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Modeling of Heat Transfer 

This chapter presents a reminder of courses on heat transfer limited to what is 
necessary to understand and master the methods of measuring the thermal properties 
of materials which will be described in the rest of this book. 

1.1. The different modes of heat transfer 

1.1.1. Introduction and definitions 

We will first define the main quantities involved in solving a heat transfer 
problem. 

1.1.1.1. Temperature field 

Energy transfers are determined from the evolution of the temperature in space 
and time: T = f (x, y, z, t). The instantaneous value of the temperature at any point of 
space is a scalar quantity called a temperature field. We will distinguish two cases: 

– time-independent temperature field: the regime is called steady state or 
stationary; 

– evolution of the temperature field over time: the regime is called variable, 
unsteady or transient. 

1.1.1.2. Temperature gradient 

If all the points of space which have the same temperature are combined, an 
isothermal surface is obtained. The temperature variation per unit length is maximal  
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2     Thermal Properties Measurement of Materials 

in the direction normal to the isothermal surface. This variation is characterized by 
the temperature gradient: ݃݀ܽݎሬሬሬሬሬሬሬሬሬሬԦሺܶሻ = ሬ݊Ԧ 	డ்డ௡ [1.1] 

where:  ሬ݊Ԧ is the normal unit vector; 

 డ்డ௡ is the derivative of the temperature along the normal direction. 

Figure 1.1. Isothermal surface and thermal gradient 

1.1.1.3. Heat flux 

Heat flows under the influence of a temperature gradient from high to low 
temperatures. The quantity of heat transmitted per unit time and per unit area of the 
isothermal surface is called the heat flux ߶ (W m–2): ߶ = ଵௌ	ௗொௗ௧  [1.2] 

where ܵ is the surface area (m2). 

ϕ (W) is called the heat flow rate and is the quantity of heat transmitted to the 
surface ܵ per unit time: ߮ =	 ௗொௗ௧  [1.3] 

1.1.1.4. Energy balance 

The determination of the temperature field involves the writing of one or more 
energy balances. First, a system (S) must be defined by its limits in space and the  
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different heat flow rates that influence the state of the system must be established 
and they can be: 

 

Figure 1.2. System and energy balance 

The first principle of thermodynamics is then applied to establish the energy 
balance of the system (S): 

e g s stϕ ϕ ϕ ϕ+ = +  [1.4] 

After having replaced each of the terms by its expression as a function of the 
temperature, we obtain a differential equation whose resolution, taking into account 
the boundary conditions of the system, makes it possible to establish the temperature 
field. We will first give the possible expressions of the heat flow rates that can enter 
or exit a system by conduction, convection or radiation before giving an expression 
of the flux stored by sensible heat. 

1.1.2. Conduction 

Conduction is the transfer of heat within an opaque medium, without 
displacement of matter, under the influence of a temperature difference. The transfer 
of heat via conduction within a body takes place according to two distinct 
mechanisms: transmission via atomic or molecular vibrations and transmission via 
free electrons. 

 

Figure 1.3. Conductive heat transfer scheme 
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The theory of conduction is based on the Fourier hypothesis: the heat flux ߶ is 
proportional to the temperature gradient: ߶ሬԦ = െߣ	݀ܽݎ݃ሬሬሬሬሬሬሬሬሬሬԦሺܶሻ [1.5] 

The heat flow rate transmitted by conduction in the direction Ox can therefore be 
written in algebraic form: ߮ = െߣ	ܵ	 డ்డ௫ [1.6] 

where: ߶ is the conductive heat flux (W m–2); 

 ߮ is the conductive heat flow rate (W); 

 ;is the thermal conductivity of the medium (W m–1 K–1) ߣ 

 ;is the space variable in the heat flow’s direction (m) ݔ 

 ܵ is the surface area of the passage of the heat flux (m2). 

The values of the thermal conductivity λ of some of the most common materials 
are given in Table 1.1. A more complete table is given in Appendices A.1 and A.2. 

Material ߣ (W m–1 K–1)   Material ߣ (W m–1 K–1) 

Silver 419 Plaster 0.48 

Copper 386 Asbestos 0.16 

Aluminum 204 Wood (hard, soft wood) 0.12–0.23 

Mild steel 45 Cork 0.044–0.049 

Stainless steel 15 Stone wool 0.038–0.041 

Ice 1.9 Glass wool 0.035–0.051 

Concrete 1.4 Expanded polystyrene 0.036–0.047 

Clay brick 1.1 Polyurethane (foam) 0.030–0.045 

Glass 1.0 Extruded polystyrene 0.028 

Water 0.60 Air 0.026 

Table 1.1. Thermal conductivity of certain materials at room temperature 
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1.1.3. Convection 

Here, we will only consider the heat transfer between a solid and a fluid, the 
energy being transmitted by the fluid’s displacement. A good representation of this 
transfer mechanism is given by Newton’s law:  

 

Figure 1.4. Convective heat transfer scheme 

߮ = ݄௖	ܵ	൫ ௣ܶ െ ஶܶ൯ [1.7] 

where: ߮ is the heat flow rate transmitted by convection   (W); 

 ݄௖ is the convective heat transfer coefficient   (W m–2 K–1); 

 ௣ܶ is the solid’s surface temperature   (K); 

 ஶܶ is the temperature of fluid away from solid surface (K); 

 ܵ is the area of solid/fluid contact surface   (m2). 

The value of the convective heat transfer coefficient hc is a function of the fluid’s 
nature, temperature, velocity or the temperature difference and the geometrical 
characteristics of the solid/fluid contact surface. The correlations in the most 
common cases of natural convection are given in Appendix 3, i.e. when the fluid’s 
movement is due to temperature differences (no pump or fan). 

Thermal characterization aims to measure the conductive and diffusing 
properties of a material. Convection most often occurs as a mode of “parasitic” 
transfer on the boundaries of the system by influencing the internal temperature 
field. We therefore have to take this into account. The correlations presented in 
Appendix 3 show that the coefficient of heat transfer by natural convection depends 
on the temperature difference between the surface and the surrounding fluid. Most 
often this difference is not perfectly uniform on surfaces and varies over time. It is 
therefore not possible to calculate it precisely and it will most often have to be 
estimated. 
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In natural convection, its value is generally between 2 and 5 W m–2 K–1. The 
radiation heat transfer coefficient that will be defined below is of the same order of 
magnitude. It will therefore be noted that placing a device under vacuum makes it 
possible to reduce losses by decreasing convective transfers but not canceling them, 
because radiation transfer is not affected by pressure. 

1.1.4. Radiation 

Radiation is a transfer of energy by electromagnetic waves (it does not need 
material support and even exists in a vacuum). We will only focus here on the transfer 
between two surfaces. In conduction problems, we take into account the radiation 
between a solid (whose surface is assumed to be gray and diffusing) and the 
surrounding environment (of large dimensions). In this case, we have the equation: ߮ = ൫	ܵ	௣ߝ	ߪ ௣ܶସ െ ஶܶସ൯ [1.8] 

where: ߮ is the radiation heat flow rate  (W); 

 ;is Stefan’s constant   (5,67.10–8 W m–2 K–4) ߪ 

௣ߝ   is the surface emission factor; 

 ௣ܶ is the surface temperature   (K); 

 ஶܶ is the temperature of the medium surrounding the surface (K); 

 ܵ is the area of surface   (m2). 

Figure 1.5. Radiation heat transfer scheme 

NOTE.– In equations [1.6] and [1.7], temperatures can be expressed either in °C or K 
because they appear only in the form of differences. On the contrary, in equation 
[1.8], the temperature must be expressed in K. 



