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Fundamental Equations of Conduction 

1.1. Introduction 

In this chapter we explore the general equations that reflect energy balances in 
conduction. These equations will then be used to solve a number of physical 
problems of interest to the engineer.  

Equations governing conduction are extremely useful, both for quantifying 
energy losses in industrial installations (steam pipes, furnaces, reactors, etc.) and for 
the application of thermal building regulations. In each case, a comprehensive 
implementation of these equations makes it possible to calculate the fluxes of energy 
losses if no action was taken. The analysis methods presented in the following 
sections offer the possibility of quantifying energy flows, as well as indicating the 
actions to implement in order to limit energy loss. 

For each of the situations that are explored, special attention is paid to the 
practical applications of the equations established. Thus, problems relating to  
the thermal insulation of industrial installations are approached both technically, by 
assessing the fluxes of energy losses, and with regard to the profitability of the 
investments to be made in order to achieve thermal insulation. For each of  
the situations explored, special attention is paid to the practical applications of the 
equations established. Thus, thermal insulation problems are concretely dealt with 
by means of technical and economic analyses, which demonstrate the benefit in 
terms of reducing production costs. 

In this chapter, the problems relating to conduction in the presence of energy 
generation are also examined.  They correspond to practical situations encountered 
in exothermic reactors or in nuclear-reactor fuel bars. 
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1.2. General equations of conduction 

Consider a solid, of arbitrary shape, in which we assume that there is conduction 
heat transfer.  

In order for the development to be general, we will assume that there is heat 
generation in the solid, and that P is the generation power per unit volume.  

Let us establish an energy balance on a microscopic element of this solid with 
sides dx, dy and dz (see Figure 1.1). 

The general balance equation is as follows:  

Input – Output + Generation = Accumulation 

which can be written simply as:  

I – O + G = A 

 

Figure 1.1. Differential energy balance 

1.2.1. Expressing the term (I – O)  

In the most general case, energy flows in the three directions, ox, oy and oz. 
Consequently, its flux entering or exiting the solid element considered will have  
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three components: one component for each direction of propagation. These three 
components will be indicated as follows: 

φx: flux in direction x  

φy: flux in direction y 

φz: flux in direction z 

The flux vector is then written:
x

y

z

φ 
 Φ = φ 
 φ 

. 

1.2.1.1. Expressing φx 

Conduction heat input is the energy flux in the direction x, expressed at abscissa 

x. It is given by: ( )
x

xx x
Tdydz

x
↓








∂
∂λ−=φ

↓
. 

Similarly, the output corresponds to the energy flux in the direction x, expressed 

at abscissa  x + dx: dx
x x

x
xdxxx x

↓
+









∂

∂φ
+φ=φ
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Hence: I − O( ) x = φ x ↓ x
− φ x ↓ x+dx

= −
∂φ x

∂x




 ↓x

dx.  

Therefore: I − O( )x
= ∂

∂x
λx

∂T
∂x









dxdydz . 

1.2.1.2. Expressing φy 

Using a similar development we obtain: I − O( )y
= ∂

∂y
λy

∂T
∂y









dxdydz . 

1.2.1.3. In direction z  

We have: I − O( )z
= ∂

∂z
λz

∂T
∂z









dxdydz. 
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1.2.1.4. For the three directions 

When we consider the flow of energy in the three propagation directions, the 
term (I – O) is then given by: I − O = I − O( )x

+ I − O( )y
+ I − O( )z

. 

Therefore: I − O = ∂
∂x

λx

∂T
∂x







+ ∂
∂y

λy

∂T
∂y







+ ∂
∂z

λz

∂T
∂z


















dxdydz . 

NOTE.– The equation giving the term (I – O), established above, is valid in the 
general case where the conduction behavior of the solid is different along the 
three directions of propagation; i.e., the heat conductivity is different for each 
direction of the space, λx≠λy≠λz. This is the case for orthotropic materials. 

In practice, we often encounter materials where conduction is identical in the 
three directions of propagation: the heat conductivity λ is the same in the three 
directions. This is the case for isotropic materials. Thus, the equation giving the 
term I – O for isotropic conduction is given by: 

T T TI O dxdydz
x x y y z z

  ∂ ∂ ∂ ∂ ∂ ∂   − = λ + λ + λ     ∂ ∂ ∂ ∂ ∂ ∂        

For the sake of clarity, we will continue developing the balance equation for the 
isotropy case; the development is identical in the general case. 

