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Fourier Series 

1.1. Theoretical background 

1.1.1. Orthogonal functions 

1.1.1.1. Orthogonal vectors 

Let us consider a vector space with n dimensions and vectors
1 2 nx ,x , ....x as the orthogonal basis. 

† 0  if 
  if i

i j
k i j

≠⎧
= ⎨ =⎩

i jx .x  [1.1] 

ik is the norm for vector ix . 

=† T*
ix x is the Hermitian vector (conjugate and transposed) of vector ix . 

This collection of vectors is assumed to be complete once there is 
no way of finding any more values for kx such as =†

k ix .x 0   

Consider vector A within this space and 1 2, ,.... nA A A this vector’s 
components in relation to n basis vectors. If the basis is complete, we 
can pose: 
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We obtain coefficients iA using to the following relation: 

i
i
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 [1.3] 

1.1.1.2. Vector-function analogy 

Consider two functions ( )i tf and ( )j tf that are orthogonal on 

interval [ ]1 2,t t  if: 
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ik is the squared norm of function ( )i tf . 

The vector space is complete if we can no longer find any further 
functions ( )tf  that are orthogonal to the previous ones. 

When this space is complete and infinite, we can establish an exact 
representation of any function as a series on interval [ ]1 2,t t : 

[ ]1 2
1
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i

t tg C f t t t
=∞
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= ∈∑  [1.5] 

The coefficients of the decomposition are found using the 
following relation: 
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1.1.2. Fourier Series 

1.1.2.1. Trigonometric series 

Functions { }0cosnω t  and { }0sin nω t  form, on interval [ ]0 0,t t T+ , 

an infinite complete collection of orthogonal functions with 
0

2T π
ω

= . 

It is thus possible to represent a function ( )tf  on interval 
[ ]0 0,t t T+ : 

[ ]0 0 0 0 0
1 1

( ) cos sin ,
n n

n n
n n

tf a a n t b n t t t t Tω ω
=∞ =∞

= =

= + + ∈ +∑ ∑  [1.7] 

0a is the mean value of ( )tf on interval [ ]0 0,t t T+  

The coefficients are found using the following relations: 
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 [1.8] 

1.1.2.2. Exponential series 

Functions { }0jn te ω  form an infinite complete collection of 

orthogonal functions on interval [ ]0 0,t t T+ . 

On this same interval, a function ( )tf would be noted: 

[ ]0
0 0( ) ,

n
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n
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= ∈ +∑  [1.9] 
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The coefficients for the decomposition are found using the 
following: 

0

0

0

( )
1 t T

jn t
n

t

tC f e dt
T

ω
+

−= ∫  [1.10] 

In the case where ( )tf is real, we know that the following is true: 

*
n nC C−=  [1.11] 

Thus n nC C−= et ( ) ( )n nArg C Arg C−= −  

This gives us an example of Hermitian symmetry. 

1.1.2.3. Relations between two different forms of series 

The following relations allow us to change between one form of 
Fourier series and another: 
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 [1.12] 

There is an alternative form for the trigonometric series: 
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 [1.13] 

Table 1.1 presents a recap of these different formulas. 
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Series form Calculation of coefficients 
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Formulas for switching between forms 

( )

( ) ( )

( )

0 0

2 2

1 1
2 2

2

n n n n n n

n n n n n n

n
n n n n n n

n

a C
a C C b j C C

C a jb C a jb

b
A a b C Arg C Arctg

a
φ
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−

=
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⎝ ⎠

 

Table 1.1. Recap of Fourier series formulas 

1.1.3. Periodic functions 

A periodic function with a period T is a function that repeats itself 
identically every T seconds. 

( ) ( )t nT tf f t n Z+ = ∀ ∈  [1.14] 

Consider a periodic function of period T represented on interval 
 by a Fourier series, the representation remains valid 

regardless of whether ] [, .t ∈ −∞ ∞  

 

[ ]Ttt +00 ,
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 )(tf

t  0t T T2 T3  T−T2−  0 Tt +0 Tt 20 +  Tt −0Tt 20 −  

)( 0tf

 

Figure 1.1. Periodic function 

The value for 0t is thus irrelevant. In practice, we often set 0 0t = or 

0 2
Tt = − , the integrals of formulas 8 and 10 thus become: 

0

T

∫ and
2

2

T

T−
∫  

1.1.4. Properties of Fourier series 

1.1.4.1. Time domain translation 

If ( )tf is represented by the following Fourier series: 

0( )
n

jn t
n

n
tf C e ω

=∞

=−∞

= ∑  

When translated in time, function ( )tf τ− can be noted as follows: 

0

0
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C C e

ω
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τ
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−

−
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∑  [1.15] 
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1.1.4.2. Even functions 

If ( )tf is an even function, that is ( ) ( )t tf f −= , its decomposition 
into a Fourier series will not contain any sine values. 

