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Basic Concepts and Balances 

1.1. Thermal energy and the first law of thermodynamics 

Let us recall that the first law of thermodynamics is a law of energy 
conservation. It introduces the “internal energy” U, which represents the sum of the 
energies (kinetic and potential) of the system. 

Assuming that there is no mass exchange and that we are considering a closed 
system that is subject to a thermodynamic transformation between two states, initial 
(1) and final (2), the variation in internal energy, U(2) – U(1), is the sum of the 
following two terms: 

– the macroscopic works performed, ; generally this is the work of the 
pressure forces; 

– the energy exchange between the system and its outside: 1 2Q .→  

This is reflected by: ( ) ( ) 1 2 1 2ΔU = U 2 U 1 = W + Q→ →−  

We can therefore deduce a formal definition of the thermal energy (or heat) that 
is exchanged by the system between the initial state defined by (1) and the final state 
defined by (2):

 
( ) ( )1 2 1 2Q = U 2 U 1 W→ →− −  

For the thermodynamic systems studied, the work involved is generally due to 
pressure forces. The work is then given by the integral of these forces: 
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2     Energy and Mass Transfers 

For the systems encountered in heat transfer analyses, volumes are generally 
constant (isochoric systems). The pressure forces are therefore not at work. 

Consequently: 1 2W 0→ =  

For such systems, thermal energy is therefore given by the variation in the 
system’s internal energy: 1 2Q U(2) U(1)→ = −  

This relation between the variation in a system’s internal energy and the heat 
received (or yielded) by this system is, inter alia, used to determine the specific 
heats (also known as heat capacities or sensible heats) of different materials, Cp. 
This is known as calorimetry. 

Indeed, for the closed systems considered in calorimetry, the internal energy is 
linked to the mass of the system by:  U = M Cp (T – T*), 

where T* is a given reference temperature. 

Thus, if we consider a mass, M, of a given material with heat capacity Cp, to 
which an amount of heat, Q, is supplied in a closed system, then the variation in its 
internal energy, U, is given by:  Q = U(2) – U(1) 

i.e. Q = M Cp (T2 – T1) 

To determine Cp experimentally, one can then measure M, Q, T1 and T2 during 
the course of an experiment, in which an amount of heat, Q, is supplied to the mass, 
M, in a closed system (calorimeter). Knowledge of M, Q, T1 and T2 will therefore 
enable Cp to be calculated: 

p
2 1

QC =
M(T T )−  

1.2. Thermal energy and the second law of thermodynamics 

The second law of thermodynamics is a law of evolution. It introduces the 
“entropy” state function, which may be interpreted as a measure of the disorder of 
the matter within the system. 

At the macroscopic scale, and for a reversible transformation, the elementary 
variation, δS, of the entropy function, S, is defined as the ratio of the quantity of heat 
exchanged over the temperature of the system: 
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revQS

T
δδ =  

The expression of the amount of heat exchanged can then be induced as follows: 

revQ T Sδ = δ  

Hence: 
2 2

rev rev
1 1

Q Q TdS= δ =∫ ∫  

For an isothermal transformation (at constant temperature), going from an initial 
equilibrium state (1) to a final equilibrium state (2), we obtain: 

2

rev
1

Q T dS= ∫  

i.e.:
 revQ T ΔS= ⋅  

[ ]revQ T S(2) S(1)= ⋅ −  

The thermal energy (or heat) exchanged by a given system is therefore 
associated with a positive variation in the system entropy. 

Thus, whenever a system is heated ( positive), we can expect an increase in its 
entropy. This corresponds to an increase in the disorder of the matter constituting the 
system; the particles are in a more excited state after receiving thermal energy. 

Likewise, a decrease in the system entropy will require heat extraction, which 
corresponds to a cooling ( negative). 

1.3. For an energy and mass accounting: balances 

With a view to examining energy or mass transfers within a system in detail, it is 
necessary to define a way to follow up the quantities transferred. As in accounting, we 
are led to define balances-sheets of energy and matter flows and exchanges between 
systems. 

Q rev
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To be more specific, consider the system represented in Figure 1.1, which exchanges 
enregy and mass with the outside. The inputs (ei:  1≤ i ≤ n) can represent either energy 
or matter flows. Likewise, the system admits m outputs (sj: 1≤ j ≤ m).  

 

Figure 1.1. Balances on a system 

1.3.1. Accounting principles for system inputs and outputs 

The system inputs and outputs may indicate arrivals (inputs) or departures 
(outputs) of mass or energy. 

1.3.1.1. Mass inputs and outputs accounting 

Generally, these are mass flows entering or exiting the system. They can 
therefore be counted in terms of amounts of mass, arriving in or leaving the system 
by unit of time. In practise, these are: 

– mass flows, counted in kg/hr, or any other equivalent unit; 

– volume flows, counted in m3/hr, or any other equivalent unit; 

– molar flows, counted in moles/hr, or any other equivalent unit. 

1.3.1.2. Illustration: calculating the mass entering a reactor 

Consider the reactor shown in Figure 1.2, which enables product C to be 
produced from inputs A and B. 

  

Figure 1.2. Inputs of mass into a reactor. For a color version  
of this figure, see www.iste.co.uk/benallou/energy1.zip 
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Flows D1 and D2 are given in kmol/hr:  

D1 = 112 kmol/h  

D2 = 100 kmol/h 

D1 consists of the binary mixture, (A, C), with a mole fraction, xA = 0.85. 

D2 consists of the binary mixture, (B, C), with a mole fraction, xB = 0.95. 

Question 

Calculate DA, DB and DC, which represent the amounts of A, B and C, 
resepctively, entering the reactor per unit time. 

Solution 

We have: DA = xA D1 

DB = xB D2  Dc = (1-xA) D1 + (1-xB) D2 

NUMERICAL APPLICATION.–  

D1 = 112 kmol/h   D2 = 100 kmol/h  
xA = 0.85   xB = 0.95 
DA = 0.85 x 112 = 95.2 kmol/hr 
 

DB = 0.95 x 100 = 95 kmol/hr  Dc = 0.15 x 112 + 0.05 x 100 = 21.8 kmol/hr 

1.3.1.3. Energy inputs and outputs accounting 

Each flow of mass, entering or exiting the system, transports with it an amount 
of energy represented by its enthalpy. We know that this enthalpy can be determined 
with respect to a reference temperature, T*. Thus, a flow, ei, arriving in the system at 
a temperature, Ti, transports an amount of energy per unit of time, Ei, given by: 

*
i i pi iE e C (T T ),= −  

whereby  is the specific heat of  at . 

In the same way, the energy transported by the flow, sj, exiting the system at 
temperature, Tj, is represented by the enthalpy, Ej, given by: 

*
j j pj jE s C (T T ),= −  

piC ie iT
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whereby  is the specific heat of sj at . 

Thus, the energy flows entering or exiting the system can be counted in kcal/hr, 
or in any other equivalent unit.  

 NOTE – PRACTICAL CALCULATIONS.–  We are often interested in the same flow, D, 
that enters the system at a temperature, T1, and exits it at a temperature, T2; in this 
case, the expression of the difference between the energy input transported by the 
flow, D (ED), and the energy output transported by D, (SD), makes it possible to get 
rid of temperature T*: 

* *
D D p 1 p 2 p 1 2E S DC (T T ) DC (T T ) DC (T T )− = − − − = −

 

Thus:  D D p 1 2E S DC (T T )− = −
 

1.3.1.4. Illustration: energy gain in a dryer 

Air enters a dryer at a flow rate V and a temperature TE = 25°C, and leaves it at 
TS = 65°C. 

Questions 

1) Calculate the mass flow rate D of air through the dryer (in kg/h). 

2) Calculate, in kcal/mn, the energy gain of the flow, D, during this operation. 

  

 

 

 

 

 

Figure 1.3. Dryer 
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Data:  

TE = 25°C  
TS = 65°C 
V = 5 m3/mn 
Cp = 0.6 cal/g°C 
ρ = 650 g/m3 

Solutions 

1) Mass flow rate of air 

D = Vρ 

NUMERICAL APPLICATION.–  

ρ = 650 g/m3 

V = 5 m3/mn 
 
D = (5 x 60) 0.65  

D =  195 kg/h 

2) Energy gain of D
 

Using ED and SD to denote the enthalpies of D entering and exiting, respectively, 
the dryer, the energy gain, GD, of the flow, D, is given by: 

D D D p S EG E S DC (T T )= − = −  

whereby: D = Vρ. 

Therefore:
 D p S EG V C (T T )= ρ −

 

 NUMERICAL APPLICATION.–    

V = 5 m3/mn  
ρ = 650 g/m3 

Cp = 0.6 cal/g°C 
TE = 25°C  
TS = 65°C 
GD = 5 x 650 x 0.6 x (65–25)   GD = 78 kcal/min 
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1.3.2. Accumulation in the system 

When the flows entering a system are greater than those exiting it, we say that 
mass accumulates in the system. Indeed, the difference between incoming and 
outgoing flows is simply stored in the system. 

This reasoning applies to both mass and energy. It also applies when the 
incoming flows are less than the outgoing flows. In this case, we will speak of 
negative accumulation, which in fact represents a decrease in the mass or energy 
between system input and output. 

Thus, the term “accumulation”, be it positive or negative, of mass or energy in a 
system is expressed by the variation of the amount of mass (or energy) contained in 
the system. Mathematically, this variation is represented by the differential, with 
respect to time, of the amount of matter (or energy) contained in a system. 

1.3.2.1. Accumulation of mass 

A system, of volume V and density ρ has a mass given by:   M = ρ V 

The accumulation of mass in the system is therefore the differential of M with 

respect to time:  M ( V )A
t t

∂ ∂ ρ= =
∂ ∂

 

In the case where ρ  is constant, the term representing accumulation of mass in 

the system becomes:  VA
t

∂= ρ
∂

 

NOTE.– If, instead of looking at the accounting of the mass in the system, we focus 
on the number of moles, the reasoning remains the same, and the “accumulation” 
term is then expressed as the variation, with respect to time, of the number of 

moles, N, of the system:
 

NA
t

∂=
∂

 

In the same way, if the accounting is established on a volumetric basis, the 
“accumulation” term is expressed as the variation, with respect to time, of the 

system volume:
  

VA
t

∂=
∂

 

1.3.2.2. Illustration: accumulation of mass in a tank 

The tank shown in Figure 1.4 has a cross-section area S. This tank is used to mix 
inputs A and B. 
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The flows, DA and DB, of A and B respectively, are such that the height, h, of the 

liquid in the tank follows a linear law during the tank filling phase:  

h(t) = k1t + k2     where k1 and k2 are given constants. 

Question 

Calculate the amount of mass that accumulates in the tank per unit of time during 
the filling phase. 

 

Figure 1.4. Mixing tank 

Data: 

S = 1.57 m2 

ρ = 1,115 kg/m3 
k1 = 0.01 m/mn2 

Solution 

The mass of matter in the tank is given by:  M = ρ V = ρ hS 

Therefore: M(t) = ρ S (k1t + k2) 

Hence:
 

1
dMA k S
dt

= = ρ  

NUMERICAL APPLICATION.–  A = 0.01 x 1,115 x 1.57     A = 17.51 kg/min 

DA  DB  

ω 

h(t) 
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1.3.2.3. Energy accumulation 

Consider a volume V containing matter at a given temperature T. The density 
and the specific heat of the matter are considered as being respectively ρ  and Cp; the 
internal energy, E, of this system is given by:   E = ρVCp (T – T*) 

where T* is a reference temperature. 

