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Introduction, Generalities,
Definitions of Systems

This chapter explores the representation, modeling and identification of signals,

transmission systems and filtering concepts.

A number of mathematical concepts introduced in this chapter (distributions) are

an extension of the conventional notion of functions. The comprehensive study of

distributions is not absolutely essential if some unproven results are accepted. The

objective of this chapter is to introduce basic notions, temporal relations and

transformations that enable this correspondence to be established.

1.1. Introduction

Modeling is a very important step in linear systems control. To properly control

a system, the knowledge of a good model is necessary. For example, to drive a car,

the more accurate the knowledge of its dynamic behavior or its model is (by learning

or training), the better it will be controlled at high speed and therefore the better it

will be driven and will show the best performance. The dynamic model is acquired by

learning or by identifying the system after knowing the structure of this model.

During the development of an application for automation purposes, we follow the

following steps:

1) modeling;

2) identification;

3) behavior analysis;

4) controller synthesis;
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2 Fundamentals of Signals and Control Systems

5) control implementation;

6) analysis and study of the closed-loop system;

7) verification of the performance and eventually repeat steps 2, 3 or 4.

The modeling stage becomes crucial when the requirements are strict regarding

performances and when the control implemented proves to be complex.

System

System interfaces - Peripherals

Actions

Measurement

Processing

Analysis

Control

Figure 1.1. Peripherals of a system

1.2. Signals and communication systems

In electronics, as for most other areas, a signal designates any electromagnetic or

physics phenomenon used as medium for information to be transmitted. This signal

is used to characterize a physical quantity captured by reflecting its evolution over

time and or in space, amplitude, energy or power. For example, this is the case in a

thermometer with the indicated level or the electrical signal supplied by a

thermocouple.

Electrical signals are typically provided by a system called sensor, consisting of

an element sensitive to a physical effect that it converts into an electrically measurable

quantity and an adapter amplifier that thereof provides the equivalence in the form

of a signal. This is the case for pressure, temperature, radiation, speed, position and

acceleration sensors. This signal is then manipulated by an analog or a digital system.

Sensor: Physical effect−→Converter−→Amplifier−→Adaptor−→Signal

In general, in the case of an observation of a physical phenomenon, a signal can be

defined as being the variation of a physical quantity (measured by a sensor) in time (t)
or in space (x) - (observation). In this case, the processing may involve the separation

of signal and noise, extraction of information, extraction of frequency and temporal

characteristics, etc.

Observation: Sensor −→ Electronic system −→ Signal −→ Information
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A communication system is usually a means of communication between an

information source and a recipient (electronic, optical or mechanical system)

Communication sequence:

Emission: Message −→ Coder −→ Electronic system −→ Signal −→ Transmitter

−→ Channel

Reception:

Channel −→ Receiver −→ Electronic system −→ Decoder −→ Signal −→
Processing

Processing:

Signal processing −→ Information processing −→ Decision

– The variable is usually time t (it can be space ξ or any other physical parameters).

– The signal is denoted as s(t), y(t) (or z(ξ)).
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Figure 1.4. Communication sequence
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1.3. Signals and systems representation

1.3.1. Signal

A signal is a physical representation of a phenomenon that evolves in time or in

space. It can be represented in time and frequency domains. The frequency

representation of a signal is interesting because it provides more information about

the signal. The tool used to shift from the time domain to the frequency domain is the

Fourier transform (FT).

Analog macroscopic measurements provide curves (in time) of the relevant signal.

This signal is represented by a mathematical function x(t), most often, with real values

of one real variable (time t).

These functions, since they reflect physical quantities with finite energy or finite

average power, are:

– real;

– bounded functions and with bounded support (integration without difficulties);

– continuous and differentiable in any point (derivation with no difficulties);

– they can be periodical x(t) = x(t+ T ) if T is the period;

– in addition, for causal physical signals, we get: x(t) = 0 for t < 0.
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Figure 1.5. Time signal with bounded support
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t
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bounded support

bounded

function

Figure 1.6. Signal defined over a bounded medium

Subsequently, in order to simplify calculations and mathematical manipulations,

we will consider that signals can be represented (or modeled) by functions having the

following properties:

– bounded functions;

– functions defined in t ∈ R =]−∞,+∞[;

– functions with discontinuities or piecewise continuous (rectangle or gate,

sawtooth signals, etc.);

– real- or complex-valued functions.

