
Chapter 1

Finite Elements and Shape Functions

There is a wide range of existing literature on finite elements, both on theoretical aspects

(for example [Oden, Reddy-1977], [Ciarlet-1978], [Hughes-1987], [Ciarlet-1991]) and on prac-

tical aspects ([Zienkiewicz, Taylor-1989], [Bathe-1996], [Dhatt et al. 2007]). The purpose of

this chapter, therefore, is not to provide yet another description of this method, but rather to

introduce a point of view that is strongly oriented toward the underlying geometric aspects. In-

deed, classically, these are all the aspects of approximations of functions (polynomial space or

others, convergence, convergence rate, etc.) that are examined. We will, thus, only review basic

definitions related to finite elements1, as well as their shape functions. The classic case of finite

elements whose degrees of freedom are nodal values of the considered functions (in other words,

like Lagrange elements) is described for complete elements, reduced elements as well as rational

elements. The less common finite elements such as Hermite elements, for example, where nodal

or other derivatives are involved are not explicitly considered2.

1.1. Basic concepts

The finite elements method allows us to calculate an approximate solution to a problem for-

mulated in terms of a system of partial derivatives over a continuum Ω across two related approx-

imations: a spatial approximation and an approximation for calculated solutions. The physical

problem under study is modeled by a system of partial derivatives equations that constitutes a

continuous problem with its operators, parameters, data and boundary conditions. The finite el-

ement method consists of searching for solutions in a particular space of functions (a Sobolev

space) that is built on a discretization or a mesh of the domain. The continuous formulation

is replaced by a weak formulation via the Galerkin or Ritz methods, which generally leads to

1. In order to specify the manner in which we study them and in order to establish the notations used.

2. These enriched elements may, nonetheless, be interpreted from the geometric point of view as Lagrange

elements of a certain degree.
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a matrix system (leading to a linear system or a problem of eigenvalues) of finite dimension.

Thus, the first approximation, spatial approximation, is related to the fact that the continuous

domain Ω is replaced by a discrete domain, denoted by Ωh, which is composed of the union of

simple geometric elements (triangle, quadrilateral, tetrahedron, etc.) denoted by K. We have

Ωh = ∪K∈Th
K, where Th designates the mesh corresponding to a parameter of size h which,

therefore, refers to the size of the elements K and, therefore, to the finesse of the mesh. Other

than the case where the domain Ω is polygonal (polyhedral), Ω �= Ωh for any h. The second

approximation is related to the construction of the space of solution functions based on the first

spatial approximation, in other words, on the mesh. In the case of Lagrange finite elements,

the restriction of this space to each element of the mesh is a linear combination of polynomials

(or rational fractions), with each of these being a Lagrange interpolant of nodal values (where

the solutions are, therefore, only one or several instantiations of these nodal values, also known

as degrees of freedom). Thus, each element is associated with a list of nodes (comprising its

vertices) which makes it possible to define the Lagrange interpolant. A first-order polynomial

interpolant, in particular, is defined based on three nodes for a triangular element, where these

nodes are the vertices of the triangle. Generally speaking, one node may support several degrees

of freedom (a value, a derivative, etc.). As indicated, the solution function is known based on

its value for degrees of freedom for the entire mesh and, thus, only at the nodes of the mesh3.

If the functional solution space is known, the values at each point are only an evaluation of the

Lagrange interpolants at these points. In summary, a finite element is characterized by the triplet

{K,ΣK , PK}, where:

– K denotes the geometric element (triangle, etc.);

– ΣK denotes the list of nodes of K;

– PK denotes the space of chosen functions, here the polynomial Lagrange interpolants of

ΣK .

The geometry of an element K as well as the polynomial interpolants are determined based

on the nodes of ΣK . Notably, the degree of these interpolants is directly related to the number

of nodes of ΣK . In order to be able to define this geometry and these interpolants, we consider a

space of reference (or reference space)4, in which the reference element denoted by K̂ is defined,

with a fixed (uniform) distribution of nodes, said to be nodes of reference. The real or physical

element of K is the image of K̂ by an application, denoted by FK , mapping the reference nodes

on to the physical nodes. Thus, to sweep the points M of K, we sweep the points M̂ of K̂ and

we have M = FK(M̂). More precisely, by designating the nodes of the element of reference5

K̂ by Âi, 1 ≤ i ≤ n, and the Lagrange interpolants of these nodes by pi we have:

M =

n∑
i=1

pi(M̂)Ai, [1.1]

3. A problem is thus obtained, where the size is the number of degrees of freedom at all the nodes in the

mesh. The continuous problem has therefore been replaced by a discrete problem

4. This can be regarded as a space of parameters and we thus interpret K as a geometric patch, defined over

the space of parameters and the application FK relative to the space PK .

5. Or the nodal sequence.
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where Ai = FK(Âi) represents the nodes of K. The Lagrange interpolants pi verify the follow-

ing two fundamental properties:

pi(Âj) = δij and

n∑
i=1

pi = 1,

where δii = 1 and δij = 0 for j �= i. The first property characterizes the Lagrange interpolants

while the second represents the partition of unity over each element. Thus, the restriction of the

solution sK of PK to the element K is written as:

sK(M) =

n∑
i=1

pi(M̂)sK(Ai), [1.2]

where sK(Ai) represents the nodal values for the solution restricted at K.

This definition of the physical or real elements via the space of reference (space K̂) is funda-
mental for three reasons: the geometric definition of the elements, their geometric validity and

the definition of the interpolation space.

The geometric definition of these elements is based on their nature and the distribution of

their nodes and will be the focus of Chapter 2. Let us mention here that the position of any point

M of an element K is indirectly defined via the space of reference; indeed, it is difficult to know

whether a given point is in a given element6 without making use of the space of reference. Even

when using this, the localization of the point, that is locating its antecedent M̂ , would require the

resolution of the nonlinear equations M = FK(M̂) in the general case. This is resolved using a

combination of dichotomies and Newton methods. The geometric validity of a physical or real

element can be established relatively simply only by analyzing the application FK , especially

the sign of its Jacobian, J (FK), as we will see in the following chapters. This problem, which

already exists for classic first-order elements, is all the more present in the cases of higher order

elements, especially for isoparametric elements (with curved boundaries of the same degree as

the interpolants). These are often used to reliably approach curved geometry. Moreover, if

dK (respectively, dK̂) represents an element of surface integration or volume integration in the

physical or real space (respectively, space of reference), we have dK = J (FK)dK̂ and as the

integration over the element K is carried out via the space of reference (thus, over K̂) to make

it simple, this integration is valid if and only if J (FK) > 0 (the validity of the element thus

guarantees the validity of the calculations carried out via the space of reference). Finally, the

interpolation space is naturally constructed via the space of reference in which the polynomials

pi are defined.

As concerns relation [1.1], it must be noted that for a straight finite element (the edges are

straight segments) with a degree other than one, with a uniform distribution of nodes, as we will

see further on, this relation can be written more simply as

m∑
i=1

qi(M̂)Ai where only the vertex

6. Except for first-degree simplices.
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Figure 1.1.
Joseph Louis Lagrange (1736–1813)

nodes Ai, of number m, are taken into consideration and the shape function qi are those of the

finite element with a degree of one7 of the element of the same geometry as the element being

considered.

To conclude this brief presentation of the finite element method, we state in advance that we

will be very sensitive, beyond the problem of the geometric validity of the elements, to their

quality in shape (or regularity) – concepts that will be elaborated on in due time.

1.2. Shape functions, complete elements

We will construct the shape functions of common finite elements (Lagrange) that are com-

plete (seen as patches) based on two generic functions. We will then consider the case of reduced

elements (thus, in the case of quadrilaterals and hexahedra, the serendipity elements may be gen-

eralized). Finally, we will observe the case of rational elements with a brief allusion to the

elements that may be constructed using B-splines or Nurbs functions.

1.2.1. Generic expression of shape functions

Shape functions were initially introduced by engineers to resolve elasticity problems using

the finite element methods. In [Dhatt et al. 2007], we find a very comprehensive overview of

shape functions of classic finite elements. In this chapter, we will review those functions that are

expressed with spaces of reference that may be different (to place ourselves closest to the spaces

made up of the patches seen in CAD).

The shape functions of the isoparametric8 Lagrange elements of degree d are expressed in

a generic manner. We will then adopt a purely geometric point of view (let us recall that the

7. If the distribution of nodes is not uniform, the simplified formula remains true, but the qi are no longer

those of the first degree and, for example, even for a straight edge, the image of the midpoint of the edge of

the space of reference cannot be the midpoint of the physical edge.

8. Let us repeat here that the shape functions serve to both define the transformation of the reference element

toward the current element, a purely geometric aspect, as well as the polynomials of the finite element

interpolation.
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elements are seen as patches) and the notations used are those of this community. The reference

element K̂ is seen as a space of parameters and these are denoted by u, v, ..., rather than by x̂, ŷ,

..., with classic correspondence between these two sets for the systems expressed as Barycentric

coordinates (u = 1− x̂− ŷ, v = x̂ and w = ŷ, in two dimensions, for a triangle).

For simplices, we work within a barycentric coordinate system and based on a generic func-

tion of degree d, which will be denoted by φd
i (u) or simply φi(u) when there is no ambiguity:

φi(u) =
1

i!

d−1∏
l=0

(du− l) for i �= 0 and φ0(u) = 1, [1.3]

we construct the shape function of the index ijk with i+ j + k = d using:

pijk(u, v, w) = φi(u)φj(v)φk(w), [1.4]

and the element, a triangle, is written as a function of the shape functions and its nodes:

∑
ijk

pijk(u, v, w)Aijk. [1.5]

It can be immediately verified that pij(uk, vl) = δij,kl, even though the generic functions do

not possess this property. Indeed, if we write ul =
l
d , ..., we then have φi(ui) =

1
i!

d−1∏
l=0

(i− l) = 1

but φi(ul) = 0 uniquely for l = 0, ..., i− 1 - see the below schema (corresponding to the degree

d = 6) where we show the isolines in u, v and w together with the value 0 or 1 for the three

generic functions at the nodes of the reference element.

. 0
. . 0 0

. . . 0 0 0
. . . . . 0 0 0

. ijk . . . . 1 0 0 0
. . . . . . . . . 0 0 0

. . . . . . . . . . . 0 0 0

u 1 5/6 4/6 3/6 2/6 1/6 0
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0 1 .
0 . 5/6 . .

0 . . 4/6 . . .
0 . . . 3/6 . . . .

