Fourier Series

1.1. Theoretical background
1.1.1. Orthogonal functions

1.1.1.1. Orthogonal vectors

Let us consider a vector space with n dimensions and vectors
X;,X,,....X, as the orthogonal basis.

. 0 ifi#j
X, X, = T [1.1]
Yok ifi=

k,is the norm for vector x, .
x; =x"" is the Hermitian vector (conjugate and transposed) of vector X, .

This collection of vectors is assumed to be complete once there is
no way of finding any more values for x, such as x{.x, =0

Consider vector A within this space and 4, 4,,....4, this vector’s

components in relation to n basis vectors. If the basis is complete, we
can pose:

A= Ax [1.2]
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We obtain coefficients 4, using to the following relation:

4= A'x, _ A’ x,

i ¥
X .X, k.

1

[1.3]

1.1.1.2. Vector-function analogy
Consider two functions f;(r) and fj(t) that are orthogonal on
interval [tl,tz] if:
ifi#j

123 0
!f,(t)f, ) {k,« e [1.4]

k; is the squared norm of function f; (7).

The vector space is complete if we can no longer find any further
functions f(¢) that are orthogonal to the previous ones.

When this space is complete and infinite, we can establish an exact
representation of any function as a series on interval [tl ,tz] :

g(r)=_ZCiﬁ(z) te(t,t,] [1.5]

i=1

The coefficients of the decomposition are found using the
following relation:

[eoffo [gof o
C i _i [1.6]

i 1 . - ki
Jfof o
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1.1.2. Fourier Series

1.1.2.1. Trigonometric series

Functions {cosnm,t} and {sinnw,} form, on interval [#,,z, +T],

o . . . 2z
an infinite complete collection of orthogonal functions with 7'=—.

@y

It is thus possible to represent a function f(r) on interval

[¢,.2, +T]:

f=a, +2an cosnayt + ibn sinnayt  tet,t,+T] [1.7]

n=l1 n=l1
a, is the mean value of f'(s) on interval [to,to +T ]

The coefficients are found using the following relations:

ty+T

a= [ rwa

to+T

a, :? ;[ f(tycosnayt dt [1.8]

ty+T

b== ;[ fsinnayt dt

1.1.2.2. Exponential series

Functions {ej”"’”'} form an infinite complete collection of

orthogonal functions on interval [¢,,¢, + T].

On this same interval, a function f'() would be noted:

f=3 Ce™ re[t1,+T] [1.9]

n=—oo
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The coefficients for the decomposition are found using the
following:

ty+T

C, =? ;[ fe "™ dt [1.10]

In the case where f(¢) is real, we know that the following is true:

C =C" [1.11]

Thus |C,|=|C_,|et Arg(C,)=—4rg(C.,)

This gives us an example of Hermitian symmetry.

1.1.2.3. Relations between two different forms of series

The following relations allow us to change between one form of
Fourier series and another:

a, =Co
a,=c,+C., b,=j(C,-C.,) [1.12]
C =%(a,, b)) C. =%(a,, +jb,)

There is an alternative form for the trigonometric series:

f=a, +§Aﬂ cos(na)ot+¢n)
" [1.13]

b
A, :qlaj +b: et 1g@ =——
a

n

Table 1.1 presents a recap of these different formulas.
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Series form Calculation of coefficients

to+T

< inat — 1 —jnayt
f=3 Ce C, == [ rwer ar

n=—oco £

1y+T

1
a=— J' f(ydt

n=oo n=co
SO =a,+ Z a, cos nayt + Z b, sin nayt 4T
n=1 n=1 _
a, = 7 I f(t)cosnayt dt
[

n=co

=a,+ Y A, cos(nwyt+9¢,)

to+T
n=l1 0

b=— [ f@sinnay dr

l

Formulas for switching between forms

a, =G,

a, = Cn +C_n bn = j(Cn —C_n)

Cn :%(an _-jbﬂ) C*II :%((1" +jbn)

A =\d>+b* = c,| & =Arg(Cn)=—Arctg[b—"]
all

Table 1.1. Recap of Fourier series formulas

1.1.3. Periodic functions

A periodic function with a period T is a function that repeats itself

identically every T seconds.

