for the
warm redundancy system with one renewal facility

8 As in previous section it is also possible to use the dual process “number of workable at time

t units”.
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1.7.2. Equations for probabilities of the system states

For the double redundant system (n = 2), we denote by

pk(t) = P{X(t) = k} (k ∈ {0, 1, 2})
the state probabilities of the system. The transitions of the process from any

state are possible only into neighboring states. Therefore, the difference

equations for the considered warm redundancy system has a form

p0(t + Δt) = p0(t) (1 − (λ + ν)Δt) + p1(t) μΔt + o(Δt),
p1(t + Δt) = p0(t) (λ + ν)Δt + p1(t) (1 − (λ + μ)Δt) + p2(t) μΔt + o(Δt),
p2(t + Δt) = p1(t) λΔt + p2(t) (1 − μΔt) + (Δt).

The equations are explained as follows.

First equation. In order for the process to occur in state “0” in time t + Δt,
it must be in this state in time t with probability p0(t) and should not leave it

with the probability of 1 − (λ + ν)Δt or it has to be in time t in the state “1”

with probability p1(t) and move to the state “0” during the small time interval

Δt with probability μΔt.

Second equation. In order for the process to occur in state “1” in time t+Δt
it must be in this state in time t with probability p1(t) and should not leave it

with probability 1 − (λ + μ)Δt or it has to be in time t in the state “0” with

probability p0(t) and move to the state “1” during the small time interval Δt
with probability (λ+ν)Δt or it has to be in time t in the state “2” with probability

p2(t) and move to the state “1” during small time interval Δt with probability

μΔt.

Third equation. In order for the process to occur in state “2” in time t+Δt it

must be in this state in time t with probability p2(t) and should not leave it with

probability 1−μΔt or it has to be in time t in the state “1” with probability p1(t)
and move to the state “2” during the small time intervalΔt with probability λΔt.

From here, after some simple algebra and passing to the limit when Δt → 0,

we can get

p′
0
(t) = −(λ + ν) p0(t) + μ p1(t),

p′
1
(t) = (λ + ν) p0(t) − (λ + μ)p1(t) + μ p2(t),

p′
2
(t) = λ p1(t) − μ p2(t).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ [1.120]
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The last system should be solved under some initial conditions that for the

fully workable system in the initial time t = 0 are:

p0(0) = 1, p1(0) = p2(0) = 0. [1.121]

This system can also be obtained directly from the marked transition graph

(Figure 1.35) with the help of the rule for the differential equation composition,

given in section 1.6.4.

Analogous equations for systems with hot and cold reserves can be obtained

from the above equations if we put ν = λ and ν = 0, respectively.

1.7.3. Steady state probabilities: system failure probability

Denote by

πk = lim
t→∞ pk(t), (k ∈ {0, 1, 2}),

the limiting (stationary) state probabilities. The system of equations for the

steady-state probabilities πk satisfy to the algebraic system of equations

[1.122].

−(λ + ν) π0 + μ π1 = 0,

(λ + ν) π0 − (λ + μ) π1 + μ π2 = 0,

λπ1 − μ π2 = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ [1.122]

This system is a homogeneous system with degenerated matrix. In order to

get a unique solution, it is necessary to add some additional conditions that do

not change under passing to the limit; an example is the following normalizing
condition:

π0 + π1 + π2 = 1. [1.123]

In the system from fourth equations [1.122] and [1.123] one from three first

is extra. Representing the first and third part of equations [1.122], the values

π0 and π1 in terms of π2 give

π1 =
μ

λ
π2; π0 =

μ

λ + ν
π1 =

μ2

(λ + ν) λ
π2.
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Denote by

γ =
μ

λ
[1.124]

the unit renewal coefficient, and by

κ =
ν

λ
[1.125]

the reliability reserve coefficient. In these notations, system [1.122] with

normalizing condition [1.123] solution is

π0 =
γ2

(1 + γ)(1 + κ) + γ2
,

π1 =
γ(1 + κ)

(1 + γ)(1 + κ) + γ2
,

π2 =
1 + κ

(1 + γ)(1 + κ) + γ2
.