0 1 . . . 2/6 . 1 . . .
0 . . . . . 1/6 0 0 0 0 0 0

0 . . . . . . 0 0 0 0 0 0 0 0

v 0 1/6 2/6 3/6 4/6 5/6 1 w

We have identical expressions in three dimensions, namely, for a tetrahedron:

pijkl(u, v, w, t) = φi(u)φj(v)φk(w)φl(t) and
∑
ijkl

pijkl(u, v, w, t)Aijkl. [1.6]

To familiarize ourselves with the indices, we give the example of a triangle of degree d = 3
that has 10 nodes, shown on the right with the classical numbering (vertices first, the nodes of the

edges and then internal nodes) and on the left with the natural indices of the barycentric systems.

The indexing of the shape functions is, quite obviously, identical.

003 3

102 012 8 7

201 111 021 9 10 6

300 210 120 030 1 4 5 2

For the tensor elements, we use the natural coordinate system and use the generic function

with degree d relative to the nodes ul = l
d for l = 0, ..., d, written as φd

i (u), if necessary,

otherwise simply φi(u):

φi(u) =
(−1)i

i!(d− i)!

l=d∏
l=0
l �=i

(l − du) , [1.7]

we construct the shape function of the index ij by:

pij(u, v) = φi(u)φj(v). [1.8]

It must be noted that, of course pij(uk, vl) = δij,kl, but this is also the case for the generic

function, φi(ul) = δil, contrary to the earlier case.
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The element, a quadrilateral9 is written as given above based on the shape functions and its

nodes: ∑
ij

pij(u, v)Aij . [1.9]

In three dimensions, for a hexahedron this gives:

pijk(u, v, w) = φi(u)φj(v)φk(w) and
∑
ijk

pijk(u, v, w)Aijk. [1.10]

To see what the indices are, we give the example of a quadrilateral of degree d = 3 that has 16

nodes with, on the right, classical numbering (vertices first, nodes of the edges and then internal

nodes, observing for the latter nodes, that several conventions may be possible) and on the left

with the natural indices (where, therefore, everything is natural).

03 13 23 33 4 10 9 3

02 12 22 32 11 15 16 8

01 11 21 31 12 13 14 7

00 10 20 30 1 5 6 2

Pentahedra or prisms are defined at u, v, w via functions as in [1.3] for the triangular faces

and at t via the function [1.7].

Pyramidal elements (which are also pentahedra) are useful to ensure a consistent transition

between hexahedral elements and tetrahedral elements. They are, however, difficult to define. We

propose defining them as first-degree pyramids, which is not necessarily common, like complete

but degenerated first-degree hexahedra, by precisely identifying the quadrilateral face, said to be

the base face. This gives a very simple definition for these elements10. For the degrees 2 and

3, we propose the same approach, but starting from reduced hexahedra11, which will be seen

later on. Thus, these pyramids will only have, as nodes, their vertices and 1 or 2 nodes per

edge. Consequently, we will have 13 second-degree nodes and 21 third-degree nodes. For higher

degrees, there does not seem to be a plausible obvious definition.

9. In the literature, we sometimes see the term “quadrangle”. This is incorrect even though everyone under-

stands it.

10. Indeed, we can find more complicated definitions, which bring in shape functions of rational fractions.

These definitions have the same fault, a singularity at the apex, and are certainly more costly.

11. Starting from complete elements makes it possible to have a reasonable geometric construction but will

give finite elements which are surprising, to say the least. In particular, at a degree of 2, a triangular face

will have an internal node.
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1.2.2. Explicit expression for degrees 1–3

We only explicit the typical function or functions, for the common elements with a degree of

1–3. Functions [1.3] and [1.4] or [1.7] and [1.8] are used depending on the case under consider-

ation.

Triangles of degrees 1–3

We use relations [1.3] and [1.4]. It is enough to calculate the desired φi(u) and then to express

the typical pijk(u, v, w) based on which the other shape functions can be easily deduced.

• Degree 1: we have φ0(u) = 1 and φ1(u) = u. There is only one typical function,

p100(u, v, w), that is:

p100(u, v, w) = φ1(u)φ0(v)φ0(w) = u.

• Degree 2: we have φ0(u) = 1, φ1(u) = 2u and φ2(u) = 1
22u(2u − 1). There are two

typical functions, p200(u, v, w) and p110(u, v, w), that is:

p200(u, v, w) = φ2(u)φ0(v)φ0(w) = u(2u− 1),

and p110(u, v, w) = φ1(u)φ1(v)φ0(w) = 4uv.

• Degree 3: we have φ0(u) = 1, φ1(u) = 3u, φ2(u) =
1
23u(3u−1) and φ3(u) =

1
63u(3u−

1)(3u − 2). There are three typical functions (see the schema given above for the indices)

p300(u, v, w), p210(u, v, w) and p111(u, v, w), and we find:

p300(u, v, w) = φ3(u)φ0(v)φ0(w) =
1

2
u(3u− 1)(3u− 2),

and p210(u, v, w) = φ2(u)φ1(v)φ0(w) =
1

2
3u(3u− 1)3v =

9

2
u(3u− 1)v,

then p111(u, v, w) = φ1(u)φ1(v)φ1(w) = 27uvw.

Where u = 1− x̂− ŷ, v = x̂ and w = ŷ, we find these same expressions in the usual variables.

Through symmetry or rotation, we find all the shape functions of the elements, that is:

• Degree 1: p100(x̂, ŷ) = 1− x̂− ŷ.

• Degree 2: p200(x̂, ŷ) = (1− x̂− ŷ)(1− 2x̂− 2ŷ) and p110(x̂, ŷ) = 4x̂(1− x̂− ŷ).

• Degree 3: p300(x̂, ŷ) =
1
2 (1− x̂− ŷ)(2− 3x̂− 3ŷ)(1− 3x̂− 3ŷ) and

p210(x̂, ŷ) =
9
2 x̂(1− x̂− ŷ)(2− 3x̂− 3ŷ) and, finally, p111(x̂, ŷ) = 27x̂ŷ(1− x̂− ŷ).

Tetrahedra of degrees 1–3

We can simply extend the case of triangles and, in the barycentric coordinate system, the

shape functions of tetrahedra are identical to those of triangles. Thus, we have:

• Degree 1: A single typical function, p1000(u, v, w, t), and we find: p1000(u, v, w, t) = u.
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• Degree 2: Two typical functions p2000(u, v, w, t) and p1100(u, v, w, t), that is:

p2000(u, v, w, t) = u(2u− 1) and p1100(u, v, w, t) = 4uv.

• Degree 3: Three typical functions (see the above schema for the indices)

p3000(u, v, w, t), p2100(u, v, w, t) and p1110(u, v, w, t), that is: p3000(u, v, w, t) = 1
2u(3u −

1)(3u− 2), p2100(u, v, w, t) =
9
2u(3u− 1)v and p1110(u, v, w, t) = 27uvw.

Where u = 1− x̂− ŷ − ẑ, v = x̂, w = ŷ and t = ẑ, we find these same expressions in the usual

variables. Through symmetry or rotation, we find all the shape functions.

Quadrilaterals of degrees 1–3

We use relations [1.7] and [1.8]. It is enough to calculate the desired φi(u) and then to

express the typical pij(u, v) based on which the other shape functions will be deduced. We open

relation [1.7] for i = 0 and i = 1. We see:

φ0(u) =
1

d!
(1− du)(2− du)...(d− du) and

φ1(u) =
−1

(d− 1)!
(−du)(2−du)(3−du)...(d−du) =

1

(d− 1)!
du(2−du)(3−du)...(d−du),

and then use these expressions, the only ones which can be used (by symmetry) for the degrees

1–3.

• Degree 1: we have φ0(u) = 1 − u. There is only one typical function, p00(u, v), and we

find:

p00(u, v) = φ0(u)φ0(v) = (1− u)(1− v).

• Degree 2: we have φ0(u) =
1
2 (1−2u)(2−2u) = (1−2u)(1−u) and φ1(u) = 2u(2−2u) =

4u(1− u). There are three typical functions, p00(u, v), p10(u, v) and p11(u, v), that is:

p00(u, v) = φ0(u)φ0(v) = (1− 2u)(1− u)(1− 2v)(1− v),

p10(u, v) = φ1(u)φ0(v) = 4u(1− u)(1− 2v)(1− v),

p11(u, v) = φ1(u)φ1(v) = 16u(1− u)v(1− v).

• Degree 3: we have φ0(u) =
1
6 (1− 3u)(2− 3u)(3− 3u) = 1

2 (1− 3u)(2− 3u)(1− u) and

φ1(u) =
1
23u(2− 3u)(3− 3u) = 9

2u(2− 3u)(1− u). There are three typical functions, see the

above scheme for the indices p00(u, v), p10(u, v) and p11(u, v), and we find:

p00(u, v) = φ0(u)φ0(v) =
1

4
(1− 3u)(2− 3u)(1− u)(1− 3v)(2− 3v)(1− v),

p10(u, v) = φ1(u)φ0(v) =
9

4
u(2− 3u)(1− u)(1− 3v)(2− 3v)(1− v),

p11(u, v) = φ1(u)φ1(v) =
81

4
u(2− 3u)(1− u)v(2− 3v)(1− v).
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With u = x̂ and v = ŷ, we find these same expressions in the usual variables. Through sym-

metry or rotation, we find all the shape functions of the elements. As an exercise, let us ex-

press p20(u, v) for a third-degree quadrilateral. It is enough to carry out a symmetry at u, thus

p20(u, v) = p10(1− u, v), or:

p20(u, v) = −9

4
u(1− 3u)(1− u)(1− 3v)(2− 3v)(1− v).

Hexahedra of degrees 1–3

We go back to the previously obtained functions for quadrilaterals and extend them mechan-

ically.

• Degree 1: A single typical function, p000(u, v, w), thus we find:

p000(u, v, w) = (1− u)(1− v)(1− w).

• Degree 2: Four typical functions, p000(u, v, w), p100(u, v, w), p110(u, v, w) and

p111(u, v, w), thus we find:

p000(u, v, w) = (1− 2u)(1− u)(1− 2v)(1− v)(1− 2w)(1− w),

p100(u, v, w) = 4u(1− u)(1− 2v)(1− v)(1− 2w)(1− w),

p110(u, v, w) = 16u(1− u)v(1− v)(1− 2w)(1− w),

p111(u, v, w) = 64u(1− u)v(1− v)w(1− w).

