
1

Variables: Declaration, Definition and Type

Variables are made to receive values directly or through evaluated
expressions compounding values and operators or results of function calls:
the value is stored internally and the variable references this storage, and
takes its value and its type.

There are two kinds of values:

– primitive values: numbers or strings in literal notation, “built-in” values
such as true, false, NaN, infinity, null, undefined, etc.;

– objects, including functions, and arrays, which are “containers”, and, as
such, their value is the address of the container.

NOTE.– The content of a container can be modified, while the address
remains unchanged (this is important for understanding the “const”
declaration below).

To fetch the value of a variable, it must have been identified in the lexical
phase: which means to be “declared”. Often, JavaScript code starts with
declaration instructions such as:

var tableauCandidats = [];
var n = 0; //

We will show why it is highly preferable to write:

const tableauCandidats = [];
let n = 0; //

CO
PYRIG

HTED
 M

ATERIA
L

6 JavaScript and Open Data

Let us look back at the two steps in the interpretation of JavaScript
(simplified):

– Lexical-time: It deals with the lexical analysis of the code. The names
of the declared functions and variables are recorded in a tree structure
(lexical tree). Declarations are moved up to the beginning of their block of
code: this is named the “hoisting”. Functions are hoisted first, for they define
the nodes of the structure, then variables are attached to appropriate nodes.

– Run-time: The script engine reads the instructions again and runs them
one by one, with the help of the tree structure. Expressions (right-hand side
of assignment instructions) are evaluated, and values are assigned to
variables (on the left-hand side) with the associated type (dynamic typing).

Let us detail this double mechanism: declaration of the variables,
initialization to undefined at lexical-time and definition of the variables at
run-time.

1.1. Declarations of functions and variables

For a better understanding of the declaration mechanism in JavaScript,
we must first learn what the “scope” of a variable is: the function
declarations determine the overall logics of the notion of scope.

1.1.1. The different declaration keywords

1.1.1.1. Function declaration

The keyword comes first in the instruction line; the syntax is:

function name (list, of, parameters) { block_of_code }

At lexical time, the name is stored in the lexical tree as a new function
node. The list of parameters, and all variables and functions declared within
the block, are added to this node. New declared functions open new nodes as
subnodes: this is a recursive process (depth-first analysis). We will detail this
in Chapter 6, section 6.4.1.1.

Therefore, every function determines a “function scope”. At the
beginning of the lexical analysis, the engine uses a “root node” that is named
the “global scope”.

Variables: Declaration, Definition and Type 7

NOTES.–

1) A variable that does not appear in the lexical tree (i.e., never declared)
cannot be assigned to another variable; for its evaluation, it is impossible: a
Reference Error is triggered.

2) An attempt to assign a (evaluable) value to a never declared variable,
for instance, x = 1 with x absent from the lexical tree, is not an error.
Therefore, the variable is added to the global scope. This is bad practice, an
“anti-pattern” (see case [f4]).

1.1.1.2. var declaration

Before 2015, the only way to declare a variable was the old-fashioned
declaration keyword, which can be used in one of these forms:

var x; // simple declaration
var x = [[val]]; // declaration with definition
var x = [[val]], y = [[val]], z; // multiple declarations

The declaration is hoisted at the beginning of the function scope or the
global scope. The variable, if not explicitly defined with a value, receives the
value undefined. That value is hoisted together with the reference.

NOTE.– If JavaScript is embedded in a browser, the “global scope” is the
window object:

var a; // equivalent: 'window.a' (a as a property of window)
function f(){var a;} // this 'a' is different from 'window.a'

1.1.1.3. let declaration

The keyword let acts as var, and moreover limits the scope of the
variable to the context of a block: for instance, a conditional instruction
block, a function block or the global scope.

There is another difference: no “hoisting” is applied to the variable, hence
there is a gap between the lexical existence (whole block) and the existence
of the reference (declaration line). This means that, during that gap, any
attempt to fetch that reference will trigger an error:

{ /* new block */
 console.log(x);

8 JavaScript and Open Data

// ReferenceError: can't access lexical declaration x before initialization
 let x = 4;
}

And there is an additional constraint: it is forbidden to redeclare the same
name in the same block:

let x = 1; let x = 2; // SyntaxError: redeclaration of let x
let x = 1; x = 2; // the redefinition is allowed

These constraints provide a better protection against unwilling
modifications of the lexical context.

