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Cutting Forces in Milling Processes

1.1. Formulations of cutting forces

Milling is a cutting operation which is generally used to remove materials
from the blank for the purpose of achieving parts with the desired shape and
surface quality. Cutting mechanics of the milling process includes the
shearing effect between the cutting edge and the workpiece, the friction effect
between the rake face and chip, as well as the ploughing effect between the
clearance surface and the machined surface. The combined influence of the
three effects lead to the generation of cutting forces, which can result in
cutting deflections and can further damage the surface quality of the machined
parts. Study of the mechanics of the milling process is of great significance to
control surface errors and to plan stable cutting strategy. Milling is a typical
multipoint tool operation, whose cutting mechanism involves elastic-plastic
mechanics and thermal dynamics. Specific analyses for a detailed
understanding of the behavior of temperature and strain rate fields are not
covered in this text. In this chapter, we will discuss the generation mechanism
of cutting forces, and then detail a series of methods for calibrating the
cutting force coefficients which enable us to accurately predict cutting forces.

1.1.1. Mechanics of orthogonal cutting

Orthogonal cutting is usually used to explain the mechanism of material
removal, and the three-dimensional oblique cutting process can be evaluated
by geometrical and kinematic transformation models, as reported by Altintas
[ALT 12]. Without the loss of generality, the orthogonal cutting process is
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2 Milling Simulation

adopted to formulate the cutting forces. Figure 1.1 shows the relationship of
cutting forces in the cross-sectional view of an orthogonal cutting process.
The cutting edge is assumed to be a sharp one so that the shearing effect
occurs at a plane without thickness. Two cutting force components exist
between the chip and tool (i.e. the normal Fn and the friction Ff components).
They are in balance with the normal and shearing force components related to
the shear plane, i.e. Fnshear and Fshear, as shown in Figure 1.1(a).

Figure 1.1. Cutting forces in the orthogonal cutting process

Shearing force Fshear can be expressed as

Fshear = τsbh/ sinψn [1.1]

where h is the instantaneous uncut chip thickness and b is the chip width. τs
is the yield shearing stress of the workpiece material. ψn is the shearing angle
defined as the angle between the shear plane and the cutting speed.

From Figure 1.1, it can be observed that

Fshear = F cos(ψn + βn − αn) [1.2]
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where F is the resultant cutting force and βn is the friction angle, measured as
the angle between F and Fn, αn is the normal rake angle of the cutter.

Combination of equation [1.1] and equation [1.2] gives rise to

F =
τsbh

sinψn cos(ψn + βn − αn)
[1.3]

At the same time, F can be also split into tangential force FT parallel to
the cutting speed direction, and component FR normal to the cutting speed
direction.

FT = F cos(βn − αn)

FR = F sin(βn − αn)
[1.4]

The substitution of equation [1.3] into equation [1.4] produces

FT = KTbh

FR = KRbh
[1.5]

with

KT =
τs cos(βn − αn)

sinψn cos(ψn + βn − αn)

KR =
τs sin(βn − αn)

sinψn cos(ψn + βn − αn)

[1.6]

Equation [1.5] means that the cutting forces can be evaluated by
multiplying bh, the cross area of the chip, by the cutting force coefficientsKT
or KR expressed by equation [1.6], derived from the shearing mechanism. In
the actual cutting experience, the total cutting forces are contributed by the
shearing effect related to the primary and secondary deformation zones, and
the “ploughing” or “rubbing” effect at the flank of the cutting edge, which is
associated with the tertiary deformation zone. Due to this fact, there are two
widely used cutting force models depending upon whether the rubbing effect
is included or not. The first one is the so-called lumped mechanism model
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that shares the same mathematical equation as equation [1.5]. As its name
suggests, the shearing on the rake face and the rubbing at the cutting edge are
merged as a single coefficient. The second model is the dual mechanism
model, which calculates the cutting forces as a superposition of shearing and
edge forces with

FT = KTcbh+KTeb

FR = KRcbh+KReb
[1.7]

where KTc or KRc represents the cutting coefficient due to shearing effect,
whileKTe orKRe stands for the edge coefficient that does not contribute to the
shearing. The first term of the right-hand side of equation [1.7] is obtained by
applying the same mechanism of orthogonal cutting mechanics as explained in
equation [1.5].

It is noted that equation [1.6] is derived from the orthogonal cutting
operation. In the oblique cutting process, cutting force coefficients are
calculated by the orthogonal-to-oblique method. Readers are referred to the
well-known formulas developed in [ALT 12] for the details of the
orthogonal-to-oblique method.

If the materials property parameter τs, cutter geometrical parameter αn,
process geometrical parameters ψn and βn, and the cutting condition
parameters b and h are known in advance, the values of cutting force
coefficients KT and KR (or KTc and KRc) can be calculated by using the
analytical equation [1.6]. Alternatively, KT and KR (or KTc and KRc, and
KTe and KRe ) can also be mechanistically identified based on the measured
cutting forces. The following contents will detail the modeling of cutting
forces in the milling process and the related methods for obtaining the values
of cutting force coefficients.

1.1.2. Cutting force model for a general milling cutter

A general end milling cutter with helical flutes is shown in Figure 1.2.
XYZ is the coordinate system, with the positive direction of axes Y and X
being aligned with the normal direction of the machined surface and the feed
direction, respectively. D, R, Rr, Rz, α1, α2 and H are seven geometric
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parameters [ENG 01, GRA 04] used to describe the cutter envelope. Note that
in Figure 1.2, Mz, Nz, Mr and Nr are geometrical parameters that can be
calculated by these seven parameters. As explained in [ENG 01], distinct
cutter geometries can be deduced from the general end mill model when
particular values are attributed to these parameters. For example, parameters
{D , R , Rr , Rz, α1 , α2 , H} will be chosen as {D, 0, D/2, 0, 0, 0, H} and
{D, D/2, 0, D/2, 0, 0, H} for the flat end and ball end mills, respectively.
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Figure 1.2. Geometric model of a general end mill

and the cutting process

For the convenience of cutting force calculation, the cutting edges are
divided into a finite number of co-axial disk elements with equivalent axial
length. For convenience, the axial length of the jth axial disk element of the
ith flute is symbolized as zi,j . It should be noted that zi,j=zi,k (k=1, 2, ...). The
total cutting forces are summed axially along the sliced disk elements from
the bottom of the flute to the final axial depth of cut. The cutting forces
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contributed by the jth axial disk element of the ith flute (e.g. the element P
shown in Figure 1.2) at an arbitrary cutter rotation angle ϕ can be expressed
by the lumped or dual mechanism models.

Lumped mechanism model

FT,i,j(ϕ)=KThi,j(ϕ)bi,j

FR,i,j(ϕ)=KRhi,j(ϕ)bi,j

FA,i,j(ϕ)=KAhi,j(ϕ)bi,j

[1.8]

with

hi,j(ϕ) = h
c
i,j(ϕ) sinκ(z)

bi,j = zi,j/ sinκ(z)
[1.9]

whereKT,KR,KA are three cutting force coefficients in tangential, radial and
axial directions. hi,j(ϕ) and κ(z) are the instantaneous uncut chip thickness at
the current cutter rotation angle ϕ and the tool cutting edge angle related to the
jth axial disk element of the ith flute, respectively. z is the axial coordinate of
the jth axial disk element of the ith flute. Based on the geometric definition of
the general end mill, κ(z) can be expressed as follows [GRA 04].

Case 1: if z ≤Mz,

κ(z) = α1

φ(z) = ln[z/ tanα1] tanβ/ cosα1

[1.10]

where φ(z) is the radial lag angle at z due to the cutter helix angle β.

Case 2: ifMz < z ≤ Nz ,

κ(z) = arcsin

√
1− [(Rz − z)/R]2

φ(z) = (z −Mz) tanβ/R+ ln(Mr) tanβ/ cosα1

[1.11]

Case 3: if Nz < z,

κ(z) = π/2− α2
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if α2 �= 0

φ(z) = φ0 + ln[(Nr + z −Nz) tanα2] tanβ/ sinα2 − ln(Nr) tanβ/ sinα2

if α2 = 0

φ(z) = φ0 + (z −Nz) tanβ/Nr

φ0 = (Nz −Mz) tanβ/R+ ln(Mr) tanβ/ cosα1 [1.12]

Dual mechanism model

FT,i,j(ϕ)=KTchi,j(ϕ)bi,j +KTebi,j

FR,i,j(ϕ)=KRchi,j(ϕ)bi,j +KRebi,j

FA,i,j(ϕ)=KAchi,j(ϕ)bi,j +KAebi,j

[1.13]

where Kqc and Kqe (q=T, R or A) are the force coefficients corresponding to
the chip shearing and the edge rubbing, respectively.

Once three force components are obtained from equation [1.8] or
equation [1.13], they can be mapped along the X, Y and Z directions as⎡

⎣FX,i,j(ϕ)
FY,i,j(ϕ)
FZ,i,j(ϕ)

⎤
⎦ = g(θi,j(ϕ))T(θi,j(ϕ))

⎡
⎣FT,i,j(ϕ)
FR,i,j(ϕ)
FA,i,j(ϕ)

⎤
⎦ [1.14]

with

T(θi,j(ϕ)) =

⎡
⎣− cos θi,j(ϕ) − sinκ(z) sin θi,j(ϕ) − cosκ(z) sin θi,j(ϕ)

sin θi,j(ϕ) − sinκ(z) cos θi,j(ϕ) − cosκ(z) cos θi,j(ϕ)
0 cosκ(z) − sinκ(z)

⎤
⎦

where θi,j(ϕ) is the cutter position angle related to the jth axial disk element
of the ith flute at cutter rotation angle ϕ, and is defined as the clockwise angle
determined from axis Y to the disk element. g(θi,j(ϕ)) is the window function
used to identify whether the disk element is in cut or not.

g(θi,j(ϕ)) =

{
1, θen,i,j(ϕ) ≤ θi,j(ϕ) ≤ θex,i,j(ϕ)

0, otherwise
[1.15]
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where θen,i,j(ϕ) and θex,i,j(ϕ) are entry and exit angles related to the jth axial
disk element of the ith flute, which are geometrically defined in Figure 1.3
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Figure 1.3. Definition of entry and exit angles:

a) down milling; b) up milling

Subsequently, the total cutting force components Fs(ϕ) (s=X, Y or Z) at
any cutter rotation angle ϕ can be evaluated by summing the forces acting on
all flutes and disk elements:

Fs(ϕ) =
∑
i,j

Fs,i,j(ϕ) , s = X, Y or Z [1.16]

1.2. Milling process geometry

1.2.1. Calculations of uncut chip thickness

As illustrated in Figure 1.4, at an instantaneous cutting position of the jth
axial disk element of the ith flute, the equivalent chip thickness hci,j(ϕ) refers
to the distance in the radial direction of the cutter between the tooth path to
be generated by the cutter element, and the surface left by the jth axial disk
element of the (i-m)th flute. The occurrence of cutter runout will lead tom �= 1
. Due to the deflections of the cutter and workpiece, the cutter axis shifts from
its nominal position. As a result, two adjacent tooth paths will deviate from the
desired paths. So, hc

i,j(ϕ) will be different from the nominal value. Based on
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the circular tooth path assumption [MAR 45] shown in Figure 1.4(a), hc
i,j(ϕ)

is calculated as follows

hc
i,j(ϕ) = ri,j − li,j [1.17]

where li,j is an intermediate variable, as shown in Figure 1.4. ri,j is the actual
radius of the circular tooth path generated by the jth axial disk element of the
ith flute at cutter rotation angle ϕ. In this section, ri,j will be calculated by
using equation [1.18] based on the radial cutter runout model, which is widely
used by many researchers [WAN 03, ARM 89, LIA 94, FEN 94a, FEN 94b,
WAN 07a, AKS 98, AZE 04, CHE 97, SEE 99, SHI 97, WAN 07b, WAN 94].

ri,j = rn,i,j + ρ cos[λ− φ(z)− 2(i− 1)π/N ] [1.18]

where rn,i,j is the nominal cutting radius of the jth axial disk element of the
ith flute. N is the total number of cutting teeth of the cutter. ρ and λ are the
geometrical parameters in the radial cutter runout model, in which the cutter
axis is assumed to be parallel to the centerline of the machine spindle, as
defined in Figure 1.5. Geometrically, ρ is the cutter axis offset, defined as the
distance between the rotation center of the spindle and the geometric center of
the cutter, while λ is location angle measured as the angle between the
direction of the offset and the tip of the nearest tooth (tooth 1).
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Figure 1.4. Geometric illustration of equivalent chip thickness:

a) geometric definition; b) close-up view of sub-figure (a)
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Figure 1.5. Definition of radial cutter runout. For a color version of this

figure, see www.iste.co.uk/zhang/milling.zip

Using the law of cosines, a geometric relation exists between the cutter
centre of the current tooth path and that of the past tooth path in Figure 1.4(b).

r2i−m,j = Λ2 + li,j
2 − 2Λ li,j cosΥ [1.19]

in which

Λ =
√
Δδ2x +Δδ2y [1.20]

with

Δδx = mf + δx,i,j − δx,i−m,j ; Δδy = δy,i,j − δy,i−m,j [1.21]

Notice that (δx,i,j , δy,i,j ) and( δx,i−m,j , δy,i−m,j) correspond to offset
values of cutter centres of the current tooth and the m-past tooth from their
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desired positions, respectively. f is the feed per tooth. Obviously, the following
relation holds.

