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Stress 

1.1. Notion of stress 

1.1.1. External forces 

There are three types of external forces: 

– concentrated forces: this is a force exerted on a point (in Newton units, noted 
as N). In practice, this force does not actually exist. It is just a model. If we were to 
apply a force to a point that has zero surface, the contact pressure would be infinite 
and the deformation of the solid would therefore induce a non-zero contact surface. 
Nevertheless, it can still be imagined for studying problems with a very concentrated 
contact type load between balls. The results will thus yield an infinite stress and will 
need to be interpreted accordingly; 

– surface forces, which will be noted as Fext for the rest of this volume (in Pascal 
units, it is noted Pa). This type of force includes contact forces between two solids 
as well as the pressure of a fluid. Practically, any concentrated force can be seen as a 
surface force distributed onto a small contact surface; 

– volume forces, which will be noted as fv for the rest of this book (in N/m3). 
Examples of volume forces are forces of gravity, electromagnetic forces, etc. 

Incidentally, in this book you will notice that vectors are underlined once and 
matrices (or tensors of rank 2), which you will come across further on, are 
underlined twice. 
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1.1.2. Internal cohesive forces 

We wish to study the cohesive forces of the solid S, at point M and which is in 
equilibrium under the action of external forces. The solid is cut into two parts E1 and 
E2 by a plane with a normal vector n passing through M. The part E1 is in 
equilibrium under the action of the external forces on E1 and the cohesive force of E2 
on E1. 
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Figure 1.1. Principle of internal cohesive forces. For a color  
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

Let ΔS be the surface around M and ΔF be the cohesive force of 2 on 1 exerting 
on ΔS, then the stress vector at the point M associated with the facet with a normal 
vector n is called: 

( ), lim
0

F d FM n
S S dS

σ Δ= =
Δ → Δ

 [1.1] 

The unit is N/m2 or Pa and we generally use MPa or N/mm2. 

Physically, the stress notion is fairly close to the notion of pressure that can be 
found in everyday life (the unit is even the same!), but as we will see further on, 
pressure is but only one particular example of stress. 

1.1.3. Normal stress, shear stress 

We define the different stresses as: 

– normal stress, the projection of σ (M, n) onto n, noted as σ ; 

– shear stress, the projection of σ (M, n) onto the plane with normal n, noted as τ. 
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Figure 1.2. Decomposition of a stress vector. For a color version  
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

Thus, σ represents the cohesive forces perpendicular to the facet, meaning the 
traction/compression, and τ the forces tangential to the facet, meaning the shear. In a 
physical sense, the pressure found in our everyday lives is simply a normal 
compression stress. 

We then definitely have: 

( ),M n n tσ σ τ= +  [1.2] 

NOTE.– n and t must be unit vectors. 

And conversely: 

( )
( )

, .

, .

M n n

M n t

σ σ

τ σ

⎧ =⎪
⎨

=⎪⎩
 [1.3] 

1.2. Properties of the stress vector 

1.2.1. Boundary conditions 

If n is an external normal, then: 

( ),M n Fextextσ =  [1.4] 
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Figure 1.3. External force and associated normal vector. For a color  
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

NOTE.– Fext is in MPa, and a normal external vector is always moving from the 
matter towards the exterior. 

So, Fext can be seen as a stress vector exerted on S, particularly if the surface is a 
free surface: 

( ), 0M nextσ =  [1.5] 

These relations are important as they translate the stress boundary conditions on 
the structure. In order for this to be the solution to the problem (see Chapter 3), these 
relations are part of a group of conditions that are needed to verify a stress field. 

EXAMPLE: TANK UNDER PRESSURE.– 

 

next
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Figure 1.4. Tank under pressure 
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For every point on the internal wall of the tank, we find: 

( ), .M n p next extσ = −  [1.6] 

With the external normal vector moving towards the center of the circle, from 
where the normal and shear stresses are: 

( )
( )

, .

, . 0

M n n pext ext
M n text

σ σ

τ σ

⎧ = = −⎪
⎨

= =⎪⎩
 [1.7] 

Given that the normal stress is negative and the shear stress is zero, the material 
is subjected to pure compression. The first relation shows that the physical notion of 
pressure is simply a normal stress of compression: hence the minus sign before the 
pressure! 