Modeling of Heat Transfer     7 

1.1.4.1. Linearization of the radiation flux 

In the case where the fluid in contact with the surface is a gas and where the 
convection is natural, the radiation heat transfer with the walls (at the average 
temperature Tr) surrounding the surface can become of the same order of magnitude 
as the convective heat transfer with the gas (at temperature Tf) at the contact with the 
surface and can no longer be neglected. The heat flow rate transferred by radiation is 
written according to equation [1.8]: ߮௥ = ൫ܵߝߪ ௣ܶସ െ ஶܶସ൯  

It can take the form: ߮௥ = ݄௥ܵ൫ ௣ܶ െ ஶܶ൯ 
where ݄௥ is called the radiation transfer coefficient: ݄௥ = ൫ߝߪ ௣ܶଶ ൅ ஶܶଶ൯൫ ௣ܶ ൅ ஶܶ൯ [1.9] 

The radiation transfer coefficient ݄௥	varies very slightly for limited variations of 
the temperatures Tp and T∞ and can be regarded as constant for a first simplified 
calculation. For example, with ε = 0.9, Tp	= 60°C and T∞ = 20°C, the exact value is  ݄௥ = 6.28 W m–2 K–1. If Tp becomes equal to 50°C (instead of 60°C), the value of ݄௥ 
becomes equal to 5.98 W m–2 K–1, we get a variation of only 5%. When Tp is close 
to T∞, we can consider: ݄௥≈4σε	T∞ 

3. It is also noted that the calculated values are 
of the order of magnitude of a natural convection coefficient in air. 

It is to be remembered that when the convection exchange of a surface with its 
environment takes place by natural convection, we write the global heat flow rate 
(convection + radiation) exchanged by the surface in the form of:  ߮ = ݄ܵ൫ ௣ܶ െ ஶܶ൯  

where ݄ = ݄௖ ൅ ݄௥ 

1.1.4.2. Case of a high-temperature source 

The radiation transfer also occurs in the exchange of a wall with temperature Tp	
with a high-temperature heat source Ts, for example, the Sun (≈ black body at 5760 
K). In this case, equation [1.8] becomes:  ߮ = ൫	ܵ	ܭ ௣ܶସ െ ௦ܶସ൯ [1.10] 

where ܭ is a constant taking into account the surface and source emissivities as well 
as the geometric shape factor between the surface and the source. 

Then equation [1.10] becomes: φ	=	–K	S	Ts4	=	–φ0 and the radiation source is 
modeled by a constant heat flow rate φ0	imposed on the wall (this is, for example, 
the case of a thermal sensor exposed to the Sun). 
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1.1.5. Heat storage 

The storage of energy in sensitive form in a body corresponds to an increase of 
its enthalpy in the course of time from which (at constant pressure and in the 
absence of change of state): ߮௦௧ = 	ܸܿߩ డ்డ௧  [1.11] 

where: ߮௦௧ is the stored heat flow rate (W); 

 ;is density   (kg m–3) ߩ 

 ܸ is volume   (m3); 

 ܿ is specific heat     (J kg–1 K–1); 

 ܶ is temperature     (K); 

 .is time    (s) ݐ 

The product ܸܿߩ (J K–1) is called the thermal capacitance of the body. 

1.2. Modeling heat transfer by conduction 

1.2.1. The heat equation 

In its mono-dimensional form, this equation describes the one-directional 
transfer of heat through a flat wall (see Figure 1.6). 

 

Figure 1.6. Thermal balance of an elementary system 
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Consider a system of thickness ݀ݔ in the direction ݔ and of section of area S	
normal to direction ܱݔ. The energy balance of this system is written as: ߮௫ ൅ ߮௚ = ߮௫ାௗ௫ ൅ ߮௦௧  

where: ߮௫ = െቀߣ	ܵ	 డ்డ௫ቁ௫ ; 
 ߮௫ାௗ௫ = െቀߣ	ܵ	 డ்డ௫ቁ௫ାௗ௫ ; 
 ߮௚ =  ;ݔሶܵ݀ݍ
   ߮௦௧ = ݔ݀	ܵܿߩ డ்డ௫. 

By plotting in the energy balance and dividing by ݀ݔ, we obtain: 

ቀఒ	ௌ	ങ೅ങೣቁೣశ೏ೣିቀఒ	ௌ	ങ೅ങೣቁೣௗ௫ ൅ ሶܵݍ = 	ܵܿߩ డ்డ௧   

or:  డడ௫ ቀߣ	ܵ	 డ்డ௫ቁ ൅ ሶܵݍ = 	ܵܿߩ డ்డ௧  
and in the three-dimensional case, we obtain the heat equation in the most general 
case: 

డడ௫ ቀߣ௫ డ்డ௫ቁ ൅ డడ௬ ቀߣ௬ డ்డ௬ቁ ൅ డడ௭ ቀߣ௭ 	డ்డ௭ቁ ൅ ሶݍ = ܿߩ డ்డ௧  [1.12] 

This equation can be simplified in a number of cases: 

a) if the medium is isotropic: ߣ௫ = ௬ߣ = ௭ߣ =  ;ߣ
b) if there is no generation of energy inside the system: ݍሶ = 0; 
c) if the medium is homogeneous, λ is only a function of ܶ. 

The hypotheses a) + b) + c) make it possible to write: ߣ ቀడమ்డ௫మ ൅ డమ்డ௬మ ൅ డమ்డ௭మቁ ൅ ௗఒௗ் ൤ቀడ்డ௫ቁଶ ൅ ቀడ்డ௬ቁଶ ൅ ቀడ்డ௭ቁଶ൨ = ܿߩ డ்డ௧  [1.13] 
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d) If λ is constant (moderate temperature deviation), we obtain the Poisson 
equation: డమ்డ௫మ ൅ డమ்డ௬మ ൅ డమ்డ௭మ = ଵ௔ డ்డ௧  [1.14] 

The ratio ܽ = ఒఘ௖	is called thermal diffusivity (m2 s–1), it characterizes the 
propagation velocity of a heat flux through a material. Values can be found in 
Appendix 1. 

e) In steady state, we obtain Laplace’s equation: ׏ଶܶ = డమ்డ௫మ ൅ డమ்డ௬మ ൅ డమ்డ௭మ = 0 [1.15] 

Moreover, hypotheses a), c) and d) make it possible to write: 

– heat equation in cylindrical coordinates (r,θ, z): డమ்డ௥మ ൅ ଵ௥ డ்డ௥ ൅ ଵ௥మ డమ்డఏమ ൅ డమ்డ௭మ ൅ ௤ሶఒ = ଵ௔ డ்డ௧  [1.16] 

In the case of a cylindrical symmetry problem where the temperature depends 
only on ݎ and ݐ, equation [1.16] can be written in simplified form:  ଵ௥ డడ௥ ቀݎ డ்డ௥ቁ ൅ ௤ሶఒ = ଵ௔ డ்డ௧ .  

– heat equation in spherical coordinates (ߠ,ݎ,߮): ଵ௥ డమడ௥మ ሺܶݎሻ ൅ ଵ௥మ	௦௜௡ሺఏሻ డడఏ ቂ݊݅ݏሺߠሻ డ்డఏቃ ൅ ଵ௥మ௦௜௡మሺఏሻ డమ்డఝమ ൅ ௤ሶఒ = ଵ௔ డ்డ௧  [1.17] 

1.2.2. Steady-state conduction 

1.2.2.1. Simple wall 

We will place ourselves in the situation where the heat transfer is one directional 
and where there is no energy generation or storage. 

We consider a wall of thickness ݁, thermal conductivity λ and large transverse 
dimensions whose extreme faces are at temperatures ଵܶ and ଶܶ (see Figure 1.7). 

