Stress

1.1. Notion of stress
1.1.1. External forces

There are three types of external forces:

— concentrated forces: this is a force exerted on a point (in Newton units, noted
as N). In practice, this force does not actually exist. It is just a model. If we were to
apply a force to a point that has zero surface, the contact pressure would be infinite
and the deformation of the solid would therefore induce a non-zero contact surface.
Nevertheless, it can still be imagined for studying problems with a very concentrated
contact type load between balls. The results will thus yield an infinite stress and will
need to be interpreted accordingly;

— surface forces, which will be noted as F.,, for the rest of this volume (in Pascal
units, it is noted Pa). This type of force includes contact forces between two solids
as well as the pressure of a fluid. Practically, any concentrated force can be seen as a
surface force distributed onto a small contact surface;

—volume forces, which will be noted as f, for the rest of this book (in N/m3).
Examples of volume forces are forces of gravity, electromagnetic forces, etc.

Incidentally, in this book you will notice that vectors are underlined once and
matrices (or tensors of rank 2), which you will come across further on, are
underlined twice.
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1.1.2. Internal cohesive forces

We wish to study the cohesive forces of the solid S, at point M and which is in
equilibrium under the action of external forces. The solid is cut into two parts E; and
E, by a plane with a normal vector n passing through M. The part E; is in
equilibrium under the action of the external forces on E; and the cohesive force of E,
on E;.

E; E;

Uimp = Q Wimp = Q

Figure 1.1. Principle of internal cohesive forces. For a color
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

Let A4S be the surface around M and AF be the cohesive force of 2 on 1 exerting
on AS, then the stress vector at the point M associated with the facet with a normal
vector n is called:

o(M.n)= tim AE_E

oo _ 4o [1.1]
AS—0 AS  dS

The unit is N/m” or Pa and we generally use MPa or N/mm®.
Physically, the stress notion is fairly close to the notion of pressure that can be

found in everyday life (the unit is even the same!), but as we will see further on,
pressure is but only one particular example of stress.

1.1.3. Normal stress, shear stress

We define the different stresses as:
— normal stress, the projection of ¢ (M, n) onto n, noted as o;

— shear stress, the projection of ¢ (M, n) onto the plane with normal 7, noted as 7.
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Figure 1.2. Decomposition of a stress vector. For a color version
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

Thus, o represents the cohesive forces perpendicular to the facet, meaning the
traction/compression, and 7 the forces tangential to the facet, meaning the shear. In a
physical sense, the pressure found in our everyday lives is simply a normal

compression stress.
We then definitely have:
o(M,n)=on+1t
NOTE.— n and t must be unit vectors.

And conversely:

1.2. Properties of the stress vector
1.2.1. Boundary conditions

If n is an external normal, then:

Q—(M’Hext ) =Foy

[1.2]

[1.3]

[1.4]



4  Mechanics of Aeronautical Solids, Materials and Structures

Figure 1.3. External force and associated normal vector. For a color
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

NOTE.— F,,, is in MPa, and a normal external vector is always moving from the
matter towards the exterior.

So, F,,; can be seen as a stress vector exerted on S, particularly if the surface is a
free surface:

o(M,ney)=0 [1.5]

These relations are important as they translate the stress boundary conditions on
the structure. In order for this to be the solution to the problem (see Chapter 3), these
relations are part of a group of conditions that are needed to verify a stress field.

EXAMPLE: TANK UNDER PRESSURE.—

Pressure p

Figure 1.4. Tank under pressure
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For every point on the internal wall of the tank, we find:
(M, next) ==p-next [1.6]

With the external normal vector moving towards the center of the circle, from
where the normal and shear stresses are:

O'=Q'(Maﬁext)'2ext =-p [1.7]
T:Q(M’ﬁext)'£:0 |

Given that the normal stress is negative and the shear stress is zero, the material
is subjected to pure compression. The first relation shows that the physical notion of
pressure is simply a normal stress of compression: hence the minus sign before the
pressure!

