Operational Research Using a Spreadsheet

1.1. Foreword

In this chapter, I will present various possible ways of using Microsoft Excel for solving classical problems linked to operational research.

The version that I use is part of the Microsoft Office 2013 Suite. Most of the exercises shown can easily be adapted for other spreadsheets provided they have similar functions.

1.2. Dynamic programming

Here, we will examine a problem we first encountered in section 4.2.3 of the first volume of this series, the famous knapsack problem (KP).

I will present a solution here based on a spreadsheet linked to two procedures written in Visual Basic Application (VBA).

To begin with, we must first create the table in Figure 1.1 in a spreadsheet.

Once the input has been carried out, place the following formulae in the indicated cells:

- E1: =COUNTA (B4:K4), calculates the number of objects available;

- B24: =TOTAL (B23:T23), calculates the total value of the objects;

- now save your table;

- switch to VBE, create a module for your project (DEVELOPER tab, VISUAL BASIC icon, right click on the project file, INSERT then MODULE);

- open the module that has just been created, normally MODULE 1 and input the following lines of code:

Figure 1.1. The table to be created in the spreadsheet

```
Sub Clear() 4
    'Clears the contents of the initial table4
    rep = MsgBox("Do you wish to clear the tables'
contents to begin a new calculation", vbYesNo,
"Clear") 4
    If rep = vbYes Then4
        Range("B1").ClearContents4
        Range("B3:K5").ClearContents4
        Range("A8:U17").ClearContents4
        Range("B20:K23").ClearContents4
        End If4
End Sub4
4
Sub Knapsack() 4
```

```
rep = MsgBox("Have you entered the capacity and
values in the table above to begin a new calculation
?", vbYesNo, "Calcul")↔
    If rep = vbNo Then Exit Sub4
    'Declaration of variables and tables4
    Dim i, j, m1, m2 As Integer↔
    'Table of weights↔
    Dim p() As Integer4
    'Table of values↓
    Dim v() As Integer↔
    Dim c As Integer↓
    'Allocation of the capacity to the variable c4
    C = Cells(1, 2) \leftrightarrow
    Dim n As Integer↓
    'Allocation of the number of objects to the
variable n4
    n = Cells(1, 5) \leftrightarrow
    ReDim p(n)↔
    ReDim v(n)↔
    'Objects matrix4
    Dim table() As Integer4
    ReDim table(n, c)↔
4
    'Reading object weight
    For i = 1 To n∉
        p(i) = Cells(4, i + 1) \leftrightarrow
    Next≁
ч
    'Reading object weight
    For j = 1 To n + J
       v(j) = Cells(5, j + 1) 4
    Next≁
4
    Initializing the table, setting its content to 04
    For j = 0 To c \leftarrow
        table(0, j) = 04
    Next4
4
  'Constructing and filling the matrix4
    For i = 1 To n↔
        For j = 0 To c +
             If j >= p(i) Then↔
                 m1 = table(i - 1, j) \leftrightarrow
```

```
m2 = table(i - 1, j - p(i)) + v(i) + v(i)
                  If m1 > m2 Then table(i, j) = m1 Else
table(i, j) = m24
             Else≁
                  table(i, j) = table(i - 1, j) 4
             End If≁
             Cells(7 + i, j + 1) = table(i, j) \leftrightarrow
         Next4
    Next≁
ų
  'Reading objects€
    Dim ob(8) As String4
    For u = 1 To n^4
       ob(u) = Cells(3, u + 1) e^{i}
    Next≁
ų
  'Further reallocation of variables4
    i = n≁
    j = c≁
ъ
    'Determining maximal weight
    Dim k, m As Integer4
    m = 2↔
    For k = c To 0 Step -14
         If table(i, j) = table(i, j - 1) Then j = j -
14
    Next
    Cells(20, 2) = j e^{i e^{i \pi i 2}}
4
    'Obtaining the list of objects in the table of
results≁
    While i > 0 And j > 04
         If table(i, j) <> table(i - 1, j) Then4
             i = i - p(i) 4
             Cells(22, m) = ob(i) \leftrightarrow
             Cells(23, m) = v(i) \leftrightarrow
             Cells(21, m) = i4
             i = i - 14
             m = m + 1 \epsilon^{J}
         Else≁
             i = i - 14
         End If≁
    Wend⊬
End Sub≁
```


Figure 1.2. The VBA code window in VBE attached to Module 1 of the project

To launch these two procedures, Clear() and Knapsack(), create two buttons by inserting two forms to which you will assign each of the two macros (right click on form then ASSIGN MACRO...). Your spreadsheet should look like the one in Figure 1.3.

Figure 1.3. An accounting spreadsheet containing two (Delete and Calculate) procedure buttons (macros)

In order to use the KP calculation, all you need to do is click on the CLEAR button to erase any calculation that has already been carried out and to delete the calculated contents.

Secondly, you should input the data in the upper table (B1 and B3 to K5).

For the final stage, click on the CALCULATE button to launch the calculation and to show the results.

COMMENT 1.1.- In the spreadsheet that we have just created, you can manage up to 10 objects. Nothing will stop you from increasing this number by making the necessary modifications to the tables and the relevant VBA procedures.

Figure 1.4. The example of paragraph 4.2.3.3 calculated. The results can be seen in the bottom table

1.3. Scheduling

In this section, I will describe two possible ways of using the Excel spreadsheet:

- as a method for calculating the critical path and the duration of the project based on a calculation using a matrix (double entry table);

- for creating a simple Gantt chart using a precedence table.

1.3.1. Critical path calculation matrix

Using a Microsoft Excel spreadsheet containing a matrix constructed around several calculation formulae, we will be able to determine the critical path and the duration of a project (see section 5.8 of Volume 1 [REV 17a]).

The table shown is limited to a PERT chart with at most 10 points. It can easily be adapted to a larger number of lines and columns by applying the same logic in order to create the missing calculation formulae.

In order to present and explain how this spreadsheet functions, we will re-use Exercise 2 from section 5.14.2 of Volume 1 [REV 17a], whose matrix is shown in Table 1.1.

	1	2	3	4	5	6	7	8	i
1		2							0
2			10	6	8				2
3					0				12
4					4	10	18		8
5							5		12
6							4		18
7								4	26
8									30
j	0	2	21	8	21	22	26	30	

 Table 1.1. The double entry matrix from Exercise 2

Let's now create an accounting spreadsheet like the one in Figure 1.5.

We can see that the matrix created is designed for 10 points. The grayed-out areas will contain calculation formulae as well as the columns from the beginning for the earliest start and latest end dates *i* and *j*.

Figure 1.5. The table to be created in the spreadsheet

Let's begin with the section on the right, in Figure 1.6. Here, you can see the formulae to be inputted (only cells L3 and P6 are shown – the others follow the same pattern).