By carrying out a thermal balance on the system ሺܵሻ constituted by the wall slice 
comprised between the abscissae ݔ and ݔ	 ൅  :we obtain ,ݔ݀	

ϕ௫ = ϕ௫ାௗ௫ ⟹	ቀߣ	ܵ	 ௗ்ௗ௫ቁ௫ = ቀߣ	ܵ	 ௗ்ௗ௫ቁ௫ାௗ௫  
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Figure 1.7. Basic thermal balance on a simple wall 

where: ௗ்ௗ௫ = ሻݔand  ܶሺ  ܣ = ݔ	ܣ ൅     ܤ

with boundary conditions:  ܶሺݔ = 0ሻ = ଵܶ  et  ܶሺݔ = ݁ሻ = ଶܶ   

Thus: ܶሺݔሻ = ଵܶ െ ௫௘ 	ሺ ଵܶ െ ଶܶ	ሻ [1.18] 

The temperature profile is therefore linear. The heat flux passing through the 
wall is deduced by equation:  ߶ = െߣ	 డ்డ௫ 

Thus: ߶ = ఒ௘ 	ሺ ଵܶ െ ଶܶ	ሻ [1.19] 

Equation [1.19] can also be written as: ߮ = భ்ି మ்೐ഊೄ , this equation is analogous to 

Ohm’s law in electricity which defines the intensity of the current as the ratio of the 
electrical potential difference on the electrical resistance. The temperature ܶ thus 
appears as a thermal potential and the term ௘ఒௌ appears as the thermal resistance of a 
plane wall of thickness ݁, thermal conductivity ߣ and lateral surface ܵ. We thus get 
the equivalent network represented in Figure 1.8. 

 

Figure 1.8. Equivalent electrical network of a single wall 
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NOTE.– The flux is constant, it is a general result for any tube of flux in steady state 
(system with conservative flux). 

1.2.2.2. Multilayer wall 

This is the case for real walls (described in Figure 1.9) made up of several layers 
of different materials and where only the temperatures ௙ܶଵ and ௙ܶଶ of the fluids that 
are in contact with the two faces of the lateral surface wall ܵ are known. 

In steady state, the heat flow rate is preserved when the wall is crossed and is 
written as: ߮ = ݄ଵܵ൫ ௙ܶଵ െ ଵܶ൯ = ఒಲௌሺ భ்ି మ்ሻ௘ಲ = ఒಳௌሺ మ்ି య்ሻ௘ಳ = ఒ಴ௌሺ య்ି ర்ሻ௘಴ = ݄ଶܵ൫ ସܶ െ ௙ܶଶ൯  

where:   ߮ = ்೑భି்೑మభ೓భೄ	ା	 ೐ಲഊಲೄ	ା	 ೐ಳഊಳೄ	ା	 ೐಴ഊ಴ೄ	ା	 భ೓మೄ [1.20] 

It was considered that the contacts between the layers of different natures were 
perfect and that there was no temperature discontinuity at the interfaces. In reality, 
given the roughness of the surfaces, a micro-layer of air exists between the surface 
hollows contributing to the creation of a thermal resistance (the air is an insulator) 
called thermal contact resistance. The previous formula is then written as: ߮ = ்೑భି்೑మభ೓భೄ	ା	 ೐ಲഊಲೄ	ା	ோಲಳ	ା	 ೐ಳഊಳೄ	ା	ோಳ಴		ା ೐಴ഊ಴ೄ	ା	 భ೓మೄ [1.21] 

 

Figure 1.9. Schematic representation of heat  
flow and temperatures in a multilayer wall 
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The equivalent electrical diagram is shown in Figure 1.10. 

 

Figure 1.10. Equivalent electrical network of a multilayer wall 

NOTES.– 

– Thermal resistance can only be defined on a flux tube. 

– The thermal contact resistance between two layers is neglected if one layer is 
an insulating material or if the layers are joined by welding. 

1.2.2.3. Composite wall 

This is the case most commonly encountered in reality where the walls are not 
homogeneous. Let us consider, by way of example, a wall of width ܮ consisting of 
hollow agglomerates (Figure 1.11). 

Considering the symmetries, the calculation of the wall’s thermal resistance can 
be reduced to that of a unit cell defined by the diagram in Figure 2.6. This unit cell is 
a flux tube (isotherm at ݔ = 0 and ݔ = ݁ଵ ൅ ݁ଶ ൅ ݁ଷ, and adiabatic at ݕ = 0 and ݕ = ℓଵ ൅ ℓଶ ൅ ℓଷ) and can therefore be represented by a resistance ܴ. 

The exact calculation of this resistance is complex because each medium does 
not constitute a flux tube. If there is no need for high accuracy, several approximate 
calculations are possible by making assumptions on isothermal and adiabatic 
surfaces. 

For example, assuming the surfaces at ݔ = ݁ଵ and ݔ = ݁ଵ ൅ ݁ଶ to be isothermal 
and the surfaces at ݕ = ℓଷ and ݕ = ℓଶ ൅ ℓଷ adiabatic and by using the laws of 
association of the resistors in series and in parallel, we obtain: ܴ = ܴଵ ൅ ܴଶ ൅ ଵభೃయା భೃరା భೃఱ ൅ ܴ଺ ൅ ܴ଻  
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where: ܴଵ = ଵ௛భℓ௅ ; ܴଶ = ௘భఒభℓ௅ ; ܴଷ = ௘మఒమℓభ௅ ; ܴସ = ௘మఒభℓమ௅ ; ܴହ = ௘మఒభℓయ௅ ; ܴ଺ = ௘యఒభℓ௅ ; ܴ଻ = ଵ௛మℓ௅  

which can be represented by the equivalent electrical network shown in Figure 1.12. 

Figure 1.11. Diagram of a composite wall 

 

Figure 1.12. Electrical equivalent network of a composite wall 

It will be noted that this solution is only approximate since the real transfer is 2D 
because of the differences between the thermal conductivities ߣଵ and ߣଶ. 

1.2.2.4. Long hollow cylinder (tube) 

We consider a hollow cylinder with a thermal conductivity	λ, internal radius	ݎଵ, 
external radius	ݎଶ, length	ܮ, and with internal and external face temperatures being ଵܶ and ଶܶ, respectively (see Figure 1.13). It is assumed that the longitudinal 
temperature gradient is negligible compared to the radial gradient. 

Let us carry out the thermal balance of the system constituted by the part of the 
cylinder comprised between radii ݎ and ݎ ൅ ௥߮ : ݎ݀ = ߮௥ାௗ௥ 
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where: ߮௥ = െ2ߣܮݎߨ ቀௗ்ௗ௥ቁ௥ and: ߮௥ାௗ௥ = െ2ߨሺݎ ൅ ߣܮሻݎ݀ ቀௗ்ௗ௥ቁ௥ାௗ௥ 

Thus: െ2ߣܮݎߨ ቀௗ்ௗ௥ቁ௥ = െ2ߨሺݎ ൅ ߣܮሻݎ݀ ቀௗ்ௗ௥ቁ௥ାௗ௥ where: ݎ ௗ்ௗ௥ =   ܥ

with boundary conditions: ܶሺݎଵሻ = ଵܶ and  ܶሺݎଶሻ = ଶܶ 

where: ்ሺ௥ሻି భ்మ்ି భ் = ௟௡ቀ ೝೝభቁ௟௡ቀೝమೝభቁ [1.22] 

 

Figure 1.13. Diagram of transfers in a hollow cylinder 

and by applying equation ߮ = െ2ߣܮݎߨ ቀௗ்ௗ௥ቁ, we obtain: 

߮ = ଶగఒ௅ሺ భ்ି మ்ሻ௟௡ቀೝమೝభቁ  [1.23] 

This equation can also be written as: ߮ = భ்ି మ்ோభమ   with ܴଵଶ = ௟௡ቀೝమೝభቁଶగఒ௅  and can be 
represented by the equivalent electrical network of Figure 1.14. 