1.2.2. Torsor of internal forces

Section §

E;

E;

uimp =0

Figure 1.5. Set of internal forces. For a color version of this
figure, see www.iste.co.uk/bouvet/aeronautical.zip

The torsor of internal forces of 2 on 1 at G, the center of gravity of S, is:

cohl _| Ron
{T2/1 }G_{Mz/l(G)} -]
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At first sight, the torsor notion may seem primitive but it enables us to simply
consolidate the force with the moment. Should the notion of torsor bother you, you
may settle for referring to it in plainer language as force and moment. However, you
should not forget that when speaking about internal forces between 2 parts of a
solid, it needs to be remembered that there is a force (in N) and a moment (in
N.mm). The ambiguity comes from the term “force”, which is used for a force (in
the common everyday sense of the word), and as a whole, force + moment!

Let us now seek to link this set of internal forces to the previously discussed
stress vector. We then have:

dﬂz/l(M)=g(M,Q).dS [1.9]
therefore:

Ry =MZ€SdE2/1(M) =[[go(M,n).dS

Mo1(G)= T dMy(G)= T GM ndEy (M) [1.10]

=[[gGM ~o(M,n).dS

These relations are somewhat (or very) complex, but physically, they simply
translate the fact that if we add up all of the stress vectors on section S, then we will
obtain the force of part £, on part E;. Lastly, we should not forget that when we add
up the stress vectors, we will obtain not only a force, but also a moment (which
obviously depends on the point at which it is calculated).

These relations can also be written on an external surface as:

Rop =[], e(Mn,,)ds=|[ F, ds

M, (6)=] GMAc(Mn,,)dS=[[ GMAF [1.11]

.ds

—ext

These relations are important because in practice, although we know the
resultant Ro.;; or M,.,; we do not generally know F,,,. In fact, an external force is
practically applied via the intermediary of a beam, a screed, a jack, etc., and the
applied resulting force (or the moment) is known, but the way in which it is divided
is unknown.
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EXAMPLE: TRACTION.—

y y
Sy %E T i
™ AN
Uniform
stress
_— _—
x x
BF Wi )

Figure 1.6. Tensile test. For a color version of this
figure, see www.iste.co.uk/bouvet/aeronautical.zip

In a tensile test, we know that the resultant of the forces applied to Sy is worth £

lls, o(M.y)-ds =F

[1.12]
fls, GM no(M.y).-dS =0
However, in order to deduce that:
F
o|lM,y|=—=0,. 1.13
o(M.2)=5-=00 2 [1.13]

we must add a homogeneity hypothesis of the force applied which remains to be
verified. Incidentally, we can demonstrate that the two previous integrals are verified
with this stress vector.

EXAMPLE: BENDING.—

y y
M T M Stress T
—@> distribution 5 =K
O «
= > A L =
X Pami e X
AN
Sx

Figure 1.7. Bending test. For a color version of this
figure, see www.iste.co.uk/bouvet/aeronautical.zip
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In a pure bending test, we know that the resultant of the forces applied to S is
worth M.z:

[Is, o(M,x).dS=0

1.14
is GM Ao(M,x).dS =M.z [1.14]

However, by deducing that on Sy:

o(M,x)=—.y.x

LV [1.15]

This formula is a classic example of the mechanics of material which we will
discuss (and demonstrate) again when doing the exercises. Should you need to, you
can read a more detailed publication, such as [AGA 08, BAM 08, CHE 08, DEL 08,
DUP 09], etc.

Obviously, with the moment of inertia:
_ 2
Iz—jjsxy .dS [1.16]

we must add a linear distribution hypothesis of the stress applied which remains to
be verified. Incidentally, we can demonstrate that the two previous integrals are
verified with this stress vector.