J	К	L	м	N	0	Р
9	10	i				
		0				
		=IF(COUNTA(D2:D3)=0,L2,M3)	=12+C2			
		=IF(MAX(M4:S4)=0,L3,MAX(M4:S4))	=IF(D3<>"",L3+D3,"")	=IF(D2<>"",L2+D2,"")		
		=IF(MAX(M5:S5)=0,L4,MAX(M5:S5))	=IF(E4<>"",L4+E4,"")	=IF(E3<>"",L3+E3,"")	=IF(E2<>"",L2+E2,"")	
		=IF(MAX(M6:S6)=0,L5,MAX(M6:S6))	=IF(F5<>"",L5+F5,"")	=IF(F4<>"",L4+F4,"")	=IF(F3<>"",L3+F3,"")	=IF(F2<>"",L2+F2,"")

Figure 1.6. The section on the right with the calculation formulae to be inputted

We will comment on these formulae that fit with the calculation technique described in section 5.8.3 of Volume 1. All they do is automate the approach:

-M3: =L2+C2, adds the earliest start date for the first task to the first value encountered;

-L3: =IF (COUNTA (D2:D3) = 0, L2, M3), checks for the absence of a value in D2 and D3, if the value is absent, it displays the previous earliest start date, which is L2, otherwise nothing is displayed;

-M4: =IF (D3<>"", L3+D3, ""), checks for the presence of a value in D3 and in this case effects the sum L3+D3, otherwise nothing is displayed;

-N4: =IF (D2<>"", L2+D2, ""), identical to the previous test for cell D2. The other group of grey cells, from M5 to U11, behaves in the same way, by taking account of each of the values present or absent in the column in question;

-L4: =IF(MAX(M4:S4)=0, L3, MAX(M4, S4)), checks the maximal value calculated in the column (the result of the calculations placed in cells M4 to S4). If it is equal to 0, no values will have been calculated, we can therefore assume that all the points have been reached, in which case the last value calculated from the beginning to the end should be copied, which is L3, otherwise the maximum is displayed. The same goes for the other formulae placed from L5 to L11 with the corresponding cells.

Let's now look at the lower part, cells K12 to B21. As was the case with the previous example, only a few formulae are shown. The others follow the same pattern:

- K12: =L11, returns to the last value in the column of earliest start dates;

-C13: =IF(D3<>"", D12-D3, ""), checks if the cell located below the diagonal is empty and if it is not, calculates the difference with the corresponding cell, which is D12-D3, otherwise nothing is displayed. This calculation is identical for all the other cells in the grey zone if the cell references are changed to obtain the appropriate result (see Figure 1.7);

-C12: = IF (MIN (C13:C21) = 0, D12, MIN (C13:C21)), checks the minimal value calculated in the column (the result of the calculations in cells C13 to C20). If it is equal to 0, no values will have been calculated, we can therefore assume that the vertex has not been reached, in which case the last value calculated for the latest end date is copied, which is cell D12, otherwise the minimum is displayed. The same goes for the other formulae located in D12 to J12 with the corresponding cells;

-B12: =MIN(B13:B21), calculates the minimal value from zone B13 to B21, to display the latest end date of the first vertex in the graph.

		A	В	C		D		
0	9							
11	10							
12		j i	=MIN(B13:B21)	=IF(MIN(C13:C21)=0,D12,MI	N(C13:C21))	=IF(MIN(D13:D21)=0,E12,	,MIN(D13:D21))	
13			=IF(C2<>"",C12-C2,"")	=IF(D3<>"",D12-D3,"")		=IF(E4<>"",E12-E4,"")		
14			=IF(D2<>"",D12-D2,"")	=IF(E3<>"",E12-E3,"")		=IF(F4<>"",F12-F4,"")		
15			=IF(E2<>"",E12-E2,"")	=IF(F3<>"",F12-F3,"")		=IF(G4<>"",G12-G4,"")		
16			=IF(F2<>"",F12-F2,"")	=IF(G3<>"",G12-G3,"")		=IF(H4<>"",H12-H4,"")		
						I	J	K
					=IF(MIN(I1	3:114)=0,J12,MIN(113:114))	=IF(MIN(J13)=0,K12,J13)	=L11
					=IF(J9<>"",J	12-J9,"")	=IF(K10<>"",K12-K10,"")	
					=IF(K9<>"",	K12-K9,"")		1

Figure 1.7. The cells located below the CPM matrix with their formulae

We will now concern ourselves with find the critical path through the graph node numbers. The length of the project is associated with the last value for the earliest beginning, L11:

-F23: =IF (B12=L2,B1,""), tests if cell B12 is equal to cell B2 and displays the node number located in B1. This formula is not compulsory, it can simply be replaced by =L2, since the first node is always in the critical path, except in specific cases;

-G23: = IF(MAX(M3) <>0, IF(C12=L3, C1, ""), we find two interlinked tests. The first verifies that M3 is different to 0, if this was not the case, this would mean that the current node does not belong to the critical path and nothing would be displayed. If M3 is different to 0 then we check that C12 is equal to its corresponding cell, L3, on the diagonal in the matrix and the node number C1 is displayed, otherwise nothing is displayed;

-H23: = IF(MAX(M4:N4) <>0, IF(D12=L4;D1, ""), ""), identical to the above, but with a zone of M4 to N4 to test the maximum;

- the same principle is then applied for the cells from I23 to O23 with the corresponding cell references.

	Α	В	СD	Ε	F	G	н
16		=IF(F2<>"",F12-F2,"")	=1F]=1F	=16	=IF[J6<>"",J12-J6,"")=IF(K7<>"","",K12-K7)	
17		=IF(G2<>"",G12-G2,"")	=IF(=IF	=IF	=IF(K6<>"",K12-K6,"		
18		=IF(H2<>"",H12-H2,"")	= F = F	=IF			
19		=IF(H2<>"",H12-H2,"")	= F = F				
20		=IF(J2<>"",J12-J2,"")	=IFI				
21		=IF(K2<>"",K12-K2,"")					
22							
23		Critical path :			=IF(B12=L2,B1,"")	=IF(MAX(M3)<>0,IF(C12=L3,C1,""),"")	=IF(MAX(M4:N4)<>0,IF(D12=L4,D1,""),"")
24		Project duration :			=L11		
25							

Figure 1.8. Calculating the critical field and display showing the duration

See Figure 1.9 for the results obtained after inputting the figures from the table referred to earlier.

Figure 1.9. Spreadsheet with all cells filled in the matrix. Note the values of I (earliest start) and j (latest end) as well as the length of the project and the critical path that passes through nodes: 1, 2, 4, 7 and 8

1.3.2. Classic Gantt chart

In order to create this chart, we will use the public address system exercise dealt with in section 5.5 of Volume 1. In the precedence table (Table 1.2) only the columns for task and duration (in minutes) have been retained with the addition of two new columns, start and end.