1.1.1.4. const declaration

In this, the keyword behaves like let with two additional constraints:

– declaration AND definition must be done in the same instruction, and
any redeclaration is forbidden:
const Euler; // SyntaxError: missing = in const declaration

– redefinition is forbidden:
const Pi = 3.14; // the value of Pi est defined only once
Pi = 3.1; // TypeError: invalid assignment to const ̀ PI'

– redeclaration with the same or a different keyword is equally forbidden:

const pi = 3; let pi = 3; // SyntaxError: redeclaration of const
function y(){}
let y; // SyntaxError: redeclaration of function y

Note about const: A variable already defined cannot be redefined, which
means that if the value is an object, you will always use the same object, as a
container, but its properties can be modified as often as you need.

Therefore, the use of const is highly recommended for objects, arrays and
function’s expressions.

Note about the three keywords: var is the most “permissive”, hence the
most error prone; const is the most constraining, hence detects the greatest
number of coding inconsistencies, right at the lexical stage:

Variables: Declaration, Definition and Type 9

The recommendation is to privilege const, unless you know that the
variable is used temporarily, and will evolve soon. For instance, an index, a
cumulative value, a boolean control, etc.

1.1.2. Lexical scope and definition of a variable according to
declaration mode: var, let, const

Let us present some examples to illustrate the differences between pre-
ES6 and post-ES6 situations, depending on four different cases. In all the
following cases, we assume that the variable x is never declared elsewhere in
the global scope.

1.1.2.1. Situation pre-ES6

Here are four functions, corresponding to four cases. In Tables 1.1 and
1.2, we fetch the type and value of x, within or outside the function, and
before and after the declaration instruction. The use of var shows how
“permissive” and risky it is.

Pre-ES6. Four cases for a variable in a function scope (or not)

 // f1: no declaration, no definition of 'x'

function f1() { /* no occurrence of x in function */ }

 // f2: declaration of 'x' but no definition

function f2() { /* local before */ var x; /* local after */ }

 // f3: declaration an definition in the same instruction,

function f3() { /* local before */ var x = 1; /* local after */ }

 // f4: assignation of a value to 'x' without declaration.

function f4() { /* local before */ x = 1; /* local after */ }

f1 Local { type: undefined}, val -> ReferenceError: x is not defined

 global before call { type: undefined}, val -> ReferenceError: x is not defined

 global after { type: undefined}, val -> ReferenceError: x is not defined

f2 local, before var { type: undefined, val: undefined};

 after var { type: undefined, val: undefined };

 global after { type: undefined}, val -> ReferenceError: x is not defined

10 JavaScript and Open Data

f3 local, before var { type: undefined, val: undefined },

 after var { type: number, val: 1 };

 global after { type: undefined}, val -> ReferenceError: x is not defined

f4 local, before = { type: undefined}, val -> ReferenceError: x is not defined

 after = { type: number, val: 1 };

 global after { type: number, val: 1 }; // !!! beware !!!

Table 1.1. Lexical scope and value of a variable (four cases), using var declaration

COMMENTS.–

[f1]: any attempt to fetch the variable always results in type undefined
(the operator typeof never throws an error) and a “Reference Error”.

[f2]: type and value are “undefined” inside, no reference outside;

[f3]: type and value are updated: “undefined” -> “number”, no reference
outside;

[f4]: the most weird and dangerous: at run-time, the instruction x = 1
does not find any lexical reference for x, and the JavaScript engine creates
one in the global space. Silently! Which may result in later troubles.

NOTE.– A very frequent and unwilling cause for [f4] is when using loop
index: for(i = 0; i <length; i++) { /* code */ } //
DANGER ! Use 'let i' or -better-, try to avoid the loop (Chapter 5).

1.1.2.2. Situation post-ES6

Now, let us use let or const, wherever var was used. There is no
difference where var was not used, hence, this is not repeated here, and the
case f4 is not changed either.

Post-ES6. Different cases for a variable in a function scope (or not)

function f5() { /*local before*/ let x; /*local after*/ }

function f6() { /*local before*/ let x = 1; /*local after*/ }

function f7() { /*local before*/ const x = "Man"; /*local after*/ }

/* f8 would be strictly identical to f4 */

Variables: Declaration, Definition and Type 11

f5 local before { type: undefined} -> ReferenceError: can't access lexical
declaration before initialization

 after { type: undefined, val: undefined};

f6 local before { type: undefined} -> ReferenceError: can't access lexical
declaration before initialization

 after { type: undefined, val: 1};

f7 local before { type: undefined} -> ReferenceError: can't access lexical
declaration before initialization

 after { type: string, val: "Man" }; mandatory

all cases: global { type: undefined} -> ReferenceError: x is not defined

Table 1.2. Lexical scope and value of a variable using let or const declaration

1.1.3. Comments (important improvements carried over by ES6)

Cases [f5] and [f6] are the equivalent of [f2] and [f3]: The difference with
let is that we cannot use the variable before its declaration. The text of the
error tells us that the problem resides within the block; if outside, the
message would be: ReferenceError: x is not defined. This is very useful for
tracking bugs.