Often, the set of all functions having the above properties is restricted either to

that of absolutely summable functions, x(t) such that
∫ +∞
−∞ |x(t)| dt does exist, or

that of square-integrable functions such that quantity
∫ +∞
−∞ |x(t)| dt exists and is

finite. The advantage of square-integrable functions is that they make it possible to

represent finite-energy signals (case of most frequently encountered real signals). It

can be shown that this set constitutes a vector space.

1.3.2. Functional space L2

Consider the vector space of square-integrable functions:

L2 = { function f(t) : R −→ C such that :

∫ +∞

−∞
|f(t)|2 dt < ∞} [1.1]
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If f∗(t) is the conjugate of f(t), we get

< f(t), g(t) >=

∫ +∞

−∞
f(t)g∗(t)dt [1.2]

the scalar product of the two functions. If f(t) and g(t) are real, it is a scalar product,

otherwise a Hermitian product.

Schwartz inequality:

|< f, g >|2 ≤< f, f >< g, g > [1.3]

The equality is obtained if and only if f = λ.g with λ scalar.

PROOF.– f(t) and g(t) are two functions of the space of finite-energy functions L2,

and λ is a constant parameter arbitrarily chosen. Let λ ∈ C such that q =< f +
λg, f + λg >2≥ 0.

Let: α =
∫ +∞
−∞ |f(t)|2 dt , γ =

∫ +∞
−∞ |g(t)|2 dt and β =

∫ +∞
−∞ f(t)g∗(t)dt.

α =< f, f > γ =< g, g >

β =< f, g > β∗ =< g, f >

∀λ ∈ C, q = α+ λ∗β + λβ∗ + λλ∗γ ≥ 0. [1.4]

1) if γ = 0 =⇒ ∀λ ∈ C, q = α+ 2Re(λ∗β) ≥ 0 =⇒ β = 0

the inequality is then verified: q =< f, f >= α

2) if γ �= 0, multiply by g the two members of the equation [1.4]: γα + λ∗βγ +
λβ∗γ + λλ∗γγ > 0

(λγ + β)λ∗γ + β∗λγ + αγ + ββ∗ − β∗β ≥ 0 [1.5]

(λγ + β)(λ∗γ + β∗) + αγ − ββ∗ ≥ 0 [1.6]

|λγ + β|2 + αγ − |β|2 ≥ 0 [1.7]

or even

λγ + β2 + αγ ≥ |β|2 [1.8]

taking λ = −β
γ , we get the Schwartz inequality: αγ ≥ |β|2
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The equality corresponds to q = 0 where∫ +∞

−∞
|f(t) + λg(t)|2 dt = 0 =⇒ f(t) + λg(t) = 0where f(t) = −λg(t)[1.9]

EXAMPLE 1.1.– The output signal of a harmonic oscillator can be represented by the
sinusoidal function represented by the curve below. This signal (assumed as
deterministic) can be modeled by the following equation: y(t) = sin(2πfot+ ϕ).

-5 -4 -3 -2 -1 1 2 3 4 5

-1.0

-0.5

0.5

1.0

x

y

Figure 1.7. Harmonic oscillator output signal

This function is continuous, differentiable, bounded, and periodic of period T =
1/fo but with unbounded support and square non-integrable (infinite energy and finite

mean power). In this case, for the study, we will rather consider the average power in

a period and for the spectral representation either the FT in the sense of distributions

or Fourier series will be used.

Therefore, for the study of signals, abstract mathematical modeling will be used

in order to take advantage of the power of the theoretical tools available. Often, this

abstract representation expands the properties of the signal being considered and its

definition (finite average power signals, distributions). The interpretation of the results

obtained with such mathematical models must be made with care, taking into account

physical considerations of the problems in order to face realistic situations after a

theoretical study.

1.3.3. Dirac distribution

It is possible to summarily define δ(t) by its properties because they are most often

sufficient for the processing technique under consideration.

DEFINITION 1.1.– Consider the function defined by fl(t) = 0 if t < −l/2 or t >
l/2 and fl(t) = 1/l if t ≥ −l/2 and t ≤ l/2. The appearance of this function is
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represented here for different values of l. The limit of this function as l tends to zero
gives us the Dirac distribution. When the width of the curve l is made to tend to zero,
an infinitely high and narrow rectangle is obtained whose area is always equal to 1.
When the limit is reached, we get a mathematical object that is not a function of R,
because it is undefined for t = 0. This is the Dirac delta function or impulse symbol

denoted as δ(t).

