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Extraction and Segmentation of
Structures in Image Sequences

1.1. Problematics

The analysis of imaged anatomical or biological structures and of their
dynamics is an important task in terms of application and therefore of
diagnostics. This analysis facilitates the quantification of the shape of these
structures and their possible evolution over time, whether this evolution is
intrinsic to the functioning of the structure (cardiac motion for example) or
indicating a transformation related to a pathology (tumor evolution).

Such an analysis involves in the first place the extraction of these
structures from the acquired images according to a given modality, which
corresponds, in image processing terminology, to a segmentation phase. This
chapter is devoted to this problem: after a very brief overview of the existing
techniques, it discusses in detail the methodology of deformable models and
more specifically their more flexible form, namely variational active contours.
The chapter concludes with specific examples for the application of this type
of technique carried out in the field of cardiac ultrasound imaging.

1.2. Overview of segmentation methods

Segmentation is a fundamental operation in imaging and cardiac and
thoracic imaging in particular. Its role consists of assigning to the parts of an
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4 Multi-modality Cardiac Imaging

image a relevant category (“muscle”, “blood”, “tumor”, etc.) relating to the
underlying medical application: detection of the presence/absence of a
pathological structure (for example “tumor”, “aneurysm”), evaluation of the
area, the extent, the volume of organs or the pathological structures as well as
their evolution over time. Due to this central role, image segmentation is a
very active area of research. This can be illustrated by observing the result of
a search on the Web of Science® (Figure 1.1) and based on the presence of the
terms “image segmentation” in the title of articles over 15 years (1994–2009).
It can be seen that more than 4,700 articles1 have been published during this
period and that this number is constantly increasing.
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Total = 4,790 articles

Figure 1.1. Number of articles containing the terms “image segmentation”
in the title for the period 1994–2009

A segmentation method can be schematically characterized by three main
elements (see Figure 1.2): (1) the low level properties (or “image information”)
used to characterize the objects to detect, (2) a priori knowledge introduced to
constrain the segmentation and (3) the formalism chosen to integrate these two
pieces of information.

1 It should be noted that these figures likely provide an underestimation of the actual
number of articles related to this theme, where research has been restricted to the titles
of articles.
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If only the “image information” aspect is considered, segmentation can be
formally defined as an operation consisting of partitioning the image in
related regions verifying a consistency predicate, based for example on
statistical properties or on texture. Segmentation can also be carried out
according to a dual approach by considering the differences between these
regions: two adjacent regions must actually present significant variations of
properties along their common border. These variations can be quantified
using conventional differential operators (for example, the amplitude of the
gray level gradient) or more sophisticated techniques such as the phase-based
approach developed by [MUL 00]. Following these definitions, segmentation
methods are conventionally qualified as “region-based approaches” or
“contour-based approaches”.

Image to 

be segmented

Extraction of image properties

Constraints: a priori knowledge

Formalization/

Algorithm

- Deformable models

- Classification (supervised/non-supervised)

- Active shape models

- Markov field

- Graph cut

- Water separation line

- etc.

Segmented image

Figure 1.2. General outline of a segmentation approach

Due to imperfections presented by images (i.e. noise, occlusions, lack of
contrast, etc.), to perform a segmentation using only the region or contour
characteristics previously referred to reveals itself in most cases to be
difficult, if not impossible. That is why a priori knowledge is usually
introduced, relative to the intrinsic properties of the object to be detected,
such as its shape, its grayscale distribution or its motion when it comes to
image sequence. This knowledge may be purely abstract (for example “the
form of the object must be smooth”) or built from the statistical analysis of a
training set representative of the images to process. Once established, these a
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priori must be formalized and incorporated as constraints in the segmentation
process. It is worth noting that the majority of the constraints used refer to the
shape of the objects to segment.

These two types of information – image properties and a priori
constraints – must then be integrated into a common formalism, itself
numerically implemented as an algorithm. The importance of image
segmentation research, highlighted above, has led to the development of many
approaches, such as active contours, active shape models (ASM), approaches
by classification, Markov fields, etc. We will focus in this chapter on one of
the most important approaches in cardiac and thoracic imaging, namely
deformable models.

1.3. Summary of the different classes of deformable models

Deformable models constitute a dominant approach to segmentation. They
were originally introduced by Kass et al. [KAS 88] with the “snakes model”
and quickly found applications in medical imaging. This significance relates
to the fact that their formulation is very flexible, allowing the integration of
many types of image properties and a priori constraints. As such, the literature
concerning deformable models is highly significant and in this introductory
section, we consider very synthetically two broad classes of approaches:

– energy-based approaches: the energy reflecting the properties of the
object to segment (gray levels, shape, etc.) and expressed in terms of the
deformable model (position and shape) is built. The segmentation process then
corresponds to the minimization of this energy;

– in contrast, “non-energy-based approaches” do not involve energy
directly dependent on the model. It should be noted that if some of these
methods make use of a criterion minimization stage, it is therefore not
expressed directly as a function of the deformable model (thus, for example,
“atlas approaches” perform a registration step by minimizing a similarity
criterion).

Following this section, we will detail more particularly two deformable
model approaches: deformable templates (DTs) in section 1.4 and variational
active contours in section 1.5.
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1.3.1. Non-energy approaches

1.3.1.1. Active shape models

ASMs were originally described by Cootes in 1995 [COO 95]. This
approach can be seen as a method of deformable models incorporating
intrinsically an a priori on the shape of the object to segment, this a priori
being built using a statistical representation of the space of the eligible shapes.