1.2.2. Torsor of internal forces 
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Figure 1.5. Set of internal forces. For a color version of this  
figure, see www.iste.co.uk/bouvet/aeronautical.zip 

The torsor of internal forces of 2 on 1 at G, the center of gravity of S, is: 

{ } 2/1
2/1 ( )2/1

RcohT
M GG
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 [1.8] 
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At first sight, the torsor notion may seem primitive but it enables us to simply 
consolidate the force with the moment. Should the notion of torsor bother you, you 
may settle for referring to it in plainer language as force and moment. However, you 
should not forget that when speaking about internal forces between 2 parts of a 
solid, it needs to be remembered that there is a force (in N) and a moment (in 
N.mm). The ambiguity comes from the term “force”, which is used for a force (in 
the common everyday sense of the word), and as a whole, force + moment!  

Let us now seek to link this set of internal forces to the previously discussed 
stress vector. We then have: 

( ) ( ), .2/1d F M M n dSσ=  [1.9] 

therefore: 

( )

( )

( ) , .2/1 2/1

( )( ) ( ) ( )2/1 2/12/1

, .

R d F M M n dSSM S
MM G d M G GM d F M

M S M S
GM M n dSS

σ

σ

= ∑ =⎧ ∫∫
∈⎪

⎪
= ∑ = ∑ ∧⎨

∈ ∈⎪
⎪ = ∧∫∫⎩

 [1.10] 

These relations are somewhat (or very) complex, but physically, they simply 
translate the fact that if we add up all of the stress vectors on section S, then we will 
obtain the force of part E2 on part E1. Lastly, we should not forget that when we add 
up the stress vectors, we will obtain not only a force, but also a moment (which 
obviously depends on the point at which it is calculated). 

These relations can also be written on an external surface as: 

( )

( )

σ

σ

⎧ = =
⎪
⎨

= ∧ = ∧⎪⎩

∫∫ ∫∫
∫∫ ∫∫

/1
/1

, . .( ) , . .ext ext

ext ext

ext ext extS S

ext ext extS S

R M n dS F dS

M G GM M n dS GM F dS
 [1.11] 

These relations are important because in practice, although we know the 
resultant Rext/1 or Mext/1, we do not generally know Fext. In fact, an external force is 
practically applied via the intermediary of a beam, a screed, a jack, etc., and the 
applied resulting force (or the moment) is known, but the way in which it is divided 
is unknown. 
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EXAMPLE: TRACTION.– 
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Figure 1.6. Tensile test. For a color version of this  
figure, see www.iste.co.uk/bouvet/aeronautical.zip 

In a tensile test, we know that the resultant of the forces applied to Sy is worth F: 

( )
( )

, .

, . 0

M y dS FSy

GM M y dSSy

σ

σ

⎧ =∫∫
⎪
⎨

∧ =⎪∫∫
⎩

 [1.12] 

However, in order to deduce that: 

( ), .0
FM y y

Sy
σ σ= =  [1.13] 

we must add a homogeneity hypothesis of the force applied which remains to be 
verified. Incidentally, we can demonstrate that the two previous integrals are verified 
with this stress vector. 

EXAMPLE: BENDING.– 

 

 x 

 y 

MM σ 
Stress 

distribution 

 x 

 y 

σ

Sx  

Figure 1.7. Bending test. For a color version of this  
figure, see www.iste.co.uk/bouvet/aeronautical.zip 
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In a pure bending test, we know that the resultant of the forces applied to Sx is 
worth M.z: 

( )
( )

σ

σ

⎧ =∫∫⎪
⎨

∧ =∫∫⎪⎩

, . 0, . .M x dSSx
GM M x dS M zSx

 [1.14] 

However, by deducing that on Sx: 

( ), . .MM x y x
Iz

σ −=  [1.15] 

This formula is a classic example of the mechanics of material which we will 
discuss (and demonstrate) again when doing the exercises. Should you need to, you 
can read a more detailed publication, such as [AGA 08, BAM 08, CHE 08, DEL 08, 
DUP 09], etc. 