Conventionally, it is represented by an arrow of height 1 at t = 0.

δ(t− t1) represents the impulse translated of t1 on the time axis. δ(t).x(t) is also a

distribution of the same kind that represents a mass point x(0) concentrated in t = 0.

It shows the following features.

For its application in physics, the interesting particularity of Dirac’s delta function

is the finite area (equal to 1), representing, for example, a point mass concentrated

in t = 0. This distribution is very useful for the mathematical modeling of physical

phenomena: point sources in optics, point mass in mechanics, percussion in acoustics,

point charge in electricity, acceleration during shock. Before stating its properties, we

define the convolution product ∗ by the composition product.

The delta function is graphically represented by convention as an arrow with a

unit height. It should be noted that the height is here connected with the mass of

the distribution (surface under the curve) and not with amplitude, as is the case for

functions.

DEFINITION 1.2.– The convolution product of two functions f(t) and g(t) denoted as
f(t) ∗ g(t) is defined by the integral (when it makes sense):

h(t) = x(t) ∗ y(t) =
∫ +∞

−∞
x(t− τ)y(τ)dτ [1.10]

PROPOSITION 1.1.– The delta function shows the following particularities (Table 1.1).

The area under the curve is equal to 1:
∫ +∞
−∞ fl(t)dt = 1 for any width l.

x(t) ∗ δ(t) = x(t) δ(t)neutral element of the convolution

x(t) ∗ δ(t− to) = x(t− to) (offset)

x(t− t1) ∗ δ(t− t2) = x(t− t1 − t2)

δ(t− t2) ∗ δ(t− t1) = δ(t− t2 − t1)

δ(at) = |a|−1 δ(t)

Table 1.1. The delta function
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Figure 1.8. Unit impulse

1.4. Convolution and composition products – notions of filtering

In Table 1.1, let us recall that ∗ denotes the convolution product and δ(t) is the delta

function (impulse symbol), which is equal to zero everywhere except at zero where it

is infinite.

1.4.1. Convolution or composition product

PROPOSITION 1.2.– Convolution or product composition has the following

proprieties:

– commutativity: x(t) ∗ y(t) = y(t) ∗ x(t) (change in variable u = t− τ );

– distributivity: x(t) ∗ (y(t) + z(t)) = x(t) ∗ y(t) + x(t) ∗ z(t);

– associativity: (x(t) ∗ y(t)) ∗ z(t)) = x(t) ∗ (y(t) ∗ z(t)).

Dirac function properties:

The graphic representation of a pulse is by convention as shown in Figure 1.9 for

δ(t− to).

a) δ(t) = 0 ∀t �= 0 and δ(t) = ∞ for t = 0;

b)
∫ +∞
−∞ δ(t)dt = 1

∫ +∞
−∞ δ(t)x(t)dt = x(0);

∫
δ(t− to)x(t)dt = x(to)
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δ(t-to) represents the impulse offset by to on the axis of time t. The quantity δ(t
to)x(t) is also a distribution of the same kind representing a point mass x(to)
concentrated in t = to.

Delta function

t

0

d(t-to)

to

Figure 1.9. Dirac’s delta function

System S
x(t) y(t)

Figure 1.10. Input/output of a system

(c) x(t) ∗ δ(t) = x(t) Neutral element of the convolution

(d) x(t) ∗ δ(t− to) = x(t− to) Offset of a time function

(e) x(t− t1) ∗ δ(t− to) = x(t− t1 − to) Offsets cumulation

δ(t− t1) ∗ δ(t− to) = δ(t− t1 − to)

(f) δ(at) = |a|−1 δ(t) Change of scale

(g) δ(t− to) = δ(to − t) Symmetry of the pulse

(h) δ(t− to) =
d
dt
(u(t− to)) Where u(t− to) is the unit level offset in to

Table 1.2. Properties of the delta function

The delta function can also be physically approximated by a triangular or

exponential function whose area under the curve is equal to the unit.