Υ = π − θi,j(ϕ) + arccos(
Δδy
Λ

) [1.22]

By solving equation [1.19], li,j is obtained as

li,j = ΛcosΥ +
√
r2i−m,j − Λ2sin2Υ [1.23]

By substituting equation [1.23] into equation [1.17], hc
i,j is derived as

hc
i,j(ϕ) = −ΛcosΥ + ri,j −

√
r2i−m,j − Λ2sin2Υ [1.24]

Due to the fact that ri−m,j >> Δδx and ri−m,j >> Δδy, it follows that
ri−m,j >> Λ sinΥ from equation [1.20]. Thus, equation [1.24] can be
approximated by

hc
i,j(ϕ) = −ΛcosΥ + ri,j − ri−m,j

≈ mf sin θi,j(ϕ) + ri,j − ri−m,j

[1.25]

Note that if a negative value of hc
i,j(ϕ) is obtained by equation [1.24] or

equation [1.25], hc
i,j(ϕ) is set to be zero.

Physically, a static milling process free of vibration implies that cutting
forces must have stabilized themselves after a few tooth periods. In other
words, the cutting forces obtained from two adjacent tooth periods must be
equal, as assumed by Budak [BUD 92]. The implication of this stability
condition requires that the volume of materials cut off by the current tooth
should be identical to that cut off by the previous tooth with the negligence of
runout, i.e. m =1 and ri,j = ri−1,j in equation [1.25]. Now, suppose that
Fi(θi,j(ϕ)) represents the resultant cutting force vector associated with the
cutter position angle θi,j(ϕ) , then

Fi(θi,j(ϕ)) = Fi−1(θi−1,j(ϕ)) [1.26]
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Likewise, cutter deflections of the concerned cutter segment also remain
unchanged between two adjacent teeth, so that following equations hold

δt,i,j = δt,i−1,j [1.27]

where δt,i,j = (δt,X,i,j , δt,Y,i,j , δt,Z,i,j) is the cutter deflection vector
corresponding to the jth axial disk element of the ith flute. It is evaluated
based on the cantilevered beam model [SUT 86, BUD 95, SHI 96].

Concerning the cutter center offset values (δx,i,j ,δy,i,j ,δx,i−1,j ,δy,i−1,j),
because of δx,i,j = δt,X,i,j and δy,i,j = δt,Y,i,j , the following important
relations can be derived:

– from equation [1.27],

δx,i,j = δx,i−1,j , δy,i,j = δy,i−1,j [1.28]

– from equation [1.21],

Δδx = f, Δδy = 0 [1.29]

– from equation [1.22],

β = 3π�2 − θi,j(ϕ) [1.30]

By reviewing the above relations, equation [1.25] can be further simplified
as

hc
i,j(ϕ) = f sin θi,j(ϕ) [1.31]

Obviously, equation [1.31] indicates that hc
i,j converges to its nominal value

of f sin θi,j(ϕ) in a static milling process. It gives the theoretical explanation
why the nominal value of the equivalent chip thickness, f sin θi,j(ϕ), is widely
used by many researchers to establish the cutting force model.

1.2.2. Determination of entry and exit angles

Equation [1.15] shows that cutting force prediction is dependent on the
entry, θen, and the exit, θex, angles. In the case of a milling workpiece with



Cutting Forces in Milling Processes 13

simple geometry, both angles can be calculated analytically. For instance, in
flat end milling of a plane, the entry and exit angles can be mathematically
expressed as

θen =
π

2
+ arcsin

(D − 2ae)

D
, θex = π, for down milling

θen = π, θex =
π

2
− arcsin

(D − 2ae)

D
, for up milling

[1.32]

where ae stands for the radial depth of cut.

For a milling workpiece with complex geometry, a complicated cutter
geometry and process geometry make it very difficult to analytically
determine the entry and exit angles. Alternatively, researchers propose that
through extracting the cutter-workpiece engagement (CWE) region, i.e. the
engagement domain of each axial disk along the tool axis, the entry and exit
angles can be correspondingly calculated. A literature review shows that
existing CWE extracting methods have the following characteristics:

– for a discrete method [CHO 97, LAZ 03, FUS 03, ROT 07, LI 10,
ZHA 11, ARA 11, KIM 06, LI 08, KAR 10], the achievement of high accuracy
computing of CWE requires a high resolution of workpiece decomposition,
large store memory and long computing time;

– for a solid modeling-based method [FER 08b, LAZ 11, SPE 94,
IMA 98, ELM 98, SPE 00, YIP 06], Boolean operations for implementing
surface/surface intersection algorithms are greatly time-consuming because
CWE maps are extracted from the in-process workpiece. Meanwhile, as the
data structure size quickly increases during simulation, numerical inaccuracies
of the workpiece’s model will be stacked and thus topological errors may
occur.

This section proposes a solid trimming method by which CWE maps are
extracted from the removal volume of multi-axis milling rather than from the
in-process workpiece (IPW). In this method, both the workpiece and tool
surfaces are described by a B-rep solid modeler.

CWE is geometrically defined as the instantaneous engagement region
when flutes enter into and leave a workpiece. In other words, it is the contact
area between the tool envelope surface and the workpiece, and can be treated
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as a function of cutter’s axial height. The calculation of CWE thus depends
upon both the geometry complexities of the cutter and workpiece as well as
the relative location between the cutter and workpiece. It is independent of
tool flute numbers and cutting parameters. The proposed method is
schematically depicted in Figure 1.6. It can be seen that the calculation of
CWE maps is based on the removal volume, rather than the entire in-process
workpiece, as reported in [ARA 08]. This allows the subsequent operations to
be performed on a simple data structure. Detailed explanations of the key
steps are described below.

Slicing the CWE surfaces and calculating        and      

(1) Generation of the ATSV (2) Generation of the RV and UIPW 

(3) Generation of the FCSs (4) Trimming RV with FCSs
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version of this figure, see www.iste.co.uk/zhang/milling.zip
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1.2.2.1. Generation of analytic tool swept volume, removal volume and

updated in-process workpiece

This section corresponds to steps (1) and (2) in Figure 1.6. The main content
of both steps are as follows:

i) Generation of the analytic tool swept volume (ATSV) by the method
reported in [WEI 04]. This step is often performed by sewing the analytic tool
swept surface, {Faces}Swept, the ingress part of the tool surface, {Faces}Ingress,
at the first cutter location and the egress part of the tool surface, {Faces}Egress,
at the(NCL-1)th cutter location,

ESwept={Faces}Swept+{Faces}Ingress+{Faces}Egress [1.33]

where ESwept denotes the solid model of analytic tool swept volume. NCL

denotes the number of cutter locations.

In this work, the analytic tool swept surface is obtained by employing the
analytic method proposed in [GON 09].

ii) With the ATSV obtained above, the removal volume (RV) and updated
in-process workpiece (UIPW) are obtained by performing Boolean operations
between the ATSV and the in-process workpiece (IPW):

RV = ATSV
⋂∗

IPW [1.34]

UIPW = IPW−∗ATSV [1.35]

where
⋂∗ and −∗ denote the Boolean intersection and subtraction operator,

respectively. Notice that UIPW becomes IPW for the next tool path segments.

Traditionally, equation [1.34] is carried out based on the tool swept volume
obtained with Boolean union operation among the cutter solid models at all
cutter locations along the tool path [FER 08a]. Because there are many small
edges and faces in the tool swept volume, the calculation of RV needs many
surface/surface intersection calculations between the IPW and the tool swept
volume, whereas the method proposed here determines RV by using the ATSV,
which involves at most nine surfaces. As a result, abundant surface/surface
intersection calculations are avoided in the calculation procedure of RV and
UIPW. Correspondingly, the simple data structure of the ATSV results in a
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simple data structure of the RV and UIPW. This favors the efficient CWE
extraction described in the following sections.

1.2.2.2. Generation of the feasible contact surfaces

In the actual milling process, only partial tool surfaces may make contact
with the workpiece, as illustrated in Figure 1.7(a). These surfaces are named
feasible contact surfaces (FCSs) according to [ARA 08]. Mathematically, the
angle between the tool surface normal N(u, v, t) and the instantaneous
velocity V(u, v, t) at any point on FCSs of a tool should be a sharp or a right
angle at most. That is,

N(u, v, t) ·V(u, v, t) ≥ 0 [1.36]

where u and v are two variables in the parameter equations of the tool surfaces.
t is the instantaneous cutting time variable corresponding to the given cutter
location. If a set of points meet the condition N(u, v, t) ·V(u, v, t) = 0, these
points will constitute closed curves, named tool swept profiles, which define
the critical boundaries of FCSs, as shown in Figure 1.7(b). Then, the FCSs are
obtained by following the two steps below. First, split the tool surfaces into
two parts by the tool swept profiles. Second, select the part satisfying equation
[1.36] as the required feasible contact surfaces {Faces}FCS,k, where k means
the kth cutter location along the tool path.

1.2.2.3. Trimming removal volume with feasible contact surfaces

CWE surfaces are usually extracted by subtracting the tool movements
from the solid model of the workpiece or the removal volume [LAZ 11]. As
illustrated in Figure 1.8, some materials which should be removed from the
workpiece are not actually cut, due to the inaccurate calculations of tool
movements in 5-axis milling. This results in bodies with many small edges
and surfaces being produced at each cutter location. As the cutter advances,
these edges and faces will be accumulated along the tool path so that the
model data structure and computing time will increase during the whole
simulation procedure. Meanwhile, topological errors easily occur because of
the stacked numerical inaccuracies induced by these small edges and faces.

Here the proposed method is to extract the CWE surfaces directly based on
the removal volume and feasible contact surfaces obtained above. As shown in
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Figure 1.9, the trimming operation related to the kth cutter location is described
below:

1) compute the intersection curves between the FCSs and boundary
surfaces of RV;

2) split FCSs and the boundary surfaces of RV by the intersection curves
obtained above;

3) reconstruct the remaining removal volume with the split boundary
surfaces obtained above.

(a) (b)

tool 
surfaces  

tool swept 
profiles

feasible 
contact 
surfaces

feed 
direction

removal 
volume

Figure 1.7. Illustration of feasible contact surfaces: a) tool surfaces

contacting with the RV; b) feasible contact surfaces at specific cutter

location. For a color version of this figure, see

www.iste.co.uk/zhang/milling.zip
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Figure 1.8. Production of bodies with many small edges and surfaces

when the tool movements are subtracted from the removal volume. For

a color version of this figure, see www.iste.co.uk/zhang/milling.zip
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Figure 1.9. The illustration of the trimming operation: a) computing the

intersection curves; b) splitting the boundary surfaces; c) reconstructing

the remaining RV. For a color version of this figure, see

www.iste.co.uk/zhang/milling.zip

In this way, a large number of bodies with small edges and faces can be
avoided as the cutter moves along the tool path. Because only the FCSs of the
tool surfaces may make contact with the workpiece in the actual milling
process, the CWE surfaces are actually the subsets of the FCSs. Keeping this
idea in mind, the CWE surfaces can be obtained through trimming the
removal volume by the FCSs at each cutter location. With this operation, the
CWE surfaces are directly imprinted on the remaining removal volume once
the materials between the previous and the current FCSs are discarded.
Following this procedure, CWE surfaces at the kth cutter location,
{Faces}CWE,k, can thus be expressed as

{Faces}CWE,k = {Faces}RV,k∩∗{Faces}FCS,k [1.37]

where {Faces}RV,k denotes all boundary surfaces of the remaining removal
volume RVk+1 at the kth cutter location, and RVk+1 denotes the solid model
of the remaining removal volume after the trimming operation at the kth
cutter location. Figure 1.10 illustrates the CWE surfaces extraction procedure
associated with two adjacent cutter locations.

In fact, in B-rep solid modeler, the CWE surfaces constitute partial
boundary surfaces of the remaining removal volume. Once the cutter moves
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to a new cutter location, CWE surfaces on the removal volume related to the
previous cutter location are removed, and newly generated CWE surfaces will
be updated as the boundary surfaces of the remaining removal volume, as
shown in Figure 1.10(b) and (d). This can avoid generating abundant small
edges and faces. In addition, the number of boundary surfaces of the removal
volume does not always increase. Benefiting from this steady data structure,
the proposed method is efficient without stacked numerical inaccuracies and
topological errors.

feasible contact 
surfaces

material to be 
removed

removal 
volume

removal 
volume

feasible contact 
surfaces

CWE surfaces CWE surfaces at 
previous cutter location

removal 
volume

CWE surfaces

(a) (b) (c) (d)

Figure 1.10. Illustration of trimming procedure: a) and c);

instantaneous trimming status at the 1st and 2nd cutter locations; b)

and d); remaining removal volume after trimming at the 1st and 2nd

cutter locations. For a color version of this figure, see

www.iste.co.uk/zhang/milling.zip

1.2.2.4. Extraction of the CWE surfaces from the removal volume

As described above, because CWE surfaces imprinted on some boundary
surfaces of the remaining RV are generated by the FCSs, they have the same
attributes as the tool surfaces, such as surface type, center point and axis
direction. This means that these attributes can be used to identify and extract
the CWE surfaces from the remaining RV. The detailed algorithm is described
as follows.
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Step 1: search all boundary surfaces of the remaining removal volume
RVk+1 at the kth cutter location and save them as {Faces}RV,k.