 

Figure 1.14. Equivalent electrical network of a hollow cylinder 
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1.2.2.5. Multilayer hollow cylinder 

This is the practical case of a tube covered with one or more layers of different 
materials and where only temperatures ௙ܶଵ and ௙ܶଶ of the fluids in contact with  
the inner and outer faces of the cylinder are known; ݄ଵ and ݄ଶ are the global 
(convection + radiation) heat transfer coefficients between the fluids and the internal 
and external faces (see Figure 1.15). 

Figure 1.15. Diagram of heat transfers in a multilayer hollow cylinder 

In steady-state conditions, the heat flow rate ϕ is conserved when passing 
through the different layers and is written as: ߮ = ݄ଵ2ݎߨଵܮ൫ ௙ܶଵ െ ଵܶ൯ = ଶగఒಲ௅ሺ భ்ି మ்ሻ௟௡ቀೝమೝభቁ = ଶగఒಳ௅ሺ మ்ି య்ሻ௟௡ቀೝయೝమቁ = ݄ଶ2ݎߨଷܮ൫ ଷܶ െ ௙ܶଶ൯  

Hence: ߮ = ்೑భି்೑మభ೓భమഏೝభಽା೗೙൬ೝమೝభ൰మഏഊಲಽା೗೙൬ೝయೝమ൰మഏഊಳಽା భ೓మమഏೝయಽ
 [1.24] 

which can be represented by the equivalent electrical network of Figure 1.16. 

 

Figure 1.16. Equivalent electrical network of a multilayer hollow cylinder 
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1.2.2.6. General case 

We have just given the value of the thermal resistance for some particular  
cases of practical interest. More generally, the thermal resistance of a flux tube (see  
Figure 1.17) is written as: ܴ = ׬ ௗ௥ఒሺ௥ሻ	ௌሺ௥ሻ௥మ௥భ  [1.25] 

 

Figure 1.17. Diagram of a flux tube 

1.2.3. Conduction in unsteady state 

1.2.3.1. Medium at uniform temperature 

We will study the transfer of heat to a medium at a uniform temperature (“small 
body” hypothesis), which is a priori contradictory because it is necessary that there 
is a thermal gradient for heat transfer to occur. This approximation of the medium at 
uniform temperature may nevertheless be justified in certain cases which will be 
specified. For example, the quenching of a metal ball which consists of immersing a 
ball initially at the temperature ௜ܶ in a bath of constant temperature ଴ܶ. Assuming 
that the temperature inside the ball is uniform, which will be all the more true as its 
size is small and its thermal conductivity is high, we can write the thermal balance 
of this ball between two points in time as ݐ and ݐ ൅ െ݄ܵሺܶ :ݐ݀ െ ଴ܶሻ = ܸܿߩ ௗ்ௗ௧    or   ௗ்்ି బ் = െ ௛ௌఘ௖௏   ݐ݀	

Hence: ்ି బ்்೔ି బ் = ݌ݔ݁ ቀെ ௛ௌఘ௖௏  ቁ [1.26]ݐ	
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This solution is shown in Figure 1.18. We note that the grouping  ఘ௖௏௛ௌ    is 
homogeneous at a time which will be called ߬ and is the system’s time constant: ߬ = ఘ௖௏௛ௌ  [1.27] 

This quantity is fundamental insofar as it gives the order of magnitude of the 
physical phenomenon at that point in time; we have in fact: ்ି బ்்೔ି బ் = ݌ݔ݁ ቀെ ௧ఛቁ 

 

Figure 1.18. Evolution of the temperature of a medium at uniform temperature 

It is always interesting in physics to present the results in dimensionless form. 
Two dimensionless numbers are particularly important in variable regimes: 

– The Biot number: ݅ܤ = ூ௡௧௘௥௡௔௟	௧௛௘௥௠௔௟	௥௘௦௜௦௧௔௡௖௘ா௫௧௘௥௡௔௟	௧௛௘௥௠௔௟	௥௘௦௜௦௧௔௡௖௘ = ℓഊೄభ೓ೄ , ℓ is the medium’s 

characteristic dimension, ℓ = ܴ for a sphere. 

Or: ݅ܤ = ௛ℓఒ  [1.28] 

– The Fourier number: ݋ܨ = ௔௧ℓమ [1.29] 

The Fourier number characterizes heat penetration in a variable regime. 

The definition of these two dimensionless numbers makes it possible to write the 
equation of the temperature of the ball in the form: ்ି బ்்೔ି బ் =  ሻ [1.30]݋ܨ	݅ܤሺെ݌ݔ݁
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Knowing the product of the Biot and Fourier numbers makes it possible to 
determine the evolution of the sphere’s temperature. It is generally considered that a 
system such as ݅ܤ	 ൏ 	0.1 can be considered to be at a uniform temperature; the 
criterion ݅ܤ	 ൏ 	0.1 is called the criterion of “thermal accommodation”. 

1.2.3.2. Semi-infinite medium 

A semi-infinite medium is a wall of sufficiently large thickness so that the 
perturbation applied to one face is not felt by the other face. Such a system 
represents the evolution of a wall of finite thickness for a sufficiently short time so 
that the disturbance created on one face has not reached the other side (true for the 
point in time that the temperature of the other face does not vary). We will consider, 
for example, a layer of thickness 1 μm as a semi-infinite medium in the 3ω method! 

EXAMPLE.– Imposed surface temperature. 

Method: integral Laplace transform in time and inversion by tables. 

The semi-infinite medium is initially at the uniform temperature ௜ܶ (see  
Figure 1.19). The surface temperature is suddenly maintained at a temperature ଴ܶ; 
this boundary condition is called the Dirichlet condition. 

 

Figure 1.19. Diagram of semi-infinite medium with imposed surface temperature 

The heat equation is written as:    డమ்డ௫మ = ଵ௔	డ்డ௧  [1.31] ܶሺݔ, 0ሻ = ௜ܶ [1.32] 

with boundary conditions:             ܶሺ0, ሻݐ = ଴ܶ [1.33] ܶሺݔ, ሻݐ → ௜ܶ  when ݔ → ∞ [1.34] 
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The following variable change is made: തܶ = ܶ െ ௜ܶ  
Hence:  డ ത்డ௫ = డ்డ௫, డమ ത்డ௫మ = డమ்డ௫మ	  and  డ ത்డ௧ = డ்డ௧  
The equation [1.30] can thus be written as:   డమ ത்డ௫మ = ଵ௔	డ ത்డ௧  [1.35] തܶሺݔ, 0ሻ = 0 [1.36] 

The boundary conditions become:   തܶሺ0, ሻݐ = ଴ܶ െ ௜ܶ [1.37] തܶሺݔ, ሻݐ → 0  when ݔ → ∞  [1.38] 

The Laplace transform of തܶሺݔ,  ሻ with respect to time is written as (see Appendixݐ
4 on integral transformations): ߠሺݔ, ሻ݌ = ሾܮ തܶሺݔ, ሻሿݐ = ׬ ሻݐ݌ሺെ݌ݔ݁ തܶሺݔ, ஶ଴	ݐ݀	ሻݐ . 

The Laplace transform of equation [1.35] leads to:   ௗమఏௗ௫మ െ ଵ௔	ሾߠ݌ െ തܶሺݔ, 0ሻሿ = 0 

with: തܶሺݔ, 0ሻ = 0  (which justifies the change of variable). 

This equation is therefore of the form: ௗమఏௗ௫మ െ ߠଶݍ = 0     with:  ݍ = ට௣௔. 