1.4.2. System

A system can be represented by a filter whose response is the convolution product

of its transfer function and the input signal. A system can be described by

time-differential equations and algebraic equations or by a transfer function in the
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complex plane (frequency domain). The transfer function represents the Laplace

transform of the impulse response of the system.

1.5. Transmission systems and filters

Consider a system S, with an input a signal x(t) assumed as real (for the moment)

and an output y(t) (the response of the system to input x(t)). The system S can be

represented by an operator that we will also define as S : X −→ Y . We will then

write y(t) = S(x(t)) to mean that S transforms x(t) of the input signals vector space

X into y(t) of the output vector space Y (under certain assumptions of reliability,

stability, signals boundedness, etc.):

– the system is linear if the operator associated with it is linear:

x1(t) −→ y1(t) and x2(t) −→ y2(t), then at x1(t)+b.x2(t) −→ a.y1(t)+b.y2(t)
∀a, b ∈ R

– the system is time invariant (stationary) if its behavior is independent of the time

origin:

x1(t) −→ y1(t), then x1(t− τ) −→ y1(t− τ) ∀τ ∈ R

– a system is known as causal if its impulse response (response to an impulse) is

zero for negative times (h(t) = 0 if t < 0).

REMARK 1.1.– As a first approximation, almost all systems are (very often)
considered as linear for weak signals. A linear system realizes an application from a
vector space X in an another Y . Generalizing to the spaces of complex signals
(spaces defined in C). In general, X and Y define the same vector space (or two
subspaces), the application S is then a linear operator and Y is the image of X by S.

Consequently, any signal, x(t) ∈ X , can be written according to the base elements

of the vector space xi(t):

x(t) =
∑
i

aixi(t) −→ y(t) =
∑
i

aiyi(t); with S : xj(t) −→ yj(t) for j =

1, 2, 3...

The response of the system therefore will be written based on the yi(t) images of

the elements of the basis of the space X by the operator S (linear combination with the

same coefficients as the decomposition of x(t)). To know the answer to any random

action, is suffices that the image by operator S is known for an enumerable collection

of function xi(t) (basis of X).
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1.5.1. Convolution and filtering

The physical justification of the convolution or composition product for filtering

uses the concept of impulse response of a system or filter:

– h(t) is the impulse response of the filter or system (H) that is the response of this

system when an impulse is applied on its input, such as Dirac’s delta function δ(t),
S : δ(t) −→ h(t).

o

tt

to

filter output

filter

H
   

o to

δ (t–to) h (t–to)

filter input

Figure 1.11. Impulse response of the filter or system

– When an impulse is applied to the system offset by to, its response will be shifted

as much: S : δ(t− to) −→ h(t− to).

– When applying a signal x(t) on input of this system, the input signal is

subdivided with a step Δτ , into a set of elementary impulse, as shown in Figure 1.12.

– Considering the kth shifted impulse of kΔτ = τ , it has mass (weight or area

under the curve) x(kΔτ).Δτ ; the response to this impulse will also be shifted in time

and amplitude (x(kΔτ ).Δτ).h(t− kΔτ).

– Then, the response to any random signal x(t) will be the sum of the terms

consisting of the responses to all the impulses that constitute x(t); that is the sum

of x(kΔτ).Δτ.h(t− kΔτ) for all values of k obtained during the subdivision, that is∑
k

(x(kΔτ).Δτ.h(t− kΔτ)) :

- whence by passing to the limit when Δτ tends to zero, and by replacing kΔτ by τ

and Δτ by dτ , we get the response of the filter on input x(t): y(t) =
∫ +∞
0

(x(τ).h(t−
τ))dτ , that is, because signals are causal:

y(t) =

∫ +∞

−∞
(x(τ).h(t− τ))dτ = x(t) ∗ h(t) = h(t) ∗ x(t) [1.11]

In conclusion, for a system the response y(t) to an input x(t) is expressed as the

convolution product of the input and the impulse response of the system. Therefore,



14 Fundamentals of Signals and Control Systems

it is possible to represent a system by its impulse response inasmuch as it is sufficient

to determine its response to any input x(t). It is the representation of a system by the
impulse response.

x(t)

t

k Δ t (k+1) Δ t

Figure 1.12. Input signal with a step Δτ

x(t)

x(k)
kth pulse

1

0.5

0

0 10 20 30 40

Input signal subdivision

Figure 1.13. Signal subdivision

In this section, we have shown the interest of functions, distributions and

operators and mathematical tools for modeling signals and systems. In the following

section, we will present some types of signals and systems as well as their modeling

and representations.
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1.6. Deterministic signals – random signals – analog signals

1.6.1. Definitions

1.6.1.1. Deterministic signals
Signals originate from phenomena for which the knowledge of initial conditions

and physical laws allows the anticipation of the result of the measurement and

represents a set of results in the form of a function x(t) (for example falling body,

filter response with a known x). Such a signal is considered as finite when it is

possible to determine its value at any time t. The description of a signal may be

non-parametric (recording, graphics, etc.) or parametric.