f@+nT)y=f@) Vt neZz [1.14]

Consider a periodic function of period 7T represented on interval
[to,to +T ] by a Fourier series, the representation remains valid

regardless of whether ¢ € |—oo, o).
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v

=2T t, 2T -T t,-T |0 ¢, T t,+T 2T t,+2T 3T ¢

Figure 1.1. Periodic function

The value for ¢, is thus irrelevant. In practice, we often set #, =0or

t, = —% , the integrals of formulas 8 and 10 thus become:

N,
—

1.1.4. Properties of Fourier series

1.1.4.1. Time domain translation

If f () is represented by the following Fourier series:

n=oo

f(t) — Z Cne/'ﬂwut

n=-—co

When translated in time, function f'(¢ - r) can be noted as follows:

fu-n= Ce"™

e
C,=Ce

[1.15]



Fourier Series 7

1.1.4.2. Even functions

If f(»is an even function, that is ()= f(-t), its decomposition
into a Fourier series will not contain any sine values.

f=a,+ Zan cosna,t

n=1

It is also possible to cut the integration interval by half:

7
a, =FJ'f(t)dt
0

7
I f(t)ycosnmyt dt
0

[1.16]
4

a =—
S
1.1.4.3. Odd functions

If f(»)is an odd function, i.e. f(r) =—f(~t), its decomposition into
a Fourier series will only contain sine values.

f= Z b, sinnawyt
n=1

) [1.17]

b,=— [ fwsinnay di
0

4
T

An absence of function parity can be masked by the mean value of
function f(¢) . Therefore, we must analyze this property in the case of

function f()—a,.
1.1.4.4. Rotational symmetry
In this case, function f'(r) is composed of two identical half-periods

of opposing signs: f(¢ ig) =—f.
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The decomposition into a Fourier series contains only odd
harmonics: » odd.

This property can also be masked by the mean value of the
function.

1.1.5. Discrete spectra. Power distribution

A periodic function f'(s)has a frequency spectrum which provides

it with a representation on the frequency domain. This spectrum
only exists for discrete values of w. It is either a discrete or a line
spectrum.

The amplitude of each spectral line is proportional to the value set
by the function.

1.1.5.1. Physical spectrum. Complex spectrum

The physical spectrum represents values 4, and @, . It corresponds
to positive values of frequency.

The complex spectrum representsC,. There are therefore two
spectra, one is the amplitude spectrum and the other is the phase
spectrum. This highlights negative pulses; the amplitude of the
spectral lines at na, is actually the combination of all the spectral

lines at*+na, .

In a case where function f(¢)is real, C, =Cfn the amplitude

spectrum will be symmetric, while the phase spectrum will be
antisymmetric to the origin of the frequency.

The phase spectra are identical while the amplitude spectra are

C,=a
linked through the two following equations {2 OC ‘ y

n

n
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4,4

"1 4=2C|
Cla 4, =1C2
‘C ‘ 4, =1Cx\
1 = =C
‘CZ)‘ ‘CZ‘ ay AO ‘ 0‘ A4 :QJCA
ci
| | 1

gy 3a, -2 —g 0 @ 2 3 4a © 0 o 24 3@ 4g o

Complex spectrum Physical spectrum

Figure 1.2. Physical spectrum and complex spectrum

1.1.5.2. Power spectrum

The mean quadratic value of a periodic function f'(¢) or root mean
square (RMS), is given by the following equation:

lT
Fy=s]fwd
0

This value is directly linked to the power of the signal:

IT
Fy =2 odi=3
0

n=—oco

2

Cﬂ

[1.18]

Parseval’s theorem demonstrates how the power contained within a
signal is the sum of the powers contained in all the spectral lines of its
Fourier decomposition.

It is possible to trace a power spectrum representing |Cn 2

1.2. Exercises

The exercises presented in this chapter come from B.P. Lathi
[LAT 66].
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1.2.1. Exercise 1.1. Examples of decomposition calculations

For each of the following periodic functions, calculate a Fourier
decomposition and trace the outline of the complex spectrum.