In practice, this representation is constructed from a training set of images,
where contours are manually plotted, aligned and sampled on N points. This
step enables the construction of a model of distribution of contour points from
which shape statistics are established by using principal component analysis
(PCA), which provides the average shape and the K main variation modes of
this shape. The object to segment is then detected by iteratively deforming an
initial contour: each of the N points of this outline is shifted in order to move
it closer to the edge of highest amplitude located in its neighborhood. This
set of displacements provides a new set of points that is projected onto the K
main variation modes: the new shape obtained is thus forced to belong to the
space of eligible shapes defined by these modes. This process is iterated until
convergence, namely when the displacements can be considered as negligible.

Active appearance models (AAMs) constitute an extension of the ASMs
[COO 01]. In this approach, the constraint concerns not only the shape but also
the appearance, defined as the average and the principal variation modes of the
normalized gray levels of the region corresponding to the reference contours.
An example of the application of this technique in echocardiography can be
found in [BOS 02].

1.3.1.2. Atlas-based approaches

The basic principle of atlas-based segmentation is conceptually simple.
An atlas corresponds to a pair made of an image of a given modality and its
segmentation, represented by a set of labeled regions. This segmentation is
most often obtained by performing a manual outline. The segmentation of a
new image of the same modality is then performed in two stages. The atlas
image and the new image are first mapped using a registration algorithm,
which uses the local properties of these images (from gray levels). Thus, this
registration phase provides, on output, the transformation that allows us to
map the “atlas image” to the new image. This transformation is then applied
to the labeled regions of the atlas, thus providing the new image segmentation.

Within this framework, the different approaches of atlas segmentation are
distinguished by the type of registration used, namely by the type of
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transformation (affine, rigid, nonlinear, etc.) and the similarity measure
(absolute differences, mutual information, etc.) implemented in the algorithm.
Another important feature lies in the construction and use of the atlas: if the
base method considers a single atlas, a number of authors have proposed to
improve the method either by using an average atlas, or by selecting the atlas
best suited to the new image in a base of atlases. Any reader wishing to
deepen their knowledge on the technical aspects of atlas segmentation can
usefully consult some general articles such as [ROH 05] and [RAM 10].

1.3.1.3. PDE-based approaches

As a first step, some approaches that make use of deformable models have
been developed based solely on the definition of the evolution equation
without necessarily going through energy minimization. We will call these
methods “PDE-based approaches” because they share the use of a geometric
partial differential equation (PDE) to define the evolution of an active contour.
These have notably originated conventional approaches such as an “active
contour” presented in detail in section 1.5. Thus, Malladi et al. [MAL 95] and
Caselles et al. [CAS 93] have introduced as a first step geometric active
contours for which the evolution speed of the contour is defined based on
intrinsic properties of the image such as the gradient and on geometrical
properties of the curve such as curvature. Active contours driven by the
balloon force introduced by Cohen et al. [COH 91] also fall within this
framework. However, in a seminal work, Ronfard [RON 94] defines an
evolution equation based on the characteristics of the internal and external
regions of the edge thus resulting in a first PDE based on the characteristics of
the regions and not anymore simply on the gradient of the image. We will also
quote in this section Gradient Vector Flow-based approaches (GVF-based
approaches) by Xu and Prince [XU 98] even if the principle is very different.
In this type of approach, a contour displacement field is precomputed and
used as additional velocity to the snakes model proposed by Kass et al.
[KAS 88].

1.3.2. Energy-based approaches

1.3.2.1. Variational approaches

Deformable models based on the variational approach are most often
called “active contours” and constitute the most frequent form of these
models. Variational active contours are characterized by an energy functional,
whose minimum corresponds to the required segmentation (hence the term
variational): thus the object to be detected is segmented by iteratively
distorting an initial contour (or a 3D surface), in such a way that this
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evolution decreases the energy until it reaches a minimum. In two
dimensions, this approach translates into the evolution of an initial curve in an
image toward the structure to segment (Figure 1.3).

An important characteristic of this approach lies in the fact that the
evolution leading to a minimum can be obtained systematically by standard
variational calculation (i.e. Euler-Lagrange equations or Gâteaux derivatives)
or by using shape gradients. The implementation of the variational active
contours for a given application passes in practice through the following steps
and choices:

– choice of the representation of the active contour (see Figure 1.5,
sections 1.5.1.2 and 1.5.1.3). This representation may be explicit, or most often
parametric or implicit;

– formulation of the energy functional. This step depends on the
application, since the functional should be constructed so that a local minimum
is associated with the border of the object to be detected;

– obtaining the evolution equation. This step involves the calculation of the
variational derivative of the functional (Euler-Lagrange’s equations or Gâteaux
derivative) or of the associated shape gradient. This equation consists formally
of a PDE.