We refer to parametric representation or signal model when one is able to define a

set of parameters that make it possible to trace the evolution of the signal in time and

determine its values at any moment.

Sinusoid x(t) = A.sin(ωt) +B Parameters: A, ω, B

Damped oscillating signal s(t) = A(1− e−b.t).cos(ωt+ ϕ) Parameters: A, b, ω,ϕ

Square signal y(t) = A.signe(sin(ωt)) + b Parameters: A, b, ω

Table 1.3. Deterministic signals

EXAMPLE 1.2.–

A deterministic signal may, in principle, be rigorously reproduced identical to

itself.

1.6.1.2. Random signals (or probabilistic)
Signals for which the result of a measurement (test) is not predictable and that

can only be characterized by using statistical quantities (random distribution), cannot

be determined by instantaneous values. For example, the value of the temperature in

a geographical point is impossible to determine in advance (before measurement), it

constitutes a random signal. A prediction can only be made in the statistical sense with

a probability not equal to the unity. A range of values is associated with a probability

of occurrence (for example probability (10 < θ ≤ 20) = 0.3). A random signal is not
strictly reproducible.

1.6.1.3. Signal and noise
Signal = a quantity carrying information.

Noise = a quantity carrying no information or unnecessary to the user.

It is the recipient who considers if there is or isn’t information. For instance,

thermal noise from the sky is a signal for the radio astronomer; on the other hand, it

is a disruptive noise for telecommunication engineers.
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1.6.2. Some deterministic analog signals

Heaviside signal (unit step), denoted as H(t), G(t) or u(t), will subsequently be

written as u(t). It is defined by:

u(t) =

{
1, if t ≥ 0
0, if t < 0

[1.12]

Unit Heaviside

u(t)

t

0

Figure 1.14. Heaviside

Square pulse

t

0

D(t-to)

to

1/a

a

Figure 1.15. Rectangular pulse

Its derivative is the Dirac delta function δ(t)
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t

0

Figure 1.16. Gaussian

1.6.2.1. Exponential signals

This class includes polynomial and sinusoid signals. There are used in the

solution of differential equations with constant coefficients; if ρ= d
dt denotes the

derivation operator:

ρnx(t) + an−1.ρ
n−1x(t) + ...+ a1.ρx(t) + a0.x(t) = 0 ρx(t) =

d

dt
x(t) [1.13]

The general solution of this type of equation is of the form (a combination of

particular solutions eαn.t):

x(t) =

i=q∑
i=1

eαi.t
ni−1∑
j=1

cij .t
j [1.14]

where cij are constants depending on initial conditions and are thereof the complex or

real roots of the characteristic equation:

ρn + an−1.ρ
n−1 + ...+ a1.ρ+ a0 = 0 =

q∏
i=1

(α− αi)
ni ,

q∑
i=1

ni = n [1.15]

1.6.2.2. Impulse signals

Different forms of impulse functions can be considered. Figures 1.17 and 1.23 give

some examples where pulse height and width are chosen such that the area under the

curve is unitary. All these functions have in common the properties of Dirac’s delta

function previously defined.
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Triangular pulse

1/a

to0

t

to+ato–a

Figure 1.17. Triangular pulse

Derived triangle

t

0 to

Figure 1.18. Derivative of the triangular signal

1.6.2.2.1. Examples

1) Rectangular function centered in to fl(t− to)

2) Triangular function of height 1/a and width at the base 2a, also centered in to.

3) Note that the derivative of this impulse yields two square impulses of opposite

signs.

4) Exponential function, for example, if u(t) is the step function:

Δ(t) = (1/a)e−t/a.u(t). All these functions can be used to decompose a

signal into a series of pulses because at the limit they give δ(t), that is:∫ +∞
−∞ δ(t− to)x(t)dt = x(to).