1.2.2. The term “generation” 

P being the volumetric generation power, the energy generated in the volume 
element dxdydz is given by: φG = P dx dy dz. 

1.2.3. The term “accumulation” 

If m designates the mass of the volume element considered and if Cp is the 
sensible heat of the material constituting it, the energy accumulated in this element 

is given by: 
t
TmCpA ∂

∂=φ  

The mass, m, can be expressed as follows: m = ρ dx dy dz. 

Therefore: .dxdydz
t
TCpA ∂

∂ρ=φ  
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1.2.4. Energy balance equation   

The balance equation can then be written as follows for isotropic materials: 

p
T T T TC P
t x x y y z z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   ρ = λ + λ + λ +    ∂ ∂ ∂ ∂ ∂ ∂ ∂      

This energy balance equation is often referred to as the general conduction 
equation. 

NOTE.–      

i) In the case of isotropy: λ is a scalar value.  

We then have:   
x

y

z

T
x
T T
y
T
z

 
−λ 
 ϕ 
  ϕ = ϕ = −λ = −λ∇  

   ϕ   −λ 
 

∂
∂
∂
∂
∂
∂

 

Thus, for isotropic materials with constant λ , the conduction equation becomes:  

2 2 2
p

2 2 2

C T T T T P
t x y z

ρ  ∂ ∂ ∂ ∂= + + + λ ∂ λ∂ ∂ ∂   

This equation is usually written as follows, using the Laplace notation:  

21 T PT
t

∂ = ∇ +
α ∂ λ    where   pC

λα =
ρ  

α is called the thermal diffusivity of the solid considered. It is a physical 
property of the material considered. It is easily verified that the dimensions of 
α  correspond to a surface per unit time:       

[α] = [L]2 [T]-1 

The thermal diffusivity could then be interpreted as a surface propagation speed 
of heat. 
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The thermal diffusivity values for the usual materials are presented in the 
Appendix. Some orders of magnitude of α : 

α Cu = 0.4 m2/hr 

α Steel = 0.05 m2/hr 

α Glass = 1.96 10-3 m2/hr 

α Wood = 3.5 10-4 m2/hr 

It should be noted that the thermal diffusivities of copper and steel are two orders 
of magnitude greater than those of glass or cork. 

ii) In the case of anisotropic (non-isotropic) materials, directional thermal 
conductivities are usually grouped into a matrix (Λ). The conduction equations 
can be obtained from the general equation presented in section 1.2.4, taking into 
consideration the variability of λ   or, where applicable, using the thermal 
conductivity matrix corresponding to the case considered (McAdams, 1954; 
Sherwood and Reed, 1957).  

iii) In the case of orthotropy 

Orthotropic materials have different conductivities for each of the different 
directions. However, the conductivity is the same in a given direction with a 
rotational symmetry around each axis. 

Mathematically, the thermal conductivity of an orthotropic material is a diagonal 
matrix Λ. The energy flux density is then as follows: 

T

z
T
y
T
x
T

00
00
00

z

y

x

z

y

x

∇•Λ−=























∂
∂
∂
∂
∂
∂

















λ
λ

λ
−=

















ϕ
ϕ
ϕ

=ϕ

 

Consequently, the conduction equation is given by: 

p x y z
T T T TC P
t x x y y z z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   ρ = λ + λ + λ +    ∂ ∂ ∂ ∂ ∂ ∂ ∂      
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iv) In the most general case of anisotropic materials, thermal conductivity is an 
arbitrary matrix (Λ). We then have:  

x xx xy xz

y yx yy yz

z zx zy zz

T
 ϕ λ λ λ 
  ϕ = ϕ = − λ λ λ • ∇  

   ϕ λ λ λ     

In this context: 

ρCp
∂T
∂t

= ∂
∂x

λxx
∂T
∂x







+ ∂
∂y

λxy
∂T
∂y







+ ∂
∂z

λxz
∂T
∂z







+ ∂
∂y

λyx
∂T
∂x





  

+ ∂
∂y

λyy
∂T
∂y







+ ∂
∂z

λyz
∂T
∂z







+ ∂
∂z

λzx
∂T
∂x







+ ∂
∂y

λzy
∂T
∂y







+ ∂
∂z

λzz
∂T
∂z







+ P
 

This case is rarely encountered in practice. 