Step 2: identify the surface attributes of all {Faces}RV,k.

Step 3: if the attributes of each {Faces}RV,k are consistent with those of
the tool surface, append the surface into the sequence of the CWE surfaces
{Faces}CWE,k at the kth cutter location.

conical 
surface

cylindrical 
surface

spherical 
surface

spherical 
surface

cylindrical 
surface

cylindrical 
surface

toroidal 
surface

toroidal 
surface

toroidal 
surface

ball end mill(a) general end mill geometry flat end mill

bull nose end mill taper ball end mill

H

zR

rR

R

general end mill

D/2

(c) (e) 

(b) (d) (f) 

Figure 1.11. General tool geometry and surfaces

of different end mills

For the different end mills shown in Figure 1.11, the types of tool surfaces
can be classified as cylindrical, conical, toroidal and spherical surfaces, which
include the attributes of axis, spherical center or radius, as listed in Table 1.1.
With this information, one can perform Step 3 to identify the CWE surfaces.
To have a clear understanding of the above method, the pseudo-codes
corresponding to these milling cutters are described below.
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Input:
RVk+1 : the remaining removal volume after trimming operation at the kth
cutter location, where k = 1, 2, ..., NCL − 1 .
[Pc,k, nk]: the cutter location data at the kth cutter location; Pc,k denotes the
cutter tip coordinate; nk denotes the tool orientation vector.
ε : tolerance for comparing the constructive features of the surface and the
cutter location.
{D,R,Rr, Rz, α1, α2, H}: tool geometry parameters as shown in Figure
1.11(a).
Output:
{Faces}CWE,k : the CWE surfaces at the kth cutter location.
Step 1:
Search all boundary surfaces of the remaining removal volume RVk+1 at the
kth cutter location and save them as {Faces}RV,k temporarily.
Step 2:
FOR (each surface in {Faces}RV,k )
{Identify the type of the surface, the axis of the revolution surface of the cutter
body ns, and the sphere center of the revolution surface of the cutter body
Cs.}
Step 3:
FOR (each surface in {Faces}RV,k)
{
IF (face type == cylindrical surface or face type == conical surface or face
type == toroidal surface)
{
IF

‖ns − nk‖∞ < ε or ‖ns + nk‖∞ < ε [1.38]

{ Append the surface into the sequence of the cutter-workpiece engagement
surfaces {Faces}CWE,k }
ELSE IF (face type == spherical surface)
{
Calculate the ball center CB,k of the ball end mill or taper ball end mill with
the cutter location data and tool geometry parameters, where

CB,k = Pc,k −Rnk [1.39]

IF

(‖Cs − CB,k‖∞ < ε) [1.40]
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{ Append the surface into the sequence of the cutter-workpiece engagement
surfaces {Faces}CWE,k } }
}.
OUTPUT the CWE surfaces {Faces}CWE,k at the kth cutter location.

Mill type Surface type Surface attributes
general end mill toroidal surface axis (nk)

conical surface axis (nk)

ball end mill cylindrical surface axis (nk)
spherical surface spherical center ( CB,k )

bull nose end mill cylindrical surface axis (nk)
toroidal surface axis (nk)

flat end mill cylindrical surface axis (nk)

taper ball end mill toroidal surface axis (nk)
spherical surface spherical center ( CB,k )

Table 1.1. Surface attributes for different end mills

1.2.2.5. Procedure for calculating entry and exit angles

The whole procedure for calculating the entry and exit angles for a specified
workpiece model and cutter location (CL) file is summarized as follows:

1) read the information about cutter location, cutter geometry parameters
and machine coordinate system from the CL file;

2) establish the solid model of the workpiece in the CAD/CAM system;

3) construct the analytical tool swept volume using equation [1.33];

4) calculate the removal volume and updated in-process workpiece with
equation [1.34] and equation [1.35];

5) set k = 1 and RV1 = RV. RVk represents the solid model of the
remaining removal volume after the trimming operation at the (k-1)th cutter
location and to be cut at the kth cutter location;

6) generate the feasible contact surfaces {Faces}FCS,k
using equation [1.36]

at the kth cutter location;

7) trim the solid model RVk by {Faces}FCS,k. Save the remaining part of
RVk along the feed direction as RVk+1;

8) search all boundary surfaces of RVk+1 and save them as {Faces}RV,k;
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9) if the surface attributes of each {Faces}RV,k are consistent with the
surface attributes of the tool surface, append the surface into the sequence of
the CWE surfaces {Faces}CWE,k at the kth cutter location and repeat this step
until all surfaces are considered;

10) calculate the intersection arcs in {Faces}CWE,k related to a set of
discretized horizontal planes, which are perpendicular to the tool orientation
and equivalently placed with equivalent length Δz along the tool orientation
from the tool tip. Here, Δz is set to be zi,j , i.e. the axial length of each edge
disk of the cutter, as described in section 1.1.2;

Here, the intersection arcs include entry end point Pk,en, exit end point
Pk,ex and center point Ck of arcs at the kth cutter location;

11) calculate the entry and exit angles at the kth cutter location using the
following equations and the intersection arc data obtained from step (10):

θen = arcsin(fk · rk,en), θex = arcsin(fk · rk,ex) [1.41]

where fk is the feed direction vector at the kth cutter location, calculated using
the CL data in step (1). rk,en = Pk,en − Ck and rk,ex = Pk,ex − Ck. Pk,en,
Pk,ex and Ck are the coordinates of the entry end point, exit end point and
center point obtained from step (10), respectively;

12) if k < NCL − 1 , set k = k + 1 and go to step (6). Otherwise, stop the
procedure.

1.2.2.6. Numerical simulations

A ball end milling of an impeller is adopted to numerically check the
validity of the method. An extraction algorithm is coded using C# and the
application programming interface NX Open of SIEMENS NX 7.5.
Instantaneous entry and exit angles are shown in Figure 1.12. During the
engaging stage of the first-cut, the cutter-workpiece engagement area expands
from the tip to the middle of the cutter until the continuous cutting stage
starts. Corresponding to most parts of the cutter, engagement angles
associated with following-cut are smaller than those related to first-cut, as
shown in Figure 1.12. However, with respect to the ball end part, it follows
the reverse conclusion due to the fact that the small radius at the ball end
makes the cutting like a slot milling. Meanwhile, the efficiency of the
proposed method is compared with the existing method described in
[LAZ 11]. When 929 CL points in the above ball end milling are simulated,
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the cost of the proposed method is about 424.2 seconds, while the cost of the
method in [LAZ 11] is about 1716 seconds. This means the proposed method
is more time-efficient.
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Figure 1.12. Ball end milling of an impeller at two

different cutter locations

1.3. Identification of the cutting force coefficients

In order to efficiently predict the cutting forces, it is of great importance to
calibrate the values of cutting force coefficients and the cutter runout
parameters a priori. In this book, four types of methods developed by the
authors will be described in detail.

1.3.1. Calibration method for general end mills

This is a unified method suited to general end mills, such as flat end mill,
bull nose end mill, ball end mill, etc. The cutter is firstly discretized into a
finite number of disk elements. The total cutting forces are then obtained by
summing the elemental forces acting on all sliced disk elements.

1.3.1.1. Identification of the cutting force coefficients

This scheme is generally developed based on the measured cutting forces.
For a general end mill shown in Figure 1.2, at the cutting instant of angular
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position θi,j(ϕ) for the jth axial disk element of the ith flute, the cyclic
symmetry of the cutter flutes ensures that the jth axial disk element of the
(i+k)th flute will have the same angular position, i.e.
θi+k,j(ϕ + 2kπ/N)) = θi,j(ϕ) after a cutter rotation of 2kπ/N . As a result,
the sum of the cutting forces acting on the jth axial disk element of the ith
(i=1, 2, ..., N) flute at the angular position θi,j(ϕ) can be expressed as

⎡
⎣FX,j(ϕ)
FY,j(ϕ)
FZ,j(ϕ)

⎤
⎦ = T(θi,j(ϕ))

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

KT
N∑
i=1

(hi,j(ϕ)bi,j)

KR
N∑
i=1

(hi,j(ϕ)bi,j)

KA

N∑
i=1

(hi,j(ϕ)bi,j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[1.42]

By reviewing equation [1.9] and equation [1.25] together with bi,j = bk,j
(i, k = 1, 2, ...,N), we can obtain

N∑
i=1

(hi,j(ϕ)bi,j) = zi,j{Nf sin θi,j(ϕ) +
N∑
i=1

[ri,j − ri−m,j ]} [1.43]

with ri−m,j = rN,j if i−m = 0.

Because of
N∑
i=1

[ri,j − ri−m,j ] = 0, the runout effect related to the last

summation term of equation [1.43] can be naturally annulled so that

N∑
i=1

(hi,j(ϕ)bi,j) = Nzi,jf sin θi,j(ϕ) [1.44]

Furthermore, by substituting equation [1.44] into equation [1.42] and then
dividing equation [1.42] by N, we can obtain force components defined as

⎡
⎣FX,j(ϕ)

FY,j(ϕ)

F Z,j(ϕ)

⎤
⎦ =

1

N

⎡
⎢⎢⎢⎢⎢⎢⎣

N∑
i=1
FX,j(ϕ)

N∑
i=1
FY,j(ϕ)

N∑
i=1
FZ,j(ϕ)

⎤
⎥⎥⎥⎥⎥⎥⎦ = zi,jf sin θi,j(ϕ)T(θi,j(ϕ))

⎡
⎣KT
KR
KA

⎤
⎦ [1.45]
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From the above relation, it follows that F s,j(ϕ) (s = X, Y or Z) is
independent of the cutter runout. In other words, equation [1.45] is just the
nominal components of the cutting forces associated with the jth disk element
of all flutes no matter what the cutter runout is.

Correspondingly, the total nominal cutting forces corresponding to θi,j(ϕ)
can be obtained by adding equation [1.45] along z

⎡
⎣FX(ϕ)

FY(ϕ)

F Z(ϕ)

⎤
⎦= 1

N

⎡
⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

[FX(ϕ+ 2(i− 1)π/N)]

N∑
i=1

[FY(ϕ+ 2(i− 1)π/N)]

N∑
i=1

[FZ(ϕ+ 2(i− 1)π/N)]

⎤
⎥⎥⎥⎥⎥⎥⎦=f T1(θi,j(ϕ))

⎡
⎣KT
KR
KA

⎤
⎦ [1.46]

where

T1(θi,j(ϕ)) =

⎡
⎢⎢⎢⎣
−∑

i,j

(zi,jB2) −∑
i,j

(C1B1) −∑
i,j

(C2B1)∑
i,j

(zi,jB1) −∑
i,j

(C1B2) −∑
i,j

(C2B2)

0
∑
i,j

[C2 sin θi,j(ϕ)] −
∑
i,j

[C1 sin θi,j(ϕ)]

⎤
⎥⎥⎥⎦ [1.47]

with

B1 = sin2θi,j(ϕ), B2 = sin θi,j(ϕ) cos θi,j(ϕ)

C1 = zi,j sinκ(z), C2 = zi,j cosκ(z)
[1.48]

Here, the nominal cutting forces F s(ϕ) (s = X, Y or Z) are expressed as a
linear function of the cutting force coefficients. Assume that FM

s (ϕ)
(s = X, Y or Z) denotes measured values of cutting forces at cutter rotation
angle ϕ. Following equation [1.46], F s(ϕ) can be approximated by averaging
the measured values over one cutter revolution.

F s(ϕ) =
1

N

N∑
i=1

[FM
s (ϕ+ 2(i− 1)π/N)], s = X, Y or Z [1.49]
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Finally, with the known values of F s(ϕ) (s = X, Y or Z),
Kq (q = T, R or A) can be deduced immediately from equation [1.46] by the
inverse of T1(θi,j(ϕ)). Compared with existing methods, the main features of
the proposed approach are twofold. On the one hand, a concise formulation
independent of the cutter radial runout is established for the determination of
cutting force coefficients. On the other hand, instantaneous values of the
nominal cutting force components provide the possibility to investigate the
instantaneous variation of the cutting force coefficients.