Obviously, with the moment of inertia: 

2 .I y dSz Sx= ∫∫  [1.16] 

we must add a linear distribution hypothesis of the stress applied which remains to 
be verified. Incidentally, we can demonstrate that the two previous integrals are 
verified with this stress vector.  

1.2.3. Reciprocal actions 
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Figure 1.8. Reciprocal actions. For a color version of this  
figure, see www.iste.co.uk/bouvet/aeronautical.zip 
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According to the Law of Reciprocal Action, we have: 

= −2/1 1/2dF dF  [1.17] 

Yet: 

( ) ( )
( ) ( )

, .2/1
, .1/2

d F M M n dS

d F M M n dS

σ
σ

=⎧⎪
⎨

= −⎪⎩
 [1.18] 

Hence: 

( ) ( )σ σ= − −, ,M n M n  [1.19] 

This can be translated by the fact that a fine slice of matter of surface dS, which 
has a normal vector +n on one side and –n on the other, is at equilibrium under the 
action of the two opposing forces σ(M, n). dS and σ(M, −n). dS. Evidently, it is very 
much at equilibrium. 

1.2.4. Cauchy reciprocal theorem 

 

Figure 1.9. Stress vectors on the faces of a square. For a color  
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

Let us put this in 2D, in order to make the demonstration easier. 
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A square is assumed to be infinitely small, therefore the stresses are assumed to 
be constant everywhere in the cube, hence we have: 

( ) ( )

( ) ( )
( ) ( )

( ) ( )

, , . .1

, , . .2

', , . .1

', , . .2

M x M x x yxx xy

M y M y y xyy yx

M x M x x yxx xy

M y M y y xyy yx

σ σ σ τ

σ σ σ τ

σ σ σ τ

σ σ σ τ

⎧ = = +
⎪
⎪ = = +⎪
⎨

− = − = − −⎪
⎪
⎪ − = − = − −⎩

 [1.20] 

In the notation of τxy, the first “x” corresponds to the direction of the facet, 
meaning the normal vector on the cutting plane in question, and the second index 
“y” represents the direction of the stress. 

The equilibrium equation on the square is written as: 

{ } { }∑ = 0/cohText cube  [1.21] 

which, for the force equation, induces the following: 

( ) ( ) ( ) ( ), . . , . . ', . . ', . . 01 2 1 1M x dy dz M y dx dz M x dy dz M y dx dzσ σ σ σ+ + − + − = [1.22] 

This is an automatically verified equation. For the moment equation in M at the 
center of the square, the below is induced: 

( ) ( )
( ) ( )

, . . , . .1 21 2

' ', . . ' ', . . 01 21 2

MM M x dy dz MM M y dx dz

MM M x dy dz MM M y dx dz

σ σ

σ σ

∧ + ∧

+ ∧ − + ∧ − =
 [1.23] 

where the Cauchy reciprocity theorem is: 

xy yxτ τ=  [1.24] 

It can be shown in the same way in 3D: 

xy yx

xz zx
yz zy

τ τ

τ τ
τ τ

=⎧
⎪

=⎨
⎪ =⎩

 [1.25] 
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EXAMPLE: TORSION OF A WELDED TUBE.– 
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Figure 1.10. Torsion of a welded tube. For a color version  
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

A torsion moment is applied to a tube comprised of a rolled and welded sheet. It 
can be shown (see exercises) that it has been subjected to a homogeneous 
circumferential shear stress. The Cauchy reciprocity theorem then induces the 
welding to be stressed by a longitudinal shear τ equal to the circumferential shear 
stress. All that remains then is the sizing of the welding so that it can withstand this 
shearing applied force.  

1.3. Stress matrix 

1.3.1. Notation 

There is a stress vector on the facet with the normal vector x: 

( ), . .M x x tσ σ τ σ τ= + = +  [1.26] 

 

σ (M, y) 

 y 

 z 

 x 

M

σ (M, x)

σ (M, z) 

 

Figure 1.11. Stress vectors on the faces of a unit cube. For a color  
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 
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and t can be broken down in accordance with y and z, hence: 

( ), . . .M x x y zxx xy xzσ σ τ τ= + +  [1.27] 

Once again, in the notation of τxy, the first index “x” corresponds to the direction 
of the facet and the second index “y” represents the direction of the stress. 