A fi®

v

2 I ¢

Figure 1.3. Sinusoidal arc function

A S50

v

—1_%0%1

Figure 1.4. Trapezoid function

A 0O

Figure 1.5. Saw tooth function
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Figure 1.6. Exponential function.

In the case of Figure 1

.6, what limit does this decomposition

approach when the exponential time constant becomes infinite?

/5 €0s2007T ¢

1 5

L
(UL

Figure 1.7. Modulated Sinusoidal function

1.2.2. Exercise 1.2

Consider the following rectangular function:

ASO

1

v

2r
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— Demonstrate that on interval[0,27r] , f (@) 1is orthogonal to cosnt

with n integer number. What conclusion would you draw from this
regarding the Fourier decomposition of f(z) ?

— Demonstrate that on the same interval, error function

L=f@© —isint is orthogonal to sinz. Explain this result.
V4

1.2.3. Exercise 1.3
Consider two functions f;(r) and f,(s)that are orthogonal on
interval [tl,tz].

We define the energy of a function on this interval with the
following equation:

E:Tf%z)dt

Demonstrate that the energy contained in the sum, or difference, of
these two functions f,(r)and f, (¢) is the sum of the energies contained
in each of these functions.

1.2.4. Exercise 1.4

Demonstrate that for an even periodic function, the coefficients of
the Fourier decomposition are real and pure imaginary for an odd
function.

1.2.5. Exercise 1.5

— Give an example of two periodic functions that have the same
Fourier series with the exception of componenta, .

— What are the differences between Fourier developments of
functions that are identical in everything other than their periods?
Make a comparison between a function that has a period of 27
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seconds with another function that is identical except that it has a
period of 7z milliseconds.
1.2.6. Exercise 1.6. Decomposing rectangular functions

— Calculate the Fourier decomposition of the following function:

Afio
1

N

— Using this result, establish in the simplest way possible the
decompositions of the following periodic functions:

A fL00
— Ml
—2 -1 0 1 2 3 4 5 6 ¢
4 /30
______ 3 (] R —
! i 2 i 1 i
' 1 1 1 1
' 1 1 1 1
' 1 1 1 1
, 1 1 1 i 1
' 1 1 1 1
' [ 1 [ [
' 1 1 1 1
' 1 1 1 1 -
-3 -2 —1 0 1 2 3 4 5 't
Af,0
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1.2.7. Exercise 1.7. Translation and composition of functions

Consider the following function f'(¢):

Af

_Ax —37rv -7 Jrv2ﬂ' 3z 4z \/ g
0 t

— directly calculate the Fourier decomposition of f(¢) ;

—perform a translation of 7 to the left, or f, ()= f(+7x).
Decompose f,(¢)into a Fourier series and then find the result for f(r)
starting from f,(1);

— same exercise but this time performing a translation of 7 to the
right, £, (t)= f(t-7);
— consider the following function f,(¢):

L WHO!

Demonstrate that f,(r)can be expressed as a function of f(r). Use
the previous results to determine the decomposition of f, ().
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1.2.8. Exercise 1.8. Time derivation of a function

Demonstrate that if function f'(s) is periodic and derivable, function

fo=4L f()

is also periodic.

From this, show that if f()= ZCnej”"")’, the Fourier

n=—oo

decomposition of the derived function is:

are & . -
= na,C e
dt n;] 0~'n

1.2.9. Exercise 1.9. Time integration of functions

Consider a periodic function f(r). Demonstrate that integral

function F(r)= J. f(tdt is periodic on condition that the mean value of
f(@®beO.

n=co

. c
In this case, demonstrate that F(r) = Z —e/",
n=-oo ]nwo

1.2.10. Exercise 1.10

Consider the following periodic function f'(z) :

v

-5 -4 -3 -2 -1 0 1 2 3 4 5 ¢
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With the following Fourier decomposition:

neteo SIN nE 3

(0= e’
fo=2—
ni
2

Using the previous function, establish the decomposition of the
following function g(¢):

-6 -5 -4 -3 -2 -1 [0 1 2 3 4 5 6

We can use the results from exercise 1.9.