Hence: ߠሺݔ, ሻ݌ = ሻݔݍሺെ݌ݔ݁	ܣ ൅  .ሻݔݍሺ݌ݔ݁	ܤ
The temperature keeps a finite value when ݔ → ∞, thus ܤ = 0 and:   ߠሺݔ, ሻ݌ =   .ሻݔݍሺെ݌ݔ݁	ܣ

The Laplace transform of equation [1.37] leads to: ሺ0, ሻ݌ = బ்ି்೔௣ ,  

hence: ܣ = బ்ି்೔௣  

and:   ߠሺݔ, ሻ݌ = బ்ି்೔௣  .ሻݔݍሺെ݌ݔ݁	
Using the inverse Laplace transform tables presented in Appendix 5 leads to the 

following result: 

்ሺ௫,௧ሻି బ்்೔ି బ் = ݂ݎ݁ ቀ ௫ଶ√௔௧ቁ [1.39] 

where: ݂݁ݎሺݑሻ = ଶ√గ	׬ ௨଴ݐଶሻ݀ݐሺെ݌ݔ݁ . 
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The function ݂݁ݎ is called the error function (see values in Appendix 6). 

EXAMPLE.– Imposed heat flux at the surface. 

Method: integral Laplace transform in time and inversion by tables. 

Consider the same configuration but instead by brutally imposing a heat flux 
density on the surface of the semi-infinite medium (see Figure 1.20); this boundary 
condition is called the Neumann condition. 

Figure 1.20. Diagram of the semi-infinite medium with imposed surface flux 

The heat equation is written as:     డమ்డ௫మ = ଵ௔ డ்డ௧ [1.40]  ܶሺݔ, 0ሻ = ௜ܶ [1.41]  

with the boundary conditions:    െߣ డ்డ௫ ሺ0, ሻݐ = ߶଴ [1.42]  ܶሺݔ, ሻݐ → ௜ܶ  when ݔ → ∞  [1.43]  

Condition [1.42] expresses the conservation of heat flux at the surface of the 
semi-infinite medium.  

The following change of variable is made: തܶ = ܶ െ ௜ܶ. 
Equation [1.40] can then be written as:   డమ ത்డ௫మ = ଵ௔ డ ത்డ௧   [1.44] തܶሺݔ, 0ሻ = 0 [1.45] 

The boundary conditions become:  െߣ డ ത்డ௫ ሺ0, ሻݐ = ߶଴  [1.46] തܶሺݔ, ሻݐ → 0  when ݔ → ∞  [1.47] 
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The Laplace transform of equation [1.44] leads to: ௗమఏௗ௫మ െ ߠଶݍ = 0 with:  ݍ = ට௣௔. 

hence: ߠሺݔ, ሻ݌ = ሻݔݍሺെ݌ݔ݁ܣ ൅  .ሻݔݍሺ݌ݔ݁ܤ
The temperature keeps a finite value when ݔ → ∞, thus ܤ = 0 and  ߠሺݔ, ሻ݌  .ሻݔݍሺെ݌ݔ݁ܣ=
The Laplace transform of equation [1.46] leads to: థబ௣ = െߣ ௗఏௗ௫ ሺ0,  .ሻ݌
Hence:  ܣ = థబఒ௣௤   and  ߠሺݔ, ሻ݌ = థబఒ ௘௫௣ሺି௤௫ሻ௣௤ . 

Using the inverse Laplace transform tables presented in Appendix 5 leads to the 
following result: ܶሺݔ, ሻݐ െ ௜ܶ = ଶథబఒ ݂ܿݎ݁݅	ݐܽ√ ቀ ௫ଶ√௔௧ቁ [1.48] 

where: ݂݅݁ܿݎሺݑሻ = ଵ√గ ଶሻݑሺെ݌ݔ݁ െ ሾ1ݑ െ  ሻሿ, this function is tabulated inݑሺ݂ݎ݁
Appendix 6. 

EXAMPLE.– Imposed heat transfer coefficient. 

Method: integral Laplace transform in time and inversion by tables. 

We consider the case where the convective heat transfer coefficient ݄ between 
the semi-infinite medium and the ambient medium is imposed (see Figure 1.21). 
This boundary condition is called Newton’s condition: 

Figure 1.21. Diagram of the semi-infinite medium  
with imposed convective transfer coefficient 
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The heat equation is written as: డమ்డ௫మ = ଵ௔	డ்డ௧  [1.49] ܶሺݔ, 0ሻ = ௜ܶ [1.50] 

with the boundary conditions: െߣ డ்డ௫ ሺ0, ሻݐ = ݄ሾ ஶܶ െ ܶሺݔ = 0, ,ݔሻሿ [1.51] ܶሺݐ ሻݐ → ௜ܶ  when ݔ → ∞  [1.52] 

The following change of variable is made: തܶ = ܶ െ ௜ܶ. 
Equation [1.49] can then be written as:   డమ ത்డ௫మ = ଵ௔	డ ത்డ௧   [1.53] തܶሺݔ, 0ሻ = 0 [1.54] 

The boundary conditions become: ߣ డ ത்డ௫ ሺ0, ሻݐ = ݄ሾ തܶሺݔ = 0, ሻݐ െ ሺ ஶܶ െ ௜ܶ	ሻሿ  [1.55] തܶሺݔ, ሻݐ → 0  when ݔ → ∞ [1.56] 

The Laplace transform of equation [1.53] leads to:   ௗమఏௗ௫మ െ ߠଶݍ = 0     with  ݍ = ට௣௔. 

Hence: ߠሺݔ, ሻ݌ = ሻݔݍሺെ݌ݔ݁	ܣ ൅  .ሻݔݍሺ݌ݔ݁	ܤ
The temperature keeps a finite value when ݔ → ∞, thus ܤ = 0 and:   ߠሺݔ, ሻ݌ =   .ሻݔݍሺെ݌ݔ݁	ܣ

The Laplace transform of equation [1.55] is written as: ߣ	 ௗఏௗ௫ ሺ0, ሻ݌ = ,ሺ0ߠ݄ ሻ݌ ൅ ݄ ்೔ି ಮ்௣   

or: െߣ	ݍܣ = ܣ݄ ൅ ݄ ்೔ି ಮ்௣    hence: ܣ = ೓ഊሺ ಮ்ି்೔	ሻ௣ቀ೓ഊା௤ቁ  

and:  ߠሺݔ, ሻ݌ = ௛ఒ ሺ ஶܶ െ ௜ܶ	ሻ	௘௫௣ሺି௤௫ሻ௣ቀ௤ା೓ഊቁ . 

Using the inverse Laplace transform tables presented in Appendix 5 leads to the 
following result: 

்ሺ௫,௧ሻି ಮ்்೔ି ಮ் = ݂ݎ݁ ቀ ௫ଶ√௔௧ቁ ൅ ݌ݔ݁ ቀ௛௫ఒ ൅ ௔௛మ௧ఒమ ቁ ݂ܿݎ݁ ቀ ௫ଶ√௔௧ ൅ ௛√௔௧ఒ ቁ [1.57] 



24     Thermal Properties Measurement of Materials 

EXAMPLE.– Sinusoidal surface temperature, established periodic regime (see  
Figure 1.22). 