Figure 1.3. Active contour segmentation principle. The initial contour a)
is distorted to detect an object in an image b). For a color version of this

figure, see www.iste.co.uk/clarysse/cardiac.zip

The technical aspects of implementing these stages are described in
section 1.5. Section 1.6 details the different approaches used to introduce the
shape and motion constraints in this formalism and section 1.7 provides
examples of the implementation of this approach in the context of 2D and 3D
echocardiographic imaging.
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1.3.2.2. Dual approaches

The use of dual approaches [CHA 99, CHA 04, AUJ 05] and of tools
borrowed from convex optimization is one of the current alternatives to
conventional minimization methods through the use of a PDE resulting from
Euler-Lagrange’s equations. These minimization algorithms thus present the
advantage of being generally more effective in terms of calculation costs and
above all, they facilitate obtaining the global minimum (or minima). They are
based on the duality theory and convex optimization and they therefore
require the transformation of the initial optimization problem into a convex
research problem of an optimal u function. With regard to the particular case
of segmentation, instead of searching for an optimal domain (the search space
being non-convex), the approach consists of searching for a functional u
belonging to the space of bounded variation functions. The optimal function
u∗ will then be thresholded in order to split the image into two optimal areas
with regard to the considered criterion. In a first approach, Nikolova et al.
[NIK 06] have proposed this methodology by providing a first convex
resolution of the Chan and Vese’s model [CHA 01]. Then the works of
Bresson et al. [BRE 07] helped to highlight the existing relationship between
models based on the minimization of the total variation and geodesic active
contours. Problematics related to these approaches exist in the choice of the
threshold to find the final segmentation and also in the convexification of the
initial criterion (it should be noted that a recent solution has been proposed in
[BRO 12]). A large number of approaches explore dual methods in
applications such as noise removal or restoration. Among the approaches that
use dual-based segmentation approaches for medical imaging, [WOJ 10] can
be cited, for example, where applications concerning the segmentation of
PET-CT multimodal images of the thorax were studied.

1.3.2.3. Discrete approaches

We will here mention briefly various segmentation techniques that make
use of discrete representations to solve PDEs. Some approaches propose to
use properties in graphs after optimization (example [BOY 06]). Other more
recent approaches directly reformulate the criterion or the PDEs on discrete
structures such as graphs using equivalences between continuous and discrete
formulations. These equivalences can be carried out either by combinatorial
approaches or by finite difference calculations. Thus, Grady et al.
[GRA 08, GRA 09] propose to completely reformulate some segmentation
criteria used in the context of deformable models (including that of Chan and
Vese [CHA 01]). Their approach is based on the reformulation of the various
derivation operators by using combinatorial analogs of differential operators.
One of the difficulties of these approaches lies in the discrete mapping of the
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different continuous variables and in the definition of a representation of “a
contour” which can be used in practice with its attributes (length, curvature,
etc.). The proposed approaches are effective in terms of computation times
because they can take advantage of the arsenal of combinatorial optimization
tools. They can also be generalized for the use of abstract data (pixels can
then be replaced by patches for example or other more complex data). Other
approaches are based on the reformulation of the derivation operators by
calculations of finite difference in graphs [ELM 08]. The advantage of these
approaches is to provide a discrete formulation of the PDEs and to facilitate
the processing of arbitrary topology graphs. A reformulation of a number of
segmentation PDEs was notably introduced in [TA 01, DES 11]. Finally, we
will also mention the use of discrete geometry tools in order to redefine the
deformable models [LAC 05].

1.3.2.4. Deformable templates

Deformable templates (DTs) have been introduced with some success as
a generic approach for the recognition of shapes in computer vision. The a
priori shape is described by a “standard” representation of the geometry called
a “template”. The adaptation of the template to the object present in the image
is performed by the iterative and oriented modification of the parameters of
the template guided by the optimization of a matching measure. As we will
see in the next section, a DT can integrate, besides a geometric representation
relating to the location and to the shape, information related to the texture or
the material.

1.4. Deformable templates

DTs are parameterized models that exhibit a real significance when an a
priori geometric shape of the object to segment is available. They have shown
some success for tasks of shape detection and recognition [JAI 96, YUI 91].
A DT consists of a reference template that describes the most standard
geometric shape of the object, of a transformation function that drives the
variation of the template reference (geometric shape) and of a matching
measure of the deformed template to the image information. The
transformation of the template is even easier if it is represented by a small
number of parameters, but a contrario, too low a number of parameters limits
the diversity of the representable shapes. The analytical DT describes the
reference template by a set of analytical curves (example: ellipses). This
implies that the object to detect presents a representable shape by means of
the variations of the limited number of parameters that describe it (example:
the parameters of an ellipse) [JAI 98]. The reference template can also be
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defined by a “standard” parameterized prototype that describes the average
shape or the more likely one, and by a transformation function acting on the
parameters (in a permissible range) to generate variations in the prototype.
DTs interacts with the image and its primitives in order to dynamically adjust
the parameters of the model with respect to the force fields originating in the
image. Many variants have been proposed taking into account the different
possible choices to represent the prototype (polygons, Fourier representations,
B-splines, grayscale images, etc.) and the transformation process (Markov
processes, maximum likelihood, maximum a posteriori, cost function
optimizations, etc.) [JAI 98]. The prototype can be built from the learning
techniques implemented in the active shape and appearance models. Several
methods rely on a probabilistic and statistical formulation of the
transformation. Allasoniere et al. offer a mathematically coherent statistical
framework in terms of probability model and of the estimation process of the
template (existence and consistency) [ALL 07].