[1.126]

Finally, because the state 2 coincides with the system failure state, the

system failure probability p f ail is

p f ail = π2 = 1 − Kav =
1 + κ

(1 + γ)(1 + κ) + γ2
, [1.127]

where Kav is the so-called availability coefficient that was introduced before

(see definition 1.5 in section 1.2.4). Appropriate steady state characteristics

for the hot and cold double redundant systems can be obtained from the above

equation if we put κ = 1 and κ = 0, respectively.

1.7.4. Reliability function for renewable systems

Note that the system lifetime T is defined as the time from the absolutely

intact (new) system exploitation beginning up to its first failure. Denote also

by T̂ the time between two successive failures. The distributions of these r.v.’s

differ by the initial state of the system. For the calculation of these

distributions, we modify the process X by the transformation of the state “2”

into an absorbing state, which means that the output from this state is

impossible, and denote the new process by X̂ = {X̂(t), t ≥ 0}. Thus, the



102 Reliability of Engineering Systems and Technological Risks

distribution of the time to the first system failure coincides with the

probability of the modified process to be in the state “2”,

F(t) = P{T ≤ t} = P{X̂(t) = 2}. [1.128]

The marked transition graph for the warm double redundant system with

one repair facility and absorption in the state “2” is shown in Figure 1.36.

210

λ

μ

λ + ν

Figure 1.36. Marked transition graph for the modified process X̂(t)

Using the rule for differential equation construction (see section 1.6.4), we

can get the following system of differential equations for the process X̂
probability states:

p′
0
(t) = −(λ + ν) p0(t) + μ p1(t),

p′
1
(t) = (λ + ν) p0(t) − (λ + μ) p1(t),

p′
2
(t) = λ p1(t),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ [1.129]

which should be solved with the above initial conditions

p0(0) = 1; p1(0) = p2(0) = 0. [1.130]

For the system solution, the operational method, which is based on the

system Laplace transforms, will be used. As the last equation of system [1.129]

is solved by integration, we apply Laplace transforms to the first two equations

of [1.129]. Denoting:

p̃k(s) =

∞∫
0

e−st pk(t) dt,
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taking into account that

∞∫
0

e−st p′k(t) dt = e−st pk(t)
∣∣∣∣∞
0
+

∞∫
0

e−st pk(t) dt = sp̃k(s) − pk(0),

and using initial conditions [1.130] for the functions p̃k(s), we can obtain the

following system of algebraic equations:

sp̃0(s) − 1 = −(λ + ν) p̃0(s) + μ p̃1(s),

sp̃1(s) = (λ + ν) p̃0(s) − (λ + μ) p̃1(s).

}

Rewriting the system in the form

(λ + ν + s) p̃0(s) − μ p̃1(s) = 1;

−(λ + ν) p̃0(s) + (λ + μ + s) p̃1(s) = 0,

}
[1.131]

we can find its solution, for example, with the help of the Kramer rule,

p̃0(s) =
λ + μ + s

(λ + ν + s)(λ + μ + s) − (λ + ν) μ
,

p̃1(s) =
λ + ν

(λ + ν + s)(λ + μ + s) − (λ + ν) μ
.

[1.132]

Because for finding the problem solution for the c.p.f. to the first failure

we only need the function p1(t), for the inverse transform of this function

calculation, we expand the function p̃1(s) into the simple fractions with

unknown coefficients A1, A2,

p̃1(s) =
A1

s + s1
+

A2

s + s2
, [1.133]

where the values s1, s2 are the absolute values of the roots of the characteristic

equation of system [1.131] (the denominator of fraction for p̃1(s)),

(λ + ν + s) (λ + μ + s) − (λ + ν) μ =

= s2 + (2λ + ν + μ) s + λ (λ + ν) = 0.
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In terms of dimensionless coefficients γ and κ, the values are given by

s1,2 =
λ

2

(
2 + γ + κ ∓

√
(γ + κ)2 + 4γ

)
. [1.134]

Calculate the coefficients of expansion [1.133] from the system of equations

A1 + A2 = 0,

A1s2 + A2s1 = λ + ν,
[1.135]

which can be obtained by comparison of the numerators of equation [1.133].

Its solution yields the values

A1 = −A2 =
λ + ν

s2 − s1
.

Now the inverse transform of [1.133] gives

p1(t) = A1e−s1 t + A2e−s2 t.