Task	Start	Duration	End
А	0	120	120
В	120	20	145
С	120	15	140
D	120	20	140
Е	140	10	155
F	140	15	155
G	155	25	180
Н	140	20	180
Ι	180	15	195

Table 1.2. Tasks, starts, durations and ends for the sonorization exercise

This table is inserted into a Microsoft Excel spreadsheet and we then add a variance column that will calculate the difference between "End" and "Start" (in the cell E2: =D2-B2) in order to obtain the matrix in Figure 1.10.

	A	В	С	D	E	F	
1	Task	Start	Duration	End	Variation		
2	А	0	120	120	120		
3	В	120	20	145	25		
4	С	120	15	140	20		
5	D	120	20	140	20		
6	E	140	10	155	15		
7	F	140	15	155	15		
8	G	155	25	180	25		
9	н	140	20	180	40		
10	1	180	15	195	15		
11							
12							
10							

Figure 1.10. The matrix corresponding to the task table with each of its columns

Next, select the table, then carry out the following group of operations:

- INSERT tab, CHARTS toolbar, select INSERT A BAR CHART, select STACKED BARS in 2D BAR (Figure 1.11);

UATA	REVIEW	VIEW	DEVELOPE	ĸ						
re Apps ▼ pps	Recomment Charts	ll ▼ ☆ √ ded ⊕ ▼ Cha	2-D Bar				Line	Column Sparklines	Wir/ Loss	Slie
G		1	3-D Bar	Bar C	Stackee Use this • Comp categor • Show change Use it w • The ca	d Bar s chart pare pa ics. how p over t /hen: ategory	type to: irts of a w parts of a w ime y text is lo	hole acros whole ong.	55	M

Figure 1.11. Microsoft Excel: insert a 2D STACKED BAR CHART

- finally, move the graph and resize it (Figure 1.12);

Figure 1.12. The resized graph, positioned under the matrix

- click on the y-axis;

- right-click, select FORMAT AXIS (Figure 1.13);

Figure 1.13. The contextual menu (right click) to format the axis

- in the FORMAT AXIS window, select CATEGORIES IN REVERSE ORDER (Figure 1.14);

Format Axis	- ×
AXIS OPTIONS 🔻 TEXT OPTIONS	
AXIS OPTIONS	
Axis Type	
 Automatically select based on data <u>T</u>ext axis Date axis Horizontal axis crosses Automatic At category number At maximum category Axis position 	
On tic <u>k</u> marks ● Bet <u>w</u> een tick marks ✓ <u>C</u> ategories in reverse order	
▷ TICK MARKS	
▷ LABELS	
▷ NUMBER	

Figure 1.14. The window for configuring the axis in Microsoft Excel 2013, including the checkbox: values in reverse order (in axis options)

- click on the x axis to select it;

- in the FORMAT AXIS window, open drop-down LABELS and select HIGH in LABEL POSITION;

- enter 10 and 5 respectively in AXIS OPTIONS as MAJOR and MINOR UNITS (Figure 1.15);

XIS OPTIONS VIEW TEXT OPTIONS		
AXIS OPTIONS		
Bounds		
Minimum	0.0	Auto
Maximum	430.0	Auto
Units		
Major	10.0	Reset
Minor	5.0	Reset
Vertical axis crosses		
Aut <u>o</u> matic		
○ Axis valu <u>e</u>		0.0
 <u>M</u>aximum axis value 		
Display <u>u</u> nits	Non	e ⊤
Show display units label on chart		
Logarithmic scale	<u>B</u> ase	10
Ualues in reverse order		
TICK MARKS		
Major type	None	2 *
M <u>i</u> nor type	None	e •
A LABELS		
Label Position	High	•

Figure 1.15. Configuring axes (10 and 5) and labels (high)

- right click on the middle of the graph and click on SELECT DATA;

-a window for selecting a data source will open. Tick "Duration" and "End Date" (you can also remove these using the DELETE button) then validate by clicking the OK button (Figure 1.16);

Figure 1.16. The fields "length" and "end" selected in the window displaying the data source

- click on the legend and delete it (press DEL or backspace on Mac);

- right click on the "Start" bar on the graph, specify NO OUTLINE and NO FILL by clicking on the corresponding icons (OUTLINE and FILL) in the pop-up tool bar (Figure 1.17);

Figure 1.17. The menu and the pop-up tool bar, obtained by right-clicking on the "Start" bar. Note the tools OUTLINE and FILL above the menu

- double-click on the title to change it and type "Outdoor public address system";

- to finish, save your work (Figure 1.18).

Figure 1.18. The finished Gantt chart and its associated table in a Microsoft Excel 2013 spreadsheet

1.3.3. Gantt chart with a calendar

In cases where dates have to be managed according to a calendar that can show workdays and holidays, we must consider excluding the latter from the project timeline.

Table 1.3 gives an example involving these conditions.

Installing an air conditioning system (simplified agenda) (see Table 1.3).

Task	Appointment	Duration (days)	Previous
А	Needs analysis (electrical equipment, piping, fittings, coolant gas and various other components)	1	
С	Order and delivery of electrical equipment	5	Α
D	Order and delivery of the group exchanger and diffusers	8	А
Е	Order and delivery of coolant gas	4	Α
F	Assembly, installation and laying of the group exchanger	2	D
G	Installation and laying of diffusers	4	D
Н	Laying and connecting pipes	2	B, F, G
Ι	Electrical connection	1	C, F, G
J	Filling the installation, pressurization and clean-up	1	E, H
К	Switching on, testing installation and tuning	1	H, I, J
L	Tidying up the work site	1	K

Table 1.3. The precedence table for the installation of an air-conditioning system

For this second exercise, we will consider the project start date as being Monday March 2nd 2015.

We will begin by entering a table in Microsoft Excel similar to the one shown in Figure 1.19. The dates for the start and the end have been calculated in a standard way using a PERT or MPM type method (the MPM chart is shown in Figure 1.20).

	A B		С	D	E	F
1	Project start	date :	03/02/15			
2						
3	Task	Start	Duration	End	Variation	
4	Α	03/02/15	1	03/03/15	1	
5	В	03/03/15	10	03/17/15	14	
6	С	03/03/15	5	03/10/15	7	
7	D	03/03/15	8	03/13/15	10	
8	E	03/03/15	4	03/09/15	6	
9	F	03/11/15	2	03/13/15	2	
10	G	03/11/15	4	03/17/15	6	
11	н	03/15/15	2	03/17/15	2	
12	- I	03/15/15	1	03/16/15	1	
13	J	03/17/15	1	03/18/15	1	
14	K	03/18/15	1	03/19/15	1	
15	L	03/19/15	1	03/20/15	1	

Figure 1.19. The table to be created in Microsoft Excel (here the critical tasks are in gray and in bold)

Figure 1.20. The MPM chart corresponding to the project: installation of an air conditioning system

In the cell D4 (End), we have the formula =B4+C4, that we will fill downward as far as D15.