In the context of cardiac imaging, a geometric DT was proposed by
Rueckert and Burger where the contours are defined by a set of points-vertices
in rest and deformed configurations. The segmentation is then obtained by the
maximization of an a posteriori probability which combines internal energy
limiting the non-affine deformations (bending energy of the model) and
external energy based on edge maps [RUE 97]. Vincent et al. introduced the
elastic DT (EDT), which establishes a coupling between internal and external
contours (endocardium and epicardium) by means of the elasticity equations
[VIN 99, VIN 00, VIN 01]. As the matter of fact, the objective consists of
taking into account the physical nature of the myocardium with the purpose
of tracing the deformation information not only concerning the walls but also
concerning the myocardial tissue throughout its thickness. We present the
EDT model, its implementation and its various extensions in the next section.

1.4.1. Elastic deformable template principle

The elastic DT model is a combination of an a priori reference model
made of a collection of triangular elements in 2D or tetrahedral elements in
3D. Interior and edge vertices are labeled differently. The deformation of the
EDT is governed by elasticity equations (internal energy) and a fitting
measure of the model to the image data (external energy). The resulting
segmentation is obtained from the deformation of the initial template
translated by the displacement u applied to the vertices and resulting from the
minimization of the functional J :

J = min
u

(Jelastic(u) + λJimage(u)) [1.1]
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where u represents the displacement to be applied to the model and λ a scalar
that achieves the balance between the two terms. Elastic internal energy is
expressed from the tensors with constraint σ and deformation E, itself linked
to the displacement by E(u) = 1

2

(∇u+∇uT +∇uT∇u
)
:

Jelastic(u) =
1

2

∫
Ω

trace
(
σET
)
dΩ [1.2]

where Ω is the domain of the reference model at rest. The external energy
characterizes the work of forces f originating in the image on the vertices of
the model (reduced to the edges):

Jimage(u) =

∫
Γ

f · u dΓ [1.3]

where Γ is the edge of the domain Ω. It is expected that for the minimum of
this energy, the edge is superimposed on the contours of the object where the
forces, calculated by an operator such as a gradient for example, are minimal
while limiting the elastic deformation of the reference model. The energy J
is approximated by the finite elements method (FEM) from the tiling of the
area with M 2D triangular or 3D tetrahedral elements. The displacement in
each element of the model is represented by a combination of linear functions
(taking the value 1 in one of the vertices and 0 for the other vertices) and of
the displacements to the vertices of the element [VIN 01]. The functional J in
this case is rewritten in the quadratic matrix form as:

J(U) =
1

2
UTKU−UTF [1.4]

where U and F respectively are the displacement and force vectors to the
nodes (of dimension M × 2 in 2D, M × 3 in 3D), K the stiffness matrix
(incorporating the material properties via Young’s modulus and Poisson’s
ratio). The assembly of the matrix K is based on the superposition principle
of the stiffness matrices of all of the elements [VIN 01]. The optimality
condition for J is written as ∇J(U) = 0, that is:

KU− F(U) = 0 [1.5]

Taking into account the dependency of F with regard to the displacement,
the solution of equation [1.5] is obtained as the stationary solution (or
asymptotic in time) of:

∂U

∂τ
+KU = F(U) [1.6]

with τ an evolution parameter.
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1.4.2. Dynamic elastic deformable template

The goal being the assesment of the dynamics of the heart in a sequence
of images, Schaerer et al. have proposed a spatiotemporal version of the EDT
integrating continuity and periodicity constraints [SCH 08, SCH 10]. The
dynamic EDT model is based on a simplified dynamics equation:

DU̇+K(U)U = F(U, t) [1.7]

where damping D will be represented by a single scalar α. Continuity and
periodicity are introduced considering that force and displacement fields are
defined on a space of Fourier functions. Thus, the force field F will be written
as a linear combination of these basic functions:

F(t) =

l=N
2∑

l=−N
2

f l ei2π l t [1.8]

N defines the number of harmonics and therefore has the effect of regularizing
the field (the larger the N is, the more the solution can present oscillations).
The solution (dynamic displacement field) is obtained as in the static case, with
a pseudo-unsteady schema:

{
∂U
∂τ = F(U)−AU

U(0) = 0
[1.9]

with the operator A = α d
dt + K. The implementation uses finite differences

for the temporal schema:

(
1

Δτ
+

α

Δn
+K

)
Uτ

n = F
(
Uτ−1

n

)
+

1

Δτ
Uτ−1

n +
α

Δn
Uτ

n−1 [1.10]

where τ is an evolution parameter, n is the time index and Δτ , Δn are the
corresponding steps.

The iterative minimization of equation [1.10] leads to the simultaneous
adjustment of the template throughout the sequence of images which ensures
the physical consistency (imposed by the equations of elasticity) between the
successive phases of the motion relative to an individual phase-by-phase
segmentation. The resulting model also directly provides parameters related
to the deformations of the object (of the myocardium in the case of heart
images).
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1.4.3. Elastic deformable template and modal analysis

The EDT model can be compared to Sclaroff and Pentland’s modal shape
representation, which quantifies the difference/similarity between shapes by
means of a modal deformation energy [SCL 95]. The matrix K being
symmetric semidefinite positive is diagonalizable. The equation KU = F can
be rewritten on the basis of the eigenvectors, also called eigenmodes of K:

K̃Ũ = F̃ [1.11]

with K̃ = P−1KP, Ũ = P−1U, F̃ = P−1F and P = (V1, · · · ,VM ).