From this expression, by integrating, we can find the lifetime c.d.f., which

after substitution of the coefficients A1 and A2 takes the form

F(t) = p2(t) = λ

t∫
0

p1(u) du =

= 1 − λ
2(1 + κ)

s1r
e−s1t

(
1 − s1

s2
e−rt

)
, [1.136]

where r = s2 − s1 = λ
√

(γ + κ)2 + 4γ. Finally, for the system reliability

function, we can get the following expression:

R(t) = 1 − p2(t) =
λ2(1 + κ)

s1r
e−s1t

(
1 − s1

s2
e−rt

)
. [1.137]

Remark 1.3.– The c.d.f. of the time T̂ between failures can be obtained by

using the same approach, but the solution of the system of differential

equations [1.129] should be solved under the initial conditions

p1(0) = 1; p0(0) = p2(0) = 0.
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As in exercise 1.31, it is proposed to find the c.d.f. of the time T̂ between

failures for the warm double redundant system.

By calculation, we can find that the mean values of the warm redundant

systems with and without renewal are

E[T ] =
1

λ + ν
+

1

λ
=

1

λ

(
2 + κ

1 + κ

)
− without renewal;

E[T̂ ] =
2 + γ + κ

λ(1 + κ)
=

1

λ

(
2 + γ + κ

1 + κ

)
− with renewal.

Thus, the renewal coefficient γ shows the efficiency of the renewable system

with respect to those of the non-renewable system.

Note that expressions [1.136] and [1.137] for the c.d.f. of the time up to the

first system failure and for reliability function as well as the mean values of the

warm redundant systems with and without renovation are also applicable for

the hot and cold redundant systems. Only the characteristic equation [1.135]

and appropriate values [1.134] of its roots are changed.

1.7.5. Exercises

Exercise 1.31.– Find the c.d.f. of the time T̂ between failures for the warm

double redundant system.

Exercise 1.32.– Consider the cold double redundant system. Each component

of the system consists of two units in series. The units have constant h.r.f.

λ1 = 1 · 10−2 hours−1 and λ2 = 3 · 10−2 hours−1. After the failure, the system

is renewed and the renewal time can be neglected.

a) Find the mean number of failures during t = 100 hours,

b) Draw the graphs of failure intensity (mean number of failure per unit of

time) h(t) versus working time t

Answer:

H(100) =
λ t
2
− 1

4
+

1

4
e−2λ t ≈ 1.75 f ailure;

h(t) =
λ

2
(1 − e−2λ t),
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where λ = λ1 + λ2.

The graph of the failure intensity h(t) is shown in Figure 1.37.

Exercise 1.33.– Using the conditions of exercise 1.32:

a) find the mean number of cycles “failure + renovation” of the system

during time t if the summary renovation time of both components has an

exponential c.d.f. with parameter μ = 0.3 hours−1;

b) draw the graphs of the cycles’ mean number per unit of time versus

working time t.

Answer:

H(t) =
λ μ t

2 μ + λ
− μ (μ + 2 λ)

(2 μ + λ)2
− λ2 μ

(s2 − s1)

⎛⎜⎜⎜⎜⎝e−s2 t

s2
2

− e−s1 t

s2
1

⎞⎟⎟⎟⎟⎠ ;

h(t) =
λ μ

2 μ + λ
+
λ2 μ

s2 − s1

(
e−s2 t

s2
− e−s1 t

s1

)
;

H(100) ≈ 1.60 cycles,

h(100) ≈ 0.0187 cycles/hour,

where s1,2 =
1
2

(
2 λ + μ ± √

μ2 − 4 λ μ
)

and λ = λ1 + λ2 = 0.04 hours−1.

The graph of the function h(t) is shown in Figure 1.37.

Exercise 1.34.– Solve the previous exercise if components are renovated

alternatively (in two stage).

Answer:

H(t) =
λ μ t

2 (λ + μ)
− λ μ

2 (s2 − s1)

(
e−s2 t

s2
− e−s1 t

s1

)
− λ μ 1 − e−(λ+μ)t

2 (λ + μ)2
− 1

4
;

h(t) =
λ μ

2

(
e−s2 t − e−s1 t

s2 − s1
+

1 − e−(λ+μ)t

λ + μ

)
;

H(100) ≈ 1.46 cycles;

h(100) ≈ 0.0176 cycles/hour,
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where s1,2 =
1
2

(
λ + μ ± √

λ2 − 6λμ + μ2
)

and λ = λ1 + λ2.