In the cell E4 (Variance), we have the formula =D4-B4, that we will fill downward as far as E15.

It should be noted that the end dates do not take into account a week where only the days from Monday to Friday will be workdays. To compensate for this we can replace the formula, located in D4, by =SERIES.WORK.DAY(B4;C4). This gives the table shown in Figure 1.21.

	A	A B		D	E	F
1	Project start	date :	03/02/15			
2						
3	Task	Start	Duration	End	Variation	
4	Α	03/02/15	1	03/03/15	1	
5	В	03/03/15	10	03/17/15	14	
6	С	03/03/15	5	03/10/15	7	
7	D	03/03/15	8	03/13/15	10	
8	E	03/03/15	4	03/09/15	6	
9	F	03/11/15	2	03/13/15	2	
10	G	03/11/15	4	03/17/15	6	
11	н	03/15/15	2	03/17/15	2	
12	I	03/15/15	1	03/16/15	1	
13	J	03/17/15	1	03/18/15	1	
14	к	03/18/15	1	03/19/15	1	
15	L	03/19/15	1	03/20/15	1	

Figure 1.21. The table recalculated for workdays

In order to properly display the graph, it will be necessary to change the format of the dates in the columns "Start" and "End" by replacing the date format with the standard format:

- select cells B4 to B15, then, while holding down CTRL, cells D4 to D15;

- right click, FORMAT CELLS..., NUMBER tab, GENERAL category.

This gives the number of days since 1st January 1900 in each of the cells.

Project start date : 03/02/15 2	
2	
3 Task Start Duration End Variation	
4 A 42065 1 42066 1	
5 B 42066 10 42080 14	
6 C 42066 5 42073 7	
7 D 42066 8 42076 10	
8 E 42066 4 42072 6	
9 F 42074 2 42076 2	
10 G 42074 4 42080 6	
11 H 42078 2 42080 2	
12 I 42078 1 42079 1	
13 J 42080 1 42081 1	
14 K 42081 1 42082 1	
15 L 42082 1 42083 1	

Figure 1.22. The "Start" and "End" columns in STANDARD format

Next, select the table, then carry out the following operations:

- INSERT tab, CHARTS toolbar, scroll down to BAR, select STACKED BAR in 2D BAR;

- move the chart and resize it;
- click on the y-axis;
- right click, select Excel US syntax;
- in the FORMAT AXIS window, tick CATEGORIES IN REVERSE ORDER;
- click on the x-axis to select it;
- in the FORMAT AXIS window, click on the icon in the shape of a bar chart;

- enter 42065 (the value of the cell B4, for 03/02/2015, the start date for the project) in AXIS OPTIONS as MINIMUM;

- next, enter 7 and 1 respectively as MAJOR and MINOR UNITS;
- pull down LABELS and select HIGH in LABEL POSITION;
- pull down NUMBER, select DATE in CATEGORY then *3/14/2001 in TYPE;

Format Axis		~ ×
AXIS OPTIONS		
Minimum	42065.0	Parat
Minimum		Keset
Maximum	42086.0	Auto
Units		
Major	7.0	Reset
Minor	1.0	Reset
Vertical axis crosses		
Automatic		
 Axis value 		42065.0
 <u>M</u>aximum axis value 		
Display <u>u</u> nits	None	÷ •
Show display units label on chart		
Logarithmic scale	<u>B</u> ase	10
Values in reverse order		
▶ TICK MARKS		
▲ LABELS		
Label Position	High	-
Category		
Date		•
Туре		
*3/14/2001		-
Locale (Location)		
English (United States)		-
Forma <u>t</u> Code 🕕		
m/d/yyyy		Add
Linked to source		

Figure 1.23. AXIS OPTIONS, LABELS and NUMBER

- in the FORMAT AXIS window, click on cross-shaped icon (to the left of the bar chart);

- pull down ALIGNMENT and enter -45° in the field CUSTOM ANGLE in order to pivot the dates on the x-axis;

ALIGNMENT		
Vertical alignment	Middle Ce	٣
Text direction	Horizontal	Ŧ
C <u>u</u> stom angle	-45*	÷
Resize shape to <u>fit</u> text		
Allow text to overflow shape		
<u>L</u> eft margin	0.1	÷
<u>R</u> ight margin	0.1	÷
<u>T</u> op margin	0.05"	÷
Detterre recercie	0.05"	Â
Top margin	0.05"	-

Figure 1.24. AXIS OPTIONS, ALIGNMENT -45°

- right click on the bottom of the chart and click on SELECT DATA;

- a 'Data Sources' window will open. Tick "Duration" and "End" (you can also remove these using the DELETE button) then validate by clicking the OK button;

- click on the legend and delete it (hold down DEL or back space on a Mac);

right click on the "Start" bar on the chart, specify NO OUTLINE and NO FILL
 by clicking on the corresponding icons (OUTLINE AND FILL) in the pop-up tool
 bar;

- right click on a date on the x axis, ADD A MINOR GRIDLINE;

- double click on the title to change it and type "Installing an air conditioning system";

- next, repeat a date format for the "Start" and "End" columns;

- to finish, save your work;

- you can change the colors of the chart by putting, for example, critical tasks in a different color.

Figure 1.25. The finished table and chart corresponding to the Gantt chart for the project

The exercises for creating a Gantt chart that have previously been examined can be adapted for larger projects. The table will be larger but the principles and the practical tasks remain the same.

1.4. Maximal flows

In order to calculate the maximal flow available in a network between the source and the sink, we will use the Excel solver alongside two VBA procedures and a spreadsheet. In the solution shown here, the number of edges is limited to 25 and the number of vertices is limited to 20.

	A	В	С	D	E	F	G	H	1.1
1	From	То	Flow	Capacity		Nodes	Net Flow	Supply/Demand	
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
16									
17									
18									
19									
20									
21									
22						No. Nodes	0		
23									
24									
25									
26									
27	No. Edges	5	0						
28	Maximun	n flow							
29									

Begin by creating the spreadsheet in Figure 1.26.

