
1

Introduction of Real-time
Image Processing

1.1. General image processing presentation

The traditional view of an image derives heavily from
experience in photography, television and the like. This
means that an image is a two-dimensional (2D) structure, a
representation and also a structure with meaning to a visual
response system. This view of an image only accepts spatial
variation (a static image). In parallel, a dynamic image has
spatial and temporal variation. In most contexts, this is
usually referred to as video. This more complex structure
needs to be viewed as a sequence of images each
representing a particular instance in time. On the other
hand, an image can be formed by taking a sampling plane
through that volume and so the variation in three
dimensions is observed. This may be referred to as a volume
image. An image linked to a volume that changes with time
is a further possibility. This has particular significance in
medical imaging applications [MYE 09].

Image processing is a method to convert an image into
digital form and perform some operations on it in order to
get an improved image or to extract some useful information
from it. A digital image described in a 2D space is usually

CO
PYRIG

HTED
 M

ATERIA
L

2

co
m
w

ra
im
im
th
pr
th
po
pr
pe
U
m
pr
pe
m
ap
pr
di

F

m
m
Fi
fr
th
en

 Architecture-A

onsidered a
methods to
within engin

Image pr
ange of ap
mage data
maging, etc
hree levels
rocessing t
hat perform
ossesses bo
rocessing
erform feat

Using an
measuremen

rocessing u
erform int

measuremen
part from t
reprocessin
istortions in

igure 1.1. Ove

Before an
must be ca
manageable

igure 1.1),
rom the obj
he energy a
nergy. In o

Aware Optimiza

as 2D sign
it. Image p

neering and

rocessing is
pplications

sets, digi
c. The goal
s: low, m
echniques

m simple pr
oth image_i
combines

ture extract
image_in

nts_out
uses combi
terpretation
nts_in for
these three

ng techniq
ntroduced b

erview of the t

ny image
aptured by
entity. Thi
which con

ect of inter
and finally
order to ca

ation Strategies

nals while a
processing
d computer

s an enab
including

ital televis
of this tec

medium an
are mathe

rocessing ta
in and imag

the simp
tion and pa
, this “
(parameter
inations of
n. This “u

high-level
e levels, it

ques that
by sensors.

typical image

processing
y a came
is is the im
nsists of th
rest, an opt
a sensor th
apture an

in Real-time Im

applying a
forms a co

r science too

ling techn
g remote s
sion, robot
chnology ca
nd high. L
ematical or
asks. This “
ge_out. Me

ple low-lev
attern recog
“analysis”
rs). Hig
f medium-l
understandi
l descriptio
t is also ne

are desig
.

acquisition pro

can comm
era and c

mage acquis
hree steps;
tical system
hat measur

image, a

mage Processing

already set
ore researc
o.

ology for a
sensing, se
tics and m
an be divide
Low-level
logical ope

“processing
edium-level
vel operat
gnition fun

level pr
gh-level
level functi
ing” level
on_out. U
ecessary to
gned to r

rocess (see [M

mence, an
converted
sition proce

energy re
m that focu
res the amo
camera re

g

signal
ch area

a wide
ecurity,
medical
ed into
image

erators
g” level
l image
ors to

nctions.
roduces

image
ions to
treats

Usually,
o apply
remove

MOE 12])

image
into a

ess (see
eflected
uses on
ount of
equires

Introduction of Real-time Image Processing 3

some sort of measurable energy. The energy of interest in
this context is light or electromagnetic waves. Each wave can
have different wavelengths (or different energy levels or
different frequencies). The human visual spectrum is in the
range of approximately 400–700 nm.

After having illuminated the object of interest, the light
reflected from the object now has to be captured by the
camera composed of an optical system and an image sensor.
The role of the first is to focus the light reflected from the
object onto the second (a material sensitive to the reflected
light). An image sensor consists of a 2D array of cells. Each
of these cells is denoted a pixel and is capable of measuring
the amount of incident light and convert that into a voltage,
which in turn is converted into a digital number. The more
incident light, the higher the voltage and the higher the
digital number.