5) Polynomial function: Δ(t) = (1/2π)a/(a2 + t2).

6) Gaussian-shaped function: Δ(t) = ( 1
a
√
2π

)e−t2/a2

Gaussian form
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Figure 1.19. Exponential
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Figure 1.20. Rectangular pulse

-4 -2 0 2 4

0.1

0.2

0.3

0.4

x

y

Figure 1.21. Gaussian form
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Figure 1.22. Exponential form
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Figure 1.23. Polynomial form

1.6.3. Representation and modeling of signals and systems

In order to introduce the different types of modeling, we are going to study a few

examples.

1.6.3.1. Representation by polynomial equations
The signal is defined by a polynomial in t or a function of t such as exponential

functions. These signals are generally of the same type as sinusoid or exponential

signals.

EXAMPLE 1.3.–

a) y(t) = K
(a2+t2)n

b) y(t) = cos(ωt) = (ejωt + e−jωt)/2
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1.6.3.2. Representation by differential equations

They are defined by differential equations and they are their solutions; for example,

for a signal:

ρnx(t) + an−1.ρ
n−1x(t) + ...+ a1.ρx(t) + a0x(t) = 0, ρx(t) =

dx(t)

dt
[1.16]

and for an input u(t) and output system x(t), we get:

ρnx(t) + an−1.ρ
n−1x(t) + ...+ a0x(t) = bm.ρmu(t) [1.17]

+ bm−1.ρ
m−1u(t) + ...+ b1.ρu(t) + b0u(t)

1.6.3.3. Representation by state equations

Let a vector of dimension n be defined (minimal representation for a system of

order n), the knowledge of which together with the initial state makes it possible to

determine the state of the system at any time using the equation of the system. The

state equation of a system for the linear case is defined by a vector differential equation

of order one of the original differential equation linking the input to the output. It is

presented in the following form for a system whose input is u(t) and output is y(t).

DEFINITION 1.3.– The minimal dimension of the state of a system corresponds to the
number of initial conditions necessary to integrate its differential equation (evolution
equation). For a system of order n (degree of its differential equation), this dimension
is equal to n. The first-order vector differential equation describing the dynamics of a
state vector is a state representation of the system.

State equation of the system with input u and output y is written as

.

X = A.X +Bu(t) [1.18]

Observation equation

y(t) = C.X [1.19]

In the case of a signal, it suffices to cancel input u in the above-mentioned equation.
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1.6.3.4. Graphic representations

Among graphic representations, the most important and the most commonly used

are as follows:

– the time representation of the evolution of the signal (plot of the impulse or step

response, or the evolution of the signal in time);

– representation in the phase plane (the plot in a coordinate system defined by

the components of the system state vector, for example, the derivative or velocity as

a function of the position for a second-order system), which is rather interesting in

automatic control as in signal processing;

– frequency representations (Bode, Black, Nyquist) that are studied in automation

after the time-frequency transformations;

– the time-frequency representation (three-dimensional) that is rather useful for

non-stationary signals.

C

LR

I(t)

e(t) e (t) 
c

Figure 1.24. A R L C circuit

1.6.3.4.1. Examples

EXAMPLE 1.4.– Electric RLC circuit

The differential equation giving the behavior model of this circuit is written as:

C
dec(t)

dt
= i(t) and [1.20]

e(t) = Ri(t) + L
di(t)

dt
+ ec(t) [1.21]

The state vector of the system is given by X(t) =
(
ec(t)
i(t)

)
. This vector defines the

internal state of the system at the moment t. This allows us to obtain the system state
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representation, which is a temporal representation. This representation is not unique.

In this case, matrix A and the state representation are defined by:

.

X = A

(
ec(t)

i(t)

)
+Bu [1.22]

ec = (1; 0)X = (1; 0)

(
ec(t)

i(t)

)
; [1.23]

with A =

(
0 1

C

− 1
L −R

L

)
B =

(
0
1
L

)
EXAMPLE 1.5.– Butterworth filter case

A normalized low-pass, fourth-order Butterworth filter, with a cut-off pulse

1 rad/s, whose input is u(t) and output y(t), has a differential equation as:

(ρ4 + 2.6131ρ3 + 3.4142ρ2 + 2.6131ρ+ 1)y(t) = u(t)ρ and x(t) =
dx(t)

dt
[1.24]

It can be written in the state form:

.