Figure 1.26. The spreadsheet to be created in Microsoft Excel

Next, enter the following calculations:

- G2: =IF (F2="","",SUMIF (From,F2,Flow) - SUMIF (To,F2, Flow)), if the cell in the column "Nodes" is empty then nothing is displayed; if not the difference is calculated: the total of the flows equal to F2 in the column "From" – the total of the flows equal to F2 in the column "To". This will determine the net flow;

- "From" and "To" are cell ranges that will be named later using a VBA procedure;

- Copy G2 downward as far as cell G21;
- -C27: =COUNTA (A2:A26), counts the number of edges;
- -G22: =COUNTA (F2:F21), counts the number of vertices;
- C28: =G2, displays the maximal flow;
- then save your table;

- switch to VBE, create a module for your project (DEVELOPER tab, VISUAL BASIC icon, right click on the project file, INSERT then MODULE);

- open the module that has just been created, ordinarily MODULE 1 and input the following lines of code:

```
Sub Create tables()↔
Dim CountArc, CountNodes As String4
  'Clear tables≁
         click on No then clear otherwise quit4
    'Tf
    If MsgBox("Do you wish to clear the table content?",
vbYesNo, "Clear") = vbYes Then↔
    'Clears the cell content4
        Range("A2:D26,F2:F21,H3:H21").Select↔
        Selection.ClearContents4
        'Deletes the cell background color4
        Range("A2:D26,F2:G21,H3:H21").Select4
        Selection.Interior.ColorIndex = 04
        Range("C28").Select↔
        'Relaunch automatic sheet recalculation4
        Application.Calculation =
xlCalculationAutomatic4
    Elsee
        Exit Sub4
    End If≁
  'Name and color allocation↓
    CountArc = InputBox("How many edges does your graph
have?", "Number of edges")↓
    'If click on Cancel then guit4
    If CountArc = "" Then Exit Sub↓
    Range(Cells(2, 1), Cells(1 + CountArc, 1)).Name =
"From"
    Range(Cells(2, 1), Cells(1 + CountArc,
3)).Interior.ColorIndex = 40€
    Range(Cells(2, 2), Cells(1 + CountArc, 2)).Name =
"To"⊬
    Range(Cells(2, 2), Cells(1 + CountArc,
3)).Interior.ColorIndex = 444
    Range(Cells(2, 3), Cells(1 + CountArc, 3)).Name =
"Flow"+
    Range(Cells(2, 3), Cells(1 + CountArc,
3)).Interior.ColorIndex = 36€
    Range(Cells(2, 4), Cells(1 + CountArc, 4)).Name =
"Capacity"4
    Range(Cells(2, 4), Cells(1 + CountArc)
4)).Interior.ColorIndex = 27€
```

```
CountNode = InputBox("How many vertices does your
graph have?", "Number of nodes") ↔
    'If click on Cancel then quite
   If CountNode = "" Then Exit Sub4
   Range(Cells(2, 6), Cells(1 + CountNode, 6)).Name =
"Node"≁
   Range(Cells(2, 6), Cells(1 + CountNode,
6)).Interior.ColorIndex = 17€
   Range(Cells(3, 7), Cells(CountNode, 7)).Name =
"NetFlow"4
   Range(Cells(2, 7), Cells(1 + CountNode,
7)).Interior.ColorIndex = 374
   Range(Cells(3, 8), Cells(CountNode, 8)).Name =
"SupplyDemand"+
   Range(Cells(3, 8), Cells(CountNode,
8)).Interior.ColorIndex = 84
   MsgBox ("You can now enter your" & CountArc & " arcs
with their capacity in the FROM and TO column. Then
enter the list of your " & CountNode & "nodes in NODES
column.")↔
   Range(Cells(3, 8), Cells(CountNode, 8)) = 04
End Sub≁
4
'Launch the solver to find the solution4
Sub Resolve()↔
   'Reset solver to zero
   SolverReset↔
    'Defining solver parameters
   SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
Engine:=2, EngineDesc:="Simplex LP"↔
   SolverDelete CellRef:="$C$2:$C$19", Relation:=1,
FormulaText:="Capacity"+
   SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
ByChange:="$C$2:$C$19", _↔
       Engine:=2, EngineDesc:="Simplex LP"↔
   SolverAdd CellRef:="$C$2:$C$19", Relation:=1,
FormulaText:="Capacity"+
   SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
Engine:=2, EngineDesc:="Simplex LP"4
   SolverDelete CellRef:="$G$3:$G$10", Relation:=2,
FormulaText:="SupplyDemand"↔
   SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
Engine:=2, EngineDesc:="Simplex LP"↔
```

```
SolverAdd CellRef:="$G$3:$G$10", Relation:=2,
FormulaText:="SupplyDemand"4
SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
ByChange:="$C$2:$C$19", _4
Engine:=2, EngineDesc:="Simplex LP"4
SolverOk SetCell:="$C$28", MaxMinVal:=1, ValueOf:=0,
ByChange:="$C$2:$C$19", _4
Engine:=2, EngineDesc:="Simplex LP"4
`Launch automatic calculation of results by the
solver4
SolverSolve (True)4
End Sub4
```

In order to launch these two procedures, Create_tables() and Resolve(), create two buttons by inserting two forms to which you will assign each of the two macros (right click on form then ASSIGN a MACRO). Your spreadsheet should look like the one in Figure 1.27.

Figure 1.27. The spreadsheet with its two buttons ("Create tables" and "Solve")

In order to use the calculation of maximal flows, all you need to do is click on the CREATE TABLES button to destroy any calculation that has already been carried out and delete the calculated contents. Two dialogue boxes will be displayed one after the other asking you how many edges you want followed by the number of vertices in your graph.

Enter the data in the table on the left by mentioning, for each arc, the peak of departure in the column "From" and its vertice (node) of arrival in the column "To" followed by its capacity in the column "Capacity".

Now add the flows. I would advise entering the minimal value of the capacity for all of the flows.

Next, input all the vertices in the table on the right, in the "Vertices" column, beginning with the source (ordinarily S) and ending with the sink (ordinarily T). The order for the other vertices is irrelevant.

It should be noted that the entry fields have been colored in order to make it easier to input data.

Lastly, click on the SOLVE button to begin the calculation of the solution by the solver and to display the results.

In Figure 1.28, I re-use the data from Exercise 1 in Chapter 6 (Volume 1, section 6.5.1), and you can see all edges and their capacities (18), all the vertices (10) and the starting flow, which is 2000.

_	A	В	С	D	E	F	G	Н
1	From	То	Flow	Capacity		Nodes	Net Flow	Supply/Demand
2	S	P1	2000	10000		S	6000	
3	S	P2	2000	8000		P2	0	0
4	S	P3	2000	6000		P3	2000	0
5	P1	P2	2000	4000		R1	0	0
6	P1	R1	2000	6000		R2	-2000	0
7	P2	R1	2000	4000		R3	0	0
8	P2	R2	2000	2000		R4	-2000	0
9	P2	R3	2000	2000		R5	-2000	0
10	P3	P2	2000	4000		P1	2000	0
11	P3	R3	2000	6000		Т	-4000	
12	R1	R2	2000	4000				
13	R1	R4	2000	6000				
14	R2	R4	2000	4000				
15	R2	R5	2000	3000				
16	R3	R2	2000	6000				
17	R3	R5	2000	2000				
18	R4	Т	2000	12000				
19	R5	Т	2000	4000				
20								
21								
22						No. Nodes	10	
23								
24								
25								
26	No. Eda		40					
27	NO. Edge	es flaur	18			Create tabl	es	Solve
28	maximu	mnow	6000					
- 29								