In the same way for the faces of the cube with normal vectors y and z, we have: 

( )
( )
( )

σ σ τ τ

σ τ σ τ

σ τ τ σ

⎧ = + +
⎪⎪ = + +⎨
⎪

= + +⎪⎩

, . . ., . . ., . . .
M x x y zxx xy xz

M y x y zyx yy yz
M z x y zzx zy zz

 [1.28] 

σ(M) is what is referred to as the stress matrix: 

( )
( ), ,

xx yx zx

xy yy zy

xz yz zz x y z

M
σ τ τ

σ τ σ τ
τ τ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [1.29] 

Evidently, the expression of this matrix depends on the coordinate. 

Moreover, it is symmetrical in accordance with the reciprocity of the stresses: 

( )
( )

σ τ τ
σ τ σ τ

τ τ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦ , ,

xx xy xz

xy yy yz

xz yz zz x y z

M  [1.30] 

The very notion itself of the stress matrix is important, as it assumes that at one 
point, and in the small volume (REV) surrounding it, the state of the internal forces 
of matter is entirely represented by this matrix. This is in contrast to the stress 
vector, which only gives the internal force for one single facet. 

EXAMPLE: DRAWING THE STRESSES IN 2D.– 

A small square is subjected to a 2D-stress tensor: 

( )
( )

σ τ
σ

τ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ ,

xx xy

xy yy x y

M  [1.31] 
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These faces are therefore subjected to the following forces: 
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Figure 1.12. Stress vectors on the faces of a square. For a color  
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

This drawing may be simple, but it is paramount for interpreting the stress 
tensor. 

You obviously would have noticed that the projection of σ(M, x) on y is equal to 
that of σ(M, y) on x, which is evidently due to the symmetry of the stress tensor.  

I will leave it up to you to do the same drawing in 3D. 

1.3.2. Invariants of the stress tensor 

The stress tensor possesses three elementary invariants. We classically use: 

– The hydrostatic pressure: 

( )1
3 3

x y zp trace
σ σ σ

σ
+ +

= =  [1.32] 

It is named thus because when we apply a uniform pressure to a cube in all 
directions, we obtain: 

0 0
0 0
0 0

p
p

p
σ

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 [1.33] 
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Figure 1.13. Hydrostatic pressure. For a color version  
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

In this case, the hydrostatic pressure is evidently equal to the pressure p, in its 
absolute value. 

– The Von Mises equivalent stress: 

( ) ( ) ( )2 2 23 1. : . ( ) ( ) ( )
2 2 I II II III III Idev devσ σ σ σ σ σ σ σ σ= = − + − + −  [1.34] 

With the stress deviator, which is written as: 

( ) ( )1 . .
3

dev trace Iσ σ σ= −  [1.35] 

This stress is very important for estimating the beginning of a ductile material’s 
plasticity (see Chapters 3 and 4). 

– The determinant: 

( )3 detI σ=  [1.36] 

These invariants are very important for writing the fracture, yield or damage 
criteria. Given that a criterion of this type is indeed representative of the state of 
matter, it must not depend on the coordinate at which we write the stress matrix, and 
therefore it can be written based on these invariants. 
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1.3.3. Relation between the stress matrix and the stress vector 

By constructing the stress matrix, we then have: 

( ) ( )
( ) ( )
( ) ( )

, .

, .

, .

M x M x

M y M y

M z M z

σ σ

σ σ

σ σ

=⎧
⎪⎪ =⎨
⎪

=⎪⎩

 [1.37] 

And so, irrespective of n: 

( ) ( ), .M n M nσ σ=  [1.38] 

This relation is very important as it enables the stress matrix to be linked to the 
stress vector. It will therefore be used very often throughout the rest of this book. 

EXAMPLE: TRACTION.– 
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Figure 1.14. Traction test. For a color version of this  
figure, see www.iste.co.uk/bouvet/aeronautical.zip 
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Let us search for the stress tensor of a traction test. The boundary conditions on 
the six external faces give: 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

, . 0

, .( ) 0

, . . . .