The three (respectively six) first eigenmodes correspond to the three
(respectively six) degrees of freedom of the rigid motion of a 2D (respectively
3D) object. The eigenvalues and thus the elastic energy of the motion
associated with these modes are zero. The elastic energy associated with the
following modes increases with their rank. An eigenmode with a high rank
shows high spatial frequencies. Unrealistic shapes can be eliminated by the
removal of some eigenmodes in a manner similar to the limitation of the
number of Fourier harmonics exploited in the dynamic EDT (see above). This
principle can be extended to the contraction motion of the heart. This is what
was initially suggested by Vincent et al. without having the necessary a priori
knowledge at the time [VIN 01]. Since then, Remme et al., for example, have
selected and estimated nine eigenmodes (with principal component analysis)
of the global variations of the epicardial and endocardial surfaces between the
heart end-diastole and end-systole and have shown that a patient group and a
control group could be differentiated from the average values of these modes
[REM 04].

1.4.4. The elastic deformable template in practice

The processing of a sequence of images requires the positioning of the
reference template in an image of the sequence (usually the first) and the
adjustment of the model parameters. This will be illustrated in the
segmentation and the dynamic monitoring of the left ventricle (LV) in a cine
magnetic resonance imaging (MRI) sequence with short-axis orientation. This
type of acquisition is common in cardiac MRI and produces a time series of
images (typically 20-60 images) at a given heart level. The initialization of
the model (here a ring) is performed either manually by designating three
points of the endocardium and one point belonging to the epicardium, or
automatically by recognition of the LV cavity and the average thickness of the
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myocardial wall. The parameters of the EDT to define are Young’s modulus
(between 0.1 and 0.5), Poisson’s ratio (between 0 and 0.5, usually set to 0.2),
the number of image resolution levels, the number of harmonics (generally
fixed to 5), the stopping criterion (which corresponds to the difference
between two successive solutions of the unsteady schema, value in the range
of 105) and a contraction parameter (usually set at 0.2). In practice, in the
case of cardiac MRI segmentation, experiments carried out particularly in the
context of segmentation competitions (MICCAI 2009 notably, on 45
multislice cine MRI data sets [RAD 09]) have shown that Young’s modulus is
the only parameter to really adjust [SCH 10].

Figure 1.4. Results of heart segmentation in a cine MRI image sequence in short-axis
orientation covering the cardiac cycle. The EDT is superimposed on the image with light
transparency. It is made up of triangles arranged in three layers. For a color version of
this figure, see www.iste.co.uk/clarysse/cardiac.zip

Figure 1.4 shows a result obtained from a dynamic sequence in short-axis
cine MRI. The evaluation has also shown that dynamic EDT was one of the
few models that allows for jointly segmenting the endocardium and the
epicardium across a dynamic series and that the results in terms of
physiological parameters (ejection fraction, mass and volume) are in the
average of the semi-automatic methods [SCH 10]. The algorithm obtains
good results for epicardial contours. Dice’s criterion for cases treated on-site
is still greater than 0.9 for the outer edges, and 0.85 for the inner edges. The
average perpendicular distance relative to a reference for the endo- and
epicardial contours is about 3 mm, regardless of the data set. These
evaluations have been carried out in the context of the working group
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IMPEIC/MediEval of the GDR Stic-Santé2. Elements comparatively to other
methods are given in Chapter 5, dedicated to the evaluation of segmentation
methods. The main recent developments of the dynamic EDT relate to the
prescription of anchor points, designated by the user and intended to impose
passing points in challenging cases [CAS 10]. It is also possible to introduce
an anisotropy in the deformation controlled by local directions (myocardial
fiber orientation) as shown by the preliminary findings reported in [STO 12].
Furthermore, EDTs provide quantified information about the motion of the
heart through maps of the principal circumferential and radial deformations of
clinical interest [CAS 12].

1.5. Variational active contours

As this has been previously mentioned, the implementation of variational
active contours for a given application goes in practice through the following
steps:

– choice of the representation of the current contour. This representation is
most often parametric and implicit, but explicit expressions have recently been
used;

– formulation of the energy functional. This step depends on the
application: the functional should be designed so that a local minimum
corresponds to the border of the object to be detected;

– derivation of the evolution equation in order to move the current contour
from its original form (most often supplied by a manual tracing) to the desired
segmentation. This stage involves the calculation of the variational derivative
of the functional (Euler-Lagrange equations or Gâteaux derivative) or the
derivation of the associated shape gradient. This equation consists formally
of a PDE.

These different aspects are detailed in this section.

1.5.1. Active contour representations

We express here the active contour formulation in 2D, which allows the
writing to be simplified. It should be noted however that generalization in any
dimension is immediate in the case of implicit and explicit representations.

2 http://stic-sante.org/.
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The term “active contour” is then unsuitable and it is therefore preferable to
use the more general term of interface.

1.5.1.1. Parametric representation

Parametric representation has historically been the first used for the
modeling of active contours in the context of a segmentation problem
[KAS 88]. The contour simply corresponds to a parametric curve
Γ(s) = (x(s), y(s)) defined by [0, 1] → R with s representing the curvilinear
abscissa (see Figure 1.5(a)).

1.5.1.2. Implicit representation and level set

Define Ω as the subset of R2 corresponding to the spatial domain of the
considered image. The active contour Γ constitutes the boundary of an inner
region that we will denote Ωint. The exterior region will be denoted as Ωext

with Ωext = Ω \ Ωint. In the formalism of level sets, the active contour is
represented by means of an implicit function, namely as the zero level of a
Lipschitzian function of R2 (see Figures 1.5(b) and 1.6). We will designate by
φ(p) this function, with p = (x, y) representing a point of Ω. This function
verifies:⎧⎨

⎩
φ(p) > 0, ∀p ∈ Ωint

φ(p) < 0, ∀p ∈ Ωext

φ(p) = 0, ∀p ∈ Γ
[1.12]

Historically, level sets methods have been introduced in physics by Osher
and Sethian [OSH 88] to solve front propagation problems. The use of this
formulation in segmentation was, however, initially proposed by Caselles et al.
[CAS 97] and almost simultaneously by Yezzi et al. [YEZ 97].