• Degree 3: Four typical functions, p000(u, v, w), p100(u, v, w), p110(u, v, w) and

p111(u, v, w), we thus find:

p000(u, v, w) =
1

8
(1− 3u)(2− 3u)(1− u)(1− 3v)(2− 3v)(1− v)(1− 3w)(2− 3w)(1−w),

p100(u, v, w) =
9

8
u(2− 3u)(1− u)(1− 3v)(2− 3v)(1− v)(1− 3w)(2− 3w)(1− w),

p110(u, v, w) =
81

8
u(2− 3u)(1− u)v(2− 3v)(1− v)(1− 3w)(2− 3w)(1− w),

p111(u, v, w) =
729

8
u(2− 3u)(1− u)v(2− 3v)(1− v)w(2− 3w)(1− w).

With u = x̂, v = ŷ and w = ẑ in notation̂ .
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Pentahedra of degrees 1–3

We go back to the φi() functions of a triangle and those of a quadrilateral in the third direction.

The coordinates are, thus, barycentric in the plane and natural in the third direction.

• Degree 1: A single typical function, p1000(u, v, w, t), and we find:

p1000(u, v, w, t) = u(1− t).

• Degree 2: Four typical functions, p2000(u, v, w, t), p1100(u, v, w, t), p2001(u, v, w, t) and

p1101(u, v, w, t) that correspond to the vertices, the nodes of edges shared by a triangle or two

quadrilateral faces, and to the nodes on the quadrilateral faces, that is:

p2000(u, v, w, t) = u(2u− 1)(1− 2t)(1− t),

p1100(u, v, w, t) = 4uv(1− 2t)(1− t),

p2001(u, v, w, t) = 4u(2u− 1)t(1− t),

p1101(u, v, w, t) = 16uvt(1− t).

• Degree 3: Five typical functions, p3000(u, v, w, t), p2100(u, v, w, t), p3001(u, v, w, t),
p1110(u, v, w, t) and p2101(u.v, w, t) that correspond to the vertices, the nodes on the edges

shared by a triangle or two quadrilateral faces and to the nodes on the triangular and quadri-

lateral faces, that is:

p3000(u, v, w, t) =
1

4
u(3u− 1)(3u− 2)(1− 3t)(2− 3t)(1− t),

p2100(u, v, w, t) =
9

4
u(3u− 1)v(1− 3t)(2− 3t)(1− t),

p3001(u, v, w, t) =
9

4
u(3u− 1)(3u− 2)t(2− 3t)(1− t),

p1110(u, v, w, t) =
27

2
uvw(1− 3t)(2− 3t)(1− t),

p2101(u, v, w, t) =
81

4
u(3u− 1)vt(2− 3t)(1− t).

Pyramids of degrees 1–3

For a degree of 1, we go back to the definition of a complete hexahedron, with the for-

mulae [1.10], that is pijk(u, v, w) = φi(u)φj(v)φk(w) and
∑
ijk

pijk(u, v)Aijk, by posit-

ing Aijd = A00d for all the (i, j) couples. We can deduce from this that the shape functions

pijk(u, v, w) are those of the hexahedron for the index k �= d. On the other hand, the missing

function, pood(u, v, w), is obtained by taking the sum of pijd(u, v, w). Thus, p00d(u, v, w) =
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⎧⎨
⎩
∑
i

∑
j

φi(u)φj(v)

⎫⎬
⎭φd(w). Consequently (classic property of the φi(u)φj(v) which give a

sum of 1), we have p00d(u, v, w) = φd(w) =
(−1)d

d!

l=d−1∏
l=0

(l − dw).

As d = 1, we find:

• Degree 1: p001(u, v, w) = w.

For the degrees 2 and 3, we use the same shortcut, but based on reduced elements (see further

on). We thus find that:

• Degree 2: p002(u, v, w) = −w(1− 2w).

• Degree 3: p003(u, v, w) =
1
2w(1− 3w)(2− 3w).

1.3. Shape functions, reduced elements

The idea behind reduced elements is to bring down the number of internal nodes while re-

taining an acceptable level of precision, that is a sufficiently rich polynomial space. The nodes,

thus, necessarily include the border nodes of the complete element, but we try to do away with

all or part12 of the internal nodes.

Who came up with these elements? It was most probably mechanical engineers, especially, at

the beginning, for the second-degree Lagrange quadrilateral with eight nodes. This element is

a serendipity element, from the legend of the three princes of Serendip (in the photo). Indeed,

one construction of this element (and beyond those of other degrees) consists of imposing, as a

polynomial space, a space that includes as basis all the monomials of a maximum degree of 2 in

all the variables (the classical space P 2 of triangles). On doing this, it is seen that the two mono-

mials u2v and uv2 are covered “for free”, without really having been the goal of the operation.

An unexpected gift and hence the term serendipity, which qualifies quadrilaterals and hexahe-

dra of this nature. The existence of reduced elements for other geometries is more problematic.

However, we know of the third-degree triangle with nine nodes (and thus the hexahedron with

16 nodes) but not of reduced simplices that are of interest for higher degrees. For other element

types, for degrees that are not too high, it is possible to delete certain nodes (in particular, the

case of those with faces comes to mind) but the resulting polynomial space is not very clear.

While literature is hardly prolix on the subject, other than for a degree of 2, we find sev-

eral methods to try and construct reduced elements. We can separate the methods that work

at the level of the matrices of rigidity (resulting from weak formulation) themselves to elimi-

nate the nodes, typically by condensation. We find two categories of methods: one based on

12. And this is strictly necessary when the degree increases.
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Figure 1.2.
The three princes of Serendip

Taylor expansions truncated to the desired order [Ciarlet-1978], [Bernardi et al. 2004], or again,

[George, Borouchaki-2017], and the other based on the direct search for the polynomial space

by imposing its basis, as developed by [Arnold, Awanou-2011] and [Floater, Gillette-2014]. For

quadrilaterals and hexahedra, we will propose another approach based on a generalization of

the transfinite interpolation, a transformation that is also known for a degree of 2 (for instance,

Coons’ patches) but is also valid for a degree of 3 (and we will also have a Coons’ patch). For

higher degrees, the method does not yield acceptable results and hence the idea of seeking a

generalization – called generalized transfinite interpolation [George, Borouchaki-2015]. It must

be noted that this approach is very close to a concept discussed in [Floater, Gillette-2014].

1.3.1. Simplices, triangles and tetrahedra

We know of the reduced, third-degree triangle with nine nodes (the complete triangle has 10

nodes). The first question is to understand its construction. Another question is to know whether

such reduced triangles exist for higher degrees.

We can find an answer to the first question in [Bernardi et al. 2004]. However, there is no

answer to the second question in the literature.

The polynomial space of the triangle is the usual space P 3 in which we add a condition that

stipulates that the value of a polynomial evaluated at the barycenter (of the reference element,

thus the node ( 13 ,
1
3 ,

1
3 ) in barycentric coordinates) is expressed as a linear combination of the

values of this polynomial evaluated at the nodes on the edge of the reference element. If q
designates a polynomial, we have the following relation:

12q(A111) + 2
∑

ijk∈S
q(Aijk)− 3

∑
ijk∈A

q(Aijk) = 0,

where S designates the indices for the vertices and A designates the indices for the edge nodes. In

[Bernardi et al. 2004], it is always shown that consequently, the polynomial space that is thereby

reduced contains the space P 2. This is the definition that we will retain to define reduced trian-

gles.
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• Triangle of degree 3. Let us recall the system used for indices:

003

102 012

201 111 021

300 210 120 030

The concept is to begin with the Taylor expansion of a function q at the vertices and the nodes

expressed using the central node; we then introduce the vectors −−→vijk =
−−−−−−→
A111Aijk and the suc-

cessive derivatives of q, seen in an abstract manner as linear operators, bilinear operators, etc.

They are denoted by D1.(−→u ), D2.(−→u ,−→u ), etc., the coefficient (the binomial coefficient) being

included in the operator. Thus, as we are looking for the space P 2, the development stops at the

second derivative and is written as, at A300:

q(A300) = q(A111) +D1.(−−→v300) +D2.(−−→v300,−−→v300).

Upon taking the sum of the three vertices, we find:∑
ijk∈S

q(Aijk) = 3q(A111) +
∑

ijk∈S
D1.(−−→vijk) +

∑
ijk∈S

D2.(−−→vijk,−−→vijk),

and as the operator D1.() is linear and A111 is the barycenter, this is reduced to:∑
ijk∈S

q(Aijk) = 3q(A111) +
∑

ijk∈S
D2.(−−→vijk,−−→vijk). [1.11]

This same development is expressed for the edge nodes. For example:

q(A210) = q(A111) +D1.(−−→v210) +D2.(−−→v210,−−→v210),

and on summing, we obtain:∑
ijk∈A

q(Aijk) = 6q(A111) +
∑

ijk∈A
D1.(−−→vijk) +

∑
ijk∈A

D2.(−−→vijk,−−→vijk),

of which only the following remains (the terms related to D1.() cancel each other out two by

two): ∑
ijk∈A

q(Aijk) = 6q(A111) +
∑

ijk∈A
D2.(−−→vijk,−−→vijk). [1.12]

As A210 = 2A300+A030

3 , etc., we can express the different −−→vijk vectors uniquely as a function of

three vectors related to the vertices. Thus, for example: −−→v210 =
2−−→v300 +−−→v030

3
.
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We now calculate D2.(−−→v210,−−→v210) +D2.(−−→v120,−−→v120), and find:

4

9
D2.(−−→v300,−−→v300) +

4

9
D2.(−−→v300,−−→v030) +

1

9
D2.(−−→v030,−−→v030)

+
1

9
D2.(−−→v300,−−→v300) +

4

9
D2.(−−→v300,−−→v030) +

4

9
D2.(−−→v030,−−→v030),

that is, in total
5

9
D2.(−−→v300,−−→v300) +

8

9
D2.(−−→v300,−−→v030) +

5

9
D2.(−−→v030,−−→v030).

By taking the sum of the three edges, we find:

10

9

∑
ijk∈S

D2.(−−→vijk,−−→vijk) +
8

9
(D2.(−−→v300,−−→v030) +D2.(−−→v030,−−→v003) +D2.(−−→v003,−−→v300)).