Method: search for a solution with the same frequency as the excitation 

Figure 1.22. Diagram of a semi-infinite medium  
with surface-imposed sinusoidal temperature 

The heat equation is written as:   డమ்డ௫మ = ଵ௔ డ்డ௧  
with the boundary conditions: ܶሺݔ = 0, ሻݐ = ௜ܶ ൅ ଴ܶܿݏ݋ሺ߱ݐሻ  ܶሺݔ, ሻݐ → ௜ܶ when ݔ → ∞  

A steady-state solution is sought for which the temperature field of the medium 
evolves as follows: ܶሺݔ, ሻݐ = ௜ܶ ൅ ݂ሺݔሻ݁݌ݔሺ݅߱ݐሻ  

The problem, being linear, makes us consider either the real part or the 
imaginary part of the solution depending on whether the temperature varies as ܿݏ݋ሺ߱ݐሻ or ݊݅ݏሺ߱ݐሻ. The complex function f  is a solution of: ௗమ௙ௗ௫మ െ ݅ ఠ௔ ݂ = 0 with   ݂ሺ0ሻ = ଴ܶ  

݂ሺݔሻ = ݌ݔ݁ܣ ቆെට௜ఠ௔ ቇݔ ൅ ቆට௜ఠ௔݌ݔ݁ܤ ቇ with:  ට௜ఠ௔ݔ = ටఠଶ௔ ሺ1 ൅ ݅ሻ  

The function ݂ must remain finite when ݔ → ∞, thus ܤ = 0 and ݂ሺ0ሻ = ଴ܶ 
leading to ܣ = ଴ܶ. 

Hence:  

ܶሺݔ, ሻݐ െ ௜ܶ = ଴ܶ݁݌ݔ ൤െටఠଶ௔ ሺ1 ൅ ݅ሻݔ ൅ ൨ݐ߱݅ = ଴ܶ݁݌ݔ ൬െටఠଶ௔ ൰ݔ ݌ݔ݁ ൤݅ ൬߱ݐ െ ටఠଶ௔    ൰൨ݔ

  

 



Modeling of Heat Transfer     25 

or by taking the real part of the solution: 

ܶሺݔ, ሻݐ = ௜ܶ ൅ ଴ܶ	݁݌ݔ ൬െටఠଶ௔ ൰ݔ ݏ݋ܿ ൬߱ݐ െ ටఠଶ௔  ൰ [1.58]ݔ

NOTES.– 

– The amplitude of the oscillations decreases rapidly when moving away from 
the interface. 

– The amplitude of the oscillations also decreases rapidly when the excitation 
frequency increases: a high frequency excitation applied to the surface of a solid will 
only change its temperature at a shallow depth. 

– Between temperatures ଵܶ and ଶܶ of two points with a distance respectively of ݔଵ and ݔଶ from the surface, there exists a phase shift equal to ටఠଶ௔	ሺݔଵ െ  ଶሻ. Theݔ

knowledge of ߱ and the temperature measurement within the medium at two points 
located at known distances ݔଵ and ݔଶ from the surface can make it possible to 
evaluate the thermal diffusivity ܽ. 

1.2.4. The quadrupole method 

In the following, we will note: 

,ݔሺߠ – ,ݔሻ the Laplace transform of the temperature  ܶሺ݌  .ሻ (see Appendix 4)ݐ

– Φሺݔ, ,ݔሻ the Laplace transform of the heat flow rate ߮ሺ݌  .ሻݐ
In the following, we will explain the principle of quadrupole modeling and 

demonstrate the expressions of the most common quadrupole matrices. The 
expressions of these matrices for other configurations of interest are given in 
Appendix 7 and [MAI 00]. 

1.2.4.1. Unidirectional transfer in plane walls 

1.2.4.1.1. Single wall 

We consider the case of a unidirectional heat transfer in a wall of thickness ݁, 
with zero initial temperature: ܶሺݔ, 0ሻ = 0. 

The temperature ܶሺݔ, డమ்డ௫మ	 ሻ within the wall satisfied the equation:ݐ = ଵ௔ డ்డ௧   [1.59] 
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By applying the Laplace transformation to equation [1.59], we obtain:   ௗమఏௗ௫మ = ௣௔  [1.60]        ߠ

Equation [1.60] takes a solution in the form:  ߠሺݔ, ሻ݌ = ݇ଵ	݄ܿݏ݋ሺݔݍሻ ൅ ݇ଶ	݄݊݅ݏሺݔݍሻ  [1.61] 

where: ݍ = ට௣௔. 

The Laplace transform of the heat flow rate at any point of the wall is written as: Φሺݔ, ሻ݌ = ܮ ቂെܵߣ డ்డ௫ ሺݔ, ሻቃݐ = െܵߣ	ܮ ቂడ்డ௫ ሺݔ, ሻቃݐ = െܵߣ	 ௗఏௗ௫ ሺݔ,   ሻ݌

This equation makes it possible to express Φሺݔ, ,ݔሻ as a function of ݇ଵ, ݇ଶ and x: Φሺ݌ ሻ݌ = െ݇ݍܵߣଵ	݄݊݅ݏሺݔݍሻ െ  ሻ [1.62]ݔݍሺ݄ݏ݋ܿ	ଶ݇ݍܵߣ

Equations [1.61] and [1.62] can be written for ݔ = 0 and ݔ = ݁, in which case 
we obtain: ߠሺ0, ሻ݌ = ݇ଵ  ߠሺ݁, ሻ݌ = ݇ଵ	݄ܿݏ݋ሺ݁ݍሻ ൅ ݇ଶ	݄݊݅ݏሺ݁ݍሻ 

Φሺ0, ሻ݌ = െ݇ݍܵߣଶ	  Φሺ݁, ሻ݌ = െ݇ݍܵߣଵ	݄݊݅ݏሺ݁ݍሻ െ  ሻ݁ݍሺ݄ݏ݋ܿ	ଶ݇ݍܵߣ
It is possible to eliminate ݇ଵ and  ݇ଶ from these four equations, which amounts, 

for example, to expressing ሺߠሺ0ሻ,Φሺ0ሻሻ as a function of ሺߠሺ݁ሻ,Φሺeሻሻ, in which case 
we obtain: 

൤ߠሺ0, ,ሻΦሺ0݌ ሻ൨݌ = ቈ ሻ݁ݍሺ݄ݏ݋ܿ ଵఒ௤ௌ ሻ݁ݍሺ݄݊݅ݏ	ܵݍߣሻ݁ݍሺ݄݊݅ݏ	 ሻ݁ݍሺ݄ݏ݋ܿ ቉	൤ߠሺ݁, ,ሻΦሺ݁݌  ሻ൨ [1.63]݌

ܯ = ቈ ሻ݁ݍሺ݄ݏ݋ܿ ଵఒ௤ௌ ሻ݁ݍሺ݄݊݅ݏ	ܵݍߣሻ݁ݍሺ݄݊݅ݏ	 ሻ݁ݍሺ݄ݏ݋ܿ ቉ is called the quadrupole matrix.  

We have the property: ݀݁ݐሺܯሻ = 1, which makes it possible to establish the 
reciprocal relation: 

൤ߠሺ݁, ,ሻΦሺ݁݌ ሻ൨݌ = ቈ ሻ݁ݍሺ݄ݏ݋ܿ െ ଵఒ௤ௌ ሻ݁ݍሺ݄݊݅ݏ	ܵݍߣሻെ݁ݍሺ݄݊݅ݏ	 ሻ݁ݍሺ݄ݏ݋ܿ ቉	൤ߠሺ0, ,ሻΦሺ0݌   ሻ൨݌
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An analogy can also be made between the propagation of an unsteady state 
current and the unidirectional thermal transfer in transitory mode: 

Intensity of the electric current  ܫ   → Heat flow rate in Laplace space Φሺݔ,     ሻ݌
Electrical potential ܷ      → Temperature in Laplace space ߠሺݔ,  ሻ݌
Electrical impedance ܼ      → Thermal impedance Z 

Ohm’s law:  ଵܷ െ ܷଶ = ଵߠ :is analogous to ܫܼ െ ଶߠ = ܼΦ  

Kirchhoff’s law: ∑ ܫ = 0  is analogous to: ∑Φ = 0   

By means of these notations, the quadrupole relation [1.63] can be represented 
by the equivalent electrical network of Figure 1.23. 