1.2.3. Reciprocal actions

E,

E,

uilllp =0

Figure 1.8. Reciprocal actions. For a color version of this
figure, see www.iste.co.uk/bouvet/aeronautical.zip
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According to the Law of Reciprocal Action, we have:
dFp/1 =-dF1/2
Yet:

{dEZ/l (M)=0(M,n).dS
dF1» (M) =Q'(M,—Q).dS

Hence:

o(M,n)=-c(M~n)

[1.17]

[1.18]

[1.19]

This can be translated by the fact that a fine slice of matter of surface dS, which
has a normal vector +x on one side and —n on the other, is at equilibrium under the
action of the two opposing forces o(M, n).dS and o(M, —n).dS. Evidently, it is very

much at equilibrium.

1.2.4. Cauchy reciprocal theorem

aM;,w)

Figure 1.9. Stress vectors on the faces of a square. For a color
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

Let us put this in 2D, in order to make the demonstration easier.
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A square is assumed to be infinitely small, therefore the stresses are assumed to
be constant everywhere in the cube, hence we have:

o(My.y)=a(M.y)=0yy y+px [1.20]
Q-(Ml ‘a‘{):_Q(M&):_O-xx-ﬁ_fxy'z
Q(Mz"_y):_(’(M’y)—‘ yy YT Tyx X

In the notation of 7,, the first “x” corresponds to the direction of the facet,

meaning the normal vector on the cutting plane in question, and the second index

[I3K ]

y”” represents the direction of the stress.

The equilibrium equation on the square is written as:

Z{ TCOh } {0} [1.21]

ext/cube
which, for the force equation, induces the following:

Q(Ml,g).dy.dz+g(M ).dx.dz+g(Ml',—§).dy.dz+g(M A 7) dx.dz=0[1.22]

Y 1

This is an automatically verified equation. For the moment equation in M at the
center of the square, the below is induced:

MM, /\g(Ml,g).dy.dz+]\ﬂ2 /\g(Mz,y).dx.dz
- 1.23
+MM1'A Q(Ml ',—z).dy.dz—i-mz ‘A Q(MZ ',—X).dx.dz =0 2]

where the Cauchy reciprocity theorem is:

Txy =Tyx [1.24]
It can be shown in the same way in 3D:
Ty =Tyx
Txz = Tzx [1.25]

TyZ :sz
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EXAMPLE: TORSION OF A WELDED TUBE.—

Figure 1.10. Torsion of a welded tube. For a color version
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

A torsion moment is applied to a tube comprised of a rolled and welded sheet. It
can be shown (see exercises) that it has been subjected to a homogeneous
circumferential shear stress. The Cauchy reciprocity theorem then induces the
welding to be stressed by a longitudinal shear T equal to the circumferential shear
stress. All that remains then is the sizing of the welding so that it can withstand this
shearing applied force.

1.3. Stress matrix
1.3.1. Notation
There is a stress vector on the facet with the normal vector x:

o(M,x)=0+7=0.x+7.t [1.26]

ZT oM, z)

oM,y

o

oM, ’_‘)z/ E—
x /

Figure 1.11. Stress vectors on the faces of a unit cube. For a color
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

y
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and ¢ can be broken down in accordance with y and z, hence:

Q(Mai)zo'xx-l"'rxyl"'z'xzé [1.27]

Once again, in the notation of 7, the first index “x” corresponds to the direction

of the facet and the second index “y” represents the direction of the stress.

In the same way for the faces of the cube with normal vectors y and z, we have:

O(M,X)=0xy X+Txy .y +1xz.2
Q(M'Z)zfyx-i"'o'yy-z*'fyz Z [1.28]
O(M,z)=Ty X+1Tz.y+0z;.2

O(M) is what is referred to as the stress matrix:

O-xx > X
aM)=|z, o, T, [1.29]
TXZ T‘ 4 GZZ

(2.0:2)
Evidently, the expression of this matrix depends on the coordinate.

Moreover, it is symmetrical in accordance with the reciprocity of the stresses:

X Xy Xz
o(M)=|z, o, 7, [1.30]
sz Tyz O-zz

The very notion itself of the stress matrix is important, as it assumes that at one
point, and in the small volume (REV) surrounding it, the state of the internal forces
of matter is entirely represented by this matrix. This is in contrast to the stress
vector, which only gives the internal force for one single facet.