The energy accumulation in the system is therefore given by the variation, with 
respect to time, of the system’s internal energy; that is (T* being a constant): 

p( V C T )EA
t t

∂ ρ∂= =
∂ ∂

 

Very often, pressure and volume are constant, thus: p
E TA VC
t t

∂ ∂= = ρ
∂ ∂  

The product, ρ V Cp, is sometimes known as the thermal capacitance. 

1.3.2.4. Illustration: energy accumulation in a tank 

The stirred tank of volume V, shown in Figure 1.5, contains a liquid having a density 
ρ and a specific heat Cp. The liquid is heated by an electrical resistance such that its 
temperature varies linearly with time:   T = at + b 

 

Figure 1.5. Heating tank 
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Question 

Calculate the amount of energy accumulating in the tank. 

Data: 

ρ = 1,200 kg/m3 
Cp = 1.1 kcal/kg 
V = 0.96 m3 
a = 2°C/mn 

Solution 

The enthalpy of the liquid is given by: 

E = ρVCp (T – T*) 

Therefore: E(t) = ρVCp (at + b – T*) 

Energy accumulating in the tank is then given by: 

 

NUMERICAL APPLICATION.–  A = 1,200 x 0.96 x 2 x 1.1   A = 2,534.kcal/min 

1.3.3. Generation in a system 

In several situations, mass and/or energy are created from within a system. As an 
example, nuclear reactors generate large quantities of energy and so is the case with 
exothermal chemical reactions.  

Generation of mass can also stem from chemical reactions where inputs are 
consumed (negative generation) yielding a new product (positive generation).  

1.3.3.1. Generation of mass 

In the case where the components entering the system react with each other to 
give another product, generation can be counted in terms of the number of moles or 
in terms of the mass generated.  

This generation is generally calculated from the reaction rate. Two formulations 
of this rate are generally used: 

p
dEA VaC
dt

= = ρ
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– r: the mass rate of reaction, expressed as the mass of the product generated per 
unit volume and per unit time. 

– R: the molar rate of reaction, expressed as the number of moles of the product 
generated per unit volume and per unit time. 

Thus, the generation term can take one of the following forms: 

G = r V or: G = R V 

1.3.3.2. Illustration: generation of mass in a reactor 

A stirred tank of cross section area S is used to manufacture a product C from A 
and B through an incomplete chemical reaction between inputs A and B according to 
the equation: 

A+B                    C 

This reaction is of order 2.  

The reaction rate gives the mass of C produced per unit time and per unit 
volume, as follows: rc = k ρA  ρB 

where ρA and ρB are the mass concentrations of A and B. 

 

Figure 1.6. Stirred reactor 

A follow up of the mass concentrations of A and B in the tank during reaction 
show a linear dependance over time as follows: 

ρA = ρA0 – k1 t                   ρB = ρB0 – k2 t 

A B
ω 

ρ 

C

h 
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where ρA0 and ρB0 are the values of the initial mass concentrations of A and B in the 
tank. 

Question 

Calculate the amount of C generated during the first thirty minutes of reaction. 

Data: 

Initially there is no C in the tank: at t = 0: ρc0 = 0. 
ρA0 = 450 g/liter                ρB0 = 600 g/liter   
h = 50 cm                          S = 20 dm2  
k1 = 15 g/(liter-minute)     k2 = 20 g/(liter-minute)  
k = 10-4 liter/(g-minute) 

Solution 

Generation of C is given by: Gc(t) = rc(t) V 

Where: rc(t) = k ρA(t)   ρ B(t) 

Hence: Gc(t) = k V ρA (t) ρB (t) 

Or: Gc(t) = k h S (ρA0 – k1 t) (ρB0 – k2 t) 

Hence the amount of C generated during the first thirty minutes: 

30

30 c
0

G G (t)dt= ∫  

30

30 A0 1 B0 2
0

G khS ( k t)( k t)dt= ρ − ρ −∫
 

302
31 2

30 A0 B0 2 A0 1 B0 A0 B0
0

k k tG khS t (k k ) t
3 2

⎡ ⎤
= ρ ρ − ρ + ρ ρ ρ⎢ ⎥

⎢ ⎥⎣ ⎦
 

NUMERICAL APPLICATION.–  
2

4 3
30

(15)(20) (30)G 10 (5)(20) (30) (20*450 15*600) (450)(600)(30)
3 2

− ⎡ ⎤
= − + +⎢ ⎥

⎢ ⎥⎣ ⎦  
G30 = 27 kg 
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1.3.3.3. Energy generation  

We say that there is energy generation in the system when there is creation or 
dissipation of energy during the operation of this system. We know that this occurs 
when: 

– an electric heating resistance is placed in the system; 

– an exothermic reaction is taking place in the system. In this case, the amount 
of energy created is given by the heat of the reaction (ΔH > 0); 

– the system is handling an endothermic reaction. In this case, the system needs 
an energy input for its operation. The amount of energy consumed is given by the 
heat of the reaction (ΔH < 0); 

– a nuclear reaction takes place in the system, etc. 

The amount of energy generated is often related to its generation density, which 
is also known as the generation power density, P. 

Thus, the amount of energy generated per unit time is given by: 

G = P V, 

where V is the system volume. 

1.3.3.4. Illustration: energy generation in a reactor 

An exothermic chemical reaction occurs in the reactor shown in Figure 1.7: 

 

Figure 1.7. Inputs of mass into a reactor 

The reaction enables the product, C, to be produced from inputs A and B, 
according to the equation: 

A + B  C  ΔH = 1,250 cal/mole 

DA  

DB 

DC

REACTOR 
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Question 

Knowing that the total reaction (total consumption of inputs) requires a time, τ, 
calculate the energy generation power, in kW, in the reactor: π. 

Data: 

DA = DB = 110 kmol/hour. 

Solution 

The generation power π is given by the amount of energy generated during the 
course of the reaction, divided by the time that elapses in order for the reaction to 
take place. 

Given that the reaction occurs during a time t, then:  

Q
t

π =  

with: , 

whereby  is the number of moles of C produced by the reaction. As the reaction 
is total,  is equal to the number of moles of A (or B) entering the reactor. Given 
that the flow rate of A into the reactor is DA, N is given by: 

N = t DA 

Hence: Q = τ DA ΔH  

Therefore the generation power is: Q = DA ΔH 

NUMERICAL APPLICATION.–   

DA = 110 kmol/hour 
ΔH = 1,250 cal/mole 

π = 110*1,250 kcal/hour  π = 159 kW 

1.3.4. Balance equation 

DEFINITION.–  We will call “mass balance” (“energy balance” respectively) the 
equation reflecting the conservation of mass (energy respectively) in a given 
system. 

N
N

Q N H= Δ
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This equation is written: 

Accumulation = Input – Output + Generation 

Using the same notations as in figure 1.1, the balance equation can then be 
rewritten as follows: 

n m

i j
i 1 j 1

A e s G
= =

= − +∑ ∑  

where A and G are, respectively, accumulation and generation. 

1.3.4.1. Illustration: mass balance on a reservoir 

Let us consider a water tower designed to deliver water to homes in a village. 
The reservoir of this tower is supplied by a well with a flowrate D1. 

 

Figure 1.8. Water supply reservoir 

D1 is a function of time that represents the amount of water extracted from the 
well and delivered to the reservoir per unit of time.  

D2 is a function of time that represents the water withdrawal rate to supply the 
village. 

Questions 

1) Show that the mass balance on this reservoir may be expressed in the form: 

1 2
dhS D D ,
dt

ρ = −  

h 

D2 

D1 
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whereby S is the cross-section area of the reservoir and ρ  the water density. 

2) Analyze the security risks for the following different situations: 

a) D1 – D2 > 0. 

b) D1 – D2 < 0. 

c) D1 – D2 = 0. 

Solutions 

1) Mass balance  

The balance equation is given by: 

A = Input – Output + G 

where A is the accumulation of water in the reservoir and G is generation. 

Given that there is no reaction, G = 0 

Accumulation is determined by differentiating the mass of water contained in the 
reservoir with respect to time. 

The water mass in this reservoir is M(t) = ρ S h, where S is the cross-section area 
of the reservoir and h is the height of water. 

Consequently, accumulation is given by: ( )d Sh
A

dt
ρ

=  

The balance equation is then: ( )
1 2

d Sh
D D

dt
ρ

= −  

For constant ρ and S within the field of operation, the balance equation  
reduces to: 

1 2
dhS D D
dt

ρ = −  

Thus, water accumulation in the reservoir may be positive or negative, 
depending on the sign of the difference, D1 – D2. 
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2) Risk analysis 

a) D1 – D2 > 0 

In this case, the accumulation is always positive. Consequently, the amount of 
water in the reservoir will continue to increase over time, which could result in an 
overflow of water. It is therefore necessary to control the height, h, so that it does 
not exceed the maximum height permitted. 

b) D1 – D2 < 0 

In this case, the accumulation is always negative. The reservoir will therefore 
empty over time, which presents the risk of an interruption in the water supply to the 
population. Thus, as for the previous case, it will be necessary to control the height, 
h, so that it never falls below a minimum value. 

c) D1 – D2 = 0 

In this case, accumulation is nil. The reservoir will therefore function without 
emptying or filling: the water height in the reservoir remains constant. This situation 
is ideal, but it would require controling flows D1 and D2 to ensure D1 = D2 over the 
course of time. 

NOTE.– In this example, D1 and D2 are considered in mass terms (i.e. in kg/hr, for 
example). If these flowrates were known in volume terms (in liters/hr, for 
example), then the mass flows would be obtained by multiplying the volume flows 
by the density, ρ. 

i.e.: D1 = ρ d1  and  D2 = ρ d2 

The balance equation will then become:
  

1 2
dhS d d
dt

= −  

1.3.4.2. Illustration: energy balance of an electric water heater 

Consider the domestic hot water production system represented in Figure 1.9. 

This system makes it possible to heat water from inlet temperature T1 to service 
temperature T2 by means of an electrical resistance with power, P.  

As the water heater is well insulated from the outside, we will assume, as a first 
approximation, that there are no heat losses. 
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Figure 1.9. Balance on an electric water heater 

Questions 

1) Develop the energy balance equation. 

2) Infer the differential equation which determines the evoltion of T2 over time. 

Solutions 

1) The energy balance is written:   

A = Input – Output + G 

The difference between the energy input and output is: 

Input – Output = D Cp (T1 – T2) 

Moreover, the “accumulation” term is given by:  2
p

dTA ShC
dt

= ρ  

The generation, in turn, is equal to the heating power:  G = P 

Hence the heat balance equation is:  2
p p 1 2

dTShC DC (T T ) P
dt

ρ = − +  

2) Differential equation for T2 

Dividing the energy balance equation by ρShCp, we infer the following 
differential equation for T2: 2

p 1 2
p

dT 1 DC (T T ) P
dt ShC

⎡ ⎤= − +⎣ ⎦ρ
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1.4. Fluxes and flux densities 

DEFINITION.– We will call the “flux φ” of a parameter G (mass, energy) 
propagating along a given direction ∆, the amount of G crossing an infinite surface 
perpendicular to ∆ per unit time. 

1.4.1. Energy fluxes 

An energy flux is an amount of energy per unit time. It can therefore correspond 
to a variation in internal energy (or enthalpy) per unit time. 

An energy flux actually represents a power of the transfer taking place. 
Consequently, energy fluxes will be expressed in calories per second (cal/s), in 
kilocalories per hour (kcal/hr), in watts (W) or in kilowatts (kW), etc. 

1.4.2. Mass fluxes 

A mass flux is a flow of matter that enters or exits a system per unit time. It can 
correspond to a mass per unit time or a number of moles per unit time.  