1.3.1.2. Identification of the cutter runout parameters

Under the assumption of m = 1 , the substitution of equation [1.18] into
equation [1.25] will give rise to the following equation

hci,j(ϕ) = f sin θi,j(ϕ) + [−2ρ sin(π�N ) sin(λ− φ(z)− (2i−3)π�N )] [1.50]

The condition m = 1 implies that the current tooth removes the materials
being left just by the previous one. Furthermore, by considering
equations [1.50], [1.9], [1.8] and [1.14] together, equation [1.16] can be
further developed as

⎡
⎣FX(ϕ)
FY(ϕ)
FZ(ϕ)

⎤
⎦ = fT1(θi,j(ϕ))

⎡
⎣KT
KR
KA

⎤
⎦+T2(θi,j(ϕ))

[
ρ cosλ
ρ sinλ

]

=

⎡
⎣FX(ϕ)

FY(ϕ)

F Z(ϕ)

⎤
⎦+T2(θi,j(ϕ))

[
ρ cosλ
ρ sinλ

] [1.51]

with

T2(θi,j(ϕ)) = sin(π�N )

⎡
⎣A11(θi,j(ϕ)) A12(θi,j(ϕ))
A21(θi,j(ϕ)) A22(θi,j(ϕ))
A31(θi,j(ϕ)) A32(θi,j(ϕ))

⎤
⎦

A11(θi,j(ϕ)) =
∑
i,j

2zi,j sin γi,j [KT cos θi,j(ϕ) +KR sinκ(z) sin θi,j(ϕ)

+KA cosκ(z) sin θi,j(ϕ)]
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A12(θi,j(ϕ)) =
∑
i,j

2zi,j cos γi,j [KT cos θi,j(ϕ) +KR sinκ(z) sin θi,j(ϕ)

+KA cosκ(z) sin θi,j(ϕ)]

A21(θi,j(ϕ)) =
∑
i,j

2zi,j sin γi,j [−KT sin θi,j(ϕ) +KR sinκ(z) cos θi,j(ϕ)

+KA cosκ(z) cos θi,j(ϕ)]

A22(θi,j(ϕ)) =
∑
i,j

2zi,j cos γi,j [−KT sin θi,j(ϕ) +KR sinκ(z) cos θi,j(ϕ)

+KA cosκ(z) cos θi,j(ϕ)]

A31(θi,j(ϕ)) =
∑
i,j

2zi,j sin γi,j [−KR cosκ(z) +KA sinκ(z)]

A32(θi,j(ϕ)) =
∑
i,j

2zi,j cos γi,j [−KR cosκ(z) +KA sinκ(z)]

γi,j = −φ(z)− (2i−3)π�N

The first term of the right-hand side in equation [1.51] refers to a nominal
component independent of cutter runout whereas the second term refers to the
perturbation component due to cutter runout.

By combining equation [1.51] with equation [1.46], we can obtain

T2(θi,j(ϕ))

[
ρ cosλ
ρ sinλ

]
=

⎡
⎣FX(ϕ)
FY(ϕ)
FZ(ϕ)

⎤
⎦−

⎡
⎣FX(ϕ)

FY(ϕ)

F Z(ϕ)

⎤
⎦ [1.52]

Obviously, with the measured cutting forces assigned to FX(ϕ), FY(ϕ)
and FZ(ϕ) and the known values of KT, KR and KA calibrated based on
equation [1.46], cutter runout parameters ρ and λ can be evaluated
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immediately by virtue of equation [1.52]. However, as the measured data
often involve noise signals that may perturb FX(ϕ) , FY(ϕ) and FZ(ϕ) , the
accuracy of ρ and λ may be strongly deteriorated if equation [1.52] is directly
used. Moreover, since the cutter runout leads to a redistribution of the cutting
forces over different tooth periods, it is necessary to choose the measured
cutting forces in different tooth periods when solving ρ and λ. In this way, the
influence of the noise signals may be weaken to the lower degree. To do this,
the force component that has the largest peak value, e.g. FY(ϕ), is generally
adopted.

Using equation [1.52] and FY at the cutter rotation angles ϕi = ϕ+ 2(i−
1)/N (i=1, 2, ..., N), we can obtain

T3

[
g1
g2

]
= F0 [1.53]

with

T3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

A21(θi,j(ϕ1)) A22(θi,j(ϕ1))
...

...
A21(θi,j(ϕi)) A22(θi,j(ϕi))

...
...

A21(θi,j(ϕN )) A22(θi,j(ϕN ))

⎤
⎥⎥⎥⎥⎥⎥⎦

g1 = ρ cosλ

g2 = ρ sinλ

F0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

FY (ϕ1)− F Y (ϕ)
...

FY (ϕi)− F Y (ϕ)
...

FY (ϕN )− F Y (ϕ)

⎤
⎥⎥⎥⎥⎥⎥⎦

By means of the least square theory, g1 and g2 can be determined by[
g1
g2

]
=
[
TT

3T3

]−1 [
TT

3F0

]
[1.54]
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Therefore, it turns out that whenm = 1 , we have

λ = arctan(g2/g1)

ρ = g1/ cosλ or ρ = g1/ sinλ
[1.55]

Note that the correct λ should give rise to a positive value of ρ. However,
from the above procedure, we can see that a set of ρ and λ can be available
for each value of cutter rotation angle. For this reason, the real set of runout
parameter is selected to be such a one that minimizes the squared difference
between the simulated and measured cutting forces at all sampling instants.

In the particular case of N = 2, TT
3T3 will become singular in equation

[1.54]. ρ and λ can be optimally selected to be those that satisfy equation
[1.53] and minimize the squared difference between the simulated and
measured cutting forces at all sampled instants. For a single flute cutter with
N = 1, the cutting forces are not influenced by cutter runout.

1.3.1.3. Selection of cutting parameters

As stated above, the identification procedure of ρ and λ is based on the
assumption of single tooth engagement (STE). That is, only one flute is in
cut at any cutter rotation angle. This condition can be easily satisfied with
a reasonable selection of radial depth of cut, ae, and axial depth of cut, ap.
Critical values of ae and ap can be defined by the following cutting conditions:
whenever the current tooth disengages from the workpiece, the next tooth has
to be engaged with the workpiece immediately. This means that with critical ae
and ap, any increase of ae or ap will lead to multiple teeth engagement (MTE),
i.e. an engagement of at least two teeth simultaneously at some cutter rotation
angles. For a general end mill, the condition of STE can be mathematically
written as

φ(ap)− φ(ape) +
π

2
+ arcsin(

ae −Rcut

Rcut
) <

2π

N
[1.56]

where ape andRcut are the pseudo axial depth of cut that is not engaged and the
maximum radius of the cutting edge point that is engaged with the workpiece,
respectively, as defined in Figure 1.2.
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This is the critical condition characterizing the dependence between
critical values of ae and ap. Critical conditions are now illustrated for a
three-fluted flat end mill, three-fluted bull nose end mill and four-fluted ball
end mill in Figures 1.13(a), (b) and (c). Equation [1.56] can be applied to
design the experimental set-up for calibration of instantaneous cutting force
coefficients. If the measured signals of the cutting forces are not bright
enough to clearly identify the case of STE, we can appropriately reduce
values of ae or ap.
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Figure 1.13. Critical curves describing the engagement of a single

flute; a) Three-fluted flat end mill with a helix angle of 30◦;

b) Three-fluted bull nose end mill with a helix angle of 30◦;

c) Four-fluted ball end mill with a helix angle of 35◦

However, one must keep in mind that equation [1.56] is derived with the
negligence of the cutter runout. Practically, if one tooth is engaged in cut with
an immersed axial length more than its nominal value due to runout, there must
be at least another tooth that will be in cut with an immersed axial length less
than its nominal value after some cutter rotation angles. As a result, STE will
appear. Therefore, as long as ae and ap satisfy equation [1.56], the cutting test
is in the state of STE regardless of the cutter runout.
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1.3.1.4. Test applications

To apply the above procedure, a series of cutting tests are performed in
milling aluminum alloy 2618 with a vertical CNC milling machine.
Three-component dynamometer Kistler 9255B is used to measure the cutting
forces. A three-fluted carbide flat end mill with a diameter of 16mm and a
helix angle of 30◦ is studied, respectively. A test with ap = 1 mm, ae = 8 mm
and f = 0.05 mm/tooth is used to calibrate the cutting force coefficients as
well as the runout parameters. The identified cutting force coefficients are
plotted versus the instantaneous average chip thickness (IACT) h(φ), as
shown in Figure 1.14.
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Figure 1.14. Calibrated cutting force coefficients

In Figure 1.14, we can see that an exponent-like relation exists between
cutting force coefficients Kq (q = T, R or A) and h(ϕ). For this reason, the
relationship between Kq and h(ϕ) is interpolated by the following nonlinear
fitting function

Kq =Wq1 +Wq2e
[Wq3h(ϕ)], (q = T,R or A) [1.57]

where Wq1, Wq2 and Wq3 are constants determined by the fitting procedure.
The fitted cutting force coefficients are also illustrated in Figure 1.14 for
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comparison with calibrated discrete values. With fitted values of Kq, runout
parameters ρ and λ are then identified. Results are: ρ = 5 μm and λ = 60◦.
Another test with ap = 1.3 mm, ae = 8 mm and f = 0.1 mm/tooth is used
to verify the accuracy of calibrated cutting force model. From Figure 1.15, it
can be seen that a good agreement exists between the predicted and measured
cutting forces.
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1.3.2. Calibration method in the frequency domain

The cutting forces given in equation [1.8] are in the angle domain. Under
the constant assumption of KT and KR, and m = 1 in equation [1.25], the
cutting forces can be expanded as follows in frequency domain through
convolution analysis [LIA 94]

[
FX(ϕ)
FY(ϕ)

]
=

+∞∑
k=−∞

{[
AX[Nk]
AY[Nk]

]
eJNkϕ +

[
AXO[Nk + 1]
AYO[Nk + 1]

]
eJ(Nk+1)ϕ

+

[
AXO[Nk − 1]
AYO[Nk − 1]

]
eJ(Nk−1)ϕ

} [1.58]
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with

[
AX[Nk]
AY[Nk]

]
=
N

2π

[−KT −KR
−KR KT

]
Pe(Nk)CWD(Nk)

[
AXO[Nk + 1]
AYO[Nk + 1]

]
=
N

2π
Jρ sin

π

N
e−J(λ+ π

N )

[−KT −KR
−KR KT

]
Po(Nk + 1)CWD(Nk)

[
AXO[Nk − 1]
AYO[Nk − 1]

]
= −N

2π
Jρ sin

π

N
eJ(λ+

π
N )

[−KT −KR
−KR KT

]
Po(Nk − 1)CWD(Nk)

CWD(Nk) =
D sin

Nkap tan β
D

Nk tanβ
e−JNk

ap tan β

D

Pe(Nk) =

[
P1[Nk]
P2[Nk]

]
= f

∫ θex

θen

[
sin θ cos θ

sin2θ

]
e−JNkθdθ

Po(Nk) =

[
P3[Nk]
P4[Nk]

]
=

∫ θex

θen

[
cos θ

sin θ

]
e−JNkθdθ

where As[Nk], AsO[Nk + 1] and AsO[Nk − 1] (s = X, Y) are the parameters
related to the harmonics of the cutting forces predicted by equation [1.16]. J is
unity of imaginary number.

In this section, the convolution theory-based method is described for the
identification of the cutting force coefficients and radial cutter runout
parameters, i.e. ρ and λ defined in Figure 1.5, for flat end mill. Details are
explained and listed as follows.

FX(ϕ) and FY(ϕ) can be expressed as

[
FX(ϕ)
FY(ϕ)

]
=

[
H1(ϕ) H2(ϕ)
−H2(ϕ) H1(ϕ)

] [
KT
KR

]
[1.59]

with

H1(ϕ) = −
∑
i,j

zi,jhi,j(ϕ) cos θi,j(ϕ)

H2(ϕ) = −
∑
i,j

zi,jhi,j(ϕ) sin θi,j(ϕ)
[1.60]
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The Fourier series expansion of equation [1.59] can be written as

[
FX(ϕ)
FY(ϕ)

]
=

{
+∞∑

ω=−∞

[
Q1[ω] Q2[ω]
-Q2[ω] Q1[ω]

]
eJωϕ

}[
KT
KR

]
[1.61]

where Q1[ω] and Q2[ω] are the Fourier Transformations ofH1(ϕ) andH2(ϕ),
respectively. Based on equation [1.58], the measured cutting forces FM

s (ϕ)
(s=X, Y) can be expanded as follows using Discrete Fourier Transformation.