EXAMPLE: DRAWING THE STRESSES IN 2D .—

A small square is subjected to a 2D-stress tensor:

O-xx Txy
o(M)= . [1.31]
(x.y)

Xy w
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These faces are therefore subjected to the following forces:

o(M,y)

Oy

oM,y

Figure 1.12. Stress vectors on the faces of a square. For a color
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

This drawing may be simple, but it is paramount for interpreting the stress
tensor.

You obviously would have noticed that the projection of (M, x) on y is equal to
that of o(M, y) on x, which is evidently due to the symmetry of the stress tensor.

I will leave it up to you to do the same drawing in 3D.

1.3.2. Invariants of the stress tensor

The stress tensor possesses three elementary invariants. We classically use:
— The hydrostatic pressure:

1 0,+0,+0.
P =§tmce( g) :f [1.32]

It is named thus because when we apply a uniform pressure to a cube in all
directions, we obtain:

-p 0 O
=0 -p 0 [1.33]
0O 0 -p
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X

T HO'IH='P
o=-p

=L On=-p

ﬁ

_ X
or=-p

xy / U Om=-p

Figure 1.13. Hydrostatic pressure. For a color version
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

In this case, the hydrostatic pressure is evidently equal to the pressure p, in its
absolute value.

— The Von Mises equivalent stress:

o= \/%@( o):dev( )= \/%-((0'1 —oy) +(oy —op)? +(oy —0'1)2) [1.34]

With the stress deviator, which is written as:

@(g):g—é.trace(g).ﬁ [1.35]

This stress is very important for estimating the beginning of a ductile material’s
plasticity (see Chapters 3 and 4).

— The determinant:

I, =det(o) [1.36]

These invariants are very important for writing the fracture, yield or damage
criteria. Given that a criterion of this type is indeed representative of the state of
matter, it must not depend on the coordinate at which we write the stress matrix, and
therefore it can be written based on these invariants.
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1.3.3. Relation between the stress matrix and the stress vector

By constructing the stress matrix, we then have:

o(M.x)=0(M).x
o(M.y)=c(M).y
o(M,z) =g(M)g

And so, irrespective of n:

a(M.n)=0(M).n

[1.37]

[1.38]

This relation is very important as it enables the stress matrix to be linked to the
stress vector. It will therefore be used very ofien throughout the rest of this book.

EXAMPLE: TRACTION.—

T

1111

§%ﬁ£

Oy

4oy, 100,

Figure 1.14. Traction test. For a color version of this
figure, see www.iste.co.uk/bouvet/aeronautical.zip
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Let us search for the stress tensor of a traction test. The boundary conditions on
the six external faces give:

[1.39]

Q(M'X)ZZ(M)-X=%=% -y [1.40]

0 0 O
g(M)= 0 o, 0 [1.41]
0 0

Experimentally, during a traction test on a metal sample, we note that the
fractography is oriented at 45°. The fracture obviously occurs after significant
plasticity. Yet we know that the plasticity is sensitive to the shearing, rather than to
the normal stress. Therefore, in order to explain this fractography, we can show that
the shearing is maximum at 45°.

This exercise can be done in 2D, or even in 3D, as the demonstration will be
similar:

[

0 oy

(M)= {0 0 Ly) [1.42]

And for a facet with normal n, the normal and shear stresses are:

o(M,n)=0(M).n=0,.sin().y=0,,.n+17, .t [1.43]
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10, 10y,

Figure 1.15. Stress vectors in traction. For a color version
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

where:

{o,m = 0, .sin2(6) 14

T, = 0y .sin(d).cos(8)
So, T is maximum at 45°.

Calculation using the equilibrium of a triangle of matter:

Knowing that the stress matrix is built on the basis of the equilibrium of a REV,
the previous result can be found again by balancing a triangle of matter.