Exercise 1.35.– Under the conditions of exercise 1.32, consider the case of two

redundant components. Draw the graph of mean number of failures per unit of

time versus system working time t.

Answer:

H(t) =
1

3

(
λ t − 1 + e−

3
2λ t

(
cosα +

1√
3

sinα

))
;

h(t) =
λ

3

(
1 − e−

3
2λ t

(
cosα +

√
3 sinα

))
;

H(100) ≈ 1 f ailure;

h(100) ≈ 0.0134 f ailures/hour,

where λ = λ1 + λ2, α =
λ t
√

3

2
.

Graph of the function h(t) versus the system working time is shown in

Figure 1.37.
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h(t)
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Figure 1.37. The graphs of functions h(t) for exercises 1–4:
(1) – instant renovation (1 redundant); (2) – one-stage renovation

(1 redundant); (3) – two-stage renovation (1 redundant); (4) – instant
renovation (2 redundant)

Exercise 1.36.– Calculate the availability coefficient Kav and the mean number

to the first failure for hot double redundant system if:

a) there exists only one repair facility,

b) there exist two repair facilities.
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1.8. Bibliographical comments

1.8.1. Section 1.1

The basic notions considered in this book correspond to the usual

reliability theory terminology and most of the literature sources on reliability.

Some definitions of this section follow the book [GNE 65]. The families of

parametric c.d.f. of non-negative r.v.’s in most of the books on reliability

theory are considered (see [BAR 75, GER 00]). The Gnedenko–Weibull

distribution was first introduced by Frechet in 1927, and used for description

of particle sizes in 1933. It was considered in detail by Weibull in 1951.

However, in 1949, Gnedenko obtained this distribution as a limiting for

maximum series independent r.v.’s. [GNE 49].

Some of the exercises for this and other sections of this chapter are based

on the problems from the book [POL 72].

1.8.2. Section 1.2

The material about renewal processes follows the book of Cox [COX 61]

and the classical paper of Smith [SMI 58]. Theorems about Large Number

Law and Central Limit Theorems for the sums of i.i.d. r.v.’s can be found in

any course of the Probability Theory. Appropriate theorems for the renewal

processes as well as renewal theorems and theorems about processes of age

and residual time are also discussed in detail in [COX 61, SMI 58] and other

books.

1.8.3. Section 1.3

In this short review, we mostly follow the book [GNE 65]. However, the

problem of statistical investigations for the system reliability needs a special

(and more wide) consideration. The new direction of the investigation

connected with the accelerated trials and appropriate data elaboration is a very

interesting and useful topic in the reliability statistic. This approach is studied

in the books and papers of Bagdonavicius and Nikulin (see [BAG 02]).

1.8.4. Section 1.4

Structural reliability is one of the most popular topics of reliability theory,

which is represented in almost all the books on reliability. The material of this
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section partially follows I. Gertsbakh [GER 00]. The monotone structures and

their properties were first summarized in [BAR 75]. Some of the exercises are

taken from [POL 72].

1.8.5. Section 1.5

First, the notion of the event tree was introduced in the early 1960s by H.A.

Watson from Bell Laboratory for the system reliability analysis.The failures of

the elements, subsystems and the whole system are considered as events. Due

to this, the notion failure tree appears. Later, analogous methods were also

used for risk analysis in technique, medicine, finance, insurance and others

processes.

For any event tree, especially for the life tree, constructing the special

notations of different types of events and connections was proposed, and here

they arepresented in tables (Tables 1.1 and 1.2) following the book of Henley

and Kumamoto [HEN 91].

1.8.6. Sections 1.6 and 1.7

The material of these sections is also the traditional topic for reliability

theory, which can be found in most books on reliability theory

(see [GNE 65, GER 00] and other books). The Markov process is part of the

stochastic process theory and all its necessary information can be found in

any books on the Stochastic Processes (see [CHU 60, ROS 96, SER 09]. For

the application of the Markov process to the redundant system, see also

[GNE 65].