Figure 1.28. The data from Exercise 1 in Chapter 6 entered into the spreadsheet

	А	В	С	D	E F G		G	Н
1	From	То	Flow	Capacity		Nodes	Net Flow	Supply/Demand
2	S	P1	6000	10000		S	14000	
3	S	P2	8000	8000		P2	0	0
4	S	P3	0	6000		P3	0	0
5	P1	P2	0	4000		R1	0	0
6	P1	R1	6000	6000		R2	0	0
7	P2	R1	4000	4000		R3	0	0
8	P2	R2	2000	2000		R4	0	0
9	P2	R3	2000	2000		R5	0	0
10	P3	P2	0	4000		P1	0	0
11	P3	R3	0	6000		Т	-14000	
12	R1	R2	4000	4000				
13	R1	R4	6000	6000				
14	R2	R4	4000	4000				
15	R2	R5	2000	3000				
16	R3	R2	0	6000				
17	R3	R5	2000	2000				
18	R4	Т	10000	12000				
19	R5	Т	4000	4000				
20								
21								
22						No. Nodes	10	
23								
24								
25								
26			10					
27	NO. Edge	es	18			Create table	es	Solve
28	Maximu	m flow	14000					
29								

Figure 1.29 shows the result of the calculation launched by clicking on the SOLVE button.

Figure 1.29. The solution from exercise 1 with the set of results displayed

1.5. Transport model

There are a variety of logistical problems in transport: often, you need to standardize distances, the costs and the constraints for supplying customers.

Below, you will find two classic examples that will be solved using the Microsoft Excel solver.

Using this as a basis, it will be easy to use each of these solutions to adapt them to your own problems.

1.5.1. Customer delivery

A railway company has to transport two batches of palletized products from two departure stations (GD1 and GD2) to three destination stations (GA1, GA2 and GA3) spread out across France. The goods will pass through intermediary marshalling yards (GT1, GT2, GT3, GT4 and GT5).

The number of pallets available in the outgoing stations and the storage capacities of the end stations are known, as are the transport capacities of the interstation railway lines.

			Р	allet fl	DW					
\rightarrow	DS1	DS2	MY1	MY2	MY3	MY4	MY5	ES1	ES2	ES3
Pallets available	105	75								
DS1		-	60	45	36	_	_	-	-	-
DS2	-		-	18	66	-	-	-	-	-
MY1	-	-	_	30	-	45	_	-	-	-
MY2	-	-	_	_	_	_	_	30	45	45
MY3	-	-	_	_	_		66	-	-	-
MY4	_	-	_	_	_	_	_	21	30	_
MY5	_	-	_	_	_		_	_	30	30
Storag	e cap	acities	of the	arriva	l statio	ns		45	45	60

Table 1.4 groups together the shared information for each station.

Table 1.4. Summary of palletized product batch flow

If we examine the problem in greater detail, we notice that there is a problem involving maximal flow with constraints being exceeded.

We will tackle this problem by using a simple double-entry table as well as the solver.

First, create and fill a spreadsheet, the table shown in Figure 1.30.

	Α	В	С	D	Е	F	G	н	I	J	K	L	M	N
1														
2														
3		DS : De	parture	station		MY: Ma	arshallir	ng yard		ES : End	d station	1	Flow:	0
4														
5		S	DS1	DS2	MY1	MY2	MY3	MY4	MY5	ES1	ES2	ES3	Т	
6	S	0	105	75	0	0	0	0	0	0	0	0	0	
7	DS1	0	0	0	60	45	36	0	0	0	0	0	0	
8	DS2	0	0	0	0	18	66	0	0	0	0	0	0	
9	MY1	0	0	0	0	30	0	45	0	0	0	0	0	
10	MY2	0	0	0	0	0	0	0	0	30	45	45	0	
11	MY3	0	0	0	0	0	0	0	66	0	0	0	0	
12	MY4	0	0	0	0	0	0	0	0	21	30	0	0	
13	MY5	0	0	0	0	0	0	0	0	0	30	30	0	
14	ES1	0	0	0	0	0	0	0	0	0	0	0	45	
15	ES2	0	0	0	0	0	0	0	0	0	0	0	45	
16	ES3	0	0	0	0	0	0	0	0	0	0	0	60	
17	т	0	0	0	0	0	0	0	0	0	0	0	0	
18														
10														

Figure 1.30. The table to be created in a Microsoft Excel spreadsheet

All of the data from the statement is shown here. For this purpose, the table has an S column and a T column, which represent the source and the sink, thus formalizing the number of pallets available at the departure station (DS1: 105 and DS: 75) and the storage capacity of the end stations (ES1: 45, ES2: 45 and ES3: 60).

Below the first table, add a second like the one shown in Figure 1.31.

18															
19															
20		S	DS1	DS2	MY1	MY2	MY3	MY4	MY5	ES1	ES2	ES3	т	Total	
21	S	0	0	0	0	0	0	0	0	0	0	0	0		
22	DS1	0	0	0	0	0	0	0	0	0	0	0	0	0	
23	DS2	0	0	0	0	0	0	0	0	0	0	0	0	0	
24	MY1	0	0	0	0	0	0	0	0	0	0	0	0	0	
25	MY2	0	0	0	0	0	0	0	0	0	0	0	0	0	
26	MY3	0	0	0	0	0	0	0	0	0	0	0	0	0	
27	MY4	0	0	0	0	0	0	0	0	0	0	0	0	0	
28	MY5	0	0	0	0	0	0	0	0	0	0	0	0	0	
29	ES1	0	0	0	0	0	0	0	0	0	0	0	0	0	
30	ES2	0	0	0	0	0	0	0	0	0	0	0	0	0	
31	ES3	0	0	0	0	0	0	0	0	0	0	0	0	0	
32	т	0	0	0	0	0	0	0	0	0	0	0	0		
33	Total		0	0	0	0	0	0	0	0	0	0			
34															

Figure 1.31. The second table positioned below the first

It will be filled as indicated below:

- line 33 will contain the total of each of the columns;
- in cell C33, enter : =TOTAL (C21:C32);
- next, copy this formula down to cell L33;
- column N will contain the total of each of the lines;
- in Cell N22, enter : =TOTAL (B22:M22);
- next, reproduce this below until N31;
- in cell N3, enter the total of the wells to maximize : =TOTAL (B31:M31);

- launch the solver, DATA tab, SOLVER tool in the tool ribbon. If it is not visible, consult Appendix 1 of this volume to begin its installation;