Figure 1.16. Equilibrium of a triangle of matter. For a color
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip



18 Mechanics of Aeronautical Solids, Materials and Structures

Equilibrium in accordance with x:

0.~ cos@) -7, — sin(@)=0 [1.45]
sin(6) sin(6)

Equilibrium according to y:

o, dx+0, .~ sin@)+7,.— T cos(@)=0 [1.46]
sin(@) sin(6)
where:
c, =0,. s.inz(é?) [1.47]
T, =0,.sin(8).cos(0)

We then evidently find the previous result again.

1.3.4. Principal stresses and principal directions

As the 3D stress matrix is:

O-xx xy Xz
o(M)=|z, o, 7, [1.48]
sz yz O.zz

(xy2)

Evidently, this stress matrix can be determined in another coordinate system
(X1, 1, 21) by:

(M)

!

=P'.g(M),.P [1.49]

By

with P, the rotation matrix from the basis B to the basis Bj, representing the vector
coordinates of B; expressed in the basis B.
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EXAMPLE: TRACTION.—

Thanks to this relation, we can evidently find the normal and shear stresses of a
traction tensor:

0 0 O sin’(0).0, cos(6).sin(8).0, 0
a(M)=|0 o, 0 =| cos(8).sin(0).0, cos’*(6).0, 0 [1.50]
0 0 O 0 0 0
(x2) (nt2)
With:

cos(@) —sin(d) 0
P= sin(d) cos(@d) O [1.51]
0 0 1 (

x0.2)

And in the stress matrix expressed in B, we will recognize the expressions of g,
and o;,.

THEOREM.— There is a direct orthonormal coordinate system (x;, xy, Xy) in which
the stress matrix is diagonal:

o, 0 0
oM)=10 o, O [1.52]
0 0 oy

(11 SXpr X )
o5, oy and oy are called principal stresses and x;, x; and x;; are principal
directions (or eigenvectors for mathematicians) associated with o}, oy and oy

respectively.

We then clearly have:

(M)x, =0,.x, [1.53]

i
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In practice, to determine the principal stresses, it is sufficient to write the below:
det(o(M)-0,1)=0 [1.54]

which gives three solutions (or two in 2D). Then, to determine the three principal
directions, it is sufficient to write the three previous relations. In practice, the three
principal directions are orthogonal, so when two of them have been found, the third
one can be deduced from the other two.

This can be translated by the following drawing:

oM.y

oM, xn)

T : oMy T o)
7, \
% om. \4 Y
Pz O /

x o(M,-x)

o(M,~xp)

oM,y

Figure 1.17. Principal stresses and associated stress vectors. For a
color version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

The state of the stress as seen by the matter on these two diagrams is the same.
EXAMPLE: SHEARING.—

As the stress tensor is:

07
(M)= L OL,V) [1.55]

So, we will be able to demonstrate that the principal stresses are +7 and —z; and
the principal directions are oriented at +45° and —45°:

[

On a physical level, this result is easy to understand as we can easily use our
hands to feel that the applied force on the left diagram pulls at +45° and compresses
at —45°.



Stress

21

Q(M)'-’_C)

oM,y)

o(M,x)

a(M,-y)

6 (M,-xu1)

Figure 1.18. Stress vectors for pure shearing. For a color
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

1.4. Equilibrium equation

This exercise is to be done in 2D:

xy

T, }
O (x.7)

And now, we shall study stress vectors on a small square:

dy

P

Q-(Ml ,,-)_C)

o(M>y)
o(M,x
7A o(Mpx)
M M /
M;
Mg’
X
oMy’,-p)

dx

Figure 1.19. Stress vectors on the faces of a square. For a color
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

[1.56]
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This square is subjected to the following stress vectors:

Q(Mpz)=2(M1)-£=(2(M)+82(M)~QJ

ox 2

Q(Ml"_i):g(Ml')-(—£)=(g(M)— =

Q(M%X):Z(MZ)ZZ{Q(MH =

o(My'~y)=c(M, ')-<—z>={g(M)—

[1.57]

If we assume that the cube is subjected to a volume force f,, then the equilibrium

equation in force can be written as:

o(M,,x).dydz+c(M,',—x).dy.dz +g(M2,X).dx.dz
+g(M2 ',—Z).dx.dz +f dxdydz=0

Hence:
a7
%Jr_@urfvx =0
ox ay
Jar, dJ0,
T+—2+f =0
ox oy ’

This equation represents the equilibrium equation of the cube.