, . .( ).

, . 0

, .( ) 0

y y

y y

S S

S S

M x M x

M x M x

M y dS M y dS F F y

M y dS M y dS F

M z M z

M z M z

σ σ

σ σ

σ σ

σ σ

σ σ

σ σ

= =⎧
⎪

− = − =⎪
⎪
⎪ = = =
⎪
⎨
⎪ − = − = −
⎪
⎪ = =⎪
⎪ − = − =⎩

∫∫ ∫∫
∫∫ ∫∫

 [1.39] 

Moreover, if we assume the stresses to be homogeneous: 

( ) ( )σ σ σ= = = 0, . .FM y M y y
S

 [1.40] 

Hence, the classic result: 

( )
( )

σ σ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

0
, ,

0 0 00 00 0 0
x y z

M  [1.41] 

Experimentally, during a traction test on a metal sample, we note that the 
fractography is oriented at 45°. The fracture obviously occurs after significant 
plasticity. Yet we know that the plasticity is sensitive to the shearing, rather than to 
the normal stress. Therefore, in order to explain this fractography, we can show that 
the shearing is maximum at 45°. 

This exercise can be done in 2D, or even in 3D, as the demonstration will be 
similar: 

( )
( )0 ,

0 0
0 x y

Mσ
σ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 [1.42] 

And for a facet with normal n, the normal and shear stresses are: 

( ) ( )σ σ σ θ σ τ= = = +0, . . sin( ). . .nn ntM n M n y n t  [1.43] 
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Figure 1.15. Stress vectors in traction. For a color version  
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

where: 

2
0

0

.sin ( )

.sin( ).cos( )
nn

nt

σ σ θ
τ σ θ θ

⎧ =⎪
⎨

=⎪⎩
 [1.44] 

So, τ is maximum at 45°. 

Calculation using the equilibrium of a triangle of matter: 

Knowing that the stress matrix is built on the basis of the equilibrium of a REV, 
the previous result can be found again by balancing a triangle of matter. 

 

dx 

 x 

 y 

σnn

n 

θ

t σ (M,n
)

σ0

τnt 

dy 

 

Figure 1.16. Equilibrium of a triangle of matter. For a color  
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 
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Equilibrium in accordance with x: 

. .cos( ) . .sin( ) 0
sin( ) sin( )nn nt

dx dxσ θ τ θ
θ θ

− =  [1.45] 

Equilibrium according to y: 

σ σ θ τ θ
θ θ

− + + =0 . . . sin( ) . . cos( ) 0sin( ) sin( )nn nt
dx dxdx  [1.46] 

where: 

σ σ θ
τ σ θ θ
⎧ =⎪
⎨

=⎪⎩

200
. sin ( ). sin( ) . cos( )nn

nt

 [1.47] 

We then evidently find the previous result again. 

1.3.4. Principal stresses and principal directions 

As the 3D stress matrix is: 

( )
( )

σ τ τ
σ τ σ τ

τ τ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦ , ,

xx xy xz

xy yy yz

xz yz zz x y z

M  [1.48] 

Evidently, this stress matrix can be determined in another coordinate system  
(x1, y1, z1) by: 

( ) ( )
1

. .t
B BM P M Pσ σ=  [1.49] 

with P, the rotation matrix from the basis B to the basis B1, representing the vector 
coordinates of B1 expressed in the basis B. 
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EXAMPLE: TRACTION.– 

Thanks to this relation, we can evidently find the normal and shear stresses of a 
traction tensor: 

( )
( ) ( )

θ σ θ θ σ
σ σ θ θ σ θ σ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

2 0 020 0 0
, , , ,

0 0 0 sin ( ). cos( ).sin( ). 00 0 cos( ).sin( ). cos ( ). 00 0 0 0 0 0
x y z n t z

M  [1.50] 

With: 

( ), ,

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1 x y z

P
θ θ
θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [1.51] 

And in the stress matrix expressed in B1, we will recognize the expressions of σnn 
and σnt. 