1.2.11. Exercise 1.11. Applications in electronic circuits

Let us consider a periodic voltage v(s) of period T =1s, applied to
the following circuit:

L i

R 0
— —— YWY\ 5 R=001Q

1 L=1H
1O S

C= F
167>

Find the Fourier decomposition of currenti(s) when v(¢) takes the
following forms. What can you say about these results?
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AV

1.3. Solutions to the exercises
1.3.1. Exercise 1.1. Examples of decomposition calculations

— Function f(1):

The analytical form of function f,(¢) of Figure 1.3 during a single
period is:

3 sint te[O,ﬂ]
h0=10 te|r,2x]

The period here is T =27, the fundamental pulse is @, =1.

Let us find the decomposition in trigonometric form:

175 17
a, =Fj-fl(t)dt=g'[smtdt
0 0
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or: ao =
T

T

2 2 %
a =— t)cos nw,dt = — | sin ¢ cos ntdt
n T'([ﬁ() 0 27[.([

1% .
= EJ‘[sm(n +1)¢ —sin(n — )t ]dt

0

-1 +1)t ~e [”
Hence a, =— cos(n+1 _ costn=1) for n#1
2r n+1 n-1
1 1+cosnx
or: a,=—————
r _1-n
. 2
If nis even, we can setn=2p, thus: a, =— >
P oml-4p

If nis odd, thenn=2p+1, thus: a,,,, =0

We now perform this calculation again withn=1:

17 17, —1[ cos2t [*
al:—J.smtcostdt=—J.s1n2tdt=—{cos t} =0
Ty 27, T 2

We therefore deduce that: a,,,, =0 Vp

20 2 Fo
b, =?‘([f1(t) sinna,dt =E'[smtsm ntdt

0

= i;‘:[cos(n +1)t — cos(n — 1)t ]dt

T

n#l
0

1 {sin(n +Dt  sin(n— l)t}

_E n+1 n—1



Fourier Series

Therefore: |b, =0 Vn#1

Using the calculation for b, :
b, :ljsinztdt or b =+
V4 2

Hence the trigonometric decomposition of f,(¢):

p_oo

f(t)——-f—%Slnt——Z

0052 t
4p* — P

The coefficients for the complex spectrum appear as follows:

C, =a,

¢, =5(a,+b,)

C—n :_(an _]bn)
1 . 1
G = G =C, =-Jy
Thus: 1
C =— -
Y m(4p’ 1)

From this we can plot the amplitude and phase spectra:

A ‘Cﬂ\
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— Function f,():

Function f,(¢) is even, the series decomposition will therefore not

include any sine values. The integration will happen over half a
period.

As the function is defined in segments, we choose to divide the

integration interval into 3: 0,l U l,l U 1,i
2 2 2

The period is T =3 and the fundamental pulse is thus @, = 27”:

[
2

a, =

Before calculating a,, , it should be noted that this function presents
a rotational symmetry masked by mean value a,, . This means that even
harmonic pairs will have a null amplitude.

a,,=0

) T
a, =(—1)p 5 sm(2p+l)g

7’ (2p+1)

= (=1)’ 2
fin=sy12 (—)2sin(2p+1)£cos(2p+1)—”t
2 ) 6 3

7 m(2p+l
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The complex spectrum is: C,, =%(12p+1 and only includes real

components. It will be represented by a single plot.

0.50

(S}
N
S

The magnitude of the spectral lines quickly decreases with the
order of the harmonics. This is due to the similarity in shape between
this function and a sinusoidal one.

— Function f;(7):

Function f;(s)1s odd, coefficients a, are null. Integration will take

place over half a period.

As the function is defined in segments, we choose to divide the

integration interval into 2: [0,1]u [1,3}
2

The period is T =3, fundamental pulse is thus @, = 27”
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The complex spectrum is: C, = %an and only includes imaginary

components.