- configure the solver as shown in Figure 1.32;
- SET OBJECTIVE : \$N\$3;
- BY CHANGING VARIABLE CELLS : \$B\$21:\$M\$32;
- SUBJECT TO THE CONSTRAINTS : \$B\$21:\$M\$32<=\$B\$6:\$M\$17;
- SUBJECT TO THE CONSTRAINTS : \$C\$33:\$L\$33=\$N\$22:\$N\$31;
- Tick the box MAKE UNCONSTRAINTED VARIABLES NON-NEGATIVE
- SELECT A SOLVING METHOD : Simplex PL;

sel objecnie:	SNS3			E
To: 🖲 Max	© M <u>n</u>	© ⊻alue Of:	0	
By Changing Variable Co	ells:			
\$B\$21:\$M\$32				1
Sybject to the Constrain	nts:			
\$8\$21:\$M\$32 <= \$8\$6 \$C\$33:\$L\$33 = \$N\$22	:SMS17 SNS31		~	Add
				Change
				Delete
				Beset All
			-	Load/Save
Mage Unconstrained	Variables Non	Negative		
Sglect a Solving Method	e s	implex LP	•	Options
Solving Method				
Select the GRG Nonline engine for linear Solve non-smooth.	sar engine for s r Problems, an	Solver Problems that d select the Evolution	are smooth nonlinear. ary engine for Solver	Select the LP Simplex problems that are

Figure 1.32. Configuring the solver

- Next, click on the bottom SOLVE. In a few moments, the solver will display the result window;

- You will then be able to SAVE SOLVER SOLUTION or RESET INITIAL VALUES (to start again) by ticking the appropriate box and clicking on the OK button.

This will give you the values from Figure 1.33 in the second table that will specify the number of pallets to be transported between each of the points, taking all restrictions into account.

19															
20		S	DS1	DS2	MY1	MY2	MY3	MY4	MY5	ES1	ES2	ES3	т	Total	
21	S	0	105	45	0	0	0	0	0	0	0	0	0		
22	DS1	0	0	0	57	45	3	0	0	0	0	0	0	105	
23	DS2	0	0	0	0	18	27	0	0	0	0	0	0	45	
24	MY1	0	0	0	0	30	0	27	0	0	0	0	0	57	
25	MY2	0	0	0	0	0	0	0	0	30	33	30	0	93	
26	MY3	0	0	0	0	0	0	0	30	0	0	0	0	30	
27	MY4	0	0	0	0	0	0	0	0	15	12	0	0	27	
28	MY5	0	0	0	0	0	0	0	0	0	0	30	0	30	
29	ES1	0	0	0	0	0	0	0	0	0	0	0	45	45	
30	ES2	0	0	0	0	0	0	0	0	0	0	0	45	45	
31	ES3	0	0	0	0	0	0	0	0	0	0	0	60	60	
32	Т	0	0	0	0	0	0	0	0	0	0	0	0		
33	Total		105	45	57	93	30	27	30	45	45	60			
34															
35															

Figure 1.33. The results calculated by the solver

You can see that the total number of pallets arriving at the destination does not exceed 150 (45+45+60), ensuring that the storage capacity of the arrival stations is not exceeded.

1.5.2. Minimum-cost transport

In this type of problem, the aim is to transport goods at a minimal cost while taking into account restrictions such as customer demand and warehouse storage capacity.

Let's consider three factories (U1, U2 and U3) located in France who wish to deliver to their clients (C1 to C5) spread out across Europe. The transport costs (per ton: 1,000 kg) are specified in Table 1.5.

Factory stock	C1	C2	C3	C4	C5
U1	\$300.00	\$2,400.00	\$300.00	\$1,500.00	\$1,200.00
U2	\$1,500.00	\$1,500.00	\$900.00	\$1,800.00	\$2,100.00
U3	\$600.00	\$900.00	\$1,500.00	\$2,700.00	\$2,400.00

Table 1.5.	Transport	costs betweer	n factories an	d customers
------------	-----------	---------------	----------------	-------------

In terms of stock, each factory has a volume of available product estimated at being 7,200 kg for U1, 4,800 kg for U2 and 7,800 kg for U3.

The five clients want the following quantities: C1, 3,600 kg; C2, 3,900 kg; C3, 4,350 kg; C4, 3,750 kg and C5, 4,200 kg.

It is now necessary to define what mass of product each of the three factories must send to each of the five customers in order to meet demand, taking into account the stock available and minimizing transport costs.

First, create the two tables in Figure 1.34 in a Microsoft Excel spreadsheet.

4	А		В	С	D	E	F	G	н
1			Transport costs						
2			C1	C2	C3	C4	C5	Factory stock (kg)	
3	U1	\$	300.00	\$2,400.00	\$ 300.00	\$1,500.00	\$1,200.00	7200	
4	U2	\$1	,500.00	\$1,500.00	\$ 900.00	\$1,800.00	\$2,100.00	4800	
5	U3	\$	600.00	\$ 900.00	\$1,500.00	\$2,700.00	\$2,400.00	7800	
6	Order (Kg)		3600	3900	4350	3750	4200		
7									
8			C1	C2	C3	C4	C5	Quantity to be send	
9	U1							0	
10	U2							0	
11	U3							0	
12	Quantity to be received (kg)		0	0	0	0	0		
13									
14	Objective		0						
15									
16									
17									

Figure 1.34. The two tables for calculating costs

Next, apply the following operations:

- in cell B12, enter the calculation : =TOTAL (B9:B11);

- copy this formula to the right as far as F12;

- in G9, enter : =TOTAL (B9:F9);

- next, copy this total downwards as far as G11;

- in cell B14, we will define the calculation objective for the solver. This is the total that we must minimize;

- enter : = SUMPRODUCT (B3:F5;B9:F11);

- open the solver, DATA tab, SOLVER tool in the ribbon. If it is not visible, consult Appendix 1 for the installation procedure;

- enter the parameters as shown in Figure 1.35;

SET OBJECTIVE: \$B\$14;

BY CHANGING VARIABLE CELLS: \$B\$9:\$F\$11;

- SUBJECT TO THE CONSTRAINTS: \$B\$12:\$F\$12=\$B\$6:\$F\$6;

SUBJECT TO THE CONSTRAINTS: \$G\$9:\$G\$11=\$G\$3:\$G\$5;

- Tick MAKE UNCONSTRAINED VARIABLES NON-NEGATIVE;

SELECT A SOLVING METHOD: Simplex PL;

sei objecuve:	58514			E
To: 💿 <u>M</u> ax	Min	© <u>V</u> alue Of:	0	
By Changing Variable Cells:				
\$B\$9:\$F\$11				
Subject to the Constraints:				
\$B\$12:\$F\$12 = \$B\$6:\$F\$6 \$G\$9:\$G\$11 = \$G\$3:\$G\$5			*	Add
				Change
				Delete
				Reset All
			-	Load/Save
Make Unconstrained Va	riables Non-N	legative		
Select a Solving Method:	Sim	plex LP	•	Ogtions
Solving Method				
Select the GRG Nonlinear engine for linear Solver Pr non-smooth.	engine for So oblems, and	olver Problems that select the Evolution	are smooth nonlinear. hary engine for Solver (Select the LP Simplex problems that are
Select the GRG Nonlinear engine for linear Solver Pr non-smooth.	engine for So oblems, and	liver Problems that select the Evolution	are smooth nonlinear. hary engine for Solver (Select the LP Simplex problems that are

Figure 1.35. Configuration of the solver

- next, click on the SOLVE button and wait a few seconds;

- a window will open. You will then have the option to SAVE THE SOLVER SOLUTION or RESET TO ORIGINAL VALUES (to start again) by ticking the appropriate box and clicking on the OK button.