When using const, the only possible case is [f7], equivalent of [f3]: if
you forget to assign a value, the error is: SyntaxError: missing = in const
declaration.

1.1.4. General conclusion about the variable declarations in
JavaScript

Considering the four possible cases with declarations:

– const is the most constraining, leading to less risky situations: limited
lexical scope, no redeclaration, no redefinition and clearer messages.
Moreover, the declaration and the definition are necessarily done by a single
instruction line, which results in (a) more readable code and (b) immutable
type. An immutable type is better for helping the script engine to optimize its
bytecode, resulting in better performance.

– var is the most permissive, hence the most risky: unwilling
redeclarations are a frequent cause of silent error. In this, a keyword exists
for legacy reasons; you must ban it from your code.

12 JavaScript and Open Data

– let should be used in the cases where you intend to reuse the same
variable name: incrementing a number, or modifying a string, or a boolean
constant. For referencing containers (Objects, Arrays, Functions), use const
(see the following chapters). For strings or numbers that are not supposed to
change, use const as well.

– absence of declaration: when a variable appears, for the first time, on the
left-hand side of an assignment instruction, without a declaration keyword, an
implicit declaration is done. It is a programming design mistake, but does not
cause a problem for JavaScript. See next sub-section “implicit addition”.

Figure 1.1 shows the mechanism of the interpretation of the script, when
using the recommended keywords const and let, for x and y, and with a
forgotten keyword before z.

Figure 1.1. The two phases of the interpretation mechanism

NOTE 1.– One advantage of using const, if you forget to declare a variable:

const Pi = 3.14; // global: can't be redefined
function calcul(x){
 Pi = 3.1416; // a future new global at run-time
 return 2*Pi * x;
}
calcul(2); //TypeError: invalid assignment to const

NOTE 2.– If a variable cannot be declared with const because you must
modify it, you can embed this variable as a property of an object (see

// code JavaScript
const x = 1;
let y = x;
function test(a,b){
 let t = (a == b);
 return t;
}
z = test(x,y);

Lexical-time
global-scope : [[x, y, test]] + z (implicitely added)
∟ "test"-scope : [[a, b, t]] (new node)

Run-time
x defined as 1
y defined by the value of x
test: function, defined
z defined as the result of executing 'test' in the
context [[a = x, b = y]]

Variables: Declaration, Definition and Type 13

Chapter 4) and declare that object with const: you will benefit from the
advantage of Note 1:

const xObj = { x = 3 }; // global: can't be redefine
function calcul(x){
 xObj.x = x; // you can modify the property xObj, but
 xObj = x; // will provoque an error at run-time
}
calcul(2); //TypeError: invalid assignment to const

1.1.4.1. The implicit addition of a variable in the “global scope” (at
run-time)

We have seen that an instruction x = [[val]] may result in an implicit
declaration in global scope, if the variable is not present in the lexical tree.

The instruction is ignored at lexical time, and no “hoisting” is made, but
at run-time, the name x, on the left-hand side of a valid assignment
instruction, is not found in the lexical tree: hence x is added to the global
scope.

Note that an instruction x = x+1 that would have thrown a
“ReferenceError: x is not defined” for the evaluation of the right-hand side is
impossible.

1.1.4.2. Wrapping it up

The reasons to ban var are as follows:

Var Let
Redeclaration is possible: YES
var k = 10;
var k = "dix"; // allowed

Redeclaration: NO
let k = "dix";
let k = 10; // Error!

Limitated to a block: NO
// i EXISTS before = undefined
for(var i = 0; i < 5; i++) {
 /* i ok in the loop */ }
// i EXISTS after = 5

Limitated to a block: YES
//Error! attempt using i before
for(let i = 0; i < 5; i++) {
 /* i ok in the loop */ }
//Error! if using i after

Hoisting: YES
// n HOISTED = undefined
console.log(n); // undefined
var n = 12; // = 12

Hoisting: NO
// n doesn't exist
console.log(n); // Error!
let n = 12; //statement dropped

Table 1.3. The different behavior of var and let or const

14 JavaScript and Open Data

1.1.5. Naming variables and functions: best practices

1) Do not use “reserved words” (see Chapter 7) for it is forbidden. For
instance, function class(c){return "color:"+c;} will throw a Syntax error
because class is a reserved word.

2) Never use the same name in two declarations. Using const and let
only protects you from doing so, but several function declarations will not
fail: the last one prevails, which may cause damage elsewhere in the code,
which is hard to debug.