0 0
1

( ) cos   
n

n
n

tf a a n tω
=∞

=

= +∑
 

It is also possible to cut the integration interval by half: 

2

0
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 [1.16] 

1.1.4.3. Odd functions 

If ( )tf is an odd function, i.e. ( ) ( )t tf f −= − , its decomposition into 
a Fourier series will only contain sine values. 

0
1

2

0
0

( )

( )

sin   

4 sin

n

n
n
T

n

t

t

f b n t

b f n t dt
T
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ω
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=
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⎪
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⎩
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∫
 [1.17] 

An absence of function parity can be masked by the mean value of 
function ( )tf . Therefore, we must analyze this property in the case of 
function 0( )tf a− . 

1.1.4.4. Rotational symmetry 

In this case, function ( )tf is composed of two identical half-periods 

of opposing signs: ( ) ( ).
2
T

t tf f± = −  
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The decomposition into a Fourier series contains only odd 
harmonics: n odd. 

This property can also be masked by the mean value of the 
function. 

1.1.5. Discrete spectra. Power distribution 

A periodic function ( )tf has a frequency spectrum which provides 
it with a representation on the frequency domain. This spectrum  
only exists for discrete values ofω . It is either a discrete or a line 
spectrum. 

The amplitude of each spectral line is proportional to the value set 
by the function. 

1.1.5.1. Physical spectrum. Complex spectrum 

The physical spectrum represents values nA and nφ . It corresponds 
to positive values of frequency. 

The complex spectrum represents nC . There are therefore two 
spectra, one is the amplitude spectrum and the other is the phase 
spectrum. This highlights negative pulses; the amplitude of the 
spectral lines at 0nω  is actually the combination of all the spectral 
lines at 0nω± . 

In a case where function ( )tf is real, *
n nC C−=  the amplitude 

spectrum will be symmetric, while the phase spectrum will be 
antisymmetric to the origin of the frequency. 

The phase spectra are identical while the amplitude spectra are 

linked through the two following equations 0 0

2 n n

C a
C A

=⎧⎪
⎨ =⎪⎩
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nC  

ω
0ω  

0C  

nA
11 2CA =  

0 

000 CAa ==  

02ω 03ω 04ω02ω−  02ω03ω−  03ω04ω−  04ω  

1C  

2C  
3C  

4C  

0ω−  0ω0 ω 

22 2CA =  

33 2CA =  

44 2CA =  

Complex spectrum Physical spectrum  

Figure 1.2. Physical spectrum and complex spectrum 

1.1.5.2. Power spectrum 

The mean quadratic value of a periodic function ( )tf or root mean 
square (RMS), is given by the following equation: 

2 2

0

( )
1 T

eff tF f dt
T

= ∫  

This value is directly linked to the power of the signal: 

22 2

0

( )
1 T n

eff n
n

tF f dt C
T

=+∞

=−∞

= = ∑∫  [1.18] 

Parseval’s theorem demonstrates how the power contained within a 
signal is the sum of the powers contained in all the spectral lines of its 
Fourier decomposition. 

It is possible to trace a power spectrum representing 2
nC . 

1.2. Exercises 

The exercises presented in this chapter come from B.P. Lathi  
[LAT 66]. 
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1.2.1. Exercise 1.1.  Examples of decomposition calculations 

For each of the following periodic functions, calculate a Fourier 
decomposition and trace the outline of the complex spectrum. 