The lower table displays the quantities to be dispatched to each of the factories of each of the customers. We can see that the restrictions relating to customer orders and to factory stocks have been taken into account.

	A	B	С	D	E	F	G	н	
1			Transport costs						
2		C1	C2	C3	C4	C5	Factory stock (kg)		
3	U1	\$ 300.00	\$2,400.00	\$ 300.00	\$1,500.00	\$1,200.00	7200		
4	U2	\$1,500.00	\$1,500.00	\$ 900.00	\$1,800.00	\$2,100.00	4800		
5	U3	\$ 600.00	\$ 900.00	\$1,500.00	\$2,700.00	\$2,400.00	7800		
6	Order (Kg)	3600	3900	4350	3750	4200			
7									
8		C1	C2	C3	C4	C5	Quantity to be send		
9	U1	0	0	3300	0	3900	7200		
10	U2	0	0	1050	3750	0	4800		
11	U3	3600	3900	0	0	300	7800		
12	Quantity to be received (kg)	3600	3900	4350	3750	4200			
13									
14	Objective	19755000							
15									

Figure 1.36. The results obtained from using the solver

1.6. Linear programming

I will now show you how to use the Microsoft Excel solver to solve classical linear programming problems that would be solved on paper using a simplex.

We will create a spreadsheet capable of holding six constraints relating to six variables, by responding to maximization and minimization requests.

It will be very easy to increase the amount of data to manage by applying the same calculation formulae on a larger table.

1.6.1. Creating a calculation table

Build and fill the table in Figure 1.37 in a spreadsheet, then carry out the following:

	А	В	С	D	E	F	G	н	I	J	К
1	Variables	x1	x2	x3	x4	x5	хб				
2	bi										
з											
4	Constraints										
5	n1							0	<=		
6	n2							0	<=		
7	n3							0	<=		
8	n4							0	<=		
9	n5							0	<=		
10	n6							0	<=		
11											
12	z	20	30								
13											
14	Max z	0									
15											

Figure 1.37. The table that will host our future linear programs

- In cell H5, enter the formula: =TOTALPRODUCT (B5:G5;B\$2:G\$2). This formula carries out the total of the products between the cells in line 5 (constraint n°1) and line 2 (b_i);

- Next, copy this formula downward as far as H10;

- In cell B14, enter the formula : =TOTALPRODUCT (B12:G12;B2:G2). This formula calculates the total of the products between the cells in line 12 (z) and line 2 (b_i);

- Save your spreadsheet.

1.6.2. Entering data

To fill in our table, we will re-use the example from Chapter 8 (Volume 1, section 8.3.2), which has three constraints and the following profit, z:

$$\begin{cases} 3x_1 + 1,5x_2 + 2x_3 \le 6000\\ 6x_1 + 4x_2 + 4x_3 \le 10000\\ x_1 + x_2 + x_3 \le 3500 \end{cases}$$
$$z = 8x_1 + 3,5x_2 + 6x_3$$

Enter this data in your spreadsheet in order to obtain the table in Figure 1.38.

А	в	С	D	E	F	G	н	I	J	K
Variables	×1	x2	x3	x4	x5	х6				
bi										
Constraints										
n1	3	1,5	2				0	<=	6000	
n2	6	4	4				0	<=	10000	
n3	1	1	1				0	<=	3500	
n4							0	<=		
n5							0	<=		
n6							0	<=		
z	8	3,5	6							
Max z	0									
	A Variables bi Constraints n1 n2 n3 n4 n5 n6 z Z Max z	A B Variables x1 bi	A B C Variables x1 x2 bi	A B C D Variables x1 x2 x3 bi	A B C D E Variables x1 x2 x3 x4 bi	A B C D E F Variables x1 x2 x3 x4 x5 bi	A B C D E F G Variables x1 x2 x3 x4 x5 x6 bi	A B C D E F G H Variables x1 x2 x3 x4 x5 x6 bi x2 x3 x4 x5 x6 Constraints	A B C D E F G H I Variables x1 x2 x3 x4 x5 x6	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Figure 1.38. The data from the example, entered into our table

COMMENT 1.2.– The indicators of inequality (<=) located in column I in our table are only given as an illustrative example – they are not relevant in the calculation.

1.6.3. Using the solver

Open the solver, DATA tab, SOLVER tool in the ribbon. If it is not visible, consult Appendix 1 for the installation procedure.

Complete the different fields for the solver:

- SET OBJECTIVE : \$B\$14;

- Click on the option MAX (for this example we are dealing with an example of maximization);

– BY CHANGING VARIABLE CELLS : \$B\$2:\$G\$2;

- SUBJECT TO THE CONSTRAINTS : \$B\$2:\$G\$2>=0; \$H\$10<=\$I\$10; \$H\$5<=\$J\$5; \$H\$6<=\$J\$6; \$H\$7<=\$J\$7; \$H\$8<=\$J\$8; \$H\$9<=\$J\$9;</pre>

COMMENT 1.3.– The constraints are not all necessary in our example, but the solver has been configured by default in order to solve a problem involving six inequalities.

- Tick the box : MAKE UNCONSTRAINED VARIABLES NON-NEGATIVE;

- SELECT A SOLVING METHOD: Simplex PL;

Set Objective:	\$8514			1
To: @ Max	O Mg	🗇 <u>Y</u> alue Of:	0	
By Changing Variable Ce	le:			
\$852:5652				
Subject to the Constrain	ts:			
\$852:5652 >= 0 \$H\$10 <= \$J\$10			*	êdd
9H56 <= 5J56 9H56 <= 5J56 9H57 <= 5J57				ghange
SH58 <= 5158 SH59 <= 5159				Delete
				Beset Al
			-	Load/Save
Make Unconstrained	Variables Non	Negative		
Sglect a Solving Method:	3	mplex LP		Ogtions
Solving Nethod				
Select the GRG Nonline engine for linear Solver non-smooth.	er engine for 5 Problems, and	iolver Problems that an diselect the Evolutionar	e smooth nonlinear. ry engine for Solver p	Select the LP Simplex problems that are

Figure 1.39. The different parameters entered in the solver dialogue window

- click on the SOLVE button;

- after a few moments the results will be displayed in the table and the SOLVER RESULTS window will be displayed.

Figure 1.40. Calculated results and the SOLVER RESULTS window

The results found in Chapter 8 (Volume 1, section 8.3.7) are confirmed: z = 15000; x1=0; x2=0 and x3 = 2500.