3) Use good naming practices to facilitate reading of your code:

- avoid meaningless names, except for short-term, buffer-like variables
in short blocks of code (typically less than 10 lines of code);

- use “camelCase” notation: it splits words, while avoiding the space
(“camel case”) or dash (“camel-case”) which would be misinterpretated;

- use upper case initial letters only for functions that you intend to use
as object constructor (e.g. let d = new Date(););

- a constant value can be named in full upper case: const
FRANC = 6.56;

4) Limit the number of global variables to a minimum, possibly to 1:

REASON.– The JavaScript engine requires an environment, the Global
Object. In the environment of the browser, the global object is window, an
already very “crowdy” object. Every new variable AND function, created in
the code, and which is not included in the block of code of a function, ends
up in the global object:

/* code at the global level */
function f(){ /*local code*/
}
function g(){ /*local code*/
}
const obj1 = {"a", "b", "c"};
const tabInitial = [];

/* equivalent to */
window.f = function(){ ... };
window.g = function(){ ... };
window.obj1 = ...
window.tabInitial = ...

And the window becomes more and more crowded, which is a real
performance issue. The solution includes all the code in a single function.
This practice is called “the local function”.

Variables: Declaration, Definition and Type 15

1.2. Variable definition, initialization and typing in JavaScript

1.2.1. Variables initialization and definition

The let-declared variables are defined at run-time, when they appear on
the left-hand side of an assignment. Between their declaration (let) and the
assignment (=), their value is undefined.

let x, y; // x and y lexically declared.
x = 1; // x is assigned the value 1
y = x; // y is assigned the value of x, hence 1
 // or, in a different order
let x, y; // x and y lexically declared
y = x; // y is assigned the value of x, hence 'undefined'
x = 1; // x is assigned the value 1

The const-declared variables are declared and initialized just once,
avoiding most of these subtleties: use const as often as possible.

If you cannot use const, at least use let in a combined declaration and
definition instruction, and preferably at the beginning of the block: this will
avoid the definition gap. And this is good for the script engine: the sooner it
knows the type, the sooner the bytecode optimization can be applied.

1.2.2. Types

We can fetch the type of any variable, thanks to the operator typeof.

A function receives the type "function". For any other variable, the
value and the type are determined, at run-time, when the first assignment
instruction is met for that variable. With a const declaration, definition and
type come at the same time, which is the best situation for code robustness
and performance considerations.

With let, we would rather combine declaration and definition:

let x; console.log(x +", "+ typeof x); // undefined, undefined
x = 4; // only now: 4, number
let y = "4"; console.log(y +", "+ typeof y); // 4, string
let v = (x>3); console.log(v +", "+ typeof v); // true, boolean

16 JavaScript and Open Data

In other cases that should be avoided, namely var and “implicitly
defined” variables, the value and the type are set by default to "undefined".

Actually this is a “dynamic typing”, because variables always have a type,
which can be "undefined", and the initial type can be modified, except
with const. Another reason for using const in priority.

Values in JavaScript are either “primitives” or objects:

– a primitive value has no property nor method (see note below): these
are built-in values (undefined, null, true, false, NaN), numbers, or
strings;

– an object is a collection of named values, couples: {name:value}.

There are six types in JavaScript:

– Type for the undefined variables: "undefined" (valeur undefined)

– Type: boolean (possible values: true or false)

– Type: number (e.g. 42, 3.14159, 0x0F, Infinity, NaN)

– Type: string (e.g. "JavaScript" or "" for the empty string)

– Type: function const f = function(){}; // typeof: “function”

– Type: object, for any object that is not a function, and includes null.

 const obj = {"nom": "X", "age": 23}; // typeof obj -> object

There are many built-in objects in JavaScript, which all receive the type
"object": Object, Array, String, Number, Boolean, Date,
RegExp, Error, Math, JSON. The exception is the object Function, whose
type is "function". There also exists the object null that makes it possible
to initialize explicitly a variable that is unknown (and empty) and could
presumably be set later.

NOTE.– There exist objects, Number and String, whose only role is to
“bind” the corresponding types "number" and "string" in order to provide
their values with appropriate methods. For similar reasons, there exist
Array, Function and Object.

Variables: Declaration, Definition and Type 17

You should avoid creating such objects, in particular for primitive values,
and rather use their literal notations which we will learn in each respective
chapter.

1.2.3. How to use the type “undefined” and the value undefined

Never explicitly assign the value undefined to define a variable, though
it is allowed. The reason for not using undefined, together with other
previous recommendations, is:

a) a variable declared with const cannot be undefined;

b) a variable declared with let with an assignment, is not undefined.

Hence, a variable with an undefined value comes from an “implicit
declaration”, which is easier to determine, by checking:

if(typeof x === 'undefined'){ alert("declaration is missing"); }.

In situations where it is impossible to define a variable at the time of the
declaration, we use:

let x = null;