 )(1 tf

t  π π2 π3  π−π2−  0

1

 

Figure 1.3. Sinusoidal arc function 

 )(2 tf

t  1 2 31−2−  0

1

2
1  

2
1−  3−  

 

Figure 1.4. Trapezoid function 

 )(3 tf

t  1 2 31−2−  0

1

3− 4 

1−  

Figure 1.5. Saw tooth function 
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 )(4 tf

tπ π2 π3π−  π2−  0

1

π3−  

1−

10
t

e
−

 

 

Figure 1.6. Exponential function. 

In the case of Figure 1.6, what limit does this decomposition 
approach when the exponential time constant becomes infinite? 

 )(5 tf

t
1

2 31−  2−  0

1

3−

1−

5

tπ200cos

 

Figure 1.7. Modulated Sinusoidal function 

1.2.2. Exercise 1.2 

Consider the following rectangular function: 

 )(tf

tπ π20  

1  

1−   
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– Demonstrate that on interval [ ]0,2π , ( )tf is orthogonal to cos nt
with n integer number. What conclusion would you draw from this 
regarding the Fourier decomposition of ( )tf ? 

– Demonstrate that on the same interval, error function 

( ) ( )
4 sine t tf f t
π

= − is orthogonal to sin t . Explain this result. 

1.2.3. Exercise 1.3 

Consider two functions 1( )tf  and 2 ( )tf that are orthogonal on 
interval [ ]1 2,t t . 

We define the energy of a function on this interval with the 
following equation: 

2

1

2 ( )
t

t

tE f dt= ∫  

Demonstrate that the energy contained in the sum, or difference, of 
these two functions 1( )tf and 2 ( )tf is the sum of the energies contained 
in each of these functions. 

1.2.4. Exercise 1.4 

Demonstrate that for an even periodic function, the coefficients of 
the Fourier decomposition are real and pure imaginary for an odd 
function. 

1.2.5. Exercise 1.5 

– Give an example of two periodic functions that have the same 
Fourier series with the exception of component 0a . 

– What are the differences between Fourier developments of 
functions that are identical in everything other than their periods? 
Make a comparison between a function that has a period of 2π  
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seconds with another function that is identical except that it has a 
period of π milliseconds. 

1.2.6. Exercise 1.6. Decomposing rectangular functions 

– Calculate the Fourier decomposition of the following function: 
 )(1 tf  

t  50

1

431 21−  2−  3−
 

– Using this result, establish in the simplest way possible the 
decompositions of the following periodic functions:   

 )(2 tf  

t  50 

1 

431 21−  2− 6
 

 )(3 tf  

t  50

3

431 21−  2−  3−

2

1

 
 )(4 tf  

t5
0

1

431 21−  2−  3−

1−   
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1.2.7. Exercise 1.7. Translation and composition of functions 

Consider the following function ( )tf : 

 )(tf  

t  
π π2 π3π−

π2−  

0

1

π3−  

1−

π4π4−

 

– directly calculate the Fourier decomposition of ( )tf ; 

– perform a translation of π  to the left, or ( ) ( )i t tf f π+= . 
Decompose ( )i tf into a Fourier series and then find the result for ( )tf
starting from ( )i tf ; 

– same exercise but this time performing a translation of π  to the 
right, ' ( ) ( )π−=i t tf f ; 

– consider the following function 1( )tf : 
 )(1 tf

t  π
2

3π  
2
π  π− 0

1

2
π−  

1−  

Demonstrate that 1( )tf can be expressed as a function of ( )tf . Use 
the previous results to determine the decomposition of 1( )tf . 
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1.2.8. Exercise 1.8. Time derivation of a function 

Demonstrate that if function ( )tf is periodic and derivable, function
' ( )
( )

t
t

dff
dt

= is also periodic. 

From this, show that if 0( )
n

jn t
n

n
tf C e ω

=∞

=−∞

= ∑ , the Fourier 

decomposition of the derived function is: 

0
0

( ) n
jn t

n
n

tdf jn C e
dt

ωω
=∞

=−∞

= ∑  

1.2.9. Exercise 1.9. Time integration of functions 

Consider a periodic function ( )tf . Demonstrate that integral 
function ( ) ( )t tF f dt= ∫ is periodic on condition that the mean value of 

( )tf be 0. 