Mass fluxes will therefore be expressed in kilograms per hour (kg/hr) or in moles 
per minute (moles/min), etc. 

1.4.3. Flux densities 

DEFINITION.– We will call a “flux density ϕ” a flux per unit of surface area. 

Consequently, a mass flux density is a mass or a number of moles per unit time 
and per unit surface. 

The mass flux density will therefore be expressed in kg/(hm2) or in moles/(hm2), 
etc. Likewise, an energy flux density corresponds to energy per unit time and per 
unit area. 

The heat flux density will therefore be expressed in kcal/(hm2) or in kW/m2, etc. 
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1.4.3.1. Illustration: simultaneous transfer of mass and energy 

Let us consider a common operation in the manufacture of beverages: the 
preparation of sugar water. This preparation is made in a stirred tank where a flow, 
d, of glucose syrup is dissolved in water. 

To accelerate the dissolution, the tank is heated by steam (see Figure 1.10), 
which enters the tank jacket, condenses by yielding its latent heat to the tank, then 
leaves the jacket as condensed water. 

 

Figure 1.10. Production of sweet juice 

Detailed legend to Figure 1.10: 

D is the mass flow rate of water entering the tank, temperature T0. 

J is the mass flow rate of sugar water produced, temperature T. 

C is the mass fraction of sugar in the tank. 

Co is the mass fraction of sugar in the glucose syrup, flow d. 

Q designates the heat losses.  

V is the steam mass flow rate. This same flow is converted to condensed water.  
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Λ is the latent heat of condensation of saturated steam.  

H100 is the enthalpy of condensed water, expressed at the point of condensation.  

h is the liquid height in the stirred tank.  

S is the tank cross-section area. 

Questions 

1) Establish the overall mass balance that reflects the overall conservation of 
mass in the mixing tank. 

2) Establish the sugar-specific mass balance. 

3) Establish the heat balance of this tank. 

Solutions 

1) Overall mass balance  

As there is no generation of mass in the tank (G = 0), the balance is written: 

Accumulation = Inputs – Outputs 

In order to express the “accumulation” term, it is necessary to know the 
expression of the total mass, M, in the tank. M is given by:  M V Sh= ρ = ρ  

The “accumulation” term is therefore given by (ρ and S being constant): 

dhA S
dt

= ρ  

The overall mass input is: E = D + d 

The mass output is represented by the flow, J. 

Hence, the overall mass balance equation is:  
dhS D d J
dt

ρ = + −  

2) Specific mass balance 

The specific mass takes care of sugar conservation. 

The amount of sugar in the tank is given by: 

(total mass) x (mass fraction of sugar) = (ρ S h) C 
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Therefore, we can express the “accumulation” term as follows: 

( )d ShC d(hC)A S
dt dt

ρ
= = ρ

 

In addition, the sugar entering the tank is:  E = d C0 

And the sugar exiting the tank is given by:  S = J C 

The “generation” term is nil. 

The sugar-specific balance equation is then:  
( )

0
d hC

S dC JC
dt

ρ = −
 

3) Heat balance 

This balance can also be written in the form:  

Accumulation = Inputs – Outputs + Generation 

As there is no energy generation in the system, the balance equation becomes: 

Accumulation = Inputs – Outputs 

Let us express the different terms of this equation: 

a) Accumulation: in order to express the “accumulation” term, it is necessary to 
know the expression of the amount of energy in the tank. The latter is represented by 
the enthalpy of the liquid present in the tank. It is given by: *

pH MC (T T )= − , 

where T* is a reference temperature. 

Replacing M with its expression ( )M V Sh ,= ρ = ρ  we obtain the expression of 

the amount of energy in the tank: *
pH ShC (T T )= ρ −  

Thus the “accumulation” term of energy in the tank is given by: 

*
pd ShC (T T )dHA

dt dt

⎡ ⎤ρ −
⎣ ⎦= =  

i.e. (ρ, Cp and S being constant): ( )
p

d hT
A SC

dt
= ρ  
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b) The “energy inputs” 

The system admits the following inputs: 

i) The enthalpies associated with the flows, D and d 

*
D pD 0H DC (T T )= −    and   *

d pd 0H dC (T T )= −   

ii) The input associated with the steam 

HV = HV0 + VΛ,  

where is the enthalpy of the liquid at vaporization point and Λ  is the latent 
heat of vaporization. 

Thus, the “energy inputs” term is written: 

Ein = HD + Hd + HV0 + VΛ 

Hence: Ein = D CpD(T0-T*) + d Cpd(T0-T*) + HV0 + VΛ 

c) The “energy inputs” 

The system admits the following outputs: 

i) The heat losses: Q 
ii) The enthalpy HJ associated with the flow J. 

HJ = J CpJ(T-T*) 

iii) The output HW associated with the condensed water  

HW = HV0 

Thus, the “energy outputs” term is written:   

Eout = Q + HJ + HV0 

Consequently, the term Ein – Eout may be expressed as follows: 

Ein – Eout = HD + Hd + HV0 + VΛ - Q - HJ - HV0 

Ein – Eout = D CpD(T0-T*) + d Cpd(T0-T*) - J CpJ(T-T*) + VΛ - Q 

Ein – Eout = (D CpD+ d Cpd) T0 - J CpJT - (D CpD+ d Cpd - J CpJ ) T* + VΛ - Q 

V0H
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Yet, in the reference state, the term *

pD pd pJ(DC dC JC )T+ −  is nil. 

Therefore: Ein – Eout = (D CpD+ d Cpd) T0 - J CpJT + VΛ - Q 

Thus, the energy balance is written: (A = E – S): 

( )
p pD pd 0 pJ

d hT
SC (DC dC )T JC T V Q

dT
ρ = + − + Λ −  

1.5. Operating states 

Prior to establishing the balances on a system, it is important to define its 
running mode or operating state. We can distinguish two types of operating states: 

– Steady state. 

– Transient state. 

1.5.1. Steady state 

DEFINITION.– Steady state is defined as a running condition where all system 
variables are constant over time. 

It is a condition reached by a system after an operating time long enough to enable 
all of its variables to stabilize and no longer vary over the course of time. We can 
also say that the system has reached a stationary state, or an equilibrium state. 

1.5.2. Transient state 

DEFINITION.– The transient (or dynamic) state corresponds to the condition 
whereby at least one of the system variables varies with time. 

It is the condition in which systems evolve during their start-up phase, or during 
the shutdown of an installation. We then talk about a dynamic state or a variable 
regime. 

If, for example, we consider the general balance equation on the reservoir 

presented in Figure 1.8: 1 2
dhS D D
dt

ρ = −  
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– In steady state: all of the variables are constant over time. In particular h is 

constant. Consequently: dh 0
dt

=  

The balance equation in steady state therefore becomes: D1 – D2 = 0 

– In transient state: dh 0
dt

≠  

The balance equation is a differential equation which gives the variation of the 
height of the liquid in the reservoir: 

( ) ( ) ( )1 2dh t D t D t
dt S

−
=

ρ
 

1.5.2.1. Illustration: transient and steady states energy balances of a water 
heater 

We will consider the water heater presented in Figure 1.9. 

Questions 

1) Assuming that steady state has been reached, establish the equation that 
reflects the overall energy balance of the water heater. 

2) Deduce therefrom the power, P, needed in order to heat the flow, D, from 
18°C to 70°C. 

3) After reaching steady state, we decide to turn off the water heater. We  
would like to have a clear idea of the way the temperature of the water inside the 
tank will vary after switching the device off. In this perspective, you are asked to 
establish the differential equation governing the variation in this temperature over 
the course of time, and to give the boundary condition that would be necessary for 
its integration. 

Data: 

D = 300 kg/day ρ = 1,000 kg/m3  Cp = 1.2 kcal/(kg °C) 

T2 = 70 °C        T1 = 18 °C 

Solutions 

1) Overall energy balance at steady state 

The general equation of the energy balance of the water heater presented in 
Figure 1.9 is written (see section 1.3.4.2): 
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( )2

p p 1 2
dThSC DC T T P
dt

ρ = − +
 

At steady state, this equation becomes: 

D Cp (T1 - T2) + P = 0 

2) Power needed to heat the flow D from T1 to T2 

Solving the energy balance equation for P yields: 

P = D Cp (T2 - T1) 

NUMERICAL APPLICATION.–    

Power needed to heat a flow, D, of water from 18°C to 70°C. 

D = 300 kg/day  Cp = 1.2 kcal/(kg °C) 

T1 = 18 °C  T2 = 70 °C 

300*1,2P *4,18*(70 18)
24*3600

= −     

P = 906 W
 

3) Differential equation expressing the variation of temperature with time 

The balance equation, in transient state, is given by: 

2
p p 1 2

dTShC DC (T T ) P
dt

ρ = − +  

It enables the prediction of temperature variations as a function of any variations 
in D, T1 or P: 

2
p 1 2

p

dT 1 DC (T T ) P
dt ShC

⎡ ⎤= − +⎣ ⎦ρ
 

In the case of interest to us, the water heater has been switched off; therefore,  
P = 0, while T1 = 18 °C = constant and T2 (0) = 70 °C. 

Thus, from the moment the water heater is switched off (t = 0), the differential 
equation that governs temperature variation over time is given by: 
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p 22

p

DC (18 T )dT
dt ShC

−
=

ρ
, 

with the boundary condition: T2 (0) = 70 °C. 

1.6. Transfer area 

1.6.1. What does the transfer area represent? 

DEFINITION.– We will use "transfer area" to refer to the surface through which the 
mass and/or energy are exchanged. 

1.6.2. Illustration: transfer area in a heat exchanger 

A tubular heat exchanger consists of a large tube (of diameter D and length L), 
which constitutes the outer wall, or envelope, of the device. A number, n, of tubes 
(all having the same diameter, d, and length, L) are placed in this envelope  
(see Figure 1.11). 

 

Figure 1.11. Cross-section of a tubular exchanger 

Cold fluid Hot fluid
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Inside the large tube (envelope), circulates a fluid we wish to heat (“cold fluid”)  

using the heat that would be released by a “hot fluid”, circulating in the small tubes. 

In addition, the large tube is in direct contact with the outside. This results in 
heat losses to the atmosphere. 

Questions 

1) Calculate the transfer area, Sa, relative to heat exchange between the large 
tube and the atmosphere. 

2) Determine, as a function of n, the transfer area, Sn, relative to heat exchange 
between the fluid circulating in the large tube and the n small tubes. 

3) Determine n such that Sn is twice as big as Sa. 

Data: 
D = 10 cm 
d = 2 cm 
L = 0.5 m 

Solutions 

1) External transfer area 

Sa = πDL 

NUMERICAL APPLICATION.–   

D = 0.1 m  L = 0.5 m 

Sa = 0.1 x 0.5 x π              Sa = 0.157 m2 

2) Transfer area with the n tubes 

The exchange surface of a tube is:  

S1 = πdL 

Hence, for n tubes:  

Sn = n πdL 

3) Value of n   

Sn = 2 Sa 
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i.e.: nπdL = 2πDL. 

Hence: n = 2D/d. 

NUMERICAL APPLICATION.–  

n = 2 x 10/2   n = 10 tubes 

1.6.3. Illustration: transfer area inferred from a technical drawing 

A mechanical spare part of a pump consists of two solids, S1 and S2, which have 
a common contact surface, noted SE. This part is mounted such that during operation 
of the pump, the solid, S1, is at a temperature, T1, that is much greater than the 
temperature, T2, of S2. 

Question 

From the technical drawings of the spare part (plan view and left-side view), 
identify the transfer area, SE, between S1 and S2 by hatching it in the left-side view, 
then calculate SE. 