AC,
0.19
""" 018
N D I R B R
1 A A 17
4 -3 -2 -1 o 1 2 3 4 w
‘k¢n
L
2
-4 -3 =2 1 a
0 1 2 3 4 0]
_______________ _z
2

— Function f,(n):

Function f,(r) presents a rotational symmetry f, (1) = f, (¢ i%) , this
means we will only encounter odd harmonics.
Expressing this function in its analytical form on half a period

suggests it would be better to use the exponential form of the Fourier
series. After integration, we find the following result:
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j (1 + e_% j e_j(zpﬂ)%
CZ

3 T

p+l_ 1 o
=4 j(2p+1

7[(10+]< p+ ))

sin(2p+1) 5

This function can then be noted as follows:

s

- _i(2p+1) "
l+e V& e fer

j(2p+l)l

fiw=] sin(2p+1)§e

1
=1 iap+1
et e

When the exponential time constant becomes infinite, C,,,,

becomes:

. V.4
o - s1n(2p+1)56_j(2p+1)§

2p+l T

V4
2p+1)—
(2p+1)7
This statement corresponds to the decomposition of a rectangular
signal with a period of 27 and with a duty cycle of 2.

C

n

4 054

[ 1 I I ]

-5 -4 -3 -2 _| 0| | |'w

—0.4687 —0.4897r —0.4937
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—Function f(1):

Function f(r) is even, coefficientsb, are null. Integration will

take place over half a period, that period being 7 =4 and the

T
fundamental pulse stands at @, = Py

4L
a, :—J‘cos200mcosn£tdt
44 2

This gives us:

. _g (_ 1)n+1n
"~ 7 (400+n)(400 — ) for n # 400

If we repeat this operation for =400, we obtain:

1

Ao ==
400
2

What’s more: a, =b, =0

The Fourier decomposition will appear as follows:

1 =2 ()™ r
= L 05200400 w3 2 z,
fa = 08200 a0 ), (400-+ n)(400—n) 2

The spectral lines will be centered around n=+400 thus w =200z .

As the spectrum is real, we will traceq, =2C, .
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2C
0.5 4 0.5
0.32 0.32
i
0.16 0.16
0.10 0.10
0.5 0P8 0.06 0.06 O'i)go.os
) U >
| | 200 7 | I 7 0o 7 [ | 200 | | w
- -0.05 -0.05 -
0.06 008 5 0.06
-0.10 -0.10
-0.16 -0.16
-0.32 -0.32

1.3.2. Exercise 1.2

Let us begin by proving that f(s)is orthogonal to cosnfon
interval [0,27] :
2r V4 2z
I = If(z)cosntdt =Icosntdt+ I—cosntdt
0 V.4

0

The integral is null, f()is hence orthogonal to cos nf .

This tells us that the Fourier decomposition will not include any
cosine values.

Let us now show that the error function f,(r)is orthogonal to
sint on interval [0,27] .

2 V4 2z
I = Ife(z)sintdt=1.(l—4sint]dt+ I(_1_4Sint)dt
0 T T T

0

The integral is null and £, is hence orthogonal to sin¢?.
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The error function therefore cannot be expressed according to sin ¢.

This means that isintis the fundamental value of the Fourier
y.4

decomposition of f.
1.3.3. Exercise 1.3

The energy of the function is noted as follows:

E=[fodi=[(ho+f,0) di=[ fRwd+ [ f7odie+ [2f,0f o0d

4

The two first terms represent the energy of each function. The third
is interaction energy between the two functions.

If both functions are orthogonal on interval [tl,tz]then integral

o)
Iﬁ(r)fz(z)dt =0
4

The level of interaction energy is null. The resultant is immediately
apparent.

1.3.4. Exercice 1.4

If function f()is even, terms b must be null. The terms of the
exponential decomposition appear as follow:

¢, =(a,~ jb,)=3a

This indicates they are real.

Similarly, when f(#) is odd, terms a, are null.

1 1
Hence: C =—(a — jb )=—j—b
=5 la,=jb,)==jzb,
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The terms are therefore imaginary.

1.3.5. Exercise 1.5

Both functions f(;)and g(have the same Fourier decomposition

except in their mean value. The difference between these two
functions must be orthogonal to cosnw,t andsinnw,t regardless of n

with n #0 .