We will express the crossed terms in functions of terms related only to the vertices, but as

D2.(−−→v300 +−−→v030 +−−→v003,−−→v300 +−−→v030 +−−→v003) = 0, we have:

0 =
∑

ijk∈S
D2.(−−→vijk,−−→vijk) + 2(D2.(−−→v300,−−→v030) +D2.(−−→v030,−−→v003) +D2.(−−→v003,−−→v300)),

or, in other terms:

(D2.(−−→v300,−−→v030) +D2.(−−→v030,−−→v003) +D2.(−−→v003,−−→v300) = −1

2

∑
ijk∈S

D2.(−−→vijk,−−→vijk),

thus, the above sum is reduced to
2

3

∑
ijk∈S

D2.(−−→vijk,−−→vijk) and relation [1.12] is written as:

∑
ijk∈A

q(Aijk) = 6q(A111) +
2

3

∑
ijk∈S

D2.(−−→vijk,−−→vijk),

to finish, we identify this last sum (second derivatives) in the two relations, which gives the

following combination:∑
ijk∈S

q(Aijk)− 3q(A111) =
3

2

∑
ijk∈A

q(Aijk)− 6q(A111))

and, finally, we have found the defining property13 of the desired polynomial space:

12q(A111) + 2
∑

ijk∈S
q(Aijk)− 3

∑
ijk∈A

q(Aijk) = 0 . [1.13]

The function of the space must verify this relation, especially the desired reduced shape func-

tions, the psijk. By symmetry, we look for these functions in the form:

psijk(u, v, w) = pijk(u, v, w) + αp111(u, v, w), ijk ∈ S,

13. The equivalent of a serendipity relation.
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psijk(u, v, w) = pijk(u, v, w) + βp111(u, v, w), ijk ∈ A.

In other words, there are only two parameters to be found and relation [1.13] gives the solution:

α = −1

6
and β =

1

4
.

Starting from these two values, we can find the expression for the two typical functions:

ps300(u, v, w) =
1

2
u(2u2 + 2v2 + 2w2 − 5uv − 5vw − 5uw),

ps210(u, v, w) =
9

4
uv(4u− 2v + w),

which gives:

ps300(x, y) =
9

2
(1− x− y)(

2

9
− x− y + xy + x2 + y2),

ps210(x, y) =
9

4
x(1− x− y)(4− 6x− 3y).

To conclude the discussion on the reduced third-degree triangle, what remains is to show its poly-

nomial space. By construction, P 2 is covered. The question is to find the other three monomials

that are covered here. To do this, we begin with the relations (in the complete space):

xlym =
∑
ijk

ωlq
ijkpijk(x, y),

and the coefficients ωlq
ijk are found through instantiations (for example, ω00

ijk = 1) for any ijk.

Next, we begin with the relation psijk(x, y) = pijk(x, y)+αp111(x, y), for example, and we write

its opposite, that is pijk(x, y) = psijk(x, y) − αp111(x, y). It is then sufficient to write it into an

expression of xlym to verify whether the coefficient on p111 is null or not. These calculations

were carried out in [George et al. 2014] and the result is illustrated in the following diagram:

1

x y

x2 xy y2

x3 + 2x2y x2y − xy2 y3 + 2xy2,

and the unexpected gift is the last line of the diagram (though we have lost the monomials

x3, x2y, xy2 and y3 present in the complete space P 3).

• Triangle of degree 4

Construction by Taylor expansion, by enforcing the presence of the space P 3 in the re-

duced fourth-degree triangle leads to an impasse [George et al. 2014]. We cannot even find the

space P 2. On the other hand, by enforcing the presence of P 2 alone, we find a solution (a total of

12 monomials or combinations), thus an element of 12 nodes, but this element seems inadequate

with respect to any calculation.

Higher degrees present the same syndrome
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• Tetrahedron of degree 3

Following the discussion on triangles, we think that only the reduced third-degree tetrahedron is

of interest. The typical reduced shape functions are given in [George et al. 2014], and we find:

ps3000(u, v, w, t) = p3000(u, v, w, t)−
1

6
p1110(u, v, w, t)−

1

6
p1101(u, v, w, t)−

1

6
p1011(u, v, w, t)

which gives, at u, v, w and t:

ps3000(u, v, w, t) =
1

2
u(2u2 − 5uv − 5uw − 5ut+ 2v2 − 5vw − 5vt+ 2w2 − 5wt+ 2t2),

and, at x, y and z:

ps3000(x, y, z) =
1

2
(1− x− y − z)(2− 9x− 9y − 9z + 9x2 + 9xy + 9xz + 9y2 + 9yz + 9z2).

For ps2100(u, v, w, t), the dependency is at p2100(u, v, w, t) and the internal functions of the two

incident faces, that is:

ps2100(u, v, w, t) = p2100(u, v, w, t) +
1

4
p1110(u, v, w, t) +

1

4
p1101(u, v, w, t)

=
9

4
uv(4u− 2v + w + t),

and atx, y and z we have : ps2100(x, y, z) =
9

4
(1− x− y − z)x(4− 6x− 3y − 3z).

1.3.2. Tensor elements, quadrilateral and hexahedral elements

A serendipity tensor element of degree d for each variable is, in theory, defined starting

from information on the boundary nodes (incomplete elements) and the specific shape functions

that are based on these nodes. As all of these nodes are incomplete, there exists (except in

exceptional cases) an infinity of shape functions related to these nodes. To establish a unique and

adequately rich solution, we enforce that the space resulting from these shape functions contains

the polynomial space of degree d at all the variables, the classic space P d.

For small degrees, this definition also implies the presence of two monomials (in the case of

quadrilaterals), udv and uvd in the resulting space, hence the term “serendipity”. In general, in

two dimensions, the serendipity space is thus defined including the space P d and the monomials

of degree d for one of the variables and a degree of 1 for the others. Thus, in two dimensions, this

space has the dimension
(d+ 1)(d+ 2)

2
+ 2. Consequently, the unique information on the bor-

der nodes does not make it possible to cover the case of degrees higher than 3. Indeed, for a de-

gree of 4, an additional node is required; for a degree of 5, three additional nodes are required and

so on. The number of internal nodes is, thus, equal to
(d+ 1)(d+ 2)

2
+ 2− 4d =

d(d− 5)

2
+ 3.

These internal nodes are arranged starting from the center of the element. From the degree of 5,
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the nodes of the corresponding element cannot be positioned symmetrically with respect to the

center of the element (thus be independent from the local numbering of the nodes).

In three dimensions, the serendipity space comprises the space P d and the monomials of a

degree s higher than d having at least s− d linear terms (variables) [Arnold, Awanou-2011]. For

example, a serendipity hexahedron of degree 2, with 20 nodes includes the polynomial space P 2

with three variables: the third-degree monomials, namely u2v, uv2, u2w, uw2, v2w, vw2, uvw,

as well as the fourth-degree monomials, namely u2vw, uv2w, uvw2, thus, in total, 20 monomials.

To find a method of construction for serendipity elements of an arbitrary degree, we first

consider the case of a degree of 2, which requires no internal node and where the construction

method is none other than transfinite interpolation. In an analogous manner, we then propose

a generalization of this method, called generalized transfinite interpolation, resulting, for any

degree, in symmetric elements.

In order to phase the indices following the two variables in a transfinite interpolation of dif-

ferent degrees following these variables, we introduce two functions k(i) and l(i) where i is an

index, defined for a given degree d, by:

k(i) = i× d, l(0) = 0 and l(i) = i+ 1, i = 1, d− 3 and finally l(d− 2) = d.

• Quadrilateral of degree 2. A Taylor expansion [Bernardi et al. 2004] may be used to con-

struct this element. However, we know that this quadrilateral can also be expressed via a classic

transfinite interpolation [Gordon, Hall-1973] and is therefore written using φi(.) and the nodes,

as:

1∑
i=0

2∑
j=0

φ1
i (u)φ

2
j (v)Ak(i),j +

2∑
i=0

1∑
j=0

φ2
i (u)φ

1
j (v)Ai,k(j) −

1∑
i=0

1∑
j=0

φ1
i (u)φ

1
j (v)Ak(i),k(j),

[1.14]

shortened to:

σ12(u, v) + σ21(u, v)− σ11(u, v) or even more simply σ12 + σ21 − σ11 .

To obtain the second-degree tensor expression for each variable, we will rewrite the φ1
∗, the index

∗ for i or j , for a degree of 2. We thus consider two φ1
∗(u) functions and we express them on the

basis of the φ2
∗(u) of degree 2 (the coefficients being unknown):

α0φ
2
0(u) + α1φ

2
1(u) + α2φ

2
2(u) = φ1

0(u)

and β0φ
2
0(u) + β1φ

2
1(u) + β2φ

2
2(u) = φ1

1(u),

we then instantiate u for three values 0, 1
2 and 1. The property φ2

i (uj) = δij (where the uj are

the nodes of the reference element (hence the three values above)) makes it possible to find the 6

coefficients. We have (a result that is also generalizable for any degree):

2

2
φ2
0(u) +

1

2
φ2
1(u) +

0

2
φ2
2(u) = φ1

0(u) and
0

2
φ2
0(u) +

1

2
φ2
1(u) +

2

2
φ2
2(u) = φ1

1(u),
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thus:

1∑
i=0

φ1
i (u)Ak(i) =

2∑
i=0

φ2
i (u)Qi,

where Q0 = A0 , Q1 =
A0 +A2

2
=
∑

i+i1=1

Ak(i)

2
and Q2 = A2.

It must be noted that to go from a degree of 1–2, a simple elevation of degree is carried out

here (this will generally be true to go from a degree of 1 to any degree d, see below) in Lagrange

formalism with a method that is not the same as that used to elevate the degree in the case of

Bézier shapes (see Chapter 3). Coming back to the element makes it possible to find the classic

form, σ12 =
2∑

I=0

2∑
j=0

φ2
I(u)φ

2
j (v)QIj , by defining the nodes Q∗,j , j = 0, ..., 2, by:

Q0j = Ak(0),j = A0j , Q1j =

1∑
m=0

1

2
Ak(m),j =

A0j +A2j

2
, Q2j = Ak(1),j = A2j .

[1.15]

The second term in the sum, σ21, is treated in the same manner by defining an analogous

sequence, with relation [1.15] becoming, for i = 0, .., 2:

Qi0 = Ai,k(0) = Ai0, Qi1 =
1∑

m=0

1

2
Ai,k(m) =

Ai0 +Ai2

2
, Qi2 = Ai,k(1) = Ai2. [1.16]

Similarly, for the third term, σ11, we construct the node sequence:

Q0j , Q2j , Qi0, Qi2 as above and Q11 =
1∑

i=0

1∑
j=0

Ak(i),k(j)

4
. [1.17]

We write the initial second-degree patch by introducing the nodes Qij (defined above) in each of

the three terms in its definition and then expressing these nodes as functions of the initial Aij . We

thus obtain a complete patch by inventing the central node. This node (see the above schema) is

naturally denoted by A11, which is the node that comes up with respect to the term φ2
1(u)φ

2
1(v).