 

Figure 1.12. Technical drawings of a pump spare part 
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Solution 

 

Figure 1.13. Exchange surface (hatched) 

NUMERICAL APPLICATION.–  

SE = 7 x 100      SE = 700 mm2 

1.7. Driving potential difference 

As we will see in the following chapters, the concept of driving potential 
difference (DPD) is very important in the quantification of mass or energy transfers. 
This concept is developed by similarity to electricity. Indeed, let us recall that in 
electrical circuits, the flux of electrons, or the electric current, i, is determined by the 
potential difference, ΔV, (difference between equipotentials V1 and V2) and by the 
electrical resistance, R: 

2 1V VVi
R R

−Δ= =  

More generally speaking, for a system described by equipotentials P1 and P2, we 
define the driving potential difference: ΔP = P2 – P1 

This concept can be applied to energy exchanges as well as to mass transfers. 
The following sections define the heat transfer potential difference (HPD) and the 
mass transfer potential difference (MPD) based on differences in temperature or 
concentration equipotentials. These transfer potential differences are sometimes 
referred to as driving forces because they constitute the "engine" necessary for a 
transfer to take place. Moreover, they are instrumental in determining the heat and 
mass fluxes transferred between systems. 

 

7 

100 
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1.7.1. Heat transfer potential difference 

Let us consider two systems (or parts of the same system); one at temperature T1 
and the other at temperature T2. 

Heuristically, we know that heat will flow only if T1 # T2 and that the quantitative 
importance of this flow will depend on how large the difference between T1 # T2 is. 
While these practical observations will be confirmed in the next chapter, they are 
directly related to the definition of the heat transfer potential difference. 

DEFINITION.–  

The heat transfer potential difference (HPD) refers to the temperature difference 
(or gradient) between the two systems (or parts of the same system): 

HPD = ∆T = T2 – T1 Or:
 

x
x

THPD dx
x

∂=
∂

 

From the definition, we deduce that: x dx x xT T HPD+ = +
 

1.7.1.1. Illustration: HPD and transfer area for a tank 

For the mixing tank represented in Figure 1.10, we assume that at steady state 
(see section 1.4.3.1), the temperature of the liquid in the tank is TT and that  
the liquid height in this tank is h.  

Questions 

Calculate the heat potential difference (HPD) between the liquid of the tank and 
the heating wall and determine the heat transfer area. 

Data: 

Tank cross-section: S = 1,256.6 cm2 

TT = 65°C  h = 70 cm 

Solutions 

1) Heat transfer potential difference 

The heating wall is in contact with a condensing vapor. Since condensation 
always occurs at a constant temperature (condensing temperature), the temperature 
of the heating wall can be assumed to be equal to the condensing temperature.  
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Thus: Tc = 100°C. 

The HPD is then given by: HPD = Tc – TT 

NUMERICAL APPLICATION.–   

Tc = 100°C   TT = 65°C  
 

HPD = 100 – 65   HPD = 35 °C 

2) Heat transfer area 

The heat transfer area is equal to the contact surface between the liquid and the 
heating wall. 

The tank radius being R and referring to liquid height by h, this contact surface is 
given by: 

SE = 2πRh 

Yet:   SR =
π

 

Hence: ES 2h S= π  

NUMERICAL APPLICATION.–   

h = 70 cm  S = 1,256.6 cm2 

ES 2*70* 1,256,6*= π   SE = 8,796 cm2
 

1.7.1.2. Illustration: elementary DPT and exchange surface 

Consider the metal bar represented in Figure 1.14. The temperature of this bar is a 
function of x, y and z. 

We will consider the volume element of this bar, between x and x + dx, defined 
by dx, dy and dz (see Figure 1.14). 

The cross-section of the bar, located at x, is at temperature θx, whilst the cross-
section located at x + dx is at temperature θx+dx. 
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We suppose that the temperature profile along the bar decreases as a function  
of x; we then have θx > θx+dx and the energy will therefore propagate in the direction 
x  x + dx. 

 

Figure 1.14. Volume element of a metal bar 

Questions 

1) Determine the expression of the heat transfer area in the direction x, Sx. 

2) What is the expression of the heat transfer potential difference (HPD) in the 
direction x? 

Solutions 

1) The exchange surface, Sx, is given, quite simply, by:  

Sx = dy dz 

2) The exchange potential difference in the direction x is the temperature 
gradient in the direction x; i.e.: 

x
x

HPD dx
x

∂θ=
∂

 

1.7.2. Mass transfer potential difference 

Let us now consider two parts of a system (or two systems); one is at 
concentration c1 and the other is at concentration c2. 

DEFINITION.– 

We will use “mass transfer potential difference (MPD)” to refer to the 
concentration difference or gradient: 

         MPD = ∆c = c2 – c1 or x
x

cMPD dx
x

∂=
∂
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 From the definition, we deduce that: x dx x xc c MPD .+ = +  

NOTES.–  Concentrations, c, in the MPD definition can be expressed in molar or 
mass terms: 

- In terms of molar concentrations, c is expressed in mol/liter or in kmol/m3 or in 
any other equivalent units. 

- For a problem posed in terms of mass concentrations, ρ (g/liter or kg/m3), the 
MPD is given by:  MPD = Δρ = ρ2 − ρ1  

– In terms of mole fractions x, (x = number of moles of A/total number of moles): 

MPD = Δ x = x2 − x 1  

– In terms of mass fractions, ω (ω  = mass of A/total mass): 

MPD = Δω = ω2 − ω1 

1.7.2.1. Illustration: MPD in an ultrafiltration cell 

 Ultrafiltration is one of the most important seawater desalination techniques. It 
consists of passing seawater through reverse osmosis cells. 

A reverse osmosis cell is composed of two compartments subject to different 
pressures (P1 > P2), separated by a semi-permeable membrane, that is, a membrane 
which is permeable to water and impermeable to salt (see Figure 1.14). 

1) If P1 = P2, the system will have a natural evolution towards a new steady state, 
where the concentrations of H2O in the two compartments will tend towards the same 
value, m, the equilibrium concentration. Such an evolution is known as osmosis. 

2) If P1 > P2, the system is forced to operate unnaturally. Water will pass from  
the first compartment (which has a low H2O concentration) to the second  
compartment (which has a higher H2O concentration). This type of (unnatural) 
operation is only possible under pressure (P1 > P2). It makes it possible to recover  
the fresh water in compartment 2, while the salt remains trapped in compartment 1. 
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Figure 1.15. Reverse-osmosis cell 

This mode of operation is known as reverse osmosis, simply because it does the 
opposite of osmosis. 

We will focus on the case where P1 = P2. 

Questions 

1) Calculate the mass transfer area between the two compartments.  

2) Calculate the driving potential difference based on mass concentrations of 
water. 

Data: 

Cell diameter: D = 30 cm 

Cell height: H = 1 m 

Density of compartment 1: ρ1 = 1,025 g/liter 

Density of compartment 2: ρ2 = 1,000 g/liter 

Salt content of compartment 1: NaCl
1 35g / literρ =  

Salt content of compartment 2: NaCl
2 0,001 g / literρ =  
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Solutions 

1) Mass transfer area 

The mass transfer area in this case is the semi-permeable membrane surface. It is 
given by: 

SE = D x H 

N.B.–   

SE = (0.3)(1)   SE = 0.3 m2 

2) Driving potential difference 

The problem is posed in terms of mass concentrations; the MPD is then given 
by: 2 2 22 H O H O H OH O

2 1MPD = Δρ = ρ − ρ  

Yet 
H O2

1ρ and 
H O2

2ρ are unknown, but we do know 
NaCl

1ρ  and 
NaCl

2ρ . 

a) Calculating 
H O2

1ρ  

For a volume, V, of compartment 1, the total mass is ρ1V and the masses of H2O 

and NaCl are such that:  
H O2 NaCl
1 1 1m m V+ = ρ  

Therefore:  2 2H O H O NaCl
1 11 1m V V V+ ρ = ρ − ρ  

Hence:  
H O2 NaCl
1 1 1ρ = ρ − ρ  

b) Calculating 
H O2

2ρ   

Likewise, for a volume V of compartment 2, the masses of H2O and NaCl are 

such that:
H O2 NaCl
2 2 2m m V+ = ρ  

Therefore:  
H O2 NaCl
2 2 2m V m= ρ −    

Or:  
H O2 NaCl
2 2 2m V V= ρ − ρ  

i.e.:  
H O2 NaCl
2 2 2ρ = ρ − ρ  
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Therefore:  

 

NUMERICAL APPLICATION.–   

ρ1 = 1,025 g/liter  ρ2 = 1,000 g/liter 
                    

 

 

    

1.8. Exercises and solutions  

EXERCISE 1.1. Balance in steady state 

We will consider the perfectly stirred reservoir represented in Figure 1.16, where 
flows, d1, d2 and d3, have constant concentrations, c1, c2 and c3, respectively. In 
addition, d1 and d2 are constant. 

Questions 

1) Assuming that the liquid height in the reservoir is constant, show that the 
system is operating at steady state. 

2) In this case, what must the value of d3 be? 

3) Which condition makes it possible to have c3 = 2c2? 

 

Figure 1.16. Stirred tank 

MPDH2O = ΔρH2O = ρ2
H2O − ρ1

H2O

MPDH2O = ρ2
H2O − ρ1

H2O = ρ2 − ρ1( ) + ρ1
NaCl − ρ2

NaCl( )

ρ =1
NaCl 35 g / liter ρ =2

NaCl 0.001 g / liter

MPDH O2 = 1,000 −1,025( ) + 35 − 0.001( )
MPDH O2 = −25 + 34.999 MPDH2O = 9.999 g / liter
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Data: 

d1 = 0.5 m3/hr        
d2 = 1.5 m3/hr 

Solutions 

1) The height h is constant  

An overall balance on the tank gives:  1 2 3
dhS d d d
dt

ρ = + −  

The height, h, being constant, we have:  
dh 0
dt

=  

Subsequently:  d3 = d1 + d2  

d1 and d2 being constant, d3 is constant. 

Thus, as all of the variables are constant, the system is then at steady state. 

2) Value of d3  

At steady state, we will obtain: 3 1 2d d d= +  

3) Condition enabling us to obtain c3 = 2c2  

At steady state, we have:  d1 c1 + d2 c2 = d3 c3 

Hence:  c3 = (d1 c1 + d2 c2)/d3 

Supposing c3 = 2c2, we obtain:  2c2 d3 = d1 c1 + d2 c2 

i.e.: 1 1
2

3 2

d c
c

2d d
=

−
 

EXERCISE 1.2. Cooling an electronic circuit 

Your first job is at a plant that manufactures electronic components. Your 
supervisor informs you that your team is currently designing an electronic circuit, 
the operation of which releases a heat energy flux, φS. He also informs you that the 
correct operation of this electronic circuit relies on how this amount of energy could 
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be conveyed out of the circuit. To do this, the circuit will need to be equipped with a 
metal radiator, the role of which is to dissipate this energy to the outside. 

 

Figure 1.17. Printed circuit board comprising an energy dissipator 

Assuming that the flux, φD, of energy dissipated by the radiator to the outside is 
proportional to its heat transfer area with the surrounding environment, SR and to the 
heat transfer potential difference (HPD) between the radiator and the surrounding 
environment, your supervisor asks you to: 

Questions 

1) Give the expression of φD as a function of the radiator temperature, the 
ambient temperature, SR, and a proportionality factor that we will denote K. 

2) Determine the value of the heat transfer area, SR, in order to ensure correct 
operation of the electronic circuit. 