In order to transform the information from the sensor into
an image, each cell content is now converted into a pixel
value in the range: (0, 255). Such a value is interpreted as
the amount of light hitting a cell. This is denoted the
intensity of a pixel. It is visualized as a shade of gray
denoted gray-level value ranging from black (0) to white
(255). Standardly, a monochromatic, static image
corresponds to a matrix of m rows and n columns. Therefore,
the camera records m x n pixels of 8 bit values.

In order to capture a color image, the color camera must
record three matrices of three primary colors red, green and
blue. Recently, a lot of applications are realized using
multispectral image processing, since the multispectral
cameras are more available with reasonable prices.
According to application needs, multispectral images are
captured using different wavelengths (bands). They can
be considered as a cube formed by 2D gray-level images.
Figure 1.2 displays two typical test images in the area of
image processing research. Figure 1.3 gives two

4

m
a

im
de
us
do

 Architecture-A

multispectra
skin lesion

Figure 1.2.
a color

Figu
ver

Certain t
mages. Th
escriptions
sed such a
omains, m

Aware Optimiza

al cube exa
n assessmen

. Lena (gray-le
r version of th

ure 1.3. Two m
rsion of the fig

tools are
hese inclu

and manip
as convoluti

morphologica

ation Strategies

amples; the
nt applicati

evel image) an
e figure, see w

multispectral im
gure, see www

central to
ude mathe
pulative to
ion, filterin
al operatio

in Real-time Im

 right imag
ion.

nd landscape
www.iste.co.u

mage cubes. F
w.iste.co.uk/li/i

 the proce
ematical t
ools. We ca
ng in spati
ons and im

mage Processing

ge is captu

(color image).
k/li/image.zip

For a color
image.zip

essing of
tools, sta
n cite some
ial and fre
mage trans

g

ured for

. For

digital
tistical
e more
quency
sforms,

Introduction of Real-time Image Processing 5

etc. The types of basic operations that can be applied to
digital images to transform an input image A(m, n) into an
output image B(m, n) (or another representation) can be
classified into three categories:

– Point: the output value at a specific matrix coordinate is
dependent only on the input value at that same coordinate.
In this case, generic operation complexity per pixel is
constant.

– Local: the output value at a specific coordinate is
dependent on the input values in the neighborhood of that
same coordinate. In most cases, the type of neighborhood is
rectangular with 8-connected (3 × 3 mask) or 24-connected
(5 × 5 mask pixels). The complexity per pixel is proportional
to the square of neighborhood size.

– Global: the output value at a specific coordinate is
dependent on all the values in the input image. The
complexity per pixel is equal to N × N (image size = N).

The complexity per pixel of each operation type
participates in the total complexity of an image processing
chain for a target application. This total complexity per
image decides the processing speed (time performance).

1.2. Real-time image processing

Real-time image processing is the subfield of image
processing focused on producing and analyzing images in
real time. Generally, a real-time system has the following
three interpretations within different senses [KEH 06]:

– real time in the perceptual sense, which is used to
describe the interaction between a human and a computer
device for a near instantaneous response of the device to an
input by a human user;

6 Architecture-Aware Optimization Strategies in Real-time Image Processing

– real time in the software engineering sense, which is
used to describe a concept of bounded response time in the
computer device. With this constraint, the device must satisfy
both the correctness of the outputs and their timeliness;

– real time in the signal processing sense, which is used to
describe the constraint within which the computer device
has to complete processing in the time available between
successive input samples.

Since image processing is a subfield of signal processing,
in this book we base the interpretation of “real time” on the
signal processing sense.

In order to satisfy the constraint of “real time”,
Kehtarnavaz [KEH 11] points out that the total instruction
count of a real-time algorithm must be “less than the number
of instructions that can be executed between two consecutive
samples”, and Ackenhusen et al. [ACK 99] describe the “real-
time processing” as a computation of “a certain number of
operations upon a required amount of input data within a
specified interval of time” as well. Therefore, the key
technique of real-time image processing is to ensure that the
amount of time for completing all the requisite transferring
and processing of image data is less than the allotted time
for processing. For example, if the algorithm is aimed at an
entire frame (a static image) and the frame frequency of the
system is 30 frames per second (fps), the processing of a
single frame should be finished during 33 ms.