The significance of this representation has its origins in the fact that
parametric formulation of active contours has the disadvantage of not easily
managing objects with a complex topology (objects with holes or comprising
several components for example). The representation of the contour by level
sets on the contrary allows an easier management of this type of shape due to
its implicit nature (see Figures 1.6 and 1.8 for an example of evolution). As
we will see later on, the implicit representation of the interface also presents
other advantages: it facilitates the discretization of the evolution equation on a
regular grid, its expression is immediately generalized in any dimension and it
facilitates the introduction of evolution terms depending on regional
properties of the image.
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Figure 1.5. Contour representations. a) Parametric representation. b) Level set
representation: the contour corresponds to the level zero of the implicit function φ(p).
c) and d) Explicit representation: the contour Γ corresponds to a set of points for which
one of the coordinates (r) is given as a explicite function of the remaining coordinates
(θ). For a color version of this figure, see www.iste.co.uk/clarysse/cardiac.zip

1.5.1.3. Explicit representation

The interface Γ can also be represented using an explicit function.
Geometrically, this implies for each point of the interface that one of the
coordinates is expressed with respect to the other coordinates. In the 2D case,
this is written as follows: Ψ : R → R, x �→ Ψ(x) (see Figures 1.5c and 1.5d).
The contour corresponds to the set of all points for which y = Ψ(x). A link
with the implicit representation seen above can be easily established by
defining a function in Ω such as:

φ(x, y) = Ψ(x)− y [1.13]

The contour can then be represented as Γ = {p = (x, y) |φ(p) = 0}. It
is worth noting that in the case of explicit representation, a coordinate system
other than the Cartesian is usually used (polar coordinates (r, θ), for example),
in order to represent closed contours. An example of the representation of such
an interface for a 3D surface is given in Figure 1.7.
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Figure 1.6. Level sets represented as a signed distance map on a domain Ω.
a) The implicit function φ(p). b) The inner (Ωint) and outer (Ωext) domains

defined by the implicit function. For a color version of this figure, see
www.iste.co.uk/clarysse/cardiac.zip

As seen above, implicit representation allows the representation of shapes
with complex topology by addressing the problem in a space comprising an
additional spatial dimension. At the implementation level, this implies a
significant increase of the necessary memory resources as well as
computation time. However, the explicit form of an interface reduces the
dimensionality of the representation, which allows computation time to be
significantly smaller but also the topology of segmented shapes to be
constrained [BAR 12, DUA 10, VAL 06].

Figure 1.7. Representation of a 3D surface using an explicit function defined on
a spherical coordinate system. a) Correspondence between Cartesian and spherical
coordinates. b) Explicit function represented in spherical coordinates. c) Explicit
function represented in Cartesian coordinates. For a color version of this figure, see
www.iste.co.uk/clarysse/cardiac.zip
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1.5.2. Energy functional

1.5.2.1. General expression

In this section, we only consider the energy functional that allows
connecting the active contour to the image properties (associated with the
data such as the gradient, the regional statistics differences, etc.) and, in some
cases, ensuring that a smooth contour is obtained.

1.5.2.1.1. Parametric form

Through the use of the parametric representation of the interface, a general
expression of this energy functional in 2D can be written as follows [JEH 03]:

E(Γ) =

∫
Γ

Kc(p)ds+

∫
Ωint

Kint(p)dp+

∫
Ωext

Kext(p)dp [1.14]

where dp = dxdy is defined and ds corresponds to the parametrization of the
arc length.

In this expression, the first term is a contour integral involving Kc which
corresponds to a contour descriptor of the object to be detected. Thus, this
descriptor is frequently based upon the gradient of the image. The last two
integrals of E(Γ) correspond, however, to region terms, and involve a
descriptor of the properties of the inner region Kint and of the outer region
Kext more often based on the statistical characteristics of the image. Strictly,
the dependence of the descriptors to the region should be explicitly mentioned
and denoted by Ki(p,Ωi). However, this dependence will be omitted in the
following for reasons of ease of writing. Further, it should be noted that
certain complex criteria do not fit in this energy formulation (notably those
based on distances between probability density as in [LEC 09] where the
integration is done over the intensity and not over the domain). However, the
principles and methodologies of derivation developed subsequently can
nonetheless be used in this context.

1.5.2.1.2. Implicit form

In a pioneering work [CHA 01], Chan and Vese describe an approach that
facilitates expressing the functional directly from the implicit representation



22 Multi-modality Cardiac Imaging

of the active contour. By using Heaviside H(·) and Dirac δ(·) functions, the
functional is then written as follows:

E(φ) =

∫
Ω

Kc(p)δ(φ) ‖∇φ‖ dp+

∫
Ωint

Kint(p)H(φ)dp +

∫
Ωext

Kext(p)(1−H(φ))dp

[1.15]

In this expression, it can be noted that all integrals are region integrals
applied to the whole domain Ω. Moreover, it can be observed that the proposed
expression could be used for interfaces of any dimensions and thus particularly
to the segmentation of 3D images by a surface.