Your supervisor gives you the following data: 

φS = 50 Watts;  TR = 150 °C;  Ta = 25 °C;  K = 15 kcal/hm2°C 

Solutions 

1) Expression of φD 

We have assumed that φD is proportional to the exchange surface, SR, and to the 
heat transfer potential difference HPD. We can therefore write: 

φD =KSR(TR - Ta)     

2) Value of the exchange surface, SR 

In order to assure a correct operation of the semiconductor, it is necessary that the 
energy released by the circuit be conveyed out. We thus should have: φD =φS 

Radiator

Electronic circuit board
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Hence:  KSR(TR - Ta) = φS        i.e.: S
R

R a
S

K(T T )
φ=

−
 

NUMERICAL APPLICATION.–   

φS = 50 Watts  TR = 150 °C Ta = 25 °C K = 15 kcal/hm2°C 
 

R
50*3,600S

15*1,000*4,18(150 25)
=

−
  SR = 0,023 m2 

EXERCISE 1.3. Balance in transient state 

During a visit that you pay to a rural area, the engineer in charge of the 
development of this area asks for your help to tackle a problem that he is unable to 
solve. The problem concerns the fact that the municipality’s drinking water supply is 
being cut off from time to time without a clear reason. He informs you that all of the 
municipality’s homes, businesses and services are supplied by a water tower, 
represented by the reservoir shown in Figure 1.18. 

 

Figure 1.18. Water-tower reservoir 

The flow D1 is delivered by a pump extracting water from the town well to 
continuously feed the water tower. D1 (t) follows a parabolic law, which has 
been modeled by:  D1(t) = a b t2 

h(t) 

D2(t) 

D1(t) 
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whereby: 

t and D1 are expessed respectively in hours and in m3/hr 

a is a constant to be determined, expressed in m3/h3 

b is a known constant, without dimensions 

The flow, D2, corresponds to water extraction by different users. It has been 
determined as a function of the consumption of the different homes, businesses and 
services of the rural town. The modeling of this consumption, between 0 hours and 
24 hours, led to an exponential law, given by:   

0,1t
2D (t) kte=  

whereby t, D2 and k  are expressed respectively in hours, m3/hr and m3/h2 

The town’s engineer informs you that, at least once every 24 hours, there is no 
more water left in the tower, leading to an interruption in the public service. You 
then decide to help the town’s engineer analyze the problem. You advise him to 
answer the following questions: 

Questions 

1) Give the differential equation that governs the mass balance on the reservoir. 

2) Determine the relation between k and a so that dh/dt becomes nil at t = 0 hrs 
and at t = 24 hrs. 

3) Show that the equation, 
dh 0
dt

= , admits a third root between 0 hrs and 24 hrs. 

4) Show that the height, h(t), of the liquid in the reservoir passes by a minimum, 
hmin, and determine tmin. 

5) Establish the table of variations of h(t) and plot its curve between 0 hrs and 24 hrs. 

6) By integrating the differential equation, give the evolution, as a function of 
time, of the height, h(t), of the liquid in the reservoir. We will assume that at t = 0, 
h(0) = h0. 

7) How can an interruption in the public service be avoided? Calculate hmin in 
this case. 

Data: 

b = e2.4; k = 240 m3/h2; Tower tank radius: R = 8 m 
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Solutions 

1) Differential equation that governs the mass balance 

1 2
dhS D (t) D (t)
dt

= −  

Yet:  D1(t) = a b t2 and 0.1t
2D (t) kte=    i.e.: 2 0.1tdhS abt kte

dt
= −  

2) Relation between k and a so that dh/dt is nil at t = 0 hrs and at t = 24 hrs 

We have:
 

0.1tdhS t(abt ke )
dt

= −   

At t = 0 hrs: 
dh 0
dt

=  

At  t = 24 hrs: 
dh 0
dt

= → 0.1tabt ke 0− =  → 2.4 2.424ae ke 0− =  

i.e.: 
ka
24

=  

 NUMERICAL APPLICATION.–   k = 240   a = 10 

3) Third root of dh/dt 

The expression of dh/dt is: 2.4 0.1tdhS t(10e t 240e )
dt

= −
 

Therefore t = 0 and t = 24 are roots of the equation
dh 0
dt

= . Let us locate the 

third root of this equation: 

At  t = 1hr: 2,4 0,1t10e t 240e 0− = < 0. 

At t = 3hrs: 2,4 0,3t30e t 240e 0− =  > 0. 

At t = 2.5hrs: 2,4 0,25t25e t 240e 0− = < 0. 

As dh/dt is continuous, it therefore becomes nil between 2.5 hrs and 3 hrs. 

Therefore: dh/dt admits a third root, tmin, situated between 2.5 hrs and 3 hrs. 
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4) Minimum, hmin, of h(t) and calculation of tmin  

The table of the signs of dh/dt shows that: 

– The derivative of h(t) is nil at tmin, situated between 2.5 hrs and 24 hrs. 

– This derivative is negative for t < tmin and becomes positive for t > tmin. 

Therefore: h(t) admits a minimum at tmin. 

T 0 hrs 2.5 hrs                tmin 24 hrs 

 0 –                0             + 0 

Table 1.1. Signs of dh
dt

 

The calculation of tmin can be carried out by solving the equation, 
2.4 0.1t10e t 240e 0− = between 2.5 hrs and 3 hrs. Of course, any of the methods for 

solving non-linear equations can be used (Newton-Raphson, dichotomy, etc.). 
Nevertheless, we prefer to continue with the trial and error approach by pursuing 
sign analyses of dh/dt. 

Approximate calculation of tmin by pursuing analysis of the sign of dh/dt: 

– t = 3hrs: 30e2.4 - 240e0.3 > 0.  
– T = 2.5hrs: 25e2.4 - 240e0.25 < 0. 
– T = 2.9hrs: 29e2.4 - 240e0.29 < 0. 
– T = 2.915hrs: 29.15e2.4 - 240e0.2915 > 0. 
– T = 2.914hrs: 29.14e2.4 - 240e0.2914 > 0. 
– T = 2.913hrs: 29.13e2.4 - 240e0.2913 < 0. 

We therefore retain: tmin = 2.9135 hrs. 

5) Table of variations and curve of h(t) between 0 hrs and 24 hrs 

T 0hrs                  2.5hrs                    tmin                                              24hrs 

    0                        –                          0                      +                          0 

h(t) 
h(0)                                                                                                   h(24) 

Table 1.2. Variations in h(t) 

dh
dt

dh
dt

hmin 
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NUMERICAL APPLICATION.–  b = e2.4 k = 240 m3/h2 R = 8 m a = 10  
tmin = 2.9135 hr 

h0 > 1
25π

240
0.01

1+ 0.29135−1( )e0.29135⎡⎣ ⎤⎦ − 10e2.4

3
2.9135( )3⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪  

The condition is therefore that h0 > 4.66 m 

EXERCISE 1.4. Calorimetry 

The first law of thermodynamics makes it possible to show that the variation in a 
system’s heat energy is linked to the variation of its internal energy through the 
relation: 

1 2Q = U(2) U(1)→ −  

We wish to use this relation to determine the specific heats (or heat capacities), 
Cp, of liquids. To achieve this, we use a device that enables an amount, Q, of heat to 
be transferred to a known mass, M, of liquid. 

We will assume that the device is perfectly insulated from the outside and that it 
does not participate in the heat exchange, such that the heat transferred to the fluid 
uniquely serves to increase its internal energy. 

Initially, the device contains a mass, M, that is at temperature T1. In final 
equilibrium state, the temperature of the liquid is T2. 

Questions 

1) Give the expressions of the internal energies, U(1) and U(2), as a function of 
M, of the specific heat (assumed to be independent of temperature) and of the 
temperatures T1, T2 and T* (reference temperature). 

2) Deduce therefrom an expression for the heat capacity, Cp, as a function of M, 
Q and temperatures, T1 and T2. 

3) In this question, we will consider that heat is supplied to the system by an 
electrical resistance of power P placed in the device. We will assume that electricity 
is converted into heat with an efficiency  η1 = 90%. 

a) Calculate the amount of energy supplied to the system, if the resistance is 
powered up for a duration Δt. 

b) Determine Cp as a function of P and the other parameters of the problem. 
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c) Calculate Cp. 

Data: 

M = 1 kg  P = 500 W  
T1 = 20 °C  T2 = 85 °C  Δt = 30 minutes 

Solutions 

1) Internal energies U(1) and U(2)  
*

p 1U(1) = MC (T T )−  and *
p 2U(2) = MC (T T )−  

2) Heat capacity, Cp, as a function of M, Q, T1 and T2 

The first law of thermodynamics gives: Q 1→2 = U(2) − U(1)  

Hence: Q = MC p (T2 − T *) − MC p (T1 − T *)  

Q = MC p (T2 − T1) 

Hence the expression of C p is: C p =
Q

M(T2 − T1)
 

3) Energy is supplied to the system by an electrical resistance of power, P 

a) Amount of heat supplied to the system 

This amount Q is given by: 1Q = η PΔt  

NUMERICAL APPLICATION.–       
η1 = 0.9 
P = 500 W 
Δt = 30 minutes 
 
Q 0,9*500*30 *60=    Q = 810 kJ 

b) Cp as a function of P and the other parameters 

This function is obtained by eliminating Q from the following two expressions: 

p
2 1

QC =
M(T T )−

 and Q = η 1PΔt  
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Hence: C p =
η 1PΔt

M(T2 − T1)
 

c) Calculating Cp 

NUMERICAL APPLICATION.–   
η1 = 0.9   P = 500 W   M = 1 kg   
T1 = 20 °C   T2 = 85 °C   Δt = 30 minutes 

Cp = 12.46 kJ/kg°C 

EXERCISE 1.5. Energy balance of an electric water heater 

The electric water heater of Figure 1.20 enables the water to be heated from 
temperature T1 to temperature T2; energy being supplied by an electrical resistance 
of power, P, placed at the bottom of the water heater. 

We will assume that electricity is converted into heat with a yield η. 

The water heater being well insulated from the outside, we will assume as a first 
approximation that heat losses are nil. 

We wish to know the evolution of temperature, T2, as a function of the 
temperature at the input of the water heater, T1. 

 

Figure 1.20. Electric water heater 

Questions 

1) Give the expressions of the energy fluxes entering and exiting the water 
heater. 
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2) Give the expression of the “energy accumulation” term in the water heater. 

3) Give the differential equation governing the variations in temperature, T2. 

4) Give the evolution of T2 as a function of time. 

5) Show that the curve of T2(t) admits a slope at the origin equaling: ηP
ρVC p

 

6) Show that the curve of T2(t) admits an asymptote at:

 

T1 +
ηP

ρVC p

  

7) Plot the curve of T2(t). 

8) We will now assume that heat losses are proportional to the Thermal Potential 
Difference (TPD = T2 – Ta), where Ta is the ambient temperature, such that the 
expression of the heat losses flux to the outside is given by: ϕ L

S = K(T2 − Ta )  

a) What becomes of the differential equation that governs the variations of T2? 

b) Determine θ, α and β in such a way that this equation be put in the form: 
d
dt
θ = −αθ +β  

c) By analogy with the solution developed in the fourth question, give the 
expression of T2(t) with heat losses. 

d) In this case, what are the slope at the origin and the asymptote at infinity? 