[
FM

X (ϕ)
FM

Y (ϕ)

]
=

+∞∑
k=−∞

{[
AM

X [Nk]
AM

Y [Nk]

]
eJNkϕ +

[
AM

XO[Nk + 1]
AM

YO[Nk + 1]

]
eJ(Nk+1)ϕ

+

[
AM

XO[Nk − 1]
AM

YO[Nk − 1]

]
eJ(Nk−1)ϕ

} [1.62]

By combining equation [1.61] with equation [1.62] at ω = Nk, the
following relation can be obtained

B[KT,KR]
T = b [1.63]

with

b =
[
Re(AM

X [Nk]), Im(AM
X [Nk]),Re(AM

Y [Nk]), Im(AM
Y [Nk])

]T

B =

⎡
⎢⎢⎣

Re (Q1[Nk]) Re (Q2[Nk])
Im (Q1[Nk]) Im (Q2[Nk])
-Re (Q2[Nk]) Re (Q1[Nk])
-Im (Q2[Nk]) Im (Q1[Nk])

⎤
⎥⎥⎦ [1.64]

where Re(*) and Im(*) indicate the real and imaginary parts of a complex
number.
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With the aid of equations [1.58] and [1.62], KT, KR, ρ and λ can be
obtained using the method proposed by Liang and Wang [LIA 94].

[
KT

KR

]
=

[−P1(0) −P2(0)
P2(0) −P1(0)

]−1 [AM
X [0]

AM
Y [0]

] [
N

2π
CWD(0)

]−1

ρ =

∣∣AM
YO[1]

∣∣
sin(π/N)(N/2π)ap |KTP4(1)−KRP3(1)|

λ =
π

2
− π

N
− ∠AM

YO[1] + ∠[KTP4(1)−KRP3(1)]

[1.65]

Details of this method and the definitions of P1(0), P2(0),CWD(0), P3(1)
and P4(1), are given in [LIA 94].

The accuracy of equation [1.65] relies on the following two preconditions:

– the medial parameters involved in equation [1.62], e.g. AM
X [Nk],

AM
Y [Nk], AM

YO[Nk + 1], etc., depend on the entry and exit angles, i.e. θen and
θex, which are calculated using equation [1.32] derived with nominal cutting
parameters;

– it is derived by assuming thatm = 1.

However, the occurrence of cutter runout will greatly affect the actual
cutting radius as well as θen and θex. This means that the above two
preconditions are not strictly satisfied when runout occurs. As a result, some
accuracy will be lost if equation [1.65] is directly used. Note that, the larger
the value of ρ, the greater the inaccuracy. To improve the calibration accuracy
of equation [1.65], a new method is presented below.

With the aid of equation [1.63], an optimal selection procedure can be used
to determineKq (q = T, R), ρ and λ according to the following steps:

Step 1: Set ρ = ρ0 and λ = λ0. ρ0 and λ0 are initially set by using equation
[1.65].

Step 2: Calculate hi,j(ϕ) by

hi,j(ϕ) = min
m=1 to N

{hi,j(ϕ) = mf sin θi,j(ϕ) + ri,j − ri−m,j} [1.66]
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where ri,j and ri−m,j are obtained by equation [1.18].

Step 3: Calculate Q1[ω] and Q2[ω] based on equations [1.60] and [1.66].

Step 4: Calculate B using equation [1.64]. Then, by using the linear least
square method,KT andKR can be immediately obtained by

[
KT
KR

]
=
(
BTB

)−1
BTb [1.67]

Step 5: Substitute KT and KR obtained from equation [1.67] into
equation [1.59]. Then, calculate the minimum square deviation δ(ρ, λ)
between FM

s (ϕ) and Fs(ϕ) (s = X, Y) by

δ(ρ, λ) =

2π∑
ϕ=0

(∣∣FM
X (ϕ)− FX(ϕ)

∣∣2 + ∣∣FM
Y (ϕ)− FY(ϕ)

∣∣2) [1.68]

Step 6: If δ(ρ, λ) achieves the level of minimum among all cases of different
ρ and λ, setKT andKR, ρ and λ as the final results of cutting force coefficients
and runout parameters. Otherwise, repeat the above Steps 2 to 6 by setting ρ
and λ to other values ρ∗ and λ∗.

The key issue of the above steps is to optimally select ρ∗ and λ∗.
Generally, for every possible pairs of ρ∗ and λ∗ with ρmin ≤ ρ∗ ≤ ρmax and
λmin ≤ λ∗ ≤ λmax, Step 2 to Step 6 will be performed. Here, ρmax and ρmin

denote the maximum and minimum possible values of ρ∗; λmax and λmin

denote the maximum and minimum possible values of λ∗. The case which has
the minimum δ(ρ, λ) corresponds to the final result.

Obviously, this parametric study must sweep all cases in the feasible
domain. To increase the computing efficiency, an automatical searching
procedure will be described here.

The key is to approximately develop the explicit expressions that relate
ρ and λ to FM

s (ϕ) and Fs(ϕ). For this reason, it is interesting to study the
following test case. The distributions of |AY[1]| and ∠AY[1] vs. ρ and λ are
considered. AY[1] is obtained from FY(ϕ) using the Fourier transformation.
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FY(ϕ) should be calculated from Step 5 for every selected set of ρ and λ. ρ and
λ are chosen to vary from 10−6μm to 35 μm and from 40◦ to 60◦, respectively.
The simulation results are shown in Figure 1.16. It can be found that both
|AY[1]| and ∠AY[1] are approximately distributed in a planar surface over the
considered region. This phenomenon indicates that |AY[1]| and ∠AY[1] can be
locally treated as linear functions of ρ and λ. The same observations can also
be made in other cutting conditions and regions of ρ and λ. Thus, following
relations hold.

|AY[1]| = E11ρ+ E12λ+ E13

∠AY[1] = E21ρ+ E22λ+ E23

[1.69]

where Euv (u = 1, 2, v = 1, 2, 3) are unknown coefficients that can be
determined using the finite difference scheme in the following way.

E11 = (|AY[1]|3 − |AY[1]|1)/Δρ1
E12 = (|AY[1]|2 − |AY[1]|1)/Δλ1
E13 = |AY[1]|1 − (E11ρ1 + E12λ1)

E21 = [(∠AY[1])3 − (∠AY[1])1] /Δρ1

E22 = [(∠AY[1])2 − (∠AY[1])1] /Δλ1

E23 = (∠AY[1])1 − (E21ρ1 + E22λ1)

[1.70]

where ρ1, λ1 is a set of selected values satisfying ρmin ≤ ρ1, ρ2 ≤ ρmax and
λmin ≤ λ1, λ2 ≤ λmax. Assume that ρ2 = ρ1 + Δρ1, λ2 = λ1 + Δλ1. With
the aid of Steps 2 to 5, we can obtain |AY[1]|1 and (∠AY[1])1 related to ρ1
and λ1. |AY[1]|2 and (∠AY[1])2 related to ρ1 and λ2, |AY[1]|3 and (∠AY[1])3
related to ρ2 and λ1.

Now, ρ∗ and λ∗ can be easily obtained by relating equation [1.69] to the
experimental values of

∣∣AM
Y [1]
∣∣ and ∠AM

Y [1] through

[
ρ∗
λ∗

]
=

[
E11 E12

E21 E22

]−1 [ AM
Y [1]− E13

∠AM
Y [1]− E23

]
[1.71]
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Figure 1.16. Distribution of |AY[1]| and ∠AY[1] v.s. ρ and λ;

a) |AY[1]| v.s. ρ and λ; b) ∠AY[1] v.s. ρ and λ

It is worth noting that as |AY[1]| and ∠AY[1] are linearly approximated
over a local region, it is necessary to update the approximation on the new
design point in an iterative way. This means that the coefficients Euv involved
in equation [1.70] need to be re-evaluated iteratively. As a result,
Kq (q = T, R), ρ and λ should be iteratively determined according to the
following steps:

Step a: Set ρ1 = ρ0 and λ1 = λ0.

Step b: Calculate Euv by means of equation [1.70].

Step c: Calculate ρ∗ and λ∗ using equation [1.71].

Step d: Set ρ = ρ∗ and λ = λ∗. Then, repeat Steps 2 to 5.

Step e: If the error between two iterative results of δ(ρ, λ) attains the
prescribed tolerance, stop the iteration. Otherwise, repeat the above Steps b to
e by attributing ρ∗ and λ∗ to ρ1 and λ1.

1.3.3. Calibration method involving four cutter runout parameters

This method is mainly developed for the cutting force model, in which
the cutting force coefficients are expressed as the exponential function of the
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instantaneous uncut chip thickness. That is, the elemental cutting forces related
to the jth disk element of the ith flute are expressed as

FT,i,j(ϕ)=KThi,j(ϕ)zi,j

FR,i,j(ϕ)=KRhi,j(ϕ)zi,j

FA,i,j(ϕ)=KAhi,j(ϕ)zi,j

[1.72]

with

KT = kT[hi,j(ϕ)]
−mT

KR = kR[hi,j(ϕ)]
−mR

KA = kA[hi,j(ϕ)]
−mA

[1.73]

where kT, kR, kA, mT, mR and mA are constants required to be determined
from experiments.

Total cutting force components at cutter rotation angle ϕ can be obtained
by

⎡
⎣FX(ϕ)
FY(ϕ)
FZ(ϕ)

⎤
⎦ =

∑
i,j

⎧⎨
⎩Ti,j(ϕ)

⎡
⎣FT,i,j
FR,i,j
FZ,i,j

⎤
⎦
⎫⎬
⎭ [1.74]

with

Ti,j(ϕ) =

⎡
⎣− cos θi,j(ϕ) − sin θi,j(ϕ) 0

sin θi,j(ϕ) − cos θi,j(ϕ) 0
0 0 1

⎤
⎦ [1.75]

It should be noted that hi,j(ϕ) is calculated by equations [1.9] and [1.25], in
which the calculation of the actual radius ri,j of the circular tooth path includes
the influence of cutter runout. In this section, two types of cutter runout models,
i.e. radial and tilt cutter runout models, will be involved to reveal this effect:

– radial cutter runout model: its geometrical definition is given in section
1.2.1. In this model, ri,j can be calculated by using equation [1.18];
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– tilt cutter runout model: in this model, the actual installation state of the
cutter is considered. That is, besides axis offset, there exists more or less axis
tilt after the cutter is completely amounted in spindle, as shown in Figure 1.17.
The geometry of this kind of cutter runout is characterized by four parameters,
i.e. ρT, λT, τT and ϑ. Here, ρT and τT are the axial offset and tilt angle between
the cutter axis and the centerline of the spindle, respectively. λT is the location
angle measured as the angle between the direction of the offset and the tip of
the nearest tooth (tooth 1). ϑ is the locating angle of tilt, which is defined as
the angle between the direction of axis tilt and the direction of axial offset ρT.
Note that L labeled in Figure 1.17 means the cantilevered length of cutter after
installation. As shown in Figure 1.17, tilt cutter runout makes ri,j change from
AF to OF. Under this understanding, ri,j can be calculated by

ri,j = {ρ2T + r2n,i,j + (L− jzi,j)2sin2τT

+ 2rn,i,jρT cos(−λT + φ(z) +
2(i− 1)π

N
)+

2((L− jzi,j) sin τT[ρT cos(φ) + rn,i,j cos(ϑ− λT + φ(z) +
2(i− 1)π

N
)])} 1

2

[1.76]

H H

collet

O

Z

cutter axis centerline of spindle

Rotation center

OO

YY

XX

i=1

i=2

i=3

ρ
T

i

X

Figure 1.17. Definition of tilt cutter runout. For a color version of this

figure, see www.iste.co.uk/zhang/milling.zip
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By using the cutting forces measured from two milling tests, which satisfy
the following two conditions, a new scheme will be proposed for calibrating
the values of kq,mq (q=T, R, A) and ρT, λT, τT and ϑ:

– radial and axial depths of cut of the first test, i.e. ae and ap, should satisfy
equation [1.56] so that only one tooth is in contact with the workpiece at any
cutter rotation angle ϕ. At the same time, ap should be so small that zi,j can
be set to be ap;

– ap of the second test should be large enough, and generally it can be set
to be the value greater than D. At the same time, ae should be relatively small
so that the cutter cannot be broken under the combination of ae and ap.

Because ap in the first test is small, its cutter runout state in the range of 0−
ap along the cutter axis can be approximately treated as a radial cutter runout
model. Consequently, the first test is adopted to calibrate kq, mq (q=T, R,
A) and ρ, λ. Then, ρT, λT, τT and ϑ are calibrated based on the second test and
the calibrated results from the first test. Detailed procedures are as follows.

1.3.3.1. Calibration of kq, mq (q = T,R,A) and ρ, λ

Under the cutting condition of the first test, the cutting forces acting on the
ith flute at an arbitrary cutter rotation angle ϕ constitute the total forces of the
cutter. With this idea in mind, one can have

ap

⎡
⎣kT[hi,1(ϕ)]

1−mT

kR[hi,1(ϕ)]
1−mR

kA[hi,1(ϕ)]
1−mA

⎤
⎦ = [Ti,1(ϕ)]

−1

⎡
⎣FM

X (ϕ)

FM
Y (ϕ)

FM
A (ϕ)

⎤
⎦

�

⎡
⎣FM

T,i,1(ϕ)

FM
R,i,1(ϕ)

FM
A,i,1(ϕ)

⎤
⎦

[1.77]

With the aids of equation [1.77], kq and mq (q = T, R, A), ρ1 and λ1 can
be determined following the steps below:

Step 1: Set r = 0 and set ρ(r) = ρ∗ and λ(r) = λ∗. ρ∗ and λ∗ are the initially
selected values. Practically, ρ∗ and λ∗ can be set to be the values close to zero.
Here, r means the iteration step number.
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Step 2: Calculate h
(r)
i,1 (ϕk) for all cutter rotation angle ϕk(

k = 1, 2, . . . , Nsp
)

related to all sampled cutting forces. Nsp is the number
of sampling points.

h
(r)
i,1 (ϕk) =

N
min
m=1

{
mf sin θi,1(ϕk) + r

(r)
i,1 − r(r)i−m,1

}
[1.78]

where r(r)i,1 is calculated by equation [1.18].