However, in most cases of interest to the engineer, the materials implemented 
can be considered isotropic, with thermal conductivities, λ, variable or constant 
(Brown and Marco, 1958). This is why the following section is dedicated to 
presenting the equation of conduction in different coordinate systems, for the 
isotropic case. 

1.3. Equations of conduction in different coordinate systems 

Anisotropic or orthotropic materials (variable thermal conductivity λ depending 
on the direction) are sometimes encountered in engineering calculations. This is 
particularly true when energy is called upon to propagate in wood or in salts of non-
homogeneous crystalline structures. For such situations, the forms of the conduction 
equation that take account of this variability in thermal conductivity are to be used. 

Yet in practice, we mainly encounter isotropic materials, that is, materials whose 
thermal conductivity, λ, is the same in all directions. Indeed, this is often the case for 
metals and alloys usually encountered in industrial equipment and devices. 
However, even in the isotropic case, λ is not necessarily constant. It is identical in 
all directions, but can vary with the temperature, for example. For this reason, this 
section is dedicated to presenting equations of conduction for the isotropic case, 
with either variable or constant thermal conductivities. 
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Moreover, the geometry of the solid determines which coordinate system to use. 

Thus, when the solid studied is a parallelepiped shape, for example, it makes sense 
to choose the Cartesian coordinates for analysis. 

 

Figure 1.2. The coordinate system depends on the shape of the solid considered 

Likewise, when the system studied is a pipe or a ball, we will opt for cylindrical 
or spherical coordinates, respectively. 

The following sections present the equations of conduction in different 
coordinate systems for isotropic cases, but whose thermal conductivities can be 
either variable or constant. 

1.3.1. When λ is not constant 

– Rectangular coordinates:  

p x y z
T T T TC P
t x x y y z z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   ρ = λ + λ + λ +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

– Cylindrical coordinates (r, θ, z):   

p 2

T 1 T 1 T TC r P
t r r r zr z

∂ ∂ ∂ ∂ ∂ ∂ ∂     ρ = λ + λ + λ +     ∂ ∂ ∂ ∂θ ∂θ ∂ ∂       
 
 

 

θ
y

x 

z

r sinθ

M(x,y,z) 

ψ 

r cosθ

r 
θ
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z 
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– Spherical coordinates (r, θ, ψ):   

2
p 2 2 2 2

T 1 T 1 T 1 TC r sin P
t r rr r sin r sin

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   ρ = λ + λ + λ θ +    ∂ ∂ ∂ψ ∂ψ ∂θ ∂θθ θ      

1.3.2. When λ is constant 

– Rectangular coordinates: 
2 2 2

2 2 2

1 T T T T P
t x y z

∂ ∂ ∂ ∂= + + +
α ∂ λ∂ ∂ ∂  

– Cylindrical coordinates (r, θ, z): 
2 2 2

2 2 2 2

1 T T 1 T 1 T T P
t r rr r z

∂ ∂ ∂ ∂ ∂= + + + +
α ∂ ∂ λ∂ ∂θ ∂  

– Spherical coordinates (r, θ, ψ): 
2 2 2

2 2 2 2 2 2 2

1 T T 2 T 1 T 1 T 1 T P
t r rr r sin r r tg

∂ ∂ ∂ ∂ ∂ ∂= + + + + +
α ∂ ∂ ∂θ λ∂ θ ∂ψ ∂θ θ

 

1.3.3. Simplified cylindrical and spherical coordinates  

Very often, temperature variations are confined to only two directions, and 
sometimes even only one. The latter cases are frequently encountered when the heat 
propagates from the center of a pipe to the outside under the action of a large 
temperature gradient in the r direction, while only a small gradient exists in  
the longitudinal direction. This also happens in the case of a sphere that is in a 
medium or bath of homogeneous temperature: it is obvious that, in this context, the 
existence of a temperature gradient between the center of the sphere and the  
bath will result in heat propagation along r only; due to the symmetry of the problem 
and the homogeneity of the bath, the other directions will not be involved in  
the transfer. 

In these situations, simplified coordinates r and z are used for cylindrical 
systems, and r and θ, for spherical systems. 
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– Simplified cylindrical coordinates (r, z):  

2 2

2 2

1 T T 1 T T P
t r rr z

∂ ∂ ∂ ∂= + + +
α ∂ ∂ λ∂ ∂

 

– Simplified spherical coordinates (r, θ): 
2

2 2

1 T T 2 T 1 T Psin
t r rr r sin

∂ ∂ ∂ ∂ ∂ = + + θ + α ∂ ∂ ∂θ ∂θ λ∂ θ  
 

1.3.4. One-dimensional conduction  

In most problems of interest to the engineer, using a single heat-propagation 
direction is sufficient to be able to describe fairly accurately what happens in 
practice (Jakob and Hawkins, 1957).  