In this case, demonstrate that 0

0

( ) .
n

jn tn

n
t

CF e
jn

ω

ω

=∞

=−∞

= ∑  

1.2.10. Exercise 1.10  

Consider the following periodic function ( )tf : 

 

 

  

t  5 0 

2

4  3 1 2  1−2−  3−  4−  5−  

)(tf
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With the following Fourier decomposition: 

2( )
sin

2

2

πn jn t

n
t

π n
f e   πn

=+∞

=−∞

= ∑  

Using the previous function, establish the decomposition of the 
following function ( )tg : 

 

We can use the results from exercise 1.9. 

1.2.11. Exercise 1.11. Applications in electronic circuits 

Let us consider a periodic voltage ( )tv of period 1 ,T s= applied to 
the following circuit: 

 

Find the Fourier decomposition of current ( )ti when ( )tv takes the 
following forms. What can you say about these results? 

  

t  50 

2  

43 1 2  1−2−  3−  4−  5−  6 6−  

)(tg

 

)(tv C
FC

HL
R

216
1

1
01.0

π
=

=
Ω=

 
R L

)(ti
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 )(2 tv  

t0

1

3−  31 21−2−  
 

1.3. Solutions to the exercises 

1.3.1. Exercise 1.1. Examples of decomposition calculations 

– Function 1( )tf : 

The analytical form of function 1( )tf of Figure 1.3 during a single  
period is: 

[ ]
[ ]1 ( )

sin 0,
0 ,2

t
t t

f
t

π
π π

⎧ ∈⎪= ⎨ ∈⎪⎩
 

The period here is 2T π= , the fundamental pulse is 0 1.ω =  

Let us find the decomposition in trigonometric form:  

0 1
0 0

( )
1 1 sin

2

T

ta f dt tdt
T

π

π
= =∫ ∫

 

 

 )(1 tv

t2 312−  0

1

3−  1−
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or:  0
1a
π

=  

[ ]

1 0
0 0

0

( )
2 2cos sin cos

2

1 sin( 1) sin( 1)
2

T

n ta f n dt t ntdt
T

n t n t dt

π

π

ω
π

π

= =

= + − −

∫ ∫

∫
 

Hence 
0

1 cos( 1) cos( 1)
2 1 1n

n t n ta
n n

π

π
− + −⎡ ⎤= −⎢ ⎥+ −⎣ ⎦

for 1n ≠  

or: 2
1 1 cos

1n
na

n
π

π
+=

−
 

If n is even, we can set 2n p= , thus: 2 2
1 2

1 4pa
pπ

=
−

 

If n is odd, then 2 1n p= + , thus: 2 1 0pa + =  

We now perform this calculation again with 1n = : 

1
00 0

1 1 1 cos2sin cos sin 2 0
2 2

ta t tdt tdt
ππ π

π π π
− ⎡ ⎤= = = =⎢ ⎥⎣ ⎦∫ ∫  

We therefore deduce that: 2 1 0pa p+ = ∀  

[ ]

1 0
0 0

0

0

( )
2 2sin sin sin

2

1 cos( 1) cos( 1)
2

1 sin( 1) sin( 1) 1
2 1 1

T

n tb f n dt t ntdt
T

n t n t dt

n t n t n
n n

π

π

π

ω
π

π

π

= =

= + − −

+ −⎡ ⎤= − ≠⎢ ⎥+ −⎣ ⎦

∫ ∫

∫  
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Therefore: 0 1nb n= ∀ ≠  

Using the calculation for 1 :b  

2
1

0

1 sinb tdt
π

π
= ∫  or 1

1
2

b =  

Hence the trigonometric decomposition of 1( )tf : 

1 2
1

( )
1 1 2 1sin cos 2

2 4 1

p

p
tf t pt

pπ π

=∞

=

= + −
−∑  

The coefficients for the complex spectrum appear as follows: 

( )

( )

0 0

1
2
1
2

n n n

n n n

C a

C a jb

C a jb−

⎧
⎪ =
⎪
⎪ = +⎨
⎪
⎪ = −⎪⎩

 

Thus: 

*
0 1 1

2 2

1 1
4

1
(4 1)p

C C C j

C
p

π

π

−= = = −

−=
−

 

From this we can plot the amplitude and phase spectra: 

 
nC  

ω2 312−  0 43−  1−4−  

32.0

11.0

25.0

021.0
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nϕ  

ω
2 31

2− 0
4

3−  1−4−  

π

π−

2
π  

2
π−  

 

– Function 2 ( ):tf  

Function 2 ( )tf is even, the series decomposition will therefore not 
include any sine values. The integration will happen over half a 
period. 