Real-time image processing systems involve processing
vast amounts of image data in a timely manner for the
purpose of extracting useful information, which could mean
anything from obtaining an enhanced image to intelligent
scene analysis. Digital images and video are essentially
multidimensional signals and are thus quite data intensive,
requiring a significant amount of computation and memory
resources for their processing. A common theme in real-time
image processing systems is how to deal with their vast

Introduction of Real-time Image Processing 7

amount of processing and computations. The key to cope
with this issue is the concept of parallel processing, a concept
well known to those working in the architecture area who
deal with computations on large data sets [KEH 06]. In fact,
much of what goes into implementing an efficient image
processing system centers on how well the implementation,
in both hardware and software, exploits different forms of
parallelism in an algorithm, which can be data level
parallelism (DLP) and/or instruction level parallelism (ILP).
DLP manifests itself in the application of the same operation
on different sets of data, while ILP manifests itself in
scheduling the simultaneous execution of multiple
independent operations in a pipeline fashion.

Low-level image processing transforms image data to
another image data. This means that such operators deal
directly with image matrix data at the pixel level. Examples
of such operations include color transformations, linear or
nonlinear filtering, noise reduction and frequency domain
transformations. In this low-level processing, one can
observe three operation categories. Point operations are the
simplest since a given input pixel is transformed into an
output pixel, where the transformation does not depend on
any of the pixels surrounding the input pixel. Local
neighborhood operations are more complex in that the
transformation from an input pixel to an output pixel
depends on a neighborhood of the input pixel. Such
operations include 2D spatial convolution and filtering,
smoothing, sharpening, etc. These operations require a large
amount of computations. Finally, global operations build
upon neighborhood operations in which a single output pixel
depends on every pixel in the input image. An example of
such an operation is the discrete Fourier transform that
depends on the entire image. These operations are quite data
intensive as well.

8 Architecture-Aware Optimization Strategies in Real-time Image Processing

All low-level image operations involve nested looping
through all the pixels in an input image with the innermost
loop applying a point, neighborhood or global operator to the
pixels forming an output image. Therefore, these are fairly
data-intensive operations, with highly structured and
predictable processing, requiring a high bandwidth for
accessing image data. In general, low-level operations are
excellent candidates for exploiting DLP.

Medium-level operations transform image data to a
slightly more abstract form of information by extracting
certain features from an image. This means that such
operations also deal with the image at the pixel level for
input, but the transformations involved cause a reduction in
the amount of data from input to output. Medium-level
operations primarily include segmenting an image into
regions/objects of interest or extracting edges, lines, or other
image attributes such as statistical features. The goal these
operations is to reduce the amount of data to form a set of
features suitable for further high-level processing [KEH 06].
Some medium-level operations are also data intensive with a
regular processing structure, thus making them suitable
candidates for exploiting DLP.

High-level operations interpret the abstract data from the
medium level, performing high-level knowledge-based scene
analysis on a reduced amount of data. Such operations
include classification/recognition of objects or a control
decision based on some extracted features. These types of
operations are usually characterized by control or branch-
intensive operations. Thus, they are less data intensive and
more inherently sequential rather than parallel. Due to their
irregular structure and low bandwidth requirements, such
operations are suitable candidates for exploiting ILP,
although their data-intensive portions usually include some
form of matrix-vector operations that are suitable for
exploiting DLP.

Introduction of Real-time Image Processing 9

From the above discussion, one can see that there is a
wide range of diversity in image processing. A typical image
processing chain combines the three levels of operations into
a complete system, as shown in Figure 1.4, where top shows
the image processing chain and bottom shows the decrease
in the amount of data from the start of the chain to the end
for an N × N image with P bits of precision. The diversity of
operations in image processing leads to the understanding
that a single processor might not be suitable for a real-time
image processing algorithm implementation. A more
appropriate solution would thus couple multiple computation
components of different characteristics [KEH 06].