1.5.2.1.3. Explicit form

The explicit form of the functional can be obtained from the implicit form
using relation [1.13]. This expression is however of little interest insofar as it
does not allow us to derive an evolution equation easily discretizable in the
perspective of a practical implementation. We will see in contrast in section
1.5.3.1 that it is possible to obtain an evolution equation from the implicit form
if it is limited to the region terms of the functional and if the explicit interface
is expressed on a basis of polynomial functions.

1.5.2.2. Main functional models

We present here three conventional examples of functionals and the reader
can refer to the following journal articles for a more complete background
[OSH 03, SUR 02, TSA 03a]. For readability reasons, we also give the
corresponding evolution equations of these special cases. The general
approach for obtaining an evolution equation from a given functional is
described in section 1.5.3.

1.5.2.2.1. Model based on the image gradient

In an article now considered to be the origin of this type of method, Caselles
et al. proposed an active contour enabling the detection of objects characterized
by high gradients on the edges while imposing the smooth character to the
solution [CAS 97]. The descriptor of the object to be detected is based on the
following function:

g(I) =
1

1 + ‖∇Gσ ∗ I‖α [1.16]

where I represents the image, Gσ is a Gaussian with standard deviation σ and
α = 1 or 2. Therefore, the function depends on the gradient of the image
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smoothed by a Gaussian filter. This function tends towards zero for high
gradients and equals 1 for a zero gradient.

The functional used does not include any region term and corresponds to
the following contour descriptor:

Kc(s) = g (I(Γ(s))) [1.17]

where s corresponds to the arc length parameter. The evolution equation in
parametric form is then given by:

∂Γ(τ)

∂τ
= (g(I)κ−∇g(I) ·N)N [1.18]

where κ represents the curvature of Γ and N represents the interior unit norm
with respect to the contour. In this expression, the term depending on the
curvature controls the smoothing of the curve and the second term controls
the evolution under the influence of the image gradient.

Using relationship [1.31], the implicit form of the evolution equation is
given by:

∂φ(τ)

∂τ
= g(I)div

( ∇φ

|∇φ|
)
‖∇φ‖+∇φ ·∇g(I) [1.19]

Based on this article, other contour-based approaches have been described,
using a data fitting term no longer depending directly on the gradient, but on
the gradient vector flow of the image [PAR 04].

1.5.2.2.2. Model based on region characteristics

In their seminal article, Chan and Vese [CHA 01] focused on the
segmentation of an object showing no sharp edges, making use of information
based on the gradient difficult. The functional that they proposed to solve this
problem involves terms using the characteristics of the interior (Ωint) and
exterior regions (Ωext) defined by the active contour. The corresponding
descriptors are the following:

⎧⎨
⎩

Kc = μ
Kint = ν + λ1(I − cint)

2

Kext = ν + λ2(I − cext)
2

[1.20]
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where cint and cext correspond to the average of the image intensities of the
inner and outer regions, respectively.

The functional is defined directly on the basis of the implicit representation
of the active contour, and takes the following form:

E(φ) = μ

∫
Ω

δ(φ) ‖∇φ‖ dp+ ν

∫
Ω

H(φ)dp

+λ1

∫
Ω

(I − cint)
2
H(φ)dp

+λ2

∫
Ω

(I − cext)
2
(1−H(φ)) dp

[1.21]

The first two terms of the functional correspond, respectively, to the length
of the zero level and the area of the inner region weighted by μ and ν. Their
minimization therefore makes it possible to impose a smoothness constraint on
the contour. The last two terms weighted by λ1 and λ2 are associated with the
data terms and involve the averages of the image for the inner region (cint) and
for the outer region (cext). The minimization of these two terms will therefore
tend to separate the image into two regions of uniform intensity. The evolution
equation is then given by:

∂φ(τ)

∂τ
=

(
μdiv

( ∇φ

‖∇φ‖
)
− ν − λ1(I − cint)

2 + λ2(I − cext)
2

)
δε(φ)

[1.22]

It should be noted that the term resulting from the minimization of the
length involves the expression div

(
∇φ
|∇φ|
)

, which corresponds to the
convention chosen for φ to −κ. The term δε is a modified version of the Dirac
function. Figure 1.8 gives an application example of this approach to a simple
simulation image, comprising two homogeneous regions, with a topology
involving holes in the inner region.

Other authors have proposed to take into account the statistics of the regions
to segment by explicitly modeling the probability of their gray level density
and by using an approach based on maximum likelihood. In practice, if the
assumption is made that the random variables are independent and identically
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distributed (iid), the minimized energy corresponds to the minimization of the
anti-log-likelihood which implies the following descriptors:

{
Kint = − log(Pint(I(p)))

Kext = − log(Pext(I(p)))
[1.23]

where Pint and Pext are the two distributions chosen to characterize the object
to segment and the background. By adding the smoothing term of the contour,
the functional takes the following form for an implicit representation of the
active contour:

E(φ) = λ

[
−
∫
Ω

log(Pint(I(p)))H(φ)dp

−
∫
Ω

log(Pext(I(p)))(1−H(φ))dp

]

+μ

∫
Ω

δ(φ) ‖∇φ‖ dp

[1.24]

When using parametric probability densities belonging to the exponential
family (for example, Gaussian, Rayleigh, etc.) and under certain conditions
concerning the estimation method of the hyperparameters (see [LEC 10]), the
evolution equation can be written as:

∂φ(τ)

∂τ
=

(
μdiv

( ∇φ

‖∇φ‖
)
− λ log

(
Pint

Pext

))
δε(φ) [1.25]

[ZHU 96] have used this approach with Gaussian distributions and
[CHE 99, LEC 10] have considered the more general case of distributions in
the exponential family. Other authors have extended this approach to the case
of non-parametric probability density [AUB 03, HER 06, JUN 05] which
makes the evolution equation more complex. At last, it should be noted that
[DEL 06, MAR 06] proposed to use a minimum stochastic complexity-based
approach.