As the function is defined in segments, we choose to divide the 

integration interval into 3: 1 1 30, ,1 1,
2 2 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤∪ ∪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

The period is 3T = and the fundamental pulse is thus 0
2 :
3
πω =  

0
1 0
2 na b= =  

Before calculating na , it should be noted that this function presents 
a rotational symmetry masked by mean value 0a . This means that even 
harmonic pairs will have a null amplitude. 

( )
( )

2

2 1 22

0
121 sin(2 1)

62 1

p

p
p

a

a p
p

π
π+

=

= − +
+

 

( )
( )2 22

1
( )

11 12 2sin(2 1) cos(2 1)
2 6 32 1

pp

p
tf p p t

p
π π

π

=∞

=

−
= + + +

+
∑  
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The complex spectrum is: 2 1 2 1
1
2p pC a+ += and only includes real 

components. It will be represented by a single plot. 

 
nC

ω2
3

12−  0 4  
3−  

1−4−  

50.0

30.0

067.0−
 

The magnitude of the spectral lines quickly decreases with the 
order of the harmonics. This is due to the similarity in shape between 
this function and a sinusoidal one. 

– Function 3 ( )tf : 

Function 3 ( )tf is odd, coefficients are null. Integration will take 
place over half a period. 

As the function is defined in segments, we choose to divide the 
integration interval into 2:  

The period is 3T = , fundamental pulse is thus 0
2
3
πω =  

0

2 2

0
2 3 2sin

3

n

n

a a
nb

n n
π

π π

= =
−= +

 

3 2
1

( )
1 2 3 2 2( sin )sin

3 3

n

n
t

n nf t
n n

π π
π π

=∞

=
=

− +∑  

na

[ ] ⎥⎦
⎤

⎢⎣
⎡∪

2
3,11,0
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The complex spectrum is: 
2n n
jC b−= and only includes imaginary 

components.  

 

 

– Function 4 ( )tf : 

Function 4 ( )tf presents a rotational symmetry 4 4( ) ( )
2
T

t tf f= ± , this 

means we will only encounter odd harmonics. 

Expressing this function in its analytical form on half a period 
suggests it would be better to use the exponential form of the Fourier 
series. After integration, we find the following result: 

  
nC  

ω  2 312− 0 43−  1−4−  

19.0
18.0

07.0
10.0

 nϕ

ω  2 31
2−

0 4
3−  1−4−  

2
π−  

2
π  
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( )

( )
( )

2 1
10 2

2 1

1
sin 2 1

1 22 1
10

j p

p

j e e
C p

j p

π π

π

π

− − +

+

⎛ ⎞
+⎜ ⎟

⎝ ⎠= +
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 

This function can then be noted as follows: 

( )

( )
( ) ( )

2 1
10 2

2 1
4

1 sin 2 11 22 1
10

π πj pp
j p t

p
(t)

e e πf j p e
π j p

− − +=+∞
+

=−∞

+= +
+ +

∑  

When the exponential time constant becomes infinite, 2 1pC +

becomes: 

( )

( )
( )2 1

2
2 1

sin 2 1
2

2 1
2
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This statement corresponds to the decomposition of a rectangular 
signal with a period of 2π and with a duty cycle of 2. 
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– Function : 

Function  is even, coefficients are null. Integration will 
take place over half a period, that period being and the 

fundamental pulse stands at  

 

This gives us: 

for  

If we repeat this operation for n=400, we obtain: 

 

What’s more:  

The Fourier decomposition will appear as follows: 

 

The spectral lines will be centered around n=±400 thus . 

As the spectrum is real, we will trace . 
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1.3.2. Exercise 1.2 

Let us begin by proving that is orthogonal to on 
interval : 

 

The integral is null, is hence orthogonal to . 

This tells us that the Fourier decomposition will not include any 
cosine values. 

Let us now show that the error function is orthogonal to
on interval . 

 

The integral is null and  is hence orthogonal to . 
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The error function therefore cannot be expressed according to sin t. 

This means that is the fundamental value of the Fourier 

decomposition of . 