Solutions 

1) Expressions of the fluxes entering and exiting the water heater 

a) The incoming fluxes 

    i) By the flow, D, at temperature T1:  E *
D p 1DC (T T )φ = −   

    ii) By the electrical resistance: E
P Pφ = η   

b) The outgoing fluxes 

    i) By the flow, D, at temperature T2: S *
D p 2DC (T T )φ = −   

    ii) By heat losses:
 

S
L 0φ =   

2) The “energy accumulation” term in the water heater: 

*
p 2

dA MC (T T )
dt
⎡ ⎤= −⎣ ⎦ , 
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whereby M is the mass of water in the heater: M = ρV. 

i.e.: *
p 2

dA = ρVC (T T )
dt

⎡ ⎤−⎣ ⎦
 

ρ, V, Cp, T2 and T* being constant, A becomes: A = ρVC p
dT2

dt
 

3) Differential equation that governs the variation in temperature, T2 

This equation is obtained from the energy balance, in transient state, which is 
expressed as follows: A = φ D

E + φ P
E − φ D

S − φ L
S  

i.e.: 2
p p 1 2

dTρVC = DC (T T ) +ηP
dt

−  

Hence the differential equation governing T2 is: 

2
2 1

p

dT D P(T T )
dt V VC

η= − − +
ρ ρ

 

4) Evolution of T2 as a function of time 

T2(t) is obtained by integrating the differential equation. For greater simplicity, 
we define parameters α, β and θ as follows: 

Dα =
ρV

, 
p

ηPβ =
ρVC

, θ = T2 – T1 

The differential equation becomes: dθ
dt

= −αθ + β  

This equation admits a general solution in the form: 

t
1 2K e K−αθ = +  

If we substitute this general solution into the differential equation, we obtain: 

( )t t
1 1 2K e K e K−α −α−α = −α + + β  

Hence: αK 2 = β  i.e.: K 2 =
β
α
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Thus: θ = K 1e

−αt +
β
α

 

In order to determine K1, we use the fact that initially (t = 0) the water in the 
heater is cold (T2 = T1,). Therefore θ(0) = 0 

Hence: K 1 = −
β
α

 

The complete solution of the differential equation is therefore: 

-αtβθ = (1 e )
α

−    i.e.: -αt
2 1

βT (t) = T + (1 e )
α

−   Or: -αt
2 1

p

ηPT (t) = T + (1 e )
DC

−  

5) Slope at the origin of T2(t) 

[ ]2
2 1

p

dT D P(0) T (0) T (0)
dt V VC

η= − − +
ρ ρ

 

-αt
2 1

p

ηPT (t) = T + (1 e )
DC

−     →    2 1T (0) T=  

Hence: 2

p

dT P(0)
dt VC

η=
ρ

 

6) Asymptote of T2(t)  

αt
2 1

p

ηPT (t) = T + (1 e )
DC

−−   Thus: 2 1
t p

ηPT (t) = T +lim DC→∞

 

Moreover: 
t→∞
lim

dT2
dt

= −
D

ρV
(

ηP
DC p

) +
ηP

ρVC p
    i.e.: 2

t

dT 0
dtlim

→∞
=  

Therefore, T2(t) does admit an asymptote at T2 = T1 +
ηP

ρVC p  
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7) Curve of T2(t) 

t 0            ∞ 

2dT
dt

 
p

P
VC
η

ρ
                                                 +                                                0  

T2(t) 

1
p

PT
DC
η+  

 

Table 1.3. Variations in T2 as a function of time 

Hence the curve of T2(t): 

 

Figure 1.21. Curve of T2(t) 

8) Case where the water heater is subject to heat losses proportional to the TPD 

a) Differential equation with heat losses 

The energy balance equation, in transient state, is, in this case: 

E E S S
D P D LA = φ + φ − φ − φ  

with: s
2 a)L = K(T Tφ −  

T1 
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i.e.: 2

p p 1 2 2 a
dTMC DC (T T ) K(T T ) P
dt

= − − − + η  

or: 

2
p p 2 p 1 a

dTVC (DC K)T DC T KT P
dt

ρ = − + + + + η   

b) Differential equation with heat losses 

The differential equation that governs the variation in T2 is written: 

2
p p 2 p 1 1 a

dTVC (DC K)T (DC K)T P K(T T )
dt

ρ = − + + + + η − −  

or: 

p 1 a2
2 1

p p

DC K P K(T T )dT (T T )
dt VC VC

+ η − −= − − +
ρ ρ

 

This equation may be put in the form: 

d
dt
θ = −αθ + β  

if  θ = T2 – T1, p

p

DC K
VC

+
α =

ρ
 and 1 a

p

P K(T T )
VC

η − −β =
ρ

 

c) Expression of T2(t) with heat losses 

t(1 e )−αβθ = −
α

 

i.e.: t
2 1T (t) T (1 e )−αβ= + −

α
 

Or:

 

p

p

DC K
t

VC1 a
2 1

p

P K(T T )T (t) T 1 e
DC K

+
−

ρ
⎡ ⎤

η − − ⎢ ⎥= + −⎢ ⎥+ ⎢ ⎥
⎣ ⎦
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d) Slope at the origin and asymptote with heat losses 

The slope at the origin is: 1 a

p

P K(T T )
.

VC
η − −

β =
ρ

 

The asymptote at infinity is:

 

1 a
1

p

P K(T T )T
DC K

η − −+
+

. 

EXERCISE 1.6. Starting up an electric water heater 

You have just bought an electric water heater having a useful volume V, 
equipped with an electrial resistance of power P. 

Your plumber has just finished installing the water heater, completing all of the 
connections to the water network. He then plugs it into the electrical mains. 

At this point, you ask him: 

– “So, when would we be able to have the first shower?” 

He replies: 

– “Considering that you need to wait at least until the water temperature in the 
heater reaches T2, you would need to wait for at least a full six hours.” 

Your mother then asks you: 

– “Is it true it would take that long?” 

Diplomatically, you reply: 

– “Our plumber is an experienced man, he is no doubt right.” 

But in reality, you do not know at all, and deep down you feel that you would 
like to obtain a scientific proof. You then decide to use your knowledge of heat 
transfer to calculate the time needed based on the equations that govern the system’s 
operation. To do this, you begin by defining your system as the water contained in 
the water heater.  

You then define an initial (the total mass of water, ρV, is at temperature T1) and a 
final (the water is at T2 = T1 + ΔT) state. 
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Questions 

1) Applying the first law of thermodynamics, establish the equation linking T2 to P. 

2) You wish to verify the validity of the equation obtained in the first question by 
adopting a balance approach. 

a) Identify the different terms of the energy balance equation: inputs, outputs, 
generation and accumulation. 

b) Establish the balance equation. 

3) What is the time, Δt, needed to have a temperature increase of ΔT. 

4) Was the plumber right? Explain. 

Data: 

V = 150 liters  ρ = 1 kg/liter  Cp = 1 kcal/kg °C 
P = 1.5 kW   T1 = 20 °C   T2 = 60 °C  

Electricity is converted into heat with a yield η = 85% 

Solutions  

1) Equation linking T2 to P 

The first law of thermodynamics enables the variation in internal energy, 
U(2) U(1)− , to be linked to the heat, 1 2Q → , received by the system between the 
initial and the final states: 

1 2Q U(2) U(1)→ = −  

Thus:  1 2Q P t→ = η Δ , 

whereby Δt is the time elapsed between the initial and the final states. 

Moreover, internal energies are given by:    

U(1) = ρ V Cp (T1 – T*),   whereby T* is a reference temperature.   

U(2) = ρ V Cp (T2 – T*) 

Hence: U(2) – U(1) = ρ V Cp (T2 – T1) 

Consequently:  η P Δt = ρ V Cp (T2 – T1) 
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2) Balance approach 

The energy balance is written generally, as follows: 

n m

i j
i 1 j 1

A e s G
= =

= − +∑ ∑  

a) Identifying the different terms of the balance equation 

   – Incoming flux: 0. 

   – Outgoing flux: 0. 

   – Fluxes generated:  η P. 

   – Accumulated flux:
 

p
d ( VC T)
dt

ρ . 

b) Establishing the balance  

The balance equation is then written: 

p
dTVC P
dt

ρ = η  

Or: η P dt = ρ V Cp dT 

Integrating between 0 and Δt:  η P Δt = ρ V Cp ΔT 

3) Determining  Δt 

pVC
t T

P
ρ

Δ = Δ
η

 

4) Calculating Δt and explaining the plumber’s opinion 

NUMERICAL APPLICATION.–   
V = 150 liters   ρ = 1 kg/liter     Cp = 1 kcal/(kg °C) 
 P = 1.5 kW  T1 = 20 °C     T2 = 60 °C              η = 85%. 

Hence:
 

(1)(150)(1*4.18) (60 20)
(0.85)(1.5)

Δ = −t  Δt = 5.46 hours 

The plumber was therefore not far off the mark. 
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EXERCISE 1.7. Balance on a heat exchanger 

A heat exchanger (see Figure 1.22) is a device for heating a flow, D1, of a given 
fluid, using the energy supplied by another flow, D2, of a hot fluid; this heat 
exchange occurring of course by ensuring the two fluids inside the exchanger do not 
mix. 

Having a constant flow, D1, the fluid to be heated enters the exchanger at a 
known temperature, t1. It should exit the exchanger at t2, which is also known. 

 

Figure 1.22. Heat exchanger. For a color version  
of this figure, see www.iste.co.uk/benallou/energy1.zip 

Likewise, the heating fluid is of constant flow, D2. It enters the exchanger at a 
known T1 and leaves it at T2, which is unknown. 

Questions 

1) Give, as a function of a reference temperature, T*, the expressions of the 
energy fluxes entering and exiting the exchanger. 

2) Based on a heat balance at steady state, determine the expression of T2 as a 
function of the parameters of the problem. 

3) Calculate T2. 

4) What is the heat flux exchanged between the two fluids (in kW)? 

Data: 

D1 = 1.5 T/hr   Cp1 = 1 cal/g °C   t1 = 18 °C  t2 = 80 °C  
D2 = 1.2 T/hr   Cp2 = 1.15 cal/g °C  T1 = 95 °C 

Solutions 

1) Energy fluxes entering and exiting the exchanger 

Incoming fluxes: 

D1 , t1 

D2 , T1 

D1 , t2 

D2 , T2 

EXCHANGER 
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– For the flow, D1:
 D1

E *
1 p1 1D C (t T )φ = − . 

– For the flow, D2: 
D 2

E *
2 p2 1D C (T T )φ = − . 

Outgoing fluxes: 

– For the flow, D1:
 D1

S *
1 p1 2D C (t T )φ = − . 

– For the flow, D2:
 D 2

S *
2 p2 2D C (T T )φ = − . 

2) Expression of T2 

The steady state heat balance is written: 
D D21 D D21

E E S Sφ + φ = φ + φ  

Or: φ
D1

E − φ
D1

S = φ
D 2

S − φ
D 2

E  

i.e.: 1 p1 1 2 2 p2 2 1D C (t t ) D C (T T )− = −  

From which we derive the expression of T2: 
1 p1

2 1 1 2
2 p2

D C
T T (t t )

D C
= + −  

3) Calculating T2  

NUMERICAL APPLICATION.–  
D1 = 1.5 T/hr      D2 = 1.2 T/hr     Cp1 = 1 cal/(g °C)       Cp2 = 1.15 cal/(g °C)  
t1 = 18 °C      t2 = 80 °C    T1 = 95 °C 

2
1.5*195 (18 80)

1.2*1.15
= + −T     2 95 67.4= −T        T2 = 27.6 °C 

4) Exchanged heat flux  

1 p1 2 1D C (t t )φ = −
 

NUMERICAL APPLICATION.–  

1 500*1*(80 18)φ = −    φ = 107 kW 



Basic Concepts and Balances     59 

 
EXERCISE 1.8. Diluting a concentrate 

A reservoir is used to dilute a flow, d, of a concentrate, by mixing it with a flow 
of water, D. The flow, d, of concentrate contains a solute with a mass concentration, 
ρe. The diluted flow, DS, is to have a mass concentration ρs. 