Consequently, we have three contributions. The first is
A01 +A21

2
, the second is

A10 +A12

2
,

the last term is
A20 +A22 +A00 +A02

4
and upon summing we have:

A11 =
A01 +A21 +A10 +A12

2
− A00 +A20 +A22 +A02

4
,

which is summarized in the following schema:

02 12 22 -1/4 1/2 -1/4

01 [11] 21 1/2 [11] 1/2

00 10 20 -1/4 1/2 -1/4
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In conclusion, with the specific, made-up node A11 and the initial nodes, the element is written

as a complete patch, that is

2∑
i=0

2∑
j=0

φ2
i (u)φ

2
j (v)Aij =

2∑
i=0

2∑
j=0

p2ij(u, v)Aij .

Following this construction, we can explicitly calculate the reduced shape functions. Let us

recall that φ0(u) = (1− 2u)(1−u) and that φ1(u) = 4u(1−u). The first shape function, index

00, is the polynomial resulting with respect to A00, thus via A00, weight 1, directly and via A11,

weight − 1
4 , or:

ps00(u, v) = p00(u, v)−
1

4
p11(u, v) = (1− u)(1− v)(1− 2u− 2v).

The other typical function is that of index 10, or, similarly:

ps10(u, v) = p10(u, v) +
1

2
p11(u, v) = 4u(1− u)(1− v).

We establish the expression for all the reduced shape functions via symmetry.

It must be noted that the initial relation gives the result directly. That is:

ps00(u, v) = φ1
0(u)φ

2
0(v) + φ2

0(u)φ
1
0(v)− φ1

0(u)φ
1
0(v).

This was not evident in the above form, p00(u, v)− 1
4p11(u, v), and for the other typical function,

index 10, we directly have:

ps10(u, v) = φ2
1(u)φ

1
0(v).

However, this apparent simplicity is only true when d = 2 (without internal node) and, as we

will see, when d = 3 (also without internal node).

• Quadrilateral of degree d

The idea, here as well, is to avoid using Taylor expansions and instead find an approach

based on transfinite interpolation (as for degree 2) or, more precisely, to see how to generalize

this transformation to meet our needs.

A symmetrical serendipity element includes, as nodes, all the nodes of the complete element

except for the nodes of the first ring. This collection of nodes is formed by the internal nodes of

the complete element that are immediate neighbors of the border nodes:

A1j andAd−1,j for 1 ≤ j ≤ d− 1 and Ai1 andAi,d−1 for 1 ≤ i ≤ d− 1.

Such an element is identical, up to a degree of 4, to a classic serendipity element, and beyond this

degree is richer than the classic serendipity element [Arnold, Awanou-2011],

[Floater, Gillette-2014], but it has the advantage of being symmetrical. By considering this col-

lection of nodes, we construct the element via the following relation called generalized transfinite

interpolation:

1∑
i=0

d∑
j=0

ψ1
i (u)φ

d
j (v)Ak(i),j +

d∑
i=0

1∑
j=0

φd
i (u)ψ

1
j (v)Ai,k(j) +

d−2∑
i=0

d−2∑
j=0

ψd−2
i (u)ψd−2

j (v)Al(i),l(j)
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−
1∑

i=0

d−2∑
j=0

ψ1
i (u)ψ

d−2
j (v)Ak(i),l(j) −

d−2∑
i=0

1∑
j=0

ψd−2
i (u)ψ1

j (v)Al(i),k(j), [1.18]

where ψ1
∗ is a first-degree shape function relative to the nodes with index 0 and d, ψd−2

∗ is a shape

function of degree d−2 relative to all the nodes except those of index 1 and d−1. By definition,

the ψ1
∗ function coincides with the classic function φ1

∗, and this is the same for a degree of 2,

while for other degrees the ψd−2
∗ function is different 14 from φd−2

∗ . The ψd−2
∗ functions will be

made explicit later in relation [1.19].

In shortened form, this interpolation can be written as:

σ1d + σd1 + σd−2,d−2 − σ1,d−2 − σd−2,1 .

This interpolation is a generalization of the transfinite interpolation in the presence of internal

nodes. We will establish that this interpolation has the right properties, that is it covers the

serendipity space. We first show that all the monomials ukv or uvk are present. To do this, we

write the shape functions for the reduced element, denoted by φs,d
∗,∗(u, v), in terms of the φ and

the ψ of different degrees. To conclude, we express the shape functions uniquely as functions

of φ.

The four kinds of shape functions

The φs,d
∗,∗(u, v) are of four types, corresponding to corners, index 00 and similar indices, to the

"first" nodes, index 10 and similar indices, to the edge nodes with the other index between 2 and

d− 2, like 20,30,..., to the internal nodes, the two indices between 2 and d− 2, like 22,23,.... The

shape functions are expressed as a function of the classic shape functions, the φ functions, and

the (non-classic) shape functions, the ψ functions. These are written as classic functions, but are

cancelled out at the nodes of a different distribution (non-uniform). See the example of ψ3
0(u).

The φs,d
00 (u, v) function is that which comes up with regard to A00, thus:

φs,d
00 (u, v)=ψ1

0(u)φ
d
0(v)+φd

0(u)ψ
1
0(v)+ ψd−2

0 (u)ψd−2
0 (v)− ψ1

0(u)ψ
d−2
0 (v)− ψd−2

0 (u)ψ1
0(v),

where, as we have seen, ψ1
∗ = φ1

∗, thus:

φs,d
00 (u, v)=φ1

0(u)φ
d
0(v)+ φd

0(u)φ
1
0(v)+ ψd−2

0 (u)ψd−2
0 (v)− φ1

0(u)ψ
d−2
0 (v)− ψd−2

0 (u)φ1
0(v).

From this, we deduce the three other analogous functions:

φs,d
d0 (u, v)= φ1

1(u)φ
d
0(v)+ φd

d(u)φ
1
0(v)+ ψd−2

d−2(u)ψ
d−2
0 (v)− φ1

1(u)ψ
d−2
0 (v)− ψd−2

d−2(u)φ
1
0(v),

φs,d
0d (u, v)=φ1

0(u)φ
d
d(v)+ φd

0(u)φ
1
1(v)+ ψd−2

0 (u)ψd−2
d−2(v)− φ1

0(u)ψ
d−2
d−2(v)− ψd−2

0 (u)φ1
1(v),

14. Indeed, for example, for a degree d = 5 and for the index 0, we have ψ3
0(u) =

1
6
(2−5u)(3−5u)(1−u)

and this function has a value of 1 for u = 0 and is cancelled out at 2
5
, 3
5

and 1, while φ3
0(u) =

1
2
(1−3u)(2−

3u)(1− u) which has a value of 1 for u and is cancelled out at 1
3
, 2
3

and 1.
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φs,d
dd (u, v)=φ1

1(u)φ
d
d(v)+ φd

d(u)φ
1
1(v)+ ψd−2

d−2(u)ψ
d−2
d−2(v)− φ1

1(u)ψ
d−2
d−2(v)− ψd−2

d−2(u)φ
1
1(v).

The function φs,d
10 (u, v) is the function that is seen with respect to A10, that is φs,d

10 (u, v) =
φd
1(u)φ

1
0(v), from this we also deduce the three analogous functions:

φs,d
d−1,0(u, v) = φd

d−1(u)φ
1
0(v), φs,d

1d (u, v) = φd
1(u)φ

1
1(v) andφs,d

d−1,d(u, v) = φd
d−1(u)φ

1
1(v)

and, by symmetry, the similar relations obtained starting from φs,d
01 (u, v) = φ1

0(u)φ
d
1(v), that is:

φs,d
0,d−1(u, v) = φ1

0(u)φ
d
d−1(v), φs,d

d1 (u, v) = φ1
1(u)φ

d
1(v) andφs,d

d,d−1(u, v) = φ1
1(u)φ

d
d−1(v).

The φs,d
20 (u, v) function is that which is seen with regard to A20, thus, simply:

φs,d
20 (u, v) = φs,d

l(1),0(u, v) = φd
2(u)φ

1
0(v) + ψd−2

1 (u)ψd−2
0 (v)− ψd−2

1 φ1
0(v),

from which we deduce:

φs,d
30 (u, v) = φs,d

l(2),0(u, v) = φd
3(u)φ

1
0(v) + ψd−2

2 (u)ψd−2
0 (v)− ψd−2

2 φ1
0(v),

etc., up to the index d− 2. Similarly for φs,d
2d (u, v), ..., φs,d

02 (u, v), ... φs,d
d2 (u, v), ...

The central functions come uniquely from the middle term in the general definition. That is:

φs,d
l(i),l(j)(u, v) = ψd−2

i (u)ψd−2
j (v).

The serendipity space is covered

By construction, relation [1.18], the φs,d
∗,∗(u, v) cover the monomials in the serendipity space.

Indeed, it is enough to show the typical monomials as we see in diagram [1.3.2] for a degree of

5, via the following interpretation:

– two diagonals covering the monomials uk and ukv as well as their two counterparts for vk

and uvk, for k = 0, ..., d,

– the central diamond covering the monomials ukvl where k = 0, ..., d−2 and l = 0, ..., d−2,

noting that these regions overlap and that we can also restrict the second region to the diamond

described by ukvl but with k = 2, ..., d− 2 and l = 2, ..., d− 2. To show that these monomials

of the serendipity space are covered, we will show that the first region may be expressed by

essentially considering the first two terms of relation [1.18] while the second region essentially

concerns the third term of this same relation.

It is obvious that the monomials uk and ukv, with k = 0, ..., d, may be expressed as linear

combinations of the only φd
i (u)ψ

1
j (v) of the second term of the relation, as the φd

i (u) form a

polynomial basis with a degree lower than or equal to d and the ψ1
j (v) form a basis of polynomials

with a degree lower than or equal to 1. We will show that we can choose a specific combination of

other monomials (of other terms) of the complete relation that ensure that the total combination

remains the initial combination with the φd
i (u)ψ

1
j (v). First, we fix a combination of monomials
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1
u v

u2 uv v2

u3 u2v uv2 v3

u4 u3v u2v2 uv3 v4

u5 u4v u3v2 u2v3 uv4 v5

u5v u3v3 uv5

Table 1.1. The diagram of the basis monomials for a degree of 5. We find the monomials up to
the degree of 5 complemented (last line) by some monomials of degree 6, whence the monomial
u3v3 (which is added to the classic monomials of the serendipity elements due to the symmetry

imposed in our definition)

ψ1
i (u)φ

d
1(v) and ψ1

i (u)φ
d
d−1(v) such that the first term is identical to the fourth term (so that

the φd
j (v) degenerate to ψd−2

j (v)). We then consider a combination of monomials ψd−2
j (v) for

2 ≤ j ≤ d − 2 such that ψd−2
j (v) degenerates to ψ1

j (v) ensuring the equality of the third and

fourth terms. Thus, because of these combinations, only the second term yielding the desired

combination remains. By symmetry, we obtain an analogous result for the monomials vk and

uvk.