Thus, the equations of conduction presented previously in Cartesian, cylindrical 
and spherical coordinates can be further simplified when a single propagation 
direction is retained. This direction is generally x for Cartesian coordinates and r for 
cylindrical and spherical coordinates, in which case we will speak of  
one-dimensional or one-directional problems. This type of problem is commonly 
encountered as a simplification in engineering calculations. In this case, the 
equations are: 

– In rectangular coordinates:  
2

2

1 T d T P
t dx

∂ = +
α ∂ λ

 

– In simplified cylindrical coordinates: 
2

2

1 T d T 1 dT P
t r drdr

∂ = + +
α ∂ λ

 

– In simplified spherical coordinates: 
2

2

1 T d T 2 dT P
t r drdr

∂ = + +
α ∂ λ

 

1.4. Reading: metal tempering 

Tempering is a heat treatment used in metallurgy to improve the mechanical 
properties of metals. It enables the hardness or the overall resistance of a given 
metal to be increased. This treatment generally consists of heating the metal to raise 
its temperature, then cooling it at a given speed. The thermal stresses thus imposed 
lead to changes in the metal’s crystalline structure. 
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As a result, with each metal having a crystalline form within which atoms of a 
so-called “interstitial” compound can be inserted, the solubility of these atoms in the 
mesh depends on the structure of the latter and its size. If a metal’s temperature 
variations are conducted so that the phase change point is approached, they can then 
lead to changes in the crystalline structure, in particular with respect to its interstitial 
distances. We will thus pass from a mesh having important sites to a tighter mesh 
imprisoning interstitial atoms in the new crystalline structure.  

Bearing in mind that the mechanical properties are closely related to the 
geometries of the crystalline meshes, it follows that the different temperature 
variations induce a stress in these meshes, and thus a change in the mechanical 
properties of the metal considered. 

The origin of metal tempering dates back to the early 20th Century, when 
blacksmiths subjected the sharpened parts of a tool to this type of heat treatment, in 
order to increase their mechanical strength. The metal was heated to red before 
being immersed in water.  

The temperature to which the metal is heated before cooling is significant. It is 
called the “phase change temperature”. It must be chosen in such a way that it 
allows the “suspension” of the interstitial chemical compounds dissolved in the 
metal’s crystalline structure.  

The heating time, or the time during which the metal is subjected to high 
temperatures, is also significant. It must be long enough to ensure the transformation 
of the entire heated mass, but it must not be too long either.  

The cooling time, for its part, is also a decisive parameter. Indeed, the latter must 
allow cooling of the entire mass considered at a great enough speed to lead to the 
imprisonment of interstitial chemical elements having diffused into the crystalline 
structure of the solid during the heating phase. This cooling operation is generally 
performed by soaking the metal part in a cooling fluid. The fluids used are either 
water or salt water to generate faster cooling.  

As we will see in Chapter 6, the cooling speed will depend on the following 
three elements: 

– The heat transfer in the metal considered, and therefore its thermal 
conductivity. 

– The nature of the fluid used. 
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– The heat transfer between the tempering fluid and the solid, and therefore the 

convection heat transfer coefficient, h. 

In Chapter 6 of this volume we will see how the conduction equations are used 
to accurately calculate the time required for a certain degree of heat penetration 
into a solid. 

Knowledge of this time period will permit heating the material to a sufficiently 
high temperature for just long enough and, next, cooling it at an appropriate speed. 

In this manner, chemical elements will be imprisoned in the crystalline structure 
creating, after cooling, tensions in the meshes which will contribute to improving the 
mechanical resistance of the tempered part. 

Although mechanical resistance of metals can be augmented through tempering, 
it should be noted, however, that this thermal treatment often causes metals to lose 
their elasticity. Indeed, the modifications induced by tempering in the meshes of the 
crystalline structure constrain movements of the crystalline irregularities (vacancy 
defects or dislocations) which are important for elasticity. Thus, tempering results in 
a loss of the plastic deformation mechanism that allows a metal to return to its 
resting state following a deformation. Actually, tempering brings a metal’s elastic 
resistance closer to its failure resistance. 

 

 