X = AX +Bu; y = CX [1.25]

with A =

⎛⎜⎜⎝
−2.6131 −3.4142 −2.6131 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠B =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠C =
(
0 0 0 1

)

1.6.4. Phase–plane representation

Consider the case of the second-order signal or system in free regime, defined by

its differential equation:

..
y(t) = f(

.
y(t), y(t)) [1.26]

By considering x1 = y(t) and x2 =
.
y(t) as components of the state vector, it is

possible to associate thereto the following state representation:

.

X(t) =

(
x2

−f(x1, x2)

)
= AX; y(t) = [1; 0].X [1.27]
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State variables x1 and x2 are also called phase variables; they determine at every

moment the state of the system that can be represented by a point M in the plane

(x1, x2). This plane is called the phase plane. Point M is characterized by state vector

X(t) and its evolution in time from an initial point Mo describes a phase curve. Phase

curves can be graded in time and depend on the initial point Mo (the initial state). By

eliminating the time variable, an equation is obtained that is parameterized according

to the coordinates (x1, x2), defining a network of curves. The plot of these curves

provides a visualization of the evolution of the system.

A large number of linear or nonlinear systems can be approximated by a second

order. This method of representation allows us to easily conclude about the evolution

and stability of a system. These disadvantages lie in the fact that graphical

representation is impossible for systems with an order higher than 2 and is only

applicable for autonomous systems (without input control and whose differential

equation does not explicitly depend on time) having a unique solution (for the state

equation). It should be noted that the principle remains valid for systems of order

greater than 2, although the graphical representation is impossible. In the following

section, we illustrate this method for the case of a second-order linear system.

1.6.4.1. Case of a second-order linear system

For the representation of a second-order system in the phase plane, we consider

the equation:

..
y(t) + 2zωo

.
y(t) + ω2

oy(t) = 0 [1.28]

z is the damping and ωo is the angular frequency of the system. The poles p1, p2
are the roots of the characteristic equation:

r + 2zωor + ωo = 0 [1.29]

According to damping values z, several possible cases can be distinguished.

Case 1: If p1and p2 are two real negative roots of the characteristic equation:

y(t) = x1 = C1e
p1t + C2e

p2t [1.30]

.
y(t) = x2 = p1C1e

p1t + p2C2e
p2t [1.31]

hence

ep1t =
[p2x1 − x2]

[p2 − p1]C1
and ep2t =

[p1x1 − x2]

[p1 − p2].C2
[1.32]
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wherefrom by raising these two equations to the power p1 and p2, we get:

(p2x1 − x2)
p2
p1 = C(p1x1 − x2) [1.33]

Constant C depends on constants C1 and C2. This equation represents a family of

parabolas tending to zero in t, as shown in Figure 1.25.

Case 2: If p1 and p2 are two real positive roots, then it yields, by proceeding as

previously shown, the result in Figure 1.26.

Figure 1.25. p1and p2 are two real negative
roots of the characteristic equation

Figure 1.26. p1 and p2 are two real positive roots

Case 3: In the case where p1 and p2 are two real roots of opposite signs, equation

[1.33] this time belongs to a family of hyperbolas, because p2/p1 < 0, whose

asymptotes have equations:

x2 = p1.x1 and x2 = p2.x1 [1.34]

One of the asymptotes (the one corresponding to pi <0) has its branches directed

toward the origin (x1=0, x2=0). The representation is shown in Figure 1.25.
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Case 4: If p1and p2 are two complex roots with real negative parts, the system is

stable and damped oscillating. The solutions are of the form:

x1 = Aep1 .sin(ωt+ ϕ) andx2 = Bep2 .sin(ωt+ ψ) [1.35]

A, B, ϕ and ψ depend on initial conditions. Trajectories have the shape of spirals

going toward zero as shown in Figure 1.26.

Case 5: If p1 and p2 are two complex roots with real positive parts, this yields

spirals ranging from zero to infinity (see Figure 1.27).

Case 6: For two pure imaginary roots, we then obtain ellipses as presented in

Figure 1.28:

x1 = A.sin(ωt+ ϕ) andx2 = B.sin(ωt+ ψ) [1.36]

We have previously presented the phase–plane representation. This representation

is useful for the stability analysis of a system but it is limited to the second-order case.