As concerns the central diamond, it is obvious that the monomials ukvl with k = 0, ..., d− 2
and l = 0, ..., d − 2, may be expressed as linear combinations of only the monomials of the

third term of the complete relationship, that is, ψd−2
i (u)ψd−2

j (v), as these monomials form a

polynomial basis with a degree lower than or equal to d−2. Similarly, we establish a combination

of monomials φd
1(u) and φd

d−1(u) so that φd
i (u) coincides with ψd−2

i (u) (idem at v) such that

the first (respectively, second) term and the fourth (respectively, fifth) term are identical and the

total relation is reduced to the third term, which yields the desired combination.

The polynomial space is, thus, exactly the classic serendipity space for d ≤ 4, and this same

space, enriched, for d ≥ 5 by the monomial(s) ukvl where k = 0, ..., d− 2, l = 0, ..., d− 2 and

k+ l ≥ d+1. As an example, for degree 5, we saw the additional monomial u3v3, for degree 6,

we will find the monomials u4v3, u3v4 and u4v4 as the additional monomials.

Expression for φs,d
∗,∗(u, v) as a function of the classic function φ

In the expression for the reduced shape functions, we have the terms in φ and in ψ that we

will rewrite using the φ functions, of degree d. There are two cases to consider: the treatment of

the first-degree ψ and the (d− 2)-degree ψ.

We saw that ψ1
∗(u) = φ1

∗(u) and, as we will see later, it is enough to increase the degree from

1 to d. However, the treatment of the ψ with a degree of d− 2 is more technical. Each ψd−2
i can

be written as the following linear combination:

ψd−2
i (u) = φd

l(i)(u) + αl(i)φ
d
1(u) + βl(i)φ

d
d−1(u), [1.19]
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where the coefficients αi and βi are calculated such that the degree of this combination is d− 2.

Each ψd−2
i (thus, the above combination) is also a particular Lagrange interpolant (the property

on δij is verified for j = l(i)). To calculate the coefficients αi and βi, we go back to the

expression for the complete shape functions, that is15:

φd
i (u) = (−1)i

ddCd
i

d!

l=d∏
l=0
l �=i

(
l

d
− u),

an expression in which the index i is mute and will, in due course, have the value l(i). In this

expression, the coefficient of the term in ud is:

(−1)i
ddCd

i

d!
(−1)d = (−1)d−i d

dCd
i

d!
,

and that in ud−1 is:

(−1)i
ddCd

i

d!
(−1)d−1

d∑
l=0
l �=i

l

d
= (−1)d+i−1 d

dCd
i

d!

1

d

{
d(d+ 1)

2
− i

}
.

We also enforce that the terms at ud and ud−1 of the combination are null. We then obtain:

(−1)d−iCd
i + αi(−1)d−1Cd

1 + βi(−1)1Cd
d−1 = 0.

This gives a first equation, that is:

(E1) (−1)i
Cd

i

d
− αi + (−1)d−1βi = 0.

The second equation is written as:

(−1)d+i−1Cd
i

{
d(d+ 1)

2
− i

}
+ (−1)dCd

1

{
d(d+ 1)

2
− 1

}
αi + Cd

d−1

{
d(d+ 1)

2
− (d− 1)

}
βi = 0.

Upon multiplying by (−1)1−d, we obtain:

(−1)iCd
i

{
d(d+ 1)

2
− i

}
− Cd

1

{
d(d+ 1)

2
− 1

}
αi + (−1)d−1Cd

d−1

{
d(d+ 1)

2
− (d− 1)

}
βi = 0,

an equation that contains the preceding one and is thus reduced to:

(−1)iiCd
i − Cd

1αi + (−1)d−1Cd
d−1(d− 1)βi = 0,

and finally, this second equation can be reduced to:

(E2) (−1)ii
Cd

i

d
− αi + (−1)d−1(d− 1)βi = 0.

15. The coefficient of the binomial is denoted by Cd
i with a degree d as exponent. This is in order to be

homogenous during our writing of Bernstein polynomials where d is also an exponent.
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Thus, the system to be solved is:{
(E1) (−1)i

Cd
i

d − αi + (−1)d−1βi = 0

(E2) (−1)ii
Cd

i

d − αi + (−1)d−1(d− 1)βi = 0,

which gives the solution, for i = 0, d and different from 1 (for αi) and from d − 1 (for βi;

(E2)− (E1) gives βi, we then calculate αi either by carrying over or by symmetry. We find (for

the indices l(i)):

αl(i) = (−1)l(i)Cd
l(i)

d− 1− l(i)

d(d− 2)
and βl(i) = (−1)d−l(i)Cd

l(i)

l(i)− 1

d(d− 2)
, [1.20]

noting that we can also define these coefficients for the values 1 and d− 1 of the indices (values

not covered by l(i) when i varies from 0 to d − 2) and that, therefore, αd−1 = 0, β1 = 0 and

α1 = βd−1 = −1. We can thus write the formulae [1.20] with the index i, for 0 ≤ i ≤ d. Let us

note that the coefficients are symmetrical, α0 = βd, ..., αd = β0.

We use this strategy to treat the ψd−2 functions. We can then express the typical shape func-
tions of the reduced element. Thus, for the “corner” functions, here with an index 00, we have:

φs,d
00 (u, v) = φ1

0(u)φ
d
0(v) + φd

0(u)φ
1
0(v) + ψd−2

0 (u)ψd−2
0 (v)− φ1

0(u)ψ
d−2
0 (v)− ψd−2

0 (u)φ1
0(v),

which is expressed as:

φs,d
00 (u, v) = φ1

0(u)φ
d
0(v) + φd

0(u)φ
1
0(v)

+
{
φd
0(u) + α0φ

d
1(u) + β0φ

d
d−1(u)

}{
φd
0(v) + α0φ

d
1(v) + β0φ

d
d−1(v)

}
−φ1

0(u)
{
φd
0(v) + α0φ

d
1(v) + β0φ

d
d−1(v)

}
−
{
φd
0(u) + α0φ

d
1(u) + β0φ

d
d−1(u)

}
φ1
0(v).

The other functions of this type can be directly obtained. For example, using symmetry we have,
for u:

φs,d
d0 (u, v) = φs,d

00 (1− u, v) = φ1
0(1− u)φd

0(v) + φd
0(1− u)φ1

0(v)

+
{
φd
0(1− u) + α0φ

d
1(1− u) + β0φ

d
d−1(1− u)

}{
φd
0(v) + α0φ

d
1(v) + β0φ

d
d−1(v)

}
−φ1

0(1−u)
{
φd
0(v) + α0φ

d
1(v) + β0φ

d
d−1(v)

}
−
{
φd
0(1− u) + α0φ

d
1(1− u) + β0φ

d
d−1(1− u)

}
φ1
0(v),

therefore φs,d
d0 (u, v) = φ1

1(u)φ
d
0(v) + φd

d(u)φ
1
0(v)

+
{
φd
d(u) + α0φ

d
d−1(u) + β0φ

d
1(u)

}{
φd
0(v) + α0φ

d
1(v) + β0φ

d
d−1(v)

}
−φ1

1(u)
{
φd
0(v) + α0φ

d
1(v) + β0φ

d
d−1(v)

}
−

{
φd
d(u) + α0φ

d
d−1(u) + β0φ

d
1(u)

}
φ1
0(v).

The second typical function is that of the index 10, whose expression is particularly simple:

φs,d
10 (u, v) = φd

1(u)ψ
1
0(v) = φd

1(u)φ
1
0(v).

The third type of function is that of the functions associated with the edge nodes between the

index 2 and the index d− 2. For example, for the index 20. we find:

φs,d
20 (u, v) = φs,d

l(1),0(u, v) = φd
2(u)ψ

1
0(v) + ψd−2

1 (u)ψd−2
0 (v)− ψd−2

1 (u)φ1
0(v).
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Therefore φs,d
20 (u, v) = φd

2(u)φ
1
0(v)

+
{
φd
2(u) + α2φ

d
1(u) + β2φ

d
d−1(u)

}{
φd
0(v) + α0φ

d
1(v) + β0φ

d
d−1(v)

}
−
{
φd
2(u) + α2φ

d
1(u) + β2φ

d
d−1(u)

}
φ1
0(v).

Finally, the functions associated with the internal nodes are written as:

φs,d
l(i),l(j)(u, v) = ψd−2

i (u)ψd−2
j (v)

=
{
φd
l(i)(u) + αl(i)φ

d
1(u) + βl(i)φ

d
d−1(u)

}{
φd
l(j)(v) + αl(j)φ

d
1(v) + βl(j)φ

d
d−1(v)

}
.

As with d = 3, the general formula is similar16 to a second-degree formula. This case can be

worked through either via the above formulae or directly.

• Third-degree quadrilateral. The element is written with φi(.) and the nodes as:

1∑
i=0

3∑
j=0

φ1
i (u)φ

3
j (v)Ak(i),j +

3∑
i=0

1∑
j=0

φ3
i (u)φ

1
j (v)Ai,k(j) −

1∑
i=0

1∑
j=0

φ1
i (u)φ

1
j (v)Ak(i),k(j).

We mechanically repeat the construction of the second degree. In particular, we make use of the

fact that:
3

3
φ3
0(u) +

2

3
φ3
1(u) +

1

3
φ3
2(u) +

0

3
φ3
3(u) = φ1

0(u)

and that
0

3
φ3
0(u) +

1

3
φ3
1(u) +

2

3
φ3
2(u) +

3

3
φ3
3(u) = φ1

1(u),

and from this we deduce that, for example, the first term of the expression, σ13, is formulated as:

σ13 =
3∑

I=0

3∑
j=0

φ3
I(u)φ

3
j (v)QIj ,

where Q0j = Ak(0),j = A0j , QIj =
(3− I)A0j + I A3j

3
, I = 1, 2 andQ3j = Ak(1),j = A3j .