THEOREM.– There is a direct orthonormal coordinate system (xI, xII, xIII) in which 
the stress matrix is diagonal: 

( )
( ), ,

0 0
0 0
0 0

I II III

I

II

III x x x

M
σ

σ σ
σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [1.52] 

σI, σII and σIII are called principal stresses and xI, xII and xIII are principal 
directions (or eigenvectors for mathematicians) associated with σI, σII and σIII 
respectively. 

We then clearly have: 

( ) ( )
( ) ( )
( ) ( )

σ σ σ

σ σ σ

σ σ σ

⎧ = =
⎪⎪ = =⎨
⎪

= =⎪⎩

, . ., . ., . .
I I II

II II IIII

III III III III

M x M x x

M x M x x

M x M x x

 [1.53] 

 

 



20     Mechanics of Aeronautical Solids, Materials and Structures 

In practice, to determine the principal stresses, it is sufficient to write the below: 

( )( )det . 0iM Iσ σ− =  [1.54] 

which gives three solutions (or two in 2D). Then, to determine the three principal 
directions, it is sufficient to write the three previous relations. In practice, the three 
principal directions are orthogonal, so when two of them have been found, the third 
one can be deduced from the other two. 

This can be translated by the following drawing: 

 

 x 

 y 

M 
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Figure 1.17. Principal stresses and associated stress vectors. For a  
color version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

The state of the stress as seen by the matter on these two diagrams is the same. 

EXAMPLE: SHEARING.– 

As the stress tensor is:  

( )
( ),

0
0 x y

M
τ

σ
τ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [1.55] 

So, we will be able to demonstrate that the principal stresses are +τ and –τ, and 
the principal directions are oriented at +45° and –45°: 

On a physical level, this result is easy to understand as we can easily use our 
hands to feel that the applied force on the left diagram pulls at +45° and compresses 
at –45°. 
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Figure 1.18. Stress vectors for pure shearing. For a color  
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

1.4. Equilibrium equation 

This exercise is to be done in 2D: 

( )
( ),

xx xy

xy yy x y

M
σ τ

σ τ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [1.56] 

And now, we shall study stress vectors on a small square: 
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Figure 1.19. Stress vectors on the faces of a square. For a color  
version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 
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This square is subjected to the following stress vectors: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

2 2

2 2

, . . .
2

', ' .( ) . .( )
2

, . . .
2

', ' .( ) . .( )
2

M dxM x M x M x
x

M dxM x M x M x
x

M dyM y M y M y
y

M dyM y M y M y
y

σ
σ σ σ

σ
σ σ σ

σ
σ σ σ

σ
σ σ σ

⎧ ∂⎛ ⎞
= = +⎪ ⎜ ⎟⎜ ⎟∂⎪ ⎝ ⎠

⎪
∂⎛ ⎞⎪ − = − = − −⎜ ⎟⎪ ⎜ ⎟∂⎪ ⎝ ⎠

⎨
∂⎛ ⎞⎪ = = +⎜ ⎟⎪ ⎜ ⎟∂⎝ ⎠⎪

⎪ ∂⎛ ⎞⎪ − = − = − −⎜ ⎟⎜ ⎟⎪ ∂⎝ ⎠⎩

 [1.57] 

If we assume that the cube is subjected to a volume force fv, then the equilibrium 
equation in force can be written as: 

( ) ( ) ( )
( )

σ σ σ

σ

+ − +

+ − + =

1 1 2
2

, . . ', . . , . .', . . . . . 0
v

M x dy dz M x dy dz M y dx dz

M y dx dz f dx dy dz
 [1.58] 

Hence: 

0

0

xyxx
vx

xy yy
vy

f
x y

f
x y

τσ

τ σ

∂⎧∂
+ + =⎪ ∂ ∂⎪

⎨∂ ∂⎪ + + =⎪ ∂ ∂⎩

 [1.59] 

This equation represents the equilibrium equation of the cube. 