We obtain  f(r—g@)=K=cte, hence the solution:
fo=gn+K

Two identical functions with different periods will have the same
Fourier decomposition coefficients and only the frequencies of the
various harmonics will differ.

T1=27rs:>a)1=lr%:>wn=nr%
— — 3 rd _ 3 rd
T=7ms= @ =210’/ = @, =2n.10" 14/

1.3.6. Exercise 1.6

— Function f|(¢)is even and therefore b, =0. We have to integrate
it into a half-period.

The period is T = 4 and the fundamental pulse is @, =%
. T
smn-—

cosn—tdt =——=
2
n

a, = '1[dt=l a, =

[\]
o S

2

1 n=wsinn§ .
. H=—=+ cosn—t
Thus: /1= Z; E >

2
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All even harmonics are null. This is due to the rotational symmetry
of the function that is being masked by the mean value.

We can rewrite the Fourier decomposition as:

p=esin(2p + 1)£ ju
fin=—+Y ———2cos2p+1) =+
= ep+1)] 2

The terms of the exponential decomposition then appear as
follows:

. V3
2p+1)—
sin(2p )2

1
C2p+l = E

T
2p+1)%
(p+)2

— Function £, (:ycorresponds to the translation of function f,():

L= fi-1

The coefficients in the exponential decomposition appear as

expected, the amplitudes and the phases differ to nw,z= n% :

. V3
' . , 1sm(2p+l)2 i)t
C,=Ce (), =-—=c¢

2 T
(2P+1)5

—Function f(¢)is the result of translating and changing the mean

value of f,(¢):

f0=2+ fit-2)
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These are the coefficients of the exponential decomposition:

A 1 sin(2p+1)£ _
C;l = Cne—jnwbr — C;pi—l 2777[267,(21,“)”
2 p+)”?
2
.5
CO = E

—Function  f,(»nis the result of changing the mean value,
amplitude, period and performing a time-shift on f(r):

New amplitude: 2
Mean value: 0

Period: 7=6= ), =~
Time-shift: 7=25= aT= 5%

T
sin2p+1)= ST
, . , —iapn)

C =2Ce" (), =— 3¢ el

p+l

T
2p+1)—
2p )3
C,=0
1.3.7. Exercise 1.7. Translation and composition of functions

L . 1
— Period is T =4z, fundamental pulse is @), = 5

The exponential decomposition can be obtained from the following
integral:

n

1% - jn
C =—jsinte" 2dt
ar
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After calculations:

2 1
C, =0 for p#=l C,,, ==
2 T ma—(2p+1)
1 -1
C,=— C,=—
4j 4;

The exponential decomposition will therefore appear as follows:

1
1o 1 (1)
f(t)=551nt+ z 12 ej[p 2J
—_
2zl 1—| p+—

— f,(¢)is an odd function. The decomposition contains only terms

with sine. The terms of the exponential decomposition are easily
obtained by performing a phase change of —ne@,7 that corresponds to

time-shift 7 = —z, which would be —(2p +1)% .

28 (-1)” e./(2p+1)§

1. .
- fiy=—=sint+ j—
We then have: /i (® 9 Jﬁp;mél_(zp_,_l)z

— The same method can be applied to function £, (s), the phase
shift that we apply here has the opposite sign to function f,;) which

would be (2p + 1)%

: 1. 28 ()P et
. fi=—=sint—j= ) ———— ?
We then have: /i 2sm Jﬂ'p;w4—(2p+1)2

— Function £, (¢) can also be presented as follows:

3
f1<t>=f(t—7”)—f<t+§>
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Starting with the decomposition of f'(s) and adding to that a phase

change, we obtain the decompositions for £ - 3§) and f(,+§).
If we then subtract the decomposition for f(:):

. p=too

P 1
1+ e ? i\
fitn=—-— A

)

1.3.8. Exercise 1.8. Time derivation of functions

The derived function can be expressed as follows:

f+nT+e)— f(1+nT)
£

f'(t+nT)=ling

If the period for the function is T, the following can be stated:

f(r+e;—f(t>=fv(t)

[ (t+n7)=1lim
=0

This means " (¢) is periodic and has a period of T .