Questions 

1) Calculate the flow, DS, leaving the reservoir, if the height, h, of the solution in 
this reservoir was to remain constant. 

2) Calculate the mass concentration, ρs, of the liquid exiting the reservoir. 

Data:  

d = 50 litres/hr  D = 150 litres/hr  xe = 650 g/liter 

Solutions  

1) Flow, DS, to keep h constant 

The overall mass balance is written as follows: S
dhS D d D
dt

= + −  

h is constant → 
dh 0
dt

=  

Hence: SD D d= +  

NUMERICAL APPLICATION.–   

SD 150 50= +    DS = 200 liters/hour 

2) Mass concentration ρs 

The solute-specific mass balance is written, at steady state: 

ρe d = ρs DS 

Hence: e
S

d
d D
ρρ =
+  
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NUMERICAL APPLICATION.–   

S
650(50)x
50 150

=
+

   ρs = 162.5 g/liter 

EXERCISE 1.9. Preparing sweet juice 

You work at a fruit-juice plant. 

The production department needs to prepare a flow, S, of sweet water with a 
mass concentration equal to ρs. 

Your supervisor suggests assuring this preparation by recovering production 
surplus from the neighboring workshop. This surplus is available in the form of a 
flow, E, of slightly sweet water (mass concentration, ρE). 

The flow, E, recovered from the neighboring workshop, must be mixed with a 
flow C of sugar concentrate having a mass concentration ρC. 

 

Figure 1.23. Stirred mixing tank 

Your supervisor asks you to prepare answers to the following issues. 

Questions 

1) What is the amount of sugar that may be recovered from the flow, E? 

2) In steady state, what is the relation between S, C and E? 

3) Using a sugar specific mass balance, determine the expression of ρS as a 
function of E, C, ρE and ρC. 

ω

S, ρS 

E, ρE C, ρC 
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4) To assess the possible variations of ρS as a function of the flows E and C, the 

expression found in the third question can be considered as a function with two 
variables, ρS(E,C): 

a) Determine S
E

∂ρ
∂  

b) Given that ρE has to be less than ρC, what can you deduct therefrom? 

c) Calculate S
E
lim
→∞

ρ . How can this result be interpreted? 

d) Calculate S
C
lim
→∞

ρ . How can you interpret this result? 

5) What is the condition on ρE, so that ρS is greater than ρS* = 450 g/liter? Is this 
condition satisfied in the present case? 

Your supervisor provides you with the following data: 

E = 325 liters/hour  ρE = 150 g/liter  

C = 100 liters/hour  ρC = 650 g/liter  
S = 425 liters/hour. 

Solutions 

1) Amount of sugar that may be recovered from E 

The amount of sugar contained in the flow E is: QS = ρS E. 

2) Relation between S, C and E 

At steady state:  S = E + C 

3) Expression of ρS 

The sugar specific mass balance is written, at steady state, as follows: 

ρS S = ρE E + ρC C 

Substituting for S:  ρS (E + C) = ρE E + ρC C 

Thus: S E C
E C

E C E C
ρ = ρ + ρ

+ +
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4) Variations of ρS as a function of flows E and C 

a) Determining S
E

∂ρ
∂

  

E C
S

E C(E,C)
E C

ρ + ρρ =
+

 

S E E C
2

(E C) (E C )
E (E C)

∂ρ ρ + − ρ + ρ=
∂ +

 

S E C
2

C( )
E (E C)

∂ρ ρ − ρ=
∂ +

  

b) ρE being less than ρC, then:  E C 0ρ − ρ <  

Consequently:  S 0
E

∂ρ <
∂

 

ρS is therefore a decreasing function of E. 

c) Calculating S
E
lim
→∞

ρ   

E C
S

E C
E C

ρ + ρρ =
+

  S E
E
lim
→∞

ρ = ρ   

This result is logical since the properties of the flow E will overwhelm the rest. 

d) Calculating S
C
lim
→∞

ρ  

E C
S

E C
E C

ρ + ρρ =
+

 S C
C
lim
→∞

ρ = ρ         

This result shows that mass concentration of S cannot ever exceed that of the 
concentrate, C. 

5) Condition on ρE so that ρS > ρS
* 

E C
S

E C(E,C)
E C

ρ + ρρ =
+
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*

S Sρ > ρ       *
E C S

E C
E C E C

ρ + ρ > ρ
+ +

 

Hence: 
*

E C SE C (E C)ρ + ρ > ρ +  

i.e.:  *
E S C

E C C
E E
+ρ > ρ − ρ  

Condition satisfied? 

NUMERICAL APPLICATION.–  
E = 325 liters/hour  C = 100 liters/hour  
ρE = 150 g/liter   ρC = 650 g/liter  
S = 425 liters/hour  ρS* = 450 g/liter  
 

E
425 100(450) (650)
325 325

ρ > −     

The condition is then  ρE > 388.5 g/liter. 

But for the present case ρE = 150 g/liter. The condition is therefore not satisfied. 

EXERCISE 1.10. Production of soft drinks 

During production of the MaroCola© soft drink, a sweet juice is prepared by 
mixing a flow, d, of sugar syrup in a stirred tank with a flow, D, of pure water. In 
order to accelerate dissolution, the tank is heated by steam. Figure 1.24 presents the 
layout of the tank used for this purpose. The definition of the different parameters is 
as follows: 

D is the mass flow of water at input, temperature T0 

J is the mass flow of sweet water produced, temperature T 

C is the mass fraction of sugar in the tank (kg of sugar/kg of solution) 

C0 is the mass fraction of sugar in the flow of syrup (kg of sugar/kg of syrup) 

V is the mass flow of steam. Same as that of condensed water  

Λ is the latent heat of condensation of the saturated steam  

 



64     Energy and Mass Transfers 

H100 is the mass enthalpy of condensed water, expressed at the point of 
condensation  

Q denotes the flux of heat losses  

h denotes the liquid height in the stirred tank  

S is the cross-section of the tank 

 

Figure 1.24. Production of sweet juice 

Questions 

Your supervisor asks you to: 

1) Establish, in steady state, the relation that must exist between D, d and J, so 
that the liquid height in the reservoir remains constant. 

2) Deduce therefrom the value of d in steady state. 

3) Determine, under these conditions, the mass fraction, C, of the juice, J, 
produced as a function of the other parameters of the problem. 

4) Calculate C. 

5) What would be the necessary energy flux in steady state? 

6) Deduce therefrom the flow of steam to be used in steady state. 

Steam, V 

Condensed water, V 

J, T 

T, C 

Q 

D, T0 d, T0 
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Your assistant technician has already gathered the available data for you: 

Q, flux of heat losses: Q = 1,500 W 

Λ, latent heat of condensation of the saturated steam: Λ = 640 kcal/kg 

J, mass flow of sweet water to be produced: J = 2.055 tons/day 

T, temperature of J and of the liquid in the tank: T = 60°C 

D, mass flow of water at input: D = 1.8 tons/day 

T0, temperature of D: T0 = 22°C 

C0, mass fraction of sugar in the syrup flow, d: C0 = 0.85 kg of sugar/kg of syrup 

CpD, specific heat of the water: CpD = 1 cal/g°C 

Cpd, specific heat of the syrup, d: Cpd = 1.3 cal/g°C 

CpJ, specific heat of the sweet water, J: CpJ = 1.18 cal/g°C 

Solutions 

1) Mass inputs and outputs 

a) Overall inputs and outputs 

    - The overall inputs are D and d. 

    - There is only one overall output, J. 

b) The sugar inputs and outputs 

    - One sugar input: dC0. 

    - One sugar output: JC. 

2) Mass balances in transient state 

Two types of material balances are to be considered: 

– the overall balance; 

– the sugar-specific balance. 

a) Overall mass balance in transient state 
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It is written as follows:  
n m

i j
i 1 j 1

A e s G
= =

= − +∑ ∑  

As there is no generation of mass in the system, we have G = 0. 

Moreover, the “accumulation” term is given by: dM dhA S
dt dt

= = ρ , 

where S is the reservoir cross-section: 2S R= π  

Hence the overall mass balance in transient state is: dhS D d J
dt

ρ = + −  

b) The sugar-specific mass balance in transient state  

As there is no sugar generation in the system, the sugar-specific balance is 
written: 

Accumulation of sugar in the tank = Sugar inputs – Sugar outputs 

Moreover, the “accumulation” term is given by: Sd(M )A
dt

= , 

where MS is the mass of sugar contained in the tank at time t. MS is given by: 

MS = C M = C ρ V = C S h ρ 

Hence: d(hC)A S
dt

= ρ  

The sugar inputs are: 

– For D: 0. 

– For d: C0d. 

The only output is J, the sugar content of which is: C J. 

Thus, the sugar-specific balance equation, in transient state, is written as: 

0
d(hC)S C d CJ

dt
ρ = −  
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3) Value of d at steady state 

At steady state, the overall balance equation becomes: 

D + d – J = 0 

Hence:   d = J – d  

NUMERICAL APPLICATION.–   

d = 2.55 – 1.8   d = 0.75 tons/day 

4) Concentration, C, of the juice produced as a function of the other parameters 

At steady state, the specific balance becomes:  C0 d – C J = 0 

Hence: 

0
dC C (1 )
J

= −  

5) Calculating C    

NUMERICAL APPLICATION.–    
C0 = 0.85 kg of sugar/kg of syrup 
J = 2.55 tons/day 
d = 0.75 tons/day  

0.750.85(1 )
2.55

= −C    C = 0.71 kg of sugar/kg of juice 

6) The energy inputs and outputs 

a) The energy inputs 

They are conveyed by the flows, D, d and V: 

– For D: ED = D CpD (T0 – T*). 

– For d: Ed = d Cpd (T0 – T*). 

– For V: EV = V Λ. 
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b) The energy outputs 

They are conveyed by the flow, J, and by the heat losses, Q: 

– For J: EJ = J CpJ (T – T*). 

– The flux of the heat losses is: Q. 

7) Energy balance in transient state 

It is written: 

n m

i j
i 1 j 1

A e s G
= =

= − +∑ ∑  

The “generation” term is nil. 