Step 3: Establish the following relationship based on equations [1.77] and
[1.78].

B[kt,mT, kr,mR, ka,mA]
T = b [1.79]

with kt = ln(kT),kr = ln(kR),ka = ln(kA)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ln[h
(r)
i,1 (ϕ1)] 0 0 0 0

1 ln[h
(r)
i,1 (ϕ2)] 0 0 0 0

...
...

...
...

...
...

1 ln[h
(r)
i,1 (ϕNsp)] 0 0 0 0

0 0 1 ln[h
(r)
i,1 (ϕ1)] 0 0

0 0 1 ln[h
(r)
i,1 (ϕ2)] 0 0

...
...

...
...

...
...

0 0 1 ln[h
(r)
i,1 (ϕNsp)] 0 0

0 0 0 0 1 ln[h
(r)
i,1 (ϕ1)]

0 0 0 0 1 ln[h
(r)
i,1 (ϕ2)]

...
...

...
...

...
...

0 0 0 0 1 ln[h
(r)
i,1 (ϕNsp)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1.80]
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b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln[FM
T,i,1(ϕ1)]− ln[h

(r)
i,1 (ϕ1)]− ln(ap)

ln[FM
T,i,1(ϕ2)]− ln[h

(r)
i,1 (ϕ2)]− ln(ap)

...
ln[FM

T,i,1(ϕNsp)]− ln[h
(r)
i,1 (ϕNsp)]− ln(ap)

ln[FM
R,i,1(ϕ1)]− ln[h

(r)
i,1 (ϕ1)]− ln(ap)

ln[FM
R,i,1(ϕ2)]− ln[h

(r)
i,1 (ϕ2)]− ln(ap)

...
ln[FM

R,i,1(ϕNsp)]− ln[h
(r)
i,1 (ϕNsp)]− ln(ap)

ln[FM
A,i,1(ϕ1)]− ln[h

(r)
i,1 (ϕ1)]− ln(ap)

ln[FM
A,i,1(ϕ2)]− ln[h

(r)
i,1 (ϕ2)]− ln(ap)

...

ln[FM
A,i,1(ϕNsp)]− ln[h

(r)
i,1 (ϕNsp)]− ln(ap)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1.81]

where ln (∗) indicates the natural logarithm operation. Note that if
h
(r)
i,1 (ϕk) = 0 or FM

q,i,1(ϕk) < 0, the corresponding row should be canceled
from equation [1.79]

Step 4: Determine kT ,mT, kR ,mR , kA andmA by

[kt,mT, kr,mR, ka,mA]
T =

(
BTB

)−1
BTb

kT = ekt , kR = ekr , kA = eka
[1.82]

Step 5: Substitute kq and mq obtained from equation [1.82] into
equation [1.74]. Then, calculate Δ(r) by

Δ(r) =
∑

s=X,Y,Z

Nsp∑
k=1

∣∣FM
s (ϕk)− Fs(ϕk)

∣∣2 [1.83]

Step 6: If Δ(r) achieves the level of minimum among all cases of ρ(r) and
λ(r) , set kq, mq, ρ(r) and λ(r) as the final results of cutting force coefficients
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and radial cutter runout parameters ρ and λ. Otherwise, repeat the above Step
2 to Step 6 by setting ρ(r) and λ(r) to other values.

To increase the computing efficiency, an optimization algorithm, i.e. the
Nelder-Mead simplex method [LAG 98, NEL 65], is adopted to select the best
ρ(r) and λ(r) without the requirements of calculating the numerical or analytic
gradients. The major idea about this algorithm is as follows. An initial simplex
is firstly constructed. Then at each step of the search, a new point in or near the
current simplex is generated. The function value at the new point is compared
with the function’s values at the vertices of the simplex and, usually, one of
the vertices is replaced by the new point, giving a new simplex. This step is
repeated until the diameter of the simplex is less than the specified tolerance.
For details about this algorithm, one can refer to [LAG 98, NEL 65].

It is worth noting that in the above procedure ap should be generally in the
interval of [1 mm, 2 mm]. If ap is too large, it can not be approximated by one
disk element. If ap is too small, FM

s (ϕ) (s=X,Y,Z) will be greatly influenced
by the noise signals. As a result, equation [1.77] may lose validity.

1.3.3.2. Calibration of ρT, λT, τT and ϑ

If one treats the cutter installation state shown in Figure 1.17 as a radial
cutter runout model, the following important relationship between tilt and
radial cutter runout models can be obtained.

ρ=OA =

√
OB2

+ BA2
=

√
OB2

+ (BC + CA)
2

λ = −∠FAW

∠FAG = ∠ECG

with

OB = ρT sinϑ

BC = ρT cosϑ

CA = (L− jzi,j) sin τT

[1.84]

Note that in this book the positive directions of λT and λ are defined as the
clockwise direction. According to this definition, λ given in equation [1.84] is
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negative. Further analysis of the geometry in Figure 1.17 gives the following
relationship

∠FAG = ∠FAW + ∠WAG = ∠FAW + ∠OAB

= ∠FAW + sin

(
OB
OA

)
∠ECG = ϑ− λT

[1.85]

By considering equations [1.84] and [1.85] together, one can obtain the
following expressions

ρ2 = (ρT sinϑ)
2 + (ρT cosϑ+ (L− jzi,j) sin τT)2

arcsin

(
ρT sinϑ

ρ

)
− λ = ϑ− λT

[1.86]

Because zi,j = ap in the first cutting test, j = 1 can be achieved. With this
idea in mind, equation [1.86] can be further simplified as.

ρT
2 + 2ρT(L− ap) sin τT cosϑ+ (L− ap)

2sin2τT − ρ2 = 0

λT = ϑ+ λ− sin
(
ρT sinϑ

ρ

) [1.87]

By solving the above quadratic equation, the following results are obtained

ρT =
−a+√

a2 − 4c

2

λT = ϑ+ λ− sin
(
ρT sinϑ

ρ

) [1.88]

with

a = 2(L− ap) sin τT cosϑ

c = (L− ap)
2sin2τT − ρ2
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Based on equation [1.88], ρT, λT, τT and ϑ are calibrated based on kq,mq

(q = T, R, A) and ρ, λ calibrated from section 1.3.3.1 and FM
s (ϕ) measured

from the second test.

Step 1: Set r = 0 and set ϑ(r) = ϑ∗, τ (r)T = τT,∗. ϑ∗ and τT,∗ are initial
values usually close to zero.

Step 2: Calculate ρT
(r) and λT

(r) by using

ρT
(r) =

−a+√
a2 − 4c

2
, λT

(r) = ϑ(r) + λ− arc sin(
ρT

(r) sinϑ(r)

ρ
)

a = 2(L− ap) sin τT
(r) cosϑ(r), c = (L− ap)

2sin2τT
(r) − ρ2

[1.89]

Step 3: Calculate h(r)i,j (ϕk) for all cutter rotation angle ϕk (k=1, 2, . . . ,
Nsp).

h
(r)
i,j (ϕk) =

N
min
m=1

{
mf sin θi,j(ϕk) + r

(r)
i,j − r(r)i−m,j

}
[1.90]

where r(r)i,j is calculated by equation [1.76].

Step 4: Substitute kq , mq and h(r)i,j (ϕk) into equations [1.72] and [1.74]
to predict Fs(ϕk). Then, calculate Δ(r) with equation [1.83].

Step 5: If Δ(r) achieves the level of minimum among all cases of ϑ(r)

and τ (r)T , set ρ(r)T , λ(r)T , τ (r)T and ϑ(r) as the final results of ρT, λT, τT and ϑ.
Otherwise, set r = r+1 and the above Step 2 to Step 5 by setting ϑ(r) and τ (r)T
to other values.

Similarly, to determine the values of ϑ(r) and τ (r)T , Nelder-Mead simplex
method [LAG 98, NEL 65] is used. This idea together with Nelder-Mead
simplex method can avoid the complex solving of nonlinear equations.

It is also worth noting that the proposed calibration procedures implies the
following important understanding:

a) if tilt cutter runout model is considered, sections 1.3.3.1 and 1.3.3.2
should be combined to calibrate kq, mq (q = T, R, A) and ρT, λT, τT, ϑ.
In this case, two cutting tests are needed;
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b) whereas, if radial cutter runout model is considered, the calibration of
kq, mq(q = T,R,A) and ρ, λ can be completed only by using section 1.3.3.1.
In this case, only the first cutting test is needed.

1.3.3.3. Model verification

Using the tests listed in the title of Table 1.2, the cutting force coefficients
and runout parameters based on two cutter runout models are calculated and
listed in Table 1.2. It is worth noting that with the procedures described in
section 1.3.3.2, the calibrations of ρT, λT, τT and ϑ for tilt cutter runout model
converge within 38 iteration steps. However, if we use one degree as the step
length of ϑ (0 ≤ ϑ ≤ 360◦) and 0.001 degree as the step length of τ
(0 ≤ τ ≤ 0.06◦, 0.06◦ is an artificially given maximum bound) for parametric
study, it requires about 360 × 60 (= 21600) iteration steps. Furthermore, the
calibrated results of ρT, λT, τT and ϑ from parametric study are:
ρT = 14.53 μm, λT = 132.79◦, τT = 0.028◦ and ϑ = 72◦. They are very
close to those listed in Table 1.2.

Radial cutter runout model Tilt cutter runout model
kT

(
N/mm2) 758.17 758.17

mT 0.1723 0.1723
kR

(
N/mm2) 86.10 86.10

mR 0.6609 0.6609
kA

(
N/mm2) 143.10 143.10

mA 0.1555 0.1555
Runout parameters ρ = 32.84 μm ρT = 14.50 μm

λ = 85.69◦ λT = 131.95◦

τT = 0.02779◦

ϑ = 70.85◦

Result source Calibrated from Test 1 Calibrated from Tests 1 and 2

Table 1.2. Calibrated results of cutting force coefficients and runout parameters based

on different cutter runout models (for Test 1: ae = 8 mm, ap = 2 mm, f = 0.1667

mm/tooth, spindle speed=1200 RPM; for Test 2: ae = 0.8 mm, ap = 25 mm, f = 0.1
mm/tooth, spindle speed = 1000 RPM)

1.3.4. Identification of shear stress, shear angle and friction angle
using milling tests

According to the oblique theory proposed by [ARM 85], the milling
mechanism of the jth disk of the ith flute can be treated as an oblique cutting
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process, as shown in Figure 1.18. From the viewpoint of the principle of force
equilibrium,KT,KR andKA can be derived as [ALT 12]

KT =
τs

sinψn

cos(βn − αn) + tanβ tan η sinβn√
cos2(ψn + βn − αn) + tan2ηsin2βn

KR =
τs

sinψn cosβ

sin(βn − αn)√
cos2(ψn + βn − αn) + tan2ηsin2βn

KA =
τs

sinψn

cos(βn − αn) tanβ − tan η sinβn√
cos2(ψn + βn − αn) + tan2ηsin2βn

[1.91]

where η is chip flow angle. Equation [1.91] is a key bridge of
orthogonal-to-oblique method that relates the cutting forces to the process
geometric and physical parameters, i.e. τs, ψn, βn, αn and η. More details on
this derivation can be found in [ALT 12, BUD 96]. However the
determination of shear stress τs, shear angle ψn and friction angle βn
involved in the cutting force model still resorted to abundant orthogonal
cutting tests. For example, as reported in [ALT 12, BUD 96], more than 180
turning experiments were used for determination procedure. Instead of
orthogonal turning, milling experiments are directly designed to determine
shear stress, shear angle and friction angle in this section, and only a few
milling tests are required for the determination procedure.