 

Figure 1.23. Equivalent electrical network to a single wall in unsteady state 

In the case of a plane wall: ܼଵ = ܼଶ = ௖௢௦௛ሺ௤௘ሻିଵఒ௤ௌ	௦௜௡௛ሺ௤௘ሻ     and   ܼଷ = ଵఒ௤ௌ	௦௜௡௛ሺ௤௘ሻ  

1.2.4.1.2. Wall with a convective exchange 

We consider the case of a wall exchanging heat by convection with a fluid (see 
Figure 1.24). 

Equation ߮ = ݄ܵሾ ∞ܶ െ ܶሺ0, ܶ∞ :ሻሿ can also be written asݐ = ఝ௛ௌ ൅ ܶሺ0,  ሻ whichݐ

can be translated in the Laplace space by: ߠ∞ = Φ௛ௌ ൅ ݔሺߠ = 0ሻ. 
We can therefore write in quadrupole matrix form: 

൤ߠஶΦஶ൨ = ቈ1 ଵ௛ௌ	0 1 ቉	൤ߠሺ0, ,ሻΦሺ0݌  ሻ൨ [1.64]݌
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Figure 1.24. Diagram of a single wall with convective transfer 

The quadrupole relation [1.64] can be represented by the equivalent electrical 
diagram of Figure 1.25. 

 

Figure 1.25. Equivalent electrical network to  
a convective transfer in unsteady state 

1.2.4.1.3. Contact resistance between two walls 

Consider now the case of the heat transfer through a contact resistance ܴ at the 
interface between two solid media as shown in Figure 1.26. 

The heat flow rate is written as ߮ = ்భሺೣసబሻି்మሺೣసబሻோ  and can also be written as: ଵܶሺ௫ୀ଴ሻ = ଶܶሺ௫ୀ଴ሻ ൅ ܴ߮ that we can translate in the Laplace space by: ߠଵሺ௫ୀ଴ሻ = ଶሺ௫ୀ଴ሻߠ ൅  .ߔܴ

We can therefore write in quadrupole matrix form: 

൤ߠଵΦଵ൨ = ቂ1 ܴ	0 1 ቃ	൤ߠଶΦଶ൨ [1.65] 
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Figure 1.26: Diagram of two walls with contact resistance 

This expression is analogous to equation [1.64], and the equivalent electrical 
network is therefore of the same type as that shown in Figure 1.25. 

1.2.4.1.4. Multilayer wall with convection and contact resistance 

The previously established quadrupole matrix equations allow us to write for the 
system under consideration (see Figure 1.27): 

൤ߠ௙ଵΦଵ൨ = ቈ1 ଵ௛భௌ	0 1 ቉	൤ܣଵ ଵܥ	ଵܤ ଵܦ ൨ ቂ1 ܴଵଶ	0 1 ቃ ൤ܣଶ ଶܥ	ଶܤ ଶܦ ൨ ቂ1 ܴଶଷ	0 1 ቃ ൤ܣଷ ଷܥ	ଷܤ ଷܦ ൨ ቈ1 ଵ௛మௌ	0 1 ቉ ൤ߠ௙ଶΦଶ൨  

with: ܣ௜ = ௜ܦ = ௜ܥ  ;௜݁௜ሻݍሺ݄ݏ݋ܿ = ௜ܤ ;௜݁௜ሻݍሺ݄݊݅ݏ	௜ܵݍ௜ߣ = 	 ௦௜௡௛ሺ௤೔௘೔ሻఒ೔௤೔ௌ  and: ݍ௜ = ට௣௔೔ 
The description of the problem in matrix form makes it possible to obtain a very 

simple formulation, which shows the advantage of the quadrupole method. 

 

Figure 1.27. Diagram of a multilayer wall with convection and contact resistance 
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1.2.4.1.5. Semi-infinite medium 

It has been demonstrated in the preceding section that the temperature in Laplace 
space of a semi-infinite medium is written as:  

,ݔሺߠ ሻ݌ = ݍ :௤௫   whereି݁	ܣ = ට௣௔ = ටఘ௖௣ఒ . 
We deduce the value of the Laplace transform of the heat flow rate at a point of 

the semi-infinite medium as: 

Φሺݔ, ሻ݌ = െܵߣ ௗఏௗ௫ ሺݔ, ሻ݌ = ௤௫ି݁	ܣܵݍߣ = ,ݔሺߠܵݍߣ   ሻ݌

Φ  can therefore also be written as:  

Φ = ߠܵݍߣ = ටఘ௖௣ఒߣ ߠܵ	 = ඥܿߩߣ	ܵ	ඥߠ݌ =   ߠ݌ඥܵܧ

where: ܧ is the thermal effusivity. 

We can therefore write at every point of a semi-infinite medium: 

ቂߠΦቃ = ቈ1 ଵாௌ√௣	0 1 ቉ ቂ0Φቃ = ൤  ൨ [1.66]ߠ݌ඥܵܧߠ

The quadrupole equation [1.66] can be represented by the equivalent electrical 
diagram of Figure 1.28. 

 

Figure 1.28. Equivalent electrical network to  
a semi-infinite medium in unsteady state 
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1.2.4.1.6. Wall at uniform temperature 

In the case of a “thin system”, a wall whose thickness and/or thermal 
conductivity make it possible to consider its temperature as uniform (݅ܤ	 ൏ 	0.1, 
small body hypothesis), the difference between the incoming heat flow rate and the 
outgoing heat flow rate leaving the system is simply written as:  ߮ଵ െ ߮ଶ = 	ܸܿߩ ௗ்ௗ௧  or by applying the Laplace transform: Φଵ െ Φଶ =  .ߠ݌ܸܿߩ

This equation can be expressed in quadrupole form as: 

൤ߠଵΦଵ൨ = ൤ 1 ݌ܸܿߩ	0 1൨	൤ߠଶΦଶ൨ [1.67] 

The quadrupole equation [1.67] can be represented by the equivalent electrical 
network of Figure 1.29. 

 

Figure 1.29. Equivalent electrical network to a  
medium at uniform temperature in unsteady state 

1.2.4.2. Radial transfer 

1.2.4.2.1. Hollow cylinder 

 

Figure 1.30. Diagram of a hollow cylinder 
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It is shown in the same manner as previously demonstrated [MAI 00] that the 
temperatures and fluxes in the Laplace space can be connected by a quadrupole 
equation: 

൤ߠሺݎଵ, ,ଵݎሻΦሺ݌ ሻ൨݌ = ቂܣ ܥ	ܤ ,ଶݎሺߠ൤	ቃܦ ,ଶݎሻΦሺ݌ ܣ ሻ൨݌ = ଵሻݎݍ଴ሺܫଶሻݎݍଵሺܭଶሾݎݍ ൅ ܤ ଶሻሿݎݍଵሺܫଵሻݎݍ଴ሺܭ = ܮߣߨ12 ሾܭ଴ሺݎݍଵሻܫ଴ሺݎݍଶሻ െ ܥ ଵሻሿݎݍ଴ሺܫଶሻݎݍ଴ሺܭ = ଶሻݎݍଵሺܫଵሻݎݍଵሺܭሾ݌ଶݎଵݎܿߩܮߨ2 െ ܦ ଵሻሿݎݍଵሺܫଶሻݎݍଵሺܭ = ଶሻݎݍ଴ሺܫଵሻݎݍଵሺܭଵሾݎݍ ൅  ଵሻሿݎݍଵሺܫଶሻݎݍ଴ሺܭ
[1.68] 

 ଵ are Bessel’s functions (see Appendix 8). The determinant of theܭ ଴ andܭ ,ଵܫ ,଴ܫ
quadrupole matrix is equal to 1. 