The “accumulation” term is the derivative with respect to time of the enthalpy of 
the liquid contained in the reservoir. The latter is given by: 

EM = M CpJ (T – T*) = ρ V CpJ (T – T*) = ρ S h CpJ (T – T*) 

Hence: 

*M
pJ

dE dA SC h(T T )
dt dt

= = ρ −  

Thus, the energy balance equation, in transient state, is written: 

A = ED + Ed + EV – EJ  – Q 

A = D CpD (T0 – T*) + d Cpd (T0 – T*) + V Λ – J CpJ (T – T*) – Q 

A = (D CpD + d Cpd )T0 – (D CpD + d Cpd)T* + V Λ – J CpJ T+ J CpJ T* – Q  

A = (D CpD + d Cpd )T0 – (D CpD + d Cpd – J CpJ )T* + V Λ – J CpJ T – Q 

Yet: 

J CpJ = D CpD + d Cpd 
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Therefore: 

A = (D CpD + d Cpd )T0 - J CpJ T + V Λ - Q 

Hence, the balance equation in transient state: 

( )*
pJ pD pd 0 pJ

dSC h(T T ) DC dC T JC T V Q
dt

ρ − = + − + Λ −  

8) Flux of energy necessary in steady state 

The heat balance in steady state is written: 

( )pD pd 0 pJDC dC T JC T V Q 0+ − + Λ − =  

From this, one can draw the expression of the flux that would be necessary. The 
latter is given by the product, VΛ: 

φ = V Λ = Q + J CpJ T - (D Cp D + d Cp d) T0 

NUMERICAL APPLICATION.–       
Q = 1,500 W 
d = 0.75 tons/day Cpd = 1.3 cal(/g°C) J = 2.55 tons/day   
CpJ = 1.18 cal/(g°C) T = 60°C  D = 1.8 tons/day  
CpD = 1 cal/(g°C) T0 = 22°C 
 

2.55*1000 1800 7501.5 *1.18*4.18*60 ( *4.18 *1.3*4.18)*22
24*3600 24*3600 24*3600

= + − +φ  

φ = 7.28 kW 

9) The steam rate to be used 

The steam rate, V, is obtained from the heat balance equation, as follows: 

( )pJ pD pd 0Q JC T DC dC T
V

+ − +
=

Λ  
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NUMERICAL APPLICATION.–    
Λ = 640 kcal/kg 
φ  = 7.28 kW 

V φ=
Λ

 

7.28 *3600*24
640*4.18

=V    V = 235 kg/day 

EXERCISE 1.11. Air-conditioning/heating a room 

We will consider the computer room represented in Figure 1.25. 

We wish to establish the heat balance of this room, with a view to determining 
the compensation, Q, that the air-conditioning/heating system would need to provide 
in order to maintain the room at constant temperature, T. 

We will assume that the heat loss through the floor of the room is constant and 
equal to QS. 

The room admits several windows in contact with the outside environment, the 
heat loss of which is noted QF. 

The walls and ceiling of the room are also in contact with the outside. Their 
overall energy losses can be represented by the flux, QM. 

 

Figure 1.25. Computer room 

QF 

Q

n 

QM 

QS 
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We wish to establish this balance during the work period, when a number, n, of 

individuals are at their workstations; the door to the room is closed during this 
period, such that there are no losses through the door. 

Questions 

The manager of the computer center asks you to: 

1) Give the expressions of the generated fluxes. 

2) Identify the energy fluxes entering and exiting the system. 

3) Establish the heat balance of the room at steady state. 

4) Deduce therefrom the expression that Q must satisfy in stationary state. 

The manager of the computer center informs you that: 

– Each pairing (person-computer) exudes a heat flux pc. 

– There are as many computers in the room as there are people. 

Solutions 

1) Expressions of the generated flux 

QG = Q + Qn 

Whereby: Qn = n pc 

i.e.: QG = Q + n pc 

2) Flux of energy, entering and exiting the system 

– Entering fluxes: 0. 

– Exiting fluxes: QM, QF and QS. 

3) Heat balance of the room in steady state 

QM + QF + QS = Q + n pc 

4) Expression of Q at steady state 

Q = QM + QF + QS – n pc 
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EXERCISE 1.12. Calculating the heating fluid flow 

We wish to heat a constant flow, D1, of a given fluid, using a flow, D2, of a hot 
fluid. 

D1 enters the exchanger at a known temperature, t1, It is to be heated to a 
temperature, t2, which is also known. 

 

Figure 1.26. Heat exchanger. For a color version  
of this figure, see www.iste.co.uk/benallou/energy1.zip 

The heating fluid, of constant flow, D2, which is to be determined, enters the 
exchanger at temperature T1 and leaves the exchanger at temperature T2. 

Questions: 

1) Using a heat balance in steady state, determine D2 as a function of the 
parameters of the problem. 

2) Calculate D2. 

3) Calculate the flux of heat exchanged between the two fluids. 

Data: 

D1 = 0.5 T/hr  Cp1 = 0.8 cal/(g °C)        Cp2 = 1 kcal/(kg °C) 

t1 = 20 °C                    t2 = 95 °C  T1 = 95 °C T2 = 80 °C 

Solutions 

1) Expression of D2 in steady state 

The heat balance in steady state is written as follows: 

D1 Cp1 (t1 – T*) + D2 Cp2 (T1 – T*) = D1 Cp1 (t2 – T*) + D2 Cp2 (T2 – T*) 

Hence: D2 Cp2 (T1 – T2) = D1 Cp1 (t2 – t1)  

D1 , t1 

D2 , T1 

D1 , t2 

D2 , T2 

Heat exchanger
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i.e.:  p1 2 1

2 1
p2 1 2

C t tD D
C T T

−=
−

 

2) Calculating D2  

NUMERICAL APPLICATION.–  
D1 = 0.5 T/hr   Cp1 = 0.8 cal/(g °C ) 
t1 = 20 °C   t2 = 95 °C  
Cp2 = 1 cal/(g °C)  T1 = 95 °C   T2 = 80 °C 

 

2
0.8 95 20 0.5
1 95 80

−⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
D

  
D2 = 2 T/hr 

3) Heat flux transferred between the two fluids 

The flux of the heat exchanged between the two fluids may be calculated from 
one of the following expressions:  

φ = D2 Cp2 (T1 – T2) 

Or: 

φ = D1 Cp1 (t2 – t1) 

We will retain:  

φ = D2 Cp2 (T1 – T2)  

NUMERICAL APPLICATION.–    
D2 = 2 T/hr   Cp2 = 1 cal/(g °C)   
T1 = 95 °C   T2 = 80 °C 
 

φ = 2,000 x 1 x (95 – 80)  φ = 30,000 kcal/hr 

EXERCISE 1.13. Mass balance on a reactor 

We will consider a reactor in which a chemical reaction takes place between two 
binary fluids. The first binary fluid has a flow D1 composed, essentially, of  
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component A and traces of component C (mass fraction, ωA1). The second has a flow 
D2, composed, essentially, of component B and an inert component (mass fraction, 
ωA2). 

 
Figure 1.27. Chemical reactor 

The chemical reaction within the reactor is first-order and complete. It gives rise 
to product C. 

Questions 

1) Identify the fluxes, jE, “mass input” and jS, “mass output”. 

2) Calculate in kilograms per hour the amounts of A and B that enter the reactor. 

3) Using a global mass balance, calculate D3. 

Data: 

D1 = 150 kg/hr ωA1 = 0.92 

D2 = 200 kg /hr ωB2 = 0.46 

Solutions 

1) Mass fluxes, entering and exiting 

– Entering flux: jE = D1 + D2. 

– Exiting flux: jS = D3. 

2) Amounts of A and B entering the reactor  

Amount of A:   QA = D1 ωA1 

 

D1 , ωA1 

D2 , ωB2 

D3 , ωc3 

REACTOR 
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NUMERICAL APPLICATION.–   

QA = 150 x 0.92   QA = 138 kg/hr 

Amount of B: 

QB = D2 ωB2 

NUMERICAL APPLICATION.–   

QB = 200 x 0.46   QB = 92 kg/hr 

3) Calculating D3  

The overall balance in steady state gives, directly, the expression of D3: 

D3 = D1 + D2 

NUMERICAL APPLICATION.–   

D3 = 150 + 200   D3 = 350 kg/hr 

1.9. Reading: seawater desalination 

In desert areas close to the coast where water resources are scarce, seawater 
desalination is used to meet the drinking water needs of the populations and possibly 
the productive sectors. 

1.9.1. Level of purification 

Seawater desalination is a process that makes it possible to obtain drinkable 
water from seawater. The freshwater quality, of course, depends on the objective: for 
beverage use, drinkable water will be required. For use in agriculture or industry, it 
will be possible to use water that is to a certain extent freshwater. Obviously, the 
more extensive the purification, the higher the production cost of the freshwater. 
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1.9.2. Water sources used 

The waters used do not necessarily come from the sea. In reality, the source used 
is that located closest to the place of use: brackish waters from lakes or rivers, as 
well as surface waters or groundwaters are also used as raw inputs. 

1.9.3. Water characteristics according to the source 

The waters are characterized by their salt content. For seawater, this content is 
around 35 g/liter. The salt content of course differs according to the sea or ocean under 
consideration. Thus, in the Atlantic and the Pacific, it is around 30 g/liter, in the 
Mediterranean it is around 36 g/liter; and in the Persian Gulf and the Red Sea, it 
exceeds 40 g/liter. 

1.9.4. Several techniques 

There are several processes used to extract freshwater from seawater or brackish 
water. The most commonly used are distillation, electrodialysis and reverse 
osmosis. As we briefly explained in the illustration presented in section 1.7.2.1, 
reverse osmosis is based on a pressurized ultrafiltration through membranes that are 
said to be “semi-permeable”; in other words these membranes have micropores 
(“micro-holes”) that are so small that they block the passage of salts and only let 
water molecules through. 

The distillation-based procedures are used above all when there is steam 
available as a subproduct from another process. We then speak of cogeneration. 

1.9.5. Energy cost: the decisive factor 

The cost price of desalinated water depends directly on the amount of energy 
consumed by the desalination process used. The theoretical minimum amount of 
energy required for desalination is that which would be obtained in an isentropic 
operation. This minimum is of the order of 565 Wh/m3. 

We know, however, that it will not be possible to achieve this minimum amount 
in practice.  

As an example, reverse osmosis, which is currently the least energy-consuming 
technique, requires around ten times this minimum. Indeed, the average energy 
consumption for reverse osmosis desalination is 4 - 5 kWh/m3. 
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Nevertheless, reverse osmosis remains the most frequently used procedure at 

present, given that its energy consumption remains low compared to that of 
competing processes. These include a set of techniques based on distillation: 

– Flash distillation in one or more stages (with single or multiple effects) 
provides water that presents relatively good characteristics. Its energy consumption 
is quite high: between 10 and 15 kWh/m3. 

– Vapor-compression distillation: its average energy cost is between 6 and 
8 kWh/m3. 

1.9.6. A promising outlook 

There are other techniques that may prove of interest, depending on future 
developments. These are techniques whereby energy supply is covered by solar- or 
wind-powered systems. 

These include, in particular: 

– Distillation using a solar concentrator where the energy needed for the water 
to evaporate is supplied by a set of parabolic mirrors that concentrate the solar 
radiation onto one focal point: the boiler. The brackish water passing into the focal 
point evaporates. Its subsequent condensation provides the desired freshwater. 

– Distillation in solar collectors, where the brackish water is introduced directly 
into the chambers composing the flat-plate collectors. The latter may be multi- or 
single-stage. In multi-stage collectors, brackish water is fed into the top of a 
staircase-shaped absorber. Whilst heating up, the water fed to the first step on the 
staircase flows towards the second step, and so on. During the course of this passage 
from one stage (step) of the absorber to the next, the water temperature continues to 
increase and evaporation begins. The droplets are then recovered by the glazing, 
which leads the collected condensates to a collector which will supply desalinated 
water. In this type of system, the solar energy is transformed directly into heat and 
the condensation forms directly on the glazing. Solar distillers such as this present 
the advantage of being relatively simple to build and operate. However, the fact that 
these systems do not use solar radiation concentration means that the temperature 
levels achieved remain limited. As a result, productivity is modest, but this could be 
adequate for freshwater production for the needs of just one or a few homes. 

– Electrodialysis, where the separation between water and salt is assured by an 
electric current, which migrates the ions to the electrodes. This procedure is ideal 
where low-cost electricity is available, such as electricity generated from solar 
photovoltaic fields. 
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– Thus, the coupling of electrodialysis with solar generated electricity presents 
great potential for the future. 

– Likewise, wind generators can be paired with reverse-osmosis, where the 
energy required for reverse osmosis is fully or partially provided by a wind farm. 
This is the ideal solution for windy regions where large quantities of freshwater can 
be generated. 