The second term is treated in the same manner as the last term. By rewriting the initial formula,

term by term, to the degree of 3 using Qij and then replacing these based on the initial nodes,

we find a complete statement to a degree of 3 by constructing the four missing nodes. For exam-

ple, the construction of the node that is naturally denoted by A11 corresponds to the following

schema:

03 13 23 33 -2/9 1/3 0 -1/9

02 32 0 0

01 [11] 31 2/3 [11] 1/3

00 10 20 30 -4/9 2/3 0 -2/9

16. The functions φ and ψ are identical.
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With this particular node, A11, as well as A21, A22 and A12, the four made-up nodes, and the

initial nodes, the element can be written as a complete patch:

3∑
i=0

3∑
j=0

φ3
i (u)φ

3
j (v)Aij =

3∑
i=0

3∑
j=0

p3ij(u, v)Aij .

This construction makes it possible to explicitly calculate the reduced shape forms. Let us

recall that φ0(u) =
1
2 (1 − 3u)(2 − 3u)(1 − u), φ1(u) =

9
2u(2 − 3u)(1 − u) and that φ2(u) =

− 9
2u(1 − 3u)(1 − u). The first shape function, index 00, is the polynomial that comes up with

respect to A00, and thus via A00 itself, with the weight 1, and via A11, A21, A12 and A22, with

the weights − 4
9 ,− 2

9 ,− 2
9 and − 1

9 , that is:

ps,300 (u, v) = p00(u, v)−
4

9
p11(u, v)−

2

9
p21(u, v)−

2

9
p12(u, v)−

1

9
p22(u, v),

=
1

4
(1− 3u)(2− 3u)(1−u)(1− 3v)(2− 3v)(1− v)− 4

9

9

2
u(2− 3u)(1−u)

9

2
v(2− 3v)(1− v)

+
2

9

9

2
u(1− 3u)(1− u)

9

2
v(2− 3v)(1− v) +

2

9

9

2
u(2− 3u)(1− u)

9

2
v(1− 3v)(1− v)

−1

9

9

2
u(1− 3u)(1− u)

9

2
v(1− 3v)(1− v)

=
9

2
(1− u)(1− v)

{
2

9

1

4
(1− 3u)(2− 3u)(1− 3v)(2− 3v)− 2u(2− 3u)v(2− 3v)

+u(1− 3u)v(2− 3v) + u(2− 3u)v(1− 3v)− 1

2
u(1− 3u)v(1− 3v)

}

=
9

2
(1− u)(1− v)(

2

9
− u− v + u2 + v2).

The other typical function is that of index 10, which is in a similar manner obtained via A10, A11

and A12, therefore:

ps,310 (u, v) = p10(u, v) +
2

3
p11(u, v) +

1

3
p12(u, v),

= φ3
1(u)

{
φ3
0(v) +

2

3
φ3
1(v) +

1

3
φ3
2(v)

}
= φ3

1(u)φ
1
0(v) =

9

2
u(2− 3u)(1− u)(1− v).

We establish the expression for the reduced shape functions using symmetry.

It must be noted that the initial relation directly gives the result, that is:

ps,300 (u, v) = φ1
0(u)φ

3
0(v) + φ3

0(u)φ
1
0(v)− φ1

0(u)φ
1
0(v)

=
1

2
(1− u)(1− 3v)(2− 3v)(1− v) +

1

2
(1− 3u)(2− 3u)(1− u)(1− v)− (1− u)(1− v)
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=
1

2
(1− u)(1− v) {(1− 3v)(2− 3v) + (1− 3u)(2− 3u)− 2}

=
1

2
(1− u)(1− v)

{
2− 9u− 9v + 9u2 + 9v2

}
,

as above. And for the index 10, we directly find that:

ps,310 (u, v) = φ3
1(u)φ

1
0(v),

as for degree 2.

• Quadrilateral of degree d ≥ 4. The element is written with φi(.), ψi(.) and nodes via

formula [1.18].

As seen already, the formula involves first-degree functions and functions with a degree of d−2.

Rewriting the ψi functions using the classic φi functions also makes it possible to reconstruct

a complete element equivalent to the reduced element by inventing the missing nodes, the other

nodes being identical (to the initial nodes). These missing nodes are linear combinations of the

nodes of the reduced element and are obtained by the same process of moving from ψi to φi from

degree 1 or d − 2 to the degree d. Further on, we will return to this process to establish these

combinations.

Degree of 1 to d

From a degree of 1, we can write an expression for a degree d. These formulae have already

been seen:
d∑

k=0

d− k

d
φd
k(u) = φ1

0(u) and

d∑
k=0

k

d
φd
k(u) = φ1

1(u) .

Thus:
1∑

i=0

φ1
i (u)Ak(i) =

d∑
i=0

φd
i (u)

(d− i)A0 + iAd

d
=

d∑
i=0

φd
i (u)Qi,

where Qi =
(d−i)A0+iAd

d . This rewritten form will be used to work on the terms at u or at v for

σ1d, σd1, σ1,d−2 and σd−2,1 in relation [1.18].

Degree d− 2 to d

To work with the degree d − 2, we once again consider, at a degree of d and with i different

from 1 and from d−1, the linear combination ψd−2
i (u) = φd

l(i)(u)+αl(i)φ
d
1(u)+βl(i)φ

d
d−1(u),

with the coefficients αi and βi calculated such that the degree falls from 2. Thus, as calculated

above, relations [1.20]:

αl(i) = (−1)l(i)Cd
l(i)

d− 1− l(i)

d(d− 2)
and βl(i) = (−1)d−l(i)Cd

l(i)

l(i)− 1

d(d− 2)
.
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Let us take a curve of degree d, which is written as

d∑
i=0

φd
i (u)Ai where the nodes other than

A1 and Ad−1 are assumed to be known and we construct the nodes A1 and Ad−1 using the

formulae:

A1 =
∑

i �=1,i�=d−1

αiAi and Ad−1 =
∑

i �=1,i�=d−1

βiAi. [1.21]

We then have:

d∑
i=0

φd
i (u)Ai = φd

o(u)A0+
∑
i �=1

i�=d−1

αiφ
d
1(u)Ai+

∑
i=2,d−2

φd
i (u)Ai+

∑
i �=1

i �=d−1

βiφ
d
d−1(u)Ai+φd

d(u)Ad,

which we group at A0, A2, ..., Ad−2 and Ad and we find:

d∑
i=0

φd
i (u)Ai =

d−2∑
i=0

ψd−2
i (u)Al(i),

which is, therefore, a curve of degree d − 2. This shortcut will make it possible to work on the

degrees d − 2 in formula [1.18] by inventing the missing nodes via formulae [1.21], making it

possible to write an expression for a degree d.

When applied to a curve, this result gives the relation:

d−2∑
i=0

ψd−2
i (u)Al(i) =

d∑
i=0

φd
i (u)Qi,

where:

Q0 = A0, Q1 =
∑
i �=1

i �=d−1

αiAi, Qi = Ai, i = 2, d− 2, Qd−1 =
∑
i �=1

i �=d−1

βiAi and Qd = Ad.

The tensor nature of the elements makes it possible to use this established result for curves

in order to determine the missing nodes of the complete equivalent element17. Thus, we first

complete the isocurves constant in v to obtain Qi,1 and Qi,d−1 for i �= 1 and i �= d− 1. We then

complete the isocurves constant in u to obtain the Q1,j and the Qd−1,j for all j (which fills all

the missing nodes in the first phase).

As an illustration, we explain the case of fourth- and fifth-degree quadrilaterals and, for de-

gree 4, we graphically explain relation [1.18], which gives the following diagram:

17. The complete equivalent element, see Chapter 3, will be used to study the geometric validity of the

reduced element.
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04 . . . 44 04 14 24 34 44 04 . 24 . 44

03 43 . . . .

02 42 + . . + 02 22 42

01 41 . . . .

00 . . . 40 00 10 20 30 40 00 . 20 . 40

which corresponds to σ14, σ41 and σ22, terms to which we add two correction terms that corre-

spond to σ12 and σ21, that is:

04 . . . 44 04 . 24 . 44

. . . .

- 02 42 - . .

. . . .

00 . . . 40 00 . 20 . 40

The degree 4

This element has 17 nodes of which one is internal (against 25, for the complete element).

The coefficients αi have a value of α0 = 3
8 , α2 = 6

8 , α3 = 0 and α4 = − 1
8 . Using these values,

we have the following distribution schema for A11:

04 14 24 34 44 -3/64 1/4 -18/64 0 5/64

03 43 0 0

02 22 42 -18/64 36/64 -18/64

01 [11] 41 3/4 [11] 1/4

00 10 20 30 40 -27/64 3/4 -18/64 0 -3/64

and, by symmetry, we can find A13, A31 and A33. To give the example of a non-corner missing

node, let us consider A21. We thus find the distribution shown in the schema:
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04 14 24 34 44 1/16 0 -1/8 0 1/16

03 43 0 0

02 22 42 -6/16 6/8 -6/16

01 [21] 41 1/2 [21] 1/2

00 10 20 30 40 -3/16 0 3/8 0 -3/16

and, by symmetry, we find A12, A32 and A23.

We can now make explicit the typical functions φs,4
00 (u, v), φ

s,4
10 (u, v), φ

s,4
20 (u, v) and φs,4

22 (u, v),
either via the general formula or via the weights that are thus found.

For φs,4
00 (u, v), via the general formula (we must calculate α0 and β0) we obtain:

α0 =
3

8
and β0 = −1

8
.

We than have the expression:

φs,4
00 (u, v) = φ1

0(u)φ
4
0(v) + φ4

0(u)φ
1
0(v)

+

{
φ4
0(u) +

3

8
φ4
1(u)−

1

8
φ4
3(u)

}{
φ4
0(v) +

3

8
φ4
1(v)−

1

8
φ4
3(v)

}

−φ1
0(u)

{
φ4
0(v) +

3

8
φ4
1(v)−

1

8
φ4
3(v)

}
−
{
φ4
0(u) +

3

8
φ4
1(u)−

1

8
φ4
3(u)

}
φ1
0(v)

=

{
φ4
0(u) +

3

8
φ4
1(u)−

1

8
φ4
3(u)

}{
φ4
0(v) +

3

8
φ4
1(v)−

1

8
φ4
3(v)

}

−φ1
0(u)

{
3

8
φ4
1(v)−

1

8
φ4
3(v)

}
−
{
3

8
φ4
1(u)−

1

8
φ4
3(u)

}
φ1
0(v),

as:

φ1
0(u) =

4∑
k=0

4− k

4
φ4
k(u) = φ4

0(u) +
3

4
φ4
1(u) +

2

4
φ4
2(u) +

1

4
φ4
3(u),

we can express everything using classic functions of a degree of 4 and we find:

at φ4
0(u)φ

4
0(v) : 1,

at φ4
1(u)φ

4
1(v) :

9

64
− 3

4

3

8
− 3

8

3

4
= −27

64
,

at φ4
2(u)φ

4
1(v) : −

2

4

3

8
= − 3

16
,
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etc. We can also, as is obvious, directly find the weights of the two preceding diagrams.