1.3.4.1. Determination of normal friction angle βn

Figure 1.19(a) shows the geometric relations of cutting forces in normal
plane Pn. It can be found that

tan(βn − αn) = tanϕn =
FRn,i,j(ϕ)

FTn,i,j(ϕ)
or βn = αn + tan−1FRn,i,j(ϕ)

FTn,i,j(ϕ)
[1.92]

with

αn = tan−1(tanαr cosβ) [1.93]

where αr is radial rake angle of cutting edge. FRn,i,j(ϕ) and FTn,i,j(ϕ) are
projections of FR,i,j(ϕ), FT,i,j(ϕ) and FA,i,j(ϕ) onto normal plane Pn, which
is vertical to the cutting edge, as shown in Figures 1.18 and 1.19. Obviously,
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if the values of FRn,i,j(ϕ) and FTn,i,j(ϕ) are available, βn can immediately be
determined by using equation [1.92]. According to the theory in
[ALT 12, BUD 96], cutting is uniform along the cutting edge in orthogonal
turning process. Hence, FRn,i,j(ϕ) and FTn,i,j(ϕ) related to all disk elements
are equal and collinear with the fixed thrust and feed directions. Thus, in
turning process, βn can be determined by directly replacing FRn,i,j(ϕ) and
FTn,i,j(ϕ) with the total cutting forces measured experimentally. However, in
milling process, it is practically difficult to determine βn strictly from the
measured cutting forces because of the following two factors. First, even at
the same cutting instant, cutting forces associated with each disk element are
different in magnitude and direction. Second, the measured cutting forces
using dynamometer are available only in form of total cutting forces Fs (ϕ)
(s = X, Y, Z) and cannot be decomposed into force components related to
each single disk element, i.e. FRn,i,j(ϕ) and FTn,i,j(ϕ). Therefore, a new
approach is proposed below.
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Figure 1.18. Geometries and mechanics of flat end milling process. For

a color version of this figure, see www.iste.co.uk/zhang/milling.zip
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Total cutting forces can be deemed to be contributed by a single disk
element under the following two conditions:

1) axial and radial depths of cut ap and ae satisfy equation [1.56]. That is,
only one flute remains to be in cut at any engagement instant;

2) ap is small enough so that it can be directly assigned to zi,j . Generally,
ap can be selected within the range of 1–2 mm.

Based on a test under the above two conditions, FRn,i,1(ϕ), FTn,i,1(ϕ) and
FAn,i,1(ϕ) shown in Figures 1.18 and 1.19 are then determined according to
the following steps:

1) measure the total cutting forces FM
XYZ(ϕ) using a force dynamometer;

2) assume that [FX,i,1(ϕ), FY,i,1(ϕ), FZ,i,1(ϕ)]
T = FM

XYZ(ϕ);

3) transform the measured forces FM
XYZ(ϕ) into tangential, radial and axial

components by using the following equation:

[FT,i,1(ϕ), FR,i,1(ϕ), FA,i,1(ϕ)]
T = [T(θi,1(ϕ))]

−1FM
XYZ(ϕ) [1.94]

4) calculate FRn,i,1(ϕ), FTn,i,1(ϕ) and FAn,i,1(ϕ) based on the geometric
relationship shown in Figure 1.18:

[FTn,i,1(ϕ), FRn,i,1(ϕ), FAn,i,1(ϕ)]
T = T(β)[FT,i,1(ϕ), FR,i,1(ϕ), FA,i,1(ϕ)]

T

[1.95]

Finally, βn can be determined by substituting FRn,i,j(ϕ) and FTn,i,j(ϕ)
obtained from equation [1.95] into equation [1.92].

1.3.4.2. Determination of shear angle ψn and chip flow angle η

The maximum shear stress principle indicates that shear occurs in the
direction of maximum shear stress, where the angle between the shear
velocity and the resultant force is π/4. The application of this principle to the
milling process of the jth disk element of the ith flute leads to the reslutant
force Fi,j(ϕ) making a π/4 acute angle with the shear direction Vs, as shown
in Figure 1.19(b). Mathematically, following relation holds for the shear force
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Fs,i,j(ϕ).

Fs,i,j(ϕ) = Fi,j(ϕ)(cosϕm cos(ϕn + ψn) cosψm + sinϕm sinψm)

= Fi,j(ϕ) cos
π

4
[1.96]

Furthermore, because Fs,i,j(ϕ) is the maximum shear force on the shear
plane, the component of the resultant force in the direction normal to the shear
on the shear plane must be zero.

Fi,j(ϕ)(cosϕm cos(ϕn + ψn) sinψm − sinϕm cosψm) = 0 [1.97]

Solutions of equations [1.96] and [1.97] give

sinψm =
√
2 sinϕm [1.98]

cos(ψn + ϕn) =
tanϕm
tanψm

[1.99]

Besides, according to [ALT 12], following geometric relations exist.

sinϕm = sinβa sin η [1.100]

tan(ϕn + αn) = tanβa cos η or tanβn = tanβa cos η [1.101]

where βa is the actual friction angle on the rake face. Chip flow angle η is
generally assumed to equal helix angle β according to the chip flow rule
proposed by [ALT 12].

Using βn obtained in section 1.3.4.1 as the initial value, solutions of ψn,
ϕm and ϕn can be achieved by combining equations [1.98] to [1.101].
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1.3.4.3. Determination of shear stress τs

Based onψn, ϕm andϕn determined above, shear stress τs can be calculated
as

τs =
Fs,i,1(ϕ)

As,i,1(ϕ)

=
Fi,1(ϕ)(cosϕm cos(ϕn + ψn) cosψm + sinϕm sinψm)

As,i,1(ϕ)
[1.102]

where Fi,1(ϕ) is obtained by substituting the components of the measured
forces FM,XYZ(ϕ) into the following equation.

Fi,1(ϕ) =
√
(FM

X,i,1(ϕ))
2
+ (FM

Y,i,1(ϕ))
2
+ (FM

Z,i,1(ϕ))
2 [1.103]

As,i,1(ϕ) is calculated by

As,i,1(ϕ) =
ap

cosβ

hi,1(ϕ)

sinψn
[1.104]

in which hi,1(ϕ) can be calculated by using equations [1.9] and [1.25] if radial
cutter runout parameters ρ and λ have been identified in advance. Alternatively,
to ignore the effect of cutter runout, both Fi,1(ϕ) and hi,1(ϕ) can be calculated
using the nominal components.

As ϕ varies, the milling cutter undergoes a trochoidal motion that yields a
continuous variation of chip thickness from zero to its maximum value, which
in turn leads to the instantaneous cutting forces over a wide range of chip
thickness. With these values, explicit expressions of τs, βn and ψn can be
established by treating τs, βn and ψn as the functions of instantaneous uncut
chip thickness.

The relations shown in Figure 1.20 are identified from two milling tests
using carbide flat end mill and 7050 aluminum alloy. It can obviously be seen
that βn and ψn are the functions of uncut chip thickness. Figure 1.21 compares
the measured cutting forces with the predicted ones by using the results from
Figure 1.20.
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Figure 1.20. Results of stress, friction angle and shear angle. For a

color version of this figure, see www.iste.co.uk/zhang/milling.zip
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1.4. Ternary cutting force model including bottom edge cutting
effect

A typical milling process of flat end mill is shown in Figure 1.22, from
which it can be seen that both the flank edge and the bottom edge can be
engaged with the workpiece during the actual cutting process. Thus, the
calculation of the total cutting forces should include the contributions of
the flank edge cutting and the bottom edge cutting effects. An illustration of



56 Milling Simulation

the force components is also shown in Figure 1.22. The total cutting forces
can be expressed as

F(ϕ) = FF(ϕ) + FB(ϕ) [1.105]

where FF(ϕ) and FB(ϕ) are the cutting force vectors induced by flank and
bottom edges at the cutter rotation angle ϕ. More details for the procedure of
calculating FF(ϕ) and FB(ϕ) are given in the following.

 

 Bottom edge-

induced forces

Flank edge-

induced forces
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Figure 1.22. Flat end milling process. For a color version of this figure,

see www.iste.co.uk/zhang/milling.zip
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1.4.1. Calculations of FB(ϕ)

The calculation of FF(ϕ) can be carried out according to

FF(ϕ) =

[
FX,F(ϕ)

FY,F(ϕ)

]
[1.106]

FX,F(ϕ) =
∑
i,j

{g(θi,j(ϕ))[−FT,F,i,j(ϕ) cos θi,j(ϕ)− FR,F,i,j(ϕ) sin θi,j(ϕ)]}

FY,F(ϕ) =
∑
i,j

{g(θi,j(ϕ))[FT,F,i,j(ϕ) sin θi,j(ϕ)− FR,F,i,j(ϕ) cos θi,j(ϕ)]}
[1.107]

with

FT,F,i,j(ϕ) = KTchF,i,j(ϕ)zi,j +KTezi,j

FR,F,i,j(ϕ) = KRchF,i,j(ϕ)zi,j +KRezi,j

hF,i,j(ϕ) = max{0, min
m=1,2,...,N

[mf sin θi,j(ϕ) + ri,j − ri−m,j ]}
[1.108]

Note that in equation [1.108], the cutting mechanism of flank edge is
characterized by dual mechanism model, in which the shearing effect and the
rubbing effect of the flank edge are described separately.

1.4.2. Calculations of FB(ϕ)

The cutting mechanism of the bottom edge is likely the rubbing effect of
the bottom edge rather than the shearing effect. Hence, the tangential force
FT,B,i(ϕ) and the radial force FR,B,i(ϕ) related to the ith flute can be written as

FT,B,i(ϕ) = KT,Bbi(ϕ)

FR,B,i(ϕ) = KR,Bbi(ϕ)
[1.109]

where KT,B and KR,B are tangential and radial coefficients related to the
bottom cutting effect of the bottom edge. bi(ϕ) is the bottom uncut chip width
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related to the ith bottom edge at the cutter rotation angle ϕ, as shown in
Figure 1.22. Based on equation [1.109], FB(ϕ) can be calculated by

FB(ϕ) =

[
FX,B(ϕ)

FY,B(ϕ)

]
[1.110]

with

FX,B(ϕ) = g(θi,0(ϕ))[−FT,B,i(ϕ) cos θi,0(ϕ)

− FR,B,i(ϕ) sin θi,0(ϕ)]

FY,B(ϕ) = g(θi,0(ϕ))[FT,B,i(ϕ) sin θi,0(ϕ)

− FR,B,i(ϕ) cos θi,0(ϕ)]

[1.111]

where θi,0(ϕ) is the angular position related to the ith flank edge tip at the
cutter rotation angle ϕ.

Without the loss of generality, model calibration will be illustrated for
equations [1.108] and [1.109]. Methods for the calibration of Kqc, Kqe and
Kq,B (q = T, R) are now described in detail.

1.4.3. Calibration of Kqc (q = T,R)

As long as the cutting is a single tooth engagement test with ap being in
the range of 1–2 mm, the total cutting forces measured in Cartesian X- and
Y-directions can be transformed into tangential and radial components with
good precision. Transformed tangential and radial forces show that they can
linearly be approximated with respect to chip load

∑
i,j

[hF,i,j(ϕ)zi,j ]. This

implies that the cutting force coefficients related to chip removal effect can
be treated as constants. Based on this fact, Kqc is calibrated by virtue of the
transformed tangential and radial forces in following steps:

1) select experimental parameters under the condition that the axial depth
of cut ap is in the range of 1–2 mm;

2) identify radial cutter runout parameters ρ and λ experimentally or
numerically;
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3) measure the total cutting forces in X- and Y-directions by a force
dynamometer;

4) calculate hF,i,j(ϕ) in terms of ρ and λ using equation [1.108];

5) calculate chip load
∑

i,j [hF,i,j(ϕ)zi,j ];

6) transform the measured X- and Y-forces FM
XY(ϕ) = [FM

X (ϕ),FM
Y (ϕ)]

T

into tangential and radial components by;

FM
TR(ϕ) = [T(θi,0(ϕ))]

−1FM
XY(ϕ) [1.112]

where FM
TR(ϕ) = [FM

T (ϕ),FM
R (ϕ)]

T.

7) plot FM
q (ϕ) (q = T, R) obtained from Step (6) as a function of chip load

for each tooth;

8) use linear function to fit the relationship between FM
q (ϕ) and chip load

for each tooth. The slope of each fitted line is symbolized as ki,q (i = 1, 2, ...,
N, q = T, R);

9) calculateKqc by means of

Kqc =
N∑
i=1

ki,q/N [1.113]

1.4.4. Calibrations of Kq,B (q = T,R)

Based on equation [1.106] and Kqc (q = T, R) calibrated above, the
cutting force FFc(ϕ), which is related to shearing effect, can be calculated
and then used together with the measured forces FM

XY(ϕ) to obtain the
following components.

FM
BFTR(ϕ) = [T(θi,0(ϕ))]

−1[FM
XY(ϕ)− FFc(ϕ)] [1.114]

where FM
BFTR(ϕ) = [FM

BFT(ϕ), F
M
BFR(ϕ)]

T stands for the experimental force
component that only contains the flank rubbing and bottom edge cutting
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effects. Combining this component with the prediction expression leads to the
following equation.

[∑
i,j
zi,j bi(ϕ)

] [
Kqe
Kq,B

]
= FM

BFq(ϕ), q = T, R [1.115]

At all sampling instants of the full engagement period, equation [1.115] can
be expressed as

B
[
KTe, KT,B, KRe, KR,B

]T
= b [1.116]

with

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i,j
zi,j(ϕ1) bi(ϕ1) 0 0

...
...