1.3.3. Exercise 1.3 

The energy of the function is noted as follows: 

 

The two first terms represent the energy of each function. The third 
is interaction energy between the two functions. 

If both functions are orthogonal on interval then integral 

 

The level of interaction energy is null. The resultant is immediately 
apparent. 

1.3.4. Exercice 1.4 

If function is even, terms must be null. The terms of the 
exponential decomposition appear as follow: 

 

This indicates they are real. 

Similarly, when  is odd, terms are null. 

Hence:  
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The terms are therefore imaginary. 

1.3.5. Exercise 1.5 

Both functions and have the same Fourier decomposition 
except in their mean value. The difference between these two 
functions must be orthogonal to and  regardless of n 
with . 

We obtain , hence the solution: 
 

Two identical functions with different periods will have the same 
Fourier decomposition coefficients and only the frequencies of the 
various harmonics will differ. 

 

1.3.6. Exercise 1.6 

– Function is even and therefore . We have to integrate 
it into a half-period. 

The period is T = 4 and the fundamental pulse is  

 

Thus:  
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All even harmonics are null. This is due to the rotational symmetry 
of the function that is being masked by the mean value. 

We can rewrite the Fourier decomposition as: 

 

The terms of the exponential decomposition then appear as 
follows: 

 

– Function corresponds to the translation of function : 

 

The coefficients in the exponential decomposition appear as 

expected, the amplitudes and the phases differ to : 

 

– Function is the result of translating and changing the mean 
value of : 
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These are the coefficients of the exponential decomposition: 

 
– Function is the result of changing the mean value, 

amplitude, period and performing a time-shift on : 

New amplitude: 2 

Mean value: 0 

Period:  

Time-shift:  

 

1.3.7. Exercise 1.7. Translation and composition of functions 

– Period is , fundamental pulse is .  

The exponential decomposition can be obtained from the following 
integral: 
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After calculations:  
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The exponential decomposition will therefore appear as follows: 

 

– is an odd function. The decomposition contains only terms 
with sine. The terms of the exponential decomposition are easily 
obtained by performing a phase change of  that corresponds to 

time-shift , which would be . 

We then have:  

– The same method can be applied to function , the phase 
shift that we apply here has the opposite sign to function  which 

would be  

We then have:  

– Function can also be presented as follows: 
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Starting with the decomposition of and adding to that a phase 

change, we obtain the decompositions for and . 

If we then subtract the decomposition for : 

 

1.3.8. Exercise 1.8. Time derivation of functions 

The derived function can be expressed as follows: 

 

If the period for the function is , the following can be stated: 

 

This means  is periodic and has a period of . 

 can then be decomposed into a Fourier series: 
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After part by part integration we obtain:  
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1.3.9. Exercise 1.9. Time integration of functions 

Consider the following periodic function  and its 

integral function , so that:  

 

We can calculate  

 being the mean value of . 

The integral function of is only periodic with a period of T if 
the mean value for  is null. 

can then be decomposed into a Fourier series: 

 

with:  

After part-by-part integration:  
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– Integrate:  

 

– Introduce mean value:  

 
 

– Translate to the left:  
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These various operations in the time-domain then translate very 
simply into the frequency domain. 

 

 

 

 

 

Note that the even terms are null. We obtain: 
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1.3.11. Exercise 1.11 

The impedance of a circuit as a sinusoidal system will appear: 

 

We obtain the components of the Fourier decomposition of by 
dividing those for  by set at the pulsation. 

 

Both voltages have the same period  meaning . 

The impedance at the different pulsations of the decomposition can 
be expressed as follows:  

 

For n=0 which is the same as saying , the impedance 
becomes infinite. The continuous component, or mean value of the 
current will be null which is explained by the presence of a capacitor 
in the circuit.  

The impedance is real and equal to 0.001 for or
04 2ω π ω= ± = ± which is the resonant frequency of the RLC series 

circuit.  
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The Fourier decompositions for the different voltages are: 

   

 

This gives us the expression of the Fourier decompositions of the 
different currents and the spectral representation of the first three 
harmonics: 
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 '
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Spectral components other than 4ω π= ±  have a very low 
amplitude. This means the current is practically sinusoidal with a 
frequency double that of the input signal. This comes down to the 
selectivity of the resonant RLC series circuit. 



 