At the end of the explanation, we start from:

φ1
0(u) = 1− u,

φ4
0(u) =

1

6
(1− 4u)(2− 4u)(3− 4u)(1− u) =

1

3
(1− 4u)(1− 2u)(3− 4u)(1− u),

φ4
1(u) = −1

6
(−4u)(2− 4u)(3− 4u)(4− 4u) =

16

3
u(1− 2u)(3− 4u)(1− u),

φ4
3(u) = −1

6
(−4u)(1− 4u)(2− 4u)(4− 4u) =

16

3
u(1− 4u)(1− 2u)(1− u),

and (1−u)(1−v) is factorized. We thus obtain, via a formal system of calculation, the expression

(for details, see [George et al. 2014a]):

φs,4
00 (u, v) =

1

3
(1− u)(1− v)(3− 22u− 22v + 48u2 + 12uv + 48v2 − 32u3 − 32v3).

Similarly, from the same reference, we have:

φs,4
10 (u, v) =

16

3
u(1− u)(1− 2u)(3− 4u)(1− v),

φs,4
20 (u, v) = 4u(1− u)(1− v)(−3 + 16u− 2v − 16u2),

φs,4
22 (u, v) = 16u(1− u)v(1− v).

The degree 5

This element has 24 nodes of which four are internal (as opposed to 36 for the complete ele-

ment) and is different from the classic element [Arnold, Awanou-2011], [Floater, Gillette-2014],

which has only 23 nodes, and thus a non-symmetry. This makes it a non-symmetrical element

when the degrees of freedom are of a nodal value(s) type. The αi sequence is α0 = 4
15 , α2 =

20
15 , α3 = − 10

15 , α4 = 0 and α5 = 1
15 , which gives the following schemas for A11, with the factor

1
45 :

05 15 25 35 45 55 -4 9 -8 4 0 -1

04 54 0 0

03 23 33 53 16 -40 20 4

02 22 32 52 -32 80 -40 -8

01 51 36 [11] 9

00 10 20 30 40 50 -16 36 -32 16 0 -4
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and for A21, with the factor 1
75 :

05 15 25 35 45 55 -3 0 5 0 0 -2

04 54 0 0

03 23 33 53 30 -50 0 20

02 22 32 52 -60 100 0 -40

01 51 45 [21] 30

00 10 20 30 40 50 -12 0 20 0 0 -8

Starting from A11, we can easily find A41, A14 and A44. From A21, we can find

A31, A42, A43, A34, A33, A12 and A13.

Shape functions

These distribution schemas make it possible to find the explicit expression for the reduced

shape functions. We once again see that the general formula also contains the distribution coef-

ficients.

There are four types of functions: the corner functions, such as φs,5
00 (u, v), those analogous

to φs,5
10 (u, v), those analogous to φs,5

20 (u, v) and, finally, the four “central” functions, analogous

to φs,5
22 (u, v). These expressions are given in [George et al. 2014a], that is:

φs,5
00 (u, v) =

1

72
(v − 1)(u− 1)

{
72− 750u− 750v + 2625u2 + 1250uv + 2625v2

−3750u3 − 1250u2v − 1250uv2 − 3750v3 + 1875u4 + 1250u2v2 + 1875v4
}
,

φs,5
10 (u, v) =

25

24
u(2− 5u)(3− 5u)(4− 5u)(1− u)(1− v),

φs,5
20 (u, v) =

25

36
u(5u− 3)(u− 1)(v − 1)(12− 75u+ 25v + 75u2 − 25v2),

φs,5
22 (u, v) = q22(u, v) =

625

36
uv(5v − 3)(v − 1)(5u− 3)(u− 1).
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The case of hexahedra

A hexahedron is seen as the tensor product of a quadrilateral in the third direction. Conse-

quently, the formulae seen for two dimensions can be extrapolated directly, which gives:

θ112 + θ121 + θ211 − 2 θ111 ,

for d = 2 and, otherwise:

θ11d + θ1d1 + θd11 + θd−2,d−2,d−2 − θ1,1,d−2 − θ1,d−2,1 − θd−2,1,1 ,

as the σ..(u, v) are replaced by the θ...(u, v, w). It must be noted that the general formula, for

d = 3 again gives a formula similar to that for degree 2 as in two dimensions.

The techniques developed can be directly applied, whether this is to increase a degree of 1

to a degree d or to interpret a curve with a degree of d − 2 as a curve with a degree of d via the

construction of the two nodes of indices 1 and d− 1.

We conclude by giving the typical reduced form functions for the case d = 2 and the case d =
3.

The second-degree serendipity hexahedron has 20 nodes, the vertices and two nodes per edge.

These two typical functions are:

ps000(u, v, w) = (1− u)(1− v)(1− w)(1− 2u− 2v − 2w),

ps100(u, v, w) = 4u(1− u)(1− v)(1− w).

The third-degree serendipity hexahedron has 32 nodes, the vertices and two nodes per edge.

These two typical functions are:

ps000(u, v, w) =
9

2
(1− u)(1− v)(1− w)(

2

9
− u− v − w + u2 + v2 + w2),

ps100(u, v, w) =
9

2
u(2− 3u)(1− u)(1− v)(1− w).

1.3.3. Other elements, prisms and pyramids

As prisms have a triangular base, only the cases where d = 2 and d = 3 are relevant. The

second- and third-degree pyramids, seen as degenerate hexahedra, are, by nature, already reduced

elements.
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1.4. Shape functions, rational elements

Lagrange elements with a degree at least equal to 2 make it possible to have a better ap-

proximation of curved boundaries (better than straight elements, even of smaller size). On the

contrary, approaching a circle (which is, nonetheless, of a degree of 2) is done using pieces of

parabolas, from which comes the idea of using rational shape functions. This idea, already an

old one (dating back to the 1980s at least) was combined with a modern trend, isogeometric
analysis. Refer to [Cottrell et al. 2009] for example.

1.4.1. Rational triangle with a degree of 2 or arbitrary degree

The second-degree rational triangle is commonly seen as a patch and is described by a rational

Bézier based on its control points. In an analogous manner, we will consider the following

definition for this triangle:

σ(u, v, w) =

∑
i+j+k=2

ωijkpijk(u, v, w)Aijk

∑
i+j+k=2

ωijkpijk(u, v, w)
,

where the ωijk are positive or null weights (but not all null weights). By denoting the denomina-

tor by D(u, v, w), that is: D(u, v, w) =
∑

i+j+k=2

ωijkpijk(u, v, w), the expression becomes:

σ(u, v, w) =
1

D(u, v, w)

∑
i+j+k=2

ωijkpijk(u, v, w)Aijk. [1.22]

002

101 011

200 110 020

The shape functions, denoted by an exponent r (for “rational”), are direct. For example:

pr200(u, v, w) =
ω200

D(u, v, w)
p200(u, v, w) and pr110(u, v, w) =

ω110

D(u, v, w)
p110(u, v, w),

with the pijk seen earlier, p200(u, v, w) = u(2u − 1) and p110(u, v, w) = 4uv. Let us note that

if the weights are equal, we find prijk(u, v, w) = pijk(u, v, w).

We have the same shape for all degrees, that is: prijk(u, v, w) =
ωijk

D(u, v, w)
pijk(u, v, w).

We will return to these triangular elements in Chapter 3, to find a rational Bézier formulation

and, thus, control the sign of their Jacobians.
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1.4.2. Rational quadrilateral of an arbitrary degree

In a manner similar to the patches, we introduce the same definition to describe quadrilaterals

of an arbitrary degree, that is:

σ(u, v) =

d∑
i=0

d∑
j=0

ωijpij(u, v)Aij

d∑
i=0

d∑
j=0

ωijpij(u, v)

.

where the ωijk are positive or null weights (but not all null weights). By denoting the denomina-

tor by D(u, v), or: D(u, v) =

d∑
i=0

d∑
j=0

ωijpij(u, v), the expression becomes:

σ(u, v) =
1

D(u, v)

d∑
i=0

d∑
j=0

ωijpij(u, v, w)Aij . [1.23]

From which we deduce the expression for the shape functions: prij(u, v) =
ωij

D(u, v)
pij(u, v).

We will return to these quadrilateral elements in Chapter 3 as well, to find a rational Bézier

formulation and, thus, control their Jacobian signs.

1.4.3. General case, B-splines or Nurbs elements

Rational tetrahedra and hexahedra may be expressed in exactly the same manner. For other

elements, prisms and pyramids, this is less common.

There is nothing to prevent formally writing the B-splines or Nurbs elements with an identical

definition. However, geometric validation (Chapter 3) of these type of elements is shown to be

technically complicated, despite the fact that B-splines can be decomposed in Bézier shapes and

Nurbs can be decomposed in rational Bézier curves (which, in turn, are expressed in classic

Bézier curves but in an additional dimension of space). It must be noted that the literature on

these elements does not mention this issue of validity, implicitly assuming that the question does

not arise.

∗
∗ ∗

Our description of finite elements and, more precisely, shape functions has been deliberately

oriented by a very geometric view of elements, which are, therefore, considered to be patches. As
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such, this point of view naturally leads us to review Lagrangian formalism by transforming it into

Bézier formalism. Beacuse of the underlying properties, this makes it possible to approach, in a

relatively easy manner, the delicate problem of geometric validity of the elements seen either as

finite elements or as geometric patches. Let us indicate the existence of several INRIA research

reports that discuss in detail the subjects studied here, especially those that concern details on

technical calculations that are not fully explained here.

This choice has resulted in certain important subjects being neglected. For example, the

Hermite finite elements where, among the degrees of freedom, we also find derivatives. These

are subjects that may be studied by themselves. These elements are richer in their interpolant

aspects but, geometrically, they remain identical to Lagrange elements (classically, only those

with a degree of 1) and the geometric validation is the same as for Lagrangian elements.

To conclude, even though we have discussed the case of elements of any order, in prac-

tice only first- or second-order elements (complete or reduced) are presently commonly used in

concrete numerical simulations. This is especially true at the industrial level, while third-order

(complete or reduced) elements are used more intensively in geometric modeling. It may be

tempting to go up in order (or degree), however this greatly complicates the geometric processes

involved.