£ can then be decomposed into a Fourier series:
n=-oo

f'(t) — ZC’;e/‘n%t

T
With C, = %I *df,j” e dt
0

After part by part integration we obtain: C ;1 = jnw,C,

n=+oo s df(t) n=+oo o
Hence: /(= ZCne’"“"’ = = Zjna)ocne’"%

n=—oo n=—oo
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1.3.9. Exercise 1.9. Time integration of functions

n=-too

Consider the following periodic function /()= chejw and its

n=—oo

integral function F'(¢), so that:

Fo= If(z)dt

t+nT
t+nT

We can calculate F(i+nT)—F()=[F]™ = I f(dx =nTC,

C, being the mean value of f(¢).

The integral function of f(¢)is only periodic with a period of T if
the mean value for f'(¢) is null.

F(¢) can then be decomposed into a Fourier series:

n=+oo
Fa)= z C,;ej"%t

n=—oco

Co 1 ,
with: €, =—[ Fuwe™" dt
T 0

. . ) C
After part-by-part integration: C, = —*—
jna,

1.3.10. Exercise 1.10

It only takes a few simple operations to get from f(r)to g(¢):

— Remove mean value: f,(1)= f(r)—1
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A f] 0)

v

A £,

— Introduce mean value: f5()= f,()+1

“f3(t)

-5 -4 -3 -2 -1

— Translate to the left: g(n)= f;(t+1)

-6 -5 -4 -3 2 -1 o 1 2 3 4 5 6 ¢t
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These various operations in the time-domain then translate very
simply into the frequency domain.

T
e SIN n —

fo=1+ )]

n=—o0

2 n#0

2 n#0

. T
nme  SINTI—

jnzt
fz(t)= z —26 2

2
e
2 n#0

oo smn— m )
fin=1+ Y —=
e
2 n#0
Sinni jnz jnﬁt
g =1+ z 2e 2

8
2 n#0

Note that the even terms are null. We obtain:

g (2p+1)§t

(t)—1+z

= Cp+ 1)2
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1.3.11. Exercise 1.11
The impedance of a circuit as a sinusoidal system will appear:

2
ZGw) =R+ Lo+ ——=0.01+ jo+ 17

jCw jo

We obtain the components of the Fourier decomposition of i(¢) by
dividing those for v(»)by Z ,, set at the pulsation.

-

n=+oo .
vi= Y. Ce"™
167°
1Z(jw)=0.01+ jnag, +—=
Jna,
l(t) _ nf Cn ejn(q)t _ nimc' ejna,{)t
L Nn=—o0 Z(Jna)() ) n=-—oopn !

Both voltages have the same period 7' =1 meaning @, = 27 .

The impedance at the different pulsations of the decomposition can
be expressed as follows:

n* -4

n

Z =001+ j2r

(Jnay)

For n=0 which is the same as saying w=0, the impedance
becomes infinite. The continuous component, or mean value of the
current will be null which is explained by the presence of a capacitor
in the circuit.

The impedance is real and equal to 0.001 for n=4%2or
w=14r =12, which is the resonant frequency of the RLC series
circuit.
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The Fourier decompositions for the different voltages are:

2 1
vio=>C =——
10 " 7 4n® -1
-
v, ()= fl’m
C0=5

This gives us the expression of the Fourier decompositions of the
different currents and the spectral representation of the first three

harmonics:
C,=0
T P B R
T 0014 o=
n
C.[4 424
0.011 0.005
1 | | 1
-6 —4r -2n |0 27 4Ar  6rx @
C,=0
. , -1
Li=>4C, =

2 —_—
j27m[0.01 + jon” 4)
n
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4 7.9
0.008 0.005
| | | 1
—6r —4r 2% |0 2% 4w 6m @

Spectral components other than

w=147 have a very low

amplitude. This means the current is practically sinusoidal with a
frequency double that of the input signal. This comes down to the
selectivity of the resonant RLC series circuit.