1.2.4.2.2. Semi-infinite hollow cylinder 

As in the case of the plane wall, we show that we can write at any point of a 
semi-infinite hollow cylinder (ݎଶ → ∞) [MAI 00]: 

ቂߠΦቃ = ቂ1 ܼ	0 1 ቃ ቂ0Φቃ = ቈ 	ܮߣߨ2ߠ ௤௥భ௄భሺ௤௥భሻ௄బሺ௤௥భሻ  ቉ [1.69]ߠ

where ܼ = ௄బሺ௤௥భሻଶగఒ௅	௤௥భ௄భሺ௤௥భሻ	 
The quadrupole equation [1.69] can be represented by the equivalent electrical 

network of Figure 1.31. 

APPLICATION.– Modeling of the hot wire method. 

 

Figure 1.31. Equivalent electrical network to  
a semi-infinite medium in unsteady state 
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1.3. The thermal properties of a material 

In the following, we will recapitulate the various characteristic quantities of a 
material that have appeared in the heat transfer equations. 

1.3.1. Thermal conductivity 

The thermal conductivity ߣ characterizes the resistance to the passage of heat; it 
is expressed in W	m–1	K–1. It is the only thermal property involved in steady-state 
equations. The values for the most common materials can be found in Appendix 1. 
In the case of solids, it varies from 0.014	W	mିଵ	Kିଵ for the superinsulators to 400	W	mିଵ	Kିଵ for copper (1500	W	mିଵ	Kିଵfor diamond). It should be noted that 
electrical insulators may have higher thermal conductivities than electrical 
conductors (we have ceramics that have a value of 50	W	mିଵ	Kିଵ and some 
stainless steels with a value of 15	W	mିଵ	Kିଵ). For multi-constituent media, it must 
be known that thermal conductivity is not an additive quantity. There exist a very 
large number of models of equivalent conductivity to predict the thermal 
conductivity of a multi-constituent medium as a function of the thermal 
conductivities of each of the constituents. We will simply present the main ones 
here. We start with the parallel and series models, since the lowest possible value of 
the thermal conductivity is given by the series model and the highest by the parallel 
model [WIE 12]. We will assume in the following that the medium consists of N 
components of conductivity ߣ௜	and each occupying the volume fraction ߝ௜. 
1.3.1.1. Parallel model 

In this model, the different constituents are assumed to be arranged in parallel 
layers, and the heat flux is parallel to the layers as shown in Figure 1.32. 

The equivalent thermal conductivity is given by: ߣ = ∑ ே௜ୀଵ	௜ߣ௜ߝ  [1.70] 

 

Figure 1.32. Diagram representing the parallel model 
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The parallel model represents the thermal conductivity of light insulating 
materials. 

1.3.1.2. Series model 

In this model, the different constituents are assumed to be arranged in parallel 
layers, and the heat flux is perpendicular to the layers as shown in Figure 1.33. 

The equivalent thermal conductivity is given by: ߣ = ଵ∑ ഄ೔ഊ೔	೔ಿసభ  [1.71] 

 

Figure 1.33. Diagram representing the series model 

1.3.1.3. Maxwell’s model 

This simple model is an exact representation of the thermal conductivity of a 
continuous medium (0) containing spherical particles (1) sufficiently far apart to be 
able to neglect their mutual interactions [MAX 54]. The thermal conductivity is then 
given by:  ߣ = ఌబఒబሺଶఒబାఒభሻାଷఌభఒబఒభఌబሺଶఒబାఒభሻାଷఌభఒబ  [1.72] 

This model represents well the thermal conductivity of a medium containing 
inclusions such as lightened concretes, for example. 
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1.3.1.4. Bruggeman’s model 

Bruggeman’s model [DEV 52] is constructed by adding “progressively” 
ellipsoidal inclusions of the dispersed phase (1) to the continuous medium (0). The 
equivalent thermal conductivity ߣ is deduced from: 

ቀ ఒఒబቁ஺బ ቀఒభିఒబఒభିఒ ቁ = ሺ1 െ  ଵሻభయ [1.73]ߝ

where	ߝଵ is the volume fraction of the inclusions and ܣ଴ = ଵି௘మ௘య 	ቂଵଶ 	݈݊ ቀଵା௘ଵି௘ቁ െ ݁ቃ 
with: ݁ = ට1 െ ௕మ௔మ, ܽ being the semi-major axis and b the semi-minor axis of the 

ellipsoids. 

This model makes it possible to correctly represent the conductivity of a medium 
containing inclusions (solid or gaseous), for volume fraction values of inclusions 
higher than those acceptable by Maxwell’s model. 

1.3.1.5. Special case of a porous medium 

A porous medium consists of a hollow solid matrix delimiting pores filled with a 
gas. The pores are most often assimilated to cylinders of diameter ܦ௜. The 
conductivity ߣ஽೔ of the air contained in the pores depends on the diameter of the 
pore and the gas pressure according to the equation [LIT 96]:  

஽೔ߣ = ఒబଵା஼	 ೅ುವ೔ [1.74]  

where: 	ߣ଴ is the air conductivity (0.026	W	mିଵ	Kିଵ at 300 K); 

 ܶ is the air temperature (K); 

  ܲ is the air pressure (Pa); 

 .is the constant (6.8 × 10–5 Pa m K–1) ܥ 

The conductivity of the air at atmospheric pressure in pores with a diameter of  
1 μm is equal to 0.021	W	mିଵ	Kିଵ, and only 0.008	W	mିଵ	Kିଵ in pores of diameter  
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100 nm. A material containing a high proportion of nanopores can therefore be 
superinsulating, i.e. have a thermal conductivity that is lower than that of air at 
atmospheric pressure (or ߣ ൏ 0.026	W	mିଵ	Kିଵ). 

1.3.2. Thermal diffusivity 

The thermal diffusivity ܽ is expressed in m2 s–1. It characterizes the rate at which 
a heat flux diffuses into a material. For solids, it varies from 5	×	10ି଼	mଶsିଵ for 
certain rubbers to 3	×	10ିସ	mଶsିଵ for diamond.  

It is important to note that it is not correlated with the thermal conductivity: a 
low conductive material can be very diffusive. For example, air with a low thermal 
conductivity: ߣ = 0.026	W	mିଵ	Kିଵ has a thermal diffusivity ܽ = 2,1. 10ିହ	mଶsିଵ 
which is identical to that of iron with a much higher thermal conductivity: ߣ =73	W	mିଵ	Kିଵ. The thermal diffusivity makes it possible to estimate the time 
constant of a material of thickness ݁ with:  ߬ = ௘మ௔  [1.75] 

The time constant is the time taken to reach a steady state when it exists. 

1.3.3. Volumetric heat capacity 

It is noted that in all the equations for the heat transfer in solids, the quantities ߩ 
and ܿ never appear separately but only in the form of their product ܿߩ volumetric 
heat capacity expressed in J	m–3	K–1. This quantity represents the ability of a material 
to store heat. For solids, it varies from 10ସ	J	mିଷ	Kିଵ for low density aerogels to 4	×	10଺	J	mିଷ	Kିଵ for certain steel. 

This magnitude is additive for multi-constituent materials: ܿߩ = ∑ ே௜ୀଵ	௜ܿ௜ߩ௜ߝ  [1.76] 

1.3.4. Thermal effusivity 

The thermal effusivity ܧ characterizes the transitory variation in the temperature 
rise of a surface subjected to a heat flux. It is expressed in W	mିଶ	Kିଵsଵ/ଶ. For 
solids, it varies from 35	W	mିଶ	Kିଵsଵ/ଶ for low density aerogels to 3.6	×	10ସ	W	mିଶ	Kିଵsଵ/ଶ		for certain steels. 
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1.3.5. Conclusion 

Although four parameters characterizing the heat transfer within a material have 
been defined, it is sufficient to measure two parameters, since these parameters are 
linked by the following equations: ܽ = ఒఘ௖ [1.77] 

and ܧ = ඥ[1.78] ܿߩߣ 



 