Using the same approach in 3D leads to:

0
99, + +aT“ +f,=0
dx dy 0z
a7, . dJo,, N a7, if =0
ox dy 0z 7
asz +aTyZ +ao-zz +ﬁ/z :0
ox dy 0z

[1.58]

[1.59]

[1.60]



Stress 23

This equation can also be written as:

div(a)+f, =0 [1.61]

This is a fundamental equation as it alone translates the equilibrium of a
material point, and therefore also that of the small volume surrounding it. It must
therefore be verified at each point of the solid. This is one of the fundamental
equations which are needed to verify a stress field (see Chapter 3) in order to be the
solution to the problem.

1.5. Mohr’s circle
Mohr’s circle is a graphic method used to rotate the matrix in 2D. It enables us to
simply determine the maximum shear stresses, the normal stresses, the principal

stresses, the principal directions, etc.

As the 2D stress vector is:

Mmy=| %= 1.62
g(M)=| o)., [1.62]

Mohr’s circle is a group of points whose abscissa is a normal stress o and whose
ordinate is the shear stress 7 for all the possible facets:

As n is a vector of the plane, then:

;)
P [1.63]
T

with:

[1.64]
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Figure 1.20. Mohr’s circle. For a color version of this
figure, see www.iste.co.uk/bouvet/aeronautical.zip

The CP vector is thus representative of the facet with normal n, and when n
varies, the point P describes a circle with a center C located on the abscissa axis.

It can also be shown that while passing from the vector n to vector u, making an
angle @ with n, then an angle 2.6 is made within Mohr’s circle (this incidentally
ensures that this angle remains equal to +2.6, and not to —2.6, when we take the
downwards-facing shearing axis).

Knowing the stress tensor is:

o, T
o(M)=| © [1.65]

v T )

We can then trace the points X (6, %,) and Y (o, —7,), and trace the center C
and Mohr’s circle. From this, we can therefore deduce the main stresses o; and oy
and the principal directions.

=

1=

T

Figure 1.21. Mohr’s circle. For a color version of this
figure, see www.iste.co.uk/bouvet/aeronautical.zip



Stress 25

From Mohr’s circle, we can also deduce that the maximum normal stress is

either o7 or oy and that the maximum shearing 7, is equal to:

_ o, — 0|

Tmax 2

This relation can moreover be generalized in 3D:

|O-1 -0y | . |O'// —Oy | . |O-/// _O-/|
2 2 2

T =Max[ ; ;

We can also show that in 2D:

2
O, —O
— Yy 2
Tmax_ [ J +Txy

2

2
0'M+0'nyr [O'XX—O'W] o

o,... =Max

max

EXAMPLE: TRACTION.—

The stress tensor in traction is:

- {8 (?J(W)

{%ﬁf

Q

y

0L, 0L,

[1.66]

[1.67]

[1.68]

[1.69]

[1.70]

Figure 1.22. Stress vectors on a facet with a normal vector n in traction.
For a color version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip
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Mohr’s circle can then be traced:

t _
Y=Xu
u
Tt
0 : Z
= _ V4
I [ C L= Xn
0=ar| 206 Ou | 0p = 0On c £\ x=x

Tnt

n.|
Tmax = Op

u
7

Figure 1.23. Mohr’s circle in traction. For a color version
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip

We then find:

oc=0, = %—%.005(2.9) = 0,.sin’(6)

nn

[1.71]
r=7, = %.sin(Zﬂ) = o,.sin(6).cos(6)

The maximum shearing at 45° is equal to &;.