Figure 1.4. Diversity of operations in image processing: typical processing
chain (top) and decrease in amount of data across processing chain (bottom)

Bearing in mind the above argument, developing a real-
time processing system can be quite a challenge. The solution
often ends up as some combination of hardware and software
approaches. From the hardware point of view, the challenge is
to determine what kind of hardware is best suited for a given
image processing task among a myriad of available hardware
platform choices. From the algorithm and/or software point of
view, the challenge involves being able to guarantee that
“real-time” deadlines are met, which could involve making
choices between different algorithms based on computational
complexity, algorithm optimization in the parallel execution
sense, using a real-time operating system, and extracting

10 Architecture-Aware Optimization Strategies in Real-time Image Processing

accurate timing measurements from the entire system by
profiling the developed algorithm [KEH 06].

In the real-time image processing area, embedded systems
are often involved. A precise definition of an embedded
system is not easy. Simply stated, all computing systems
other than general purpose computers (with monitor,
keyboard, etc.) are embedded systems. An embedded system
has software embedded into hardware, which makes a
system dedicated to an application or a specific part of an
application. It is an engineering artifact involving
computation that is subject to physical constraints (reaction
constraints and execution constraints) arising through
interactions of computational processes with the physical
world. Embedded image processing systems are typically
designed to meet real-time constraints; a real-time system
reacts to stimuli from the controlled object/operator within
the time interval dictated by the environment.

When the complexity of the image processing applications
leads to a high ratio between its computation volume and its
reaction time, standard off-the-shelf sequential architectures
are inadequate. Parallel, distributed and multicore
architectures are required. Programming such architectures
is an order of magnitude harder than with uniprocessor
sequential ones, and even more so when architecture
resources must be minimized to match cost, power and
volume constraints required for embedded applications.

In this context, hardware platform selection and careful
and fine-tuned application programming/development
environments become more and more important. At the
same time, the application market is quickly spreading
which reduces the time available for the design of individual
applications. These facts increase the demand of rapid
prototyping of real-time image processing. The rapid
prototyping of complex parallel real-time embedded
applications is essentially based on the software/hardware

Introduction of Real-time Image Processing 11

co-design. This notion is knows in two senses; for
multicomponent architecture, this software/hardware
(SW/HW) co-design step distributes some parts of the
applications to processors by running software, while other
parts must be implemented by hardware running on specific
integrated circuits. On the other hand, SW/HW co-design
usually means application design using both SW/HW
development environments.

Designing real-time image processing systems is a
challenging task indeed. Practical issues of speed, accuracy,
robustness, adaptability, flexibility and total system cost are
important aspects of an embedded system design. In
practice, one usually has to trade one aspect for another.
Since the design parameters depend on each other, the
trade-off analysis can be viewed as a system optimization
problem in a multidimensional space with various constraint
curves and surfaces. This design space exploration task, from
a mathematical viewpoint, consists of determining optimal
design working points.

Today, we are at a crossroad in the development of real-
time image processing systems. The advancements in
integrated circuit technology make it now feasible to put to
practical use the rich theoretical results obtained by the
image processing community. In spite of the fact that the
value of an algorithm hinges upon the ease with which it can
be placed into practical use, the implementation challenges
involved have often discouraged researchers from pursuing
the idea further, leaving it to hardware experts to implement
a practical version in real time. The purpose of the following
chapters is to facilitate this task by providing a broad
overview of the advanced strategies/tools for rapid
prototyping of real-time image processing system.

The rest of the book is organized as follows: Chapter 2
describes commonly used hardware architectures for real-
time image processing. After a comparison of the currently

12 Architecture-Aware Optimization Strategies in Real-time Image Processing

available platforms and their development environments, we
concentrate on rapid prototyping of image processing based on
field programmable gate array (FPGA) technology. Chapter 3
presents research results about enabling the reconfigurable
instruction set processor model by exploiting FPGA
technology for discrete cosine transform algorithm
implementation. High-level synthesis (HLS) technique is
introduced in Chapter 4 with a skin lesion assessment
application as an illustration example. In Chapter 5, we
propose a novel source-to-source compilation strategy in order
to improve HLS design performances. This CDMS4HLS
technique is tested and validated by the embedded
implementation of very high resolution satellite image
segmentation in Chapter 6. Chapter 7 examines real-time
image processing with very high level synthesis.