Using the same approach in 3D leads to: 

τσ τ

τ σ τ

ττ σ

∂⎧∂ ∂
+ + + =⎪ ∂ ∂ ∂⎪

⎪∂ ∂ ∂⎪ + + + =⎨ ∂ ∂ ∂⎪
⎪ ∂∂ ∂
⎪ + + + =

∂ ∂ ∂⎪⎩

0
0
0

xyxx xz
vx

xy yy yz
vy

yzxz zz
vz

f
x y z

f
x y z

f
x y z

 [1.60] 
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This equation can also be written as: 

( )σ + = 0
v

div f  [1.61] 

This is a fundamental equation as it alone translates the equilibrium of a 
material point, and therefore also that of the small volume surrounding it. It must 
therefore be verified at each point of the solid. This is one of the fundamental 
equations which are needed to verify a stress field (see Chapter 3) in order to be the 
solution to the problem. 

1.5. Mohr’s circle 

Mohr’s circle is a graphic method used to rotate the matrix in 2D. It enables us to 
simply determine the maximum shear stresses, the normal stresses, the principal 
stresses, the principal directions, etc. 

As the 2D stress vector is: 

( )
( ),

xx xy

xy yy x y

M
σ τ

σ τ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [1.62] 

Mohr’s circle is a group of points whose abscissa is a normal stress σ and whose 
ordinate is the shear stress τ for all the possible facets: 

As n is a vector of the plane, then: 

P
σ
τ
⎡ ⎤
⎢ ⎥
⎣ ⎦

 [1.63] 

with: 

( )
( )

, .

, .

P n n

P n t

σ σ
τ σ

=⎧⎪
⎨

=⎪⎩
 [1.64] 
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Figure 1.20. Mohr’s circle. For a color version of this  
figure, see www.iste.co.uk/bouvet/aeronautical.zip 

The CP vector is thus representative of the facet with normal n, and when n 
varies, the point P describes a circle with a center C located on the abscissa axis. 

It can also be shown that while passing from the vector n to vector u, making an 
angle θ with n, then an angle 2.θ is made within Mohr’s circle (this incidentally 
ensures that this angle remains equal to +2.θ, and not to –2.θ, when we take the 
downwards-facing shearing axis). 

Knowing the stress tensor is:  

( )
( ),

xx xy

xy yy x y

M
σ τ

σ
τ σ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [1.65] 

We can then trace the points X (σxx, τxy) and Y (σyy, –τxy), and trace the center C 
and Mohr’s circle. From this, we can therefore deduce the main stresses σI and σII 
and the principal directions. 
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Figure 1.21. Mohr’s circle. For a color version of this  
figure, see www.iste.co.uk/bouvet/aeronautical.zip 
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From Mohr’s circle, we can also deduce that the maximum normal stress is 
either σI or σII and that the maximum shearing τmax is equal to: 

max 2
I IIσ σ

τ
−

=  [1.66] 

This relation can moreover be generalized in 3D: 

max ; ;
2 2 2

I II II III III IMax
σ σ σ σ σ σ

τ
⎛ − − − ⎞

= ⎜ ⎟
⎝ ⎠

 [1.67] 

We can also show that in 2D: 

2
2

max 2
xx yy

xy
σ σ

τ τ
−⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 [1.68] 

2
2

max
2

2

2 2

;
2 2

xx yy xx yy
xy

xx yy xx yy
xy

Max

σ σ σ σ
τ

σ
σ σ σ σ

τ

⎛ ⎞+ −⎛ ⎞⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟=
⎜ ⎟

+ −⎛ ⎞⎜ ⎟− +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 [1.69] 

EXAMPLE: TRACTION.– 

The stress tensor in traction is: 

( )
( )0 ,

0 0
0 x y

Mσ
σ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 [1.70] 
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Figure 1.22. Stress vectors on a facet with a normal vector n in traction.  
For a color version of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 
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Mohr’s circle can then be traced: 
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Figure 1.23. Mohr’s circle in traction. For a color version  
of this figure, see www.iste.co.uk/bouvet/aeronautical.zip 

We then find: 

20 0
0

0
0

.cos(2. ) .sin ( )
2 2

.sin(2. ) .sin( ).cos( )
2

nn

nt

σ σσ σ θ σ θ

στ τ θ σ θ θ

⎧ = = − =⎪⎪
⎨
⎪ = = =
⎪⎩

 [1.71] 

The maximum shearing at 45° is equal to σ0. 