1.6.5. Dynamic system

1.6.5.1. Definitions relating to the equilibrium and stability of a dynamic
system

Consider a free dynamic system described by the differential vector equation:

.
x = f(x, t) ∀t ∈ R [1.37]

where x(t) is the state vector of dimension n of the system, defining a point in the

phase plane, and f(x, t) is a vector function in R that may be nonlinear. We consider

here the case of free signals or systems. Note that this system is free but it is not

generally autonomous since its equation depends explicitly on time. The equation of

an autonomous system can be written in the form
.
x = f(x) without explicit

dependence of time. Thus, a free time variant system is not autonomous.

Let Φ(to, xo, t), the vector function, non-perturbated solution of equation [1.37],

differentiable with respect to time and such that for any x ∈ Rn , t ∈ R (x(to) = xo

initial state and to initial moment), we have:

Φ(to, xo, t) = x = x(t) [1.38]

d(Φ(to, xo, t))

dt
= f [Φ(to, xo, t), t] [1.39]
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Φ(to, xo, t) defines a curve or trajectory of the system in the phase space for an initial

state xo ∈ R
n and t ∈ R.

Figure 1.27. p1 and p2 are two complex roots with real positive parts

Figure 1.28. Two pure imaginary roots

1.6.5.2. Equilibrium state of a system

DEFINITION 1.4.– A state xe of the free system is called equilibrium point if:

f(xe, t) = 0 ∀t ∈ R, t > to [1.40]

This expresses that if xe is an equilibrium point, then, in a case without

disturbance, the system tends to remain in a nearby neighborhood because at this

point velocity
.
xe = f(xe, t) is zero. When the equilibrium point is xe �= 0, it can be

brought by transformation to the origin of the phase space. For a linear time-invariant

system,
.
x = f(x, t) = A.x, if A is not singular, then xe = 0 is the point of

equilibrium. If A is singular, there is an infinite number of equilibrium points. The

search for equilibrium points does not require solving differential equations

(
.
x = f(x, t) = 0).

1.6.5.2.1. Stable equilibrium state

DEFINITION 1.5.– An equilibrium state is stable if, after deviating from this
equilibrium, the system remains in the neighborhood or tends to return to this
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equilibrium point. An equilibrium point will be known as unstable equilibrium if after
deviating from this point, the system tends to move away from it.

For example, a pendulum has a stable equilibrium (low vertical position) and an

unstable equilibrium (high vertical position, modulo 2kπ).

1.6.5.3. Stable system: bounded input bounded output

DEFINITION 1.6.– A system is said to be stable if for any bounded input e(t) it
establishes a correspondence to a bounded output s(t). This notion of stability is
called “Bounded Input Bounded Output stability”.

If h(t) is the impulse response of the system, the following can be stated:

s(t) =

∫ +∞

−∞
e(τ).h(t− τ)dτ = e(t) ∗ h(t) [1.41]

Knowing that e(t) is bounded, M ∈ R we then obtain:

|s(t)| ≤
∫ +∞

−∞
|e(τ)| . |h(t− τ)| dτ ≤ M.

∫ +∞

−∞
|h(τ)| dτ [1.42]

hence the system is stable if h(t), its impulse response, is a summable function. A

sufficient condition for stability is that h(t) is summable (
∫ +∞
−∞ |h(τ)|dτ is finite).

1.7. Comprehension and application exercises

EXERCISE 1.–

1) Write the differential equation of a system composed of mass M suspended by

a spring of stiffness k. We consider that the mass moves along a vertical axis without

friction.

2) Represent this system in the form of state taking a state vector composed of the

position and the velocity of mass M .

EXERCISE 2.–

An oscillator delivers a signal composed of two frequencies f1 and f2:

1) give all possible representations to define this signal and the parameters

corresponding to them;

2) the amplitude of the oscillations of both frequencies decreases by 10% after 5 h;

what happens to the representations of question 1?;
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EXERCISE 3.–

1) a low-pass filter has impulse response h(t) = Ae
−t
t1 +Be

−t
t2 to determine other

representations capable of describing this system;

2) give the conditions about the parameters of the system providing the stability

of the filter;

3) give different graphical representation of this system.