...
...∑

i,j
zi,j(ϕn) bi(ϕNsap) 0 0

0 0
∑
i,j
zi,j(ϕ1) bi(ϕ1)

...
...

...
...

0 0
∑
i,j
zi,j(ϕn) bi(ϕNsap)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1.117]

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

FM
BFT(ϕ1)

...
FM

BFT(ϕNsap)
FM

BFR(ϕ1)
...

FM
BFR(ϕNsap)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[1.118]

Based on equation [1.116], Kqe and Kq,B (q = T, R) can be determined by
means of least-square fitting method.

[
KTe, KT,B, KRe, KR,B

]T
= [BTB]

−1
[BT b] [1.119]
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1.4.5. Experimental work

Experiments are performed in a three-axis CNC vertical machining center
for a three-fluted φ 16 Carbide end mill/aluminum AL 2618-T6 couple. The
cutter is normal right-handed mill with helix angle of 30◦. By using the above
procedure, final results of the corresponding coefficients are as follows.

[KTc,KRc,KTe,KRe,KT,B,KR,B]
T =

[690.89N/mm2, 179.32N/mm2, 10.22N/mm, 10.20N/mm, 100.58N/mm, 66.54N/mm]
T

[1.120]

Figure 1.23 shows the predicted cutting forces by using the model described
in this section and the one given in section 1.3.1. It can be found that the
proposed model holds the same order of prediction accuracy as the lumped
force model described in section 1.3.1.
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Figure 1.23. Comparisons of cutting forces predicted by two method.

For a color version of this figure, see www.iste.co.uk/zhang/milling.zip

1.5. Cutting force prediction in peripheral milling of a curved
surface

A typical peripheral milling of a curved surface is illustrated in
Figure 1.24. XYZ is a globally stationary coordinate system attached to the
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table, in which the workpiece boundary, the geometry of desired surface and
the tool path are described. XSYSZS is a locally moving coordinate system
attached to the spindle of the machine tool with its origin OS at the center of
the spindle. OSXS is aligned with the instantaneous feed direction of the
theoretical tool path. OSZS points upward along the spindle axis. OSYS is the
normal to the feed direction and follows the definition of right-hand
coordinate system. Then XSYSZS will move as the tool moves along the tool
path. θf (t) represents the angular location of the instantaneous feed direction
OSXS and is measured anti-clockwise from the positive direction of X-axis at
the sampling instant t. OTP (t) and RTP (t) denote the center of curvature and
the radius of curvature related to tool position OS (t) on the theoretical tool
path, respectively.

Generally speaking, the tool position depends upon the parametric
equation of theoretical tool path. The actual tool path generally used in NC
machining is made up of a series of straight line segments and circular arc
segments generated by the integrated CAM software, no matter how complex
the theoretical tool path is. One such approximation can easily be used to
determine the tool position without solving nonlinear equations and the
computing time is largely saved. Mathematically, the actual tool position
pa(t) is iteratively updated as

pa(t+ Ts)=

⎧⎨
⎩

pa(t)+VfTsfa(t) , for linear tool path segment

[R] (pa(t)−oCTP)+oCTP, for circular tool path segment
[1.121]

with

fa(t) =
pen − pst

|pen − pst| ,

[R] =

⎡
⎣cosαs − sinαs 0
sinαs cosαs 0
0 0 1

⎤
⎦ ,

αs =
VfTs

RCTP

where pa(t) = [Xa(t), Ya(t), 0]
T is the tool position on the actual tool path.

Ts is a given sampling time interval. Vf is the feed rate defined as the distance
that the mill feeds as the spindle rotates one radian. fa(t) is feed direction
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of the cutter. oCTP and RCTP are center point and radius of a circular tool path
segment. pst and pen are start point and end point of a linear tool path segment.

Figure 1.24. Representation of typical peripheral

milling of a curved surface

Theoretically, the feed direction along the actual tool path might be easily
determined by finding the tangential direction of the actual tool path.
Nevertheless, if the tool position strides over the joint of two adjacent tool
path segments, e.g. the joint of a straight line and a circle, as stated by Wei
et al. [WEI 10], the feed direction, the exterior normal direction and the
curvature of the actual tool path may be abruptly changed. In this section, the
problem is avoided based on the concept of equivalent point obtained by
mapping the tool position from the actual tool path to the theoretical one. The
detailed procedures is presented below.

As shown in Figure 1.25, pe (t) = [Xe(u(t)), Ye(u(t)), 0]
T is the

equivalent tool position on the theoretical tool path defined by the intersection
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point between the theoretical tool path and the normal of the actual tool path
at pa(t).

(pe (t)− pa(t))× na (t) = 0 [1.122]

where na (t) is the exterior normal of the actual tool path. u(t) is the parameter
variable of the theoretical tool path.

na (t) =

⎧⎪⎪⎨
⎪⎪⎩
[
0 0 1

]T × fa(t), for linear tool path segment

pa(t)− oCTP , for circular tool path segment (convex)

oCTP − pa(t) , for circular tool path segment (concave)

[1.123]

Figure 1.25. Interpolated tool position on the actual tool path:

a) linear tool path segment and b) circular tool path segment

Geometrically, the equivalent feed direction of the cutter fe (t) can be
defined as the tangential direction at pe (t). It can be easily obtained by means
of the value of u (t) solved from equation [1.122]. With fe (t) and u (t), the
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exterior normal direction ne (t) and curvature Ke (t) related to pe (t) are thus
calculated by

ne (t) =
[
0 0 1

]T × fe (t) [1.124]

Ke (t) =
Xe

′ (u (t))Ye
′′ (u (t))−Xe

′′ (u (t))Ye
′ (u (t))(

(Xe
′ (u (t)))2 + (Ye

′ (u (t)))2
) 3

2

[1.125]

In the following presentation, fe (t), ne (t) and Ke (t) are treated as the
equivalent feed direction, equivalent exterior normal direction and equivalent
curvature for the actual tool position pa(t).

Besides, the angular location of the feed direction, i.e. θf (t), is calculated
by the method reported in [WEI 10]

θf (t) = arccos

(
fe (t) � IX
|fe (t)|

)
[1.126]

where IX =
[
1 0 0

]T is the unit direction vector of X-axis.

Based on the geometries described above, the instantaneous uncut chip
thickness and the entry and exit angles can be calculated as follows. Note that
for the convenience of study, the cutter is discretized into disc elements with
equal axial length zi,j .

1.5.1. Calculations of instantaneous uncut chip thickness

In case of zero cutter runout, instantaneous uncut chip thickness can be
expressed as an explicit function of feed per tooth and tooth positioning angle
of the cutting point [KLI 82a, ALT 91, BUD 96, FEN 94a]. Conversely,
instantaneous uncut chip thickness will be greatly redistributed in the
presence of cutter runout and is generally calculated as the distance between
two points, i.e. the cutting point related to the current circular path and the
corresponding one at the previous circular path [KLI 83, SUT 86]. Explicit
expressions relating the cutting parameters to cutter runout parameters were
derived [KOE 61, SUT 86] only for straight surface milling. Here, an explicit
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expression of instantaneous uncut chip thickness including the effect of cutter
runout is derived for the milling of curved surface with variable curvature. For
the milling of convex surfaces illustrated in Figure 1.24, suppose that the
current cutting point D related to the jth disk element of the ith flute, is
removing the surface left by the mth previous tooth. At the mth circular tooth
path, the cutting point related to D is symbolized by C. The tool positions
related to D and C are denoted by A and B, respectively. By definition,
instantaneous uncut chip thickness related to the jth disc element of the ith
flute can be expressed as

hi,j (t,m) = LCD = ri,j − LAC [1.127]

with ri,j being calculated by equation [1.18].

Equation [1.127] indicates that the value of hi,j (t,m) depends on LAC
whose calculation is as follows.

According to the triangle geometry relationship in 
ABC, LAC can be
mathematically derived as:

LAC =

√
r2i−m,j −

(
2RTP (t) sin

(
mf

2RTP (t)

)
cos

(
mf

2RTP (t)
+ θi,j (t)

))2

− 2RTP (t) sin

(
mf

2RTP (t)

)
sin

(
mf

2RTP (t)
+ θi,j (t)

)
[1.128]

where RTP (t) stands for the curvature related to arc. Theoretically, the radii
of curvature and the centers of curvature related to tool positions A and B
may be different due to the variable curvature of the theoretical tool path.
Nevertheless, as the feed per tooth used is relatively small in practical milling
and the curvature of arc between two adjacent tool positions A and B has a
very mild variation, the curvature of the arc can be assumed to be a constant
value equal to Ke (t) and both A and B have the same curvature center
OTP (t). Mathematically, we have

RTP (t) =
1

|Ke (t)| [1.129]

Notice that the corresponding RTP (t) should be recalculated by
equations [1.125] and [1.129] once the tool position changes.
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With the aid of equations [1.127] and [1.128], the instantaneous uncut chip
thickness can be calculated by [DES 09]

hi,j (t) = max

[
0, min

m=1,2,...,N
(hi,j (t,m))

]
[1.130]

Note that instantaneous uncut chip thickness can be obtained in a similar
way in the case of milling of concave surfaces.

1.5.2. Calculations of entry and exit angles

The presence of cutter runout not only influences instantaneous uncut chip
thickness but also the entry/exit angles in the milling of curved surface. Desai
et al. [DES 09] studied one such influence. In their computing of entry/exit
angles, the intersection point between the tooth path and the theoretical
workpiece boundary is obtained as long as the workpiece boundary is the
parallel offset of the geometry of desired surface. However, when the
workpiece boundary is not parallel to the geometry of desired surface, e.g. at
the disengaging stage, results of entry or exit angles will be erroneous. Wei et
al. [WEI 10] replaced the theoretical workpiece boundary with a set of
straight line and circular arc segments, which are the parallel offset of tool
path in pre-machining, i.e. the so-called actual workpiece boundary.
Unfortunately, the influence of cutter runout was not considered in their work.

In this section, improvements are made on the calculation of exit angle at
the engaging or disengaging stage including the influence of cutter runout. In
the case of continuous engagement, entry and exit angles are obtained using
the method in [DES 09]. At the engaging stage, as shown Figure 1.26, the exit
angle can be obtained by

θex,i,j (t) = min
m=1,2,...,N

(θex,i,j (t,m) , θB,ex,i,j (t)) [1.131]

in which θex,i,j (t,m) means the angle related to the intersection point of the
current tooth path and the mth previous tool path corresponding to the jth disc
element of the ith flute. It can be obtained by adopting the exit angle calculating
method in [DES 09]. θB,ex,i,j (t) is the angle related to the possible exit point,
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which is the intersection of the current tooth path and the actual workpiece
boundary.

θB,ex,i,j (t) = arccos

(
(pw (vB,ex,i,j (t))− pa (t)) � ne (t)

|pw (vB,ex,i,j (t))− pa (t)| |ne (t)|
)

[1.132]

where pw(vB,ex,i,j(t)) = [Xw(vB,ex,i,j(t)) Yw(vB,ex,i,j(t)) 0]T means the
parametric equations of actual workpiece boundary with vB,ex,i,j(t) being the
parameter variable of the workpiece boundary corresponding to the jth disc
element of the ith flute. Although the rotation radius of the concerned disc
element will deviate from its nominal value to ri,j due to cutter runout
[KLI 83, SUT 86, DES 09], the entry angle can still be obtained according to
the method in [DES 09], as long as the rotation radius is replaced by ri,j .
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Figure 1.26. Entry/exit angles at different stages. For a color version of

this figure, see www.iste.co.uk/zhang/milling.zip

Substitution of the instantaneous uncut chip thickness hi,j(t) into equation
[1.8] or equation [1.13] leads to the cutting force components FT,i,j (t) and
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FR,i,j (t), and then the total cutting force in locally moving coordinate system
can be calculated as

FXS (t)=
∑
i,j

g(θi,j(t)) [−FT,i,j (t) cosθi,j (t)− FR,i,j (t) sinθi,j (t)]

FYS (t)=
∑
i,j

g(θi,j(t)) [FT,i,j (t) sinθi,j (t)− FR,i,j (t) cosθi,j (t)]
[1.133]

where g(θi,j(t)) is obtained by substituting the entry angle θen,i,j (t) and exit
angle θex,i,j (t) into equation [1.15]. Due to the mobility of XSYSZS, the
transformation into the globally stationary XYZ coordinate system
corresponds to

FX (t) = FXS (t) cos θf (t)− FYS (t) sin θf (t)

FY (t) = FXS (t) sin θf (t) + FYS (t) cos θf (t)
[1.134]

Based on the above procedure, the predicted cutting forces are plotted in
Figure 1.27 along the entire tool path where the outline of the extreme value
variations of the predicted cutting forces indicates that no abrupt change occurs
along the entire tool path.
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Figure 1.27. Comparison of the measured and predicted cutting forces

in Y-direction vs. time for the entire tool path in test 2(ap = 10 mm,

ae = 3 mm, S = 2000 RMP, f = 0.05 mm/tooth). For a color version of

this figure, see www.iste.co.uk/zhang/milling.zip