1.5.2.2.3. Model based on localized region characteristics

Lankton et al. [LAN 08] proposed an approach allowing for segmenting
inhomogeneous objects for which the terms associated with the usual data
based on the gradient or on a global regional characteristic lead to erroneous
segmentations. This approach puts forward the hypothesis that even if the
properties of the object vary spatially across the image, they can be
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considered as constants if they are observed at a sufficiently local scale. This
approach involves the following descriptors:

⎧⎪⎪⎨
⎪⎪⎩

Kc = μ

Kint(p) = δ(φ(p))
∫
Ωλ1B(p,q)Fint(I, φ)dq

Kext(p) = δ(φ(p))
∫
Ωλ2B(p,q)Fext(I, φ)dq

[1.26]

where B(p,q) corresponds to a neighborhood centered at the point p and of
size R, Fint and Fext are region descriptors (such as those described in [1.20]).
The descriptor of contour Kc is identical to that described in b) above. The
descriptors of region Kint and Kext here onward depend on the point where
they are calculated and integrate in this manner purely local information. It
should be observed that other authors have also proposed approaches based on
the localization of the term associated with the data, such as [BRE 06, LI 08,
MIL 09].

1.5.3. Obtaining the evolution equation

1.5.3.1. Euler-Lagrange equations

1.5.3.1.1. Parametric context

The minimization of the functional amounts to cancelling the first variation
of E(Γ), namely to find Γ such as:

∂E

∂Γ
= 0 [1.27]

The variation of E formally corresponds to a differential equation and can
be technically achieved by using the Euler-Lagrange theorem or the
Gâteaux-Fréchet derivatives. Due to the parametric formulation of the
contour, obtaining the variation of E involves the conversion of region
integrals to contour integrals, using the Green-Riemann theorem [ZHU 96].
In any dimension, this step can turn to be formally complex. This particular
aspect is discussed in the article proposed by Aubert [AUB 03].
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Figure 1.8. Evolution of the implicit function for the Chan and Vese method, with the
corresponding zero level in red (b, d, f, h) for synthetic images. Superposition of the
zero level (red curve) on the corresponding image (a, c, e, g). For a color version of this
figure, see www.iste.co.uk/clarysse/cardiac.zip
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Starting from the general expression of the functional proposed in [1.14]
and restricting to the special case where the descriptors are not depending on
the evolving regions and where the descriptor Kc is a constant, the Euler-
Lagrange equation in two dimensions is as follows:

∂E

∂Γ
=
(−Kcκ−Kint +Kext

)
N [1.28]

where N is the unit norm interior to the contour and κ is the curvature. The
minimization of E is then performed by a gradient descent. By introducing an
artificial temporal variable τ , the evolution of the active contour equation takes
the following form:

∂Γ

∂τ
= −V (p, τ)N [1.29]

where V is usually called the velocity term. The gradient descent leads to the
following expression for V (.):

V (p, τ) = −Kcκ−Kint +Kext [1.30]

Starting from this expression, it is interesting to note that the evolution of
the active contour occurs only along its normal. Thus, as shown by Epstein
[EPS 87], only the normal component of the velocity is necessary to control
the deformation of the contour. As a matter of fact, the tangential component
does not change the geometry of the contour, but only its parameterization.
Furthermore, it should be noted that the use of a gradient descent leads to
the fact that the minimum found in convergence is a local minimum, which
consequently depends on the initial contour.

1.5.3.1.2. Implicit context

From the definition of φ(p) and of expression [1.29], it can be shown that
the evolution equation is expressed in the following form for the implicit
representation [CAS 97]:

∂φ

∂τ
= V (p, τ) ‖∇φ‖ [1.31]

As we mentioned previously, a difficulty of this type of approach in any
dimension lies in the manipulation of the region terms, which can involve
complex calculations to express the variation of the functional
(transformation of region integrals into contour integrals). In dimensions



Extraction and Segmentation of Structures in Image Sequences 29

greater than 2, it is usually more direct and simpler to obtain the evolution
equation starting from the implicit expression of the functional [1.15]. The
calculation of the variation of E relative to φ then facilitates obtaining the
associated Euler-Lagrange equation and a gradient descent provides the
evolution equation that takes the following form:

∂φ

∂τ
=

(
Kcdiv

( ∇φ

‖∇φ‖
)
−Kint +Kext

)
δε(φ) [1.32]

It should be noted that some authors propose to amend this evolution
equation by replacing the term δ(φ) by ‖∇φ‖ [ZHA 96]. This choice does
not affect the solution upon convergence and makes the equation independent
of the scale of all levels [MAR 00, TSA 03b]. Note finally that the
discretization of the latter implies in practice the use of a rectified version of
the Dirac function, whose examples can be found in [CHA 01].

1.5.3.1.3. Explicit context

As has already been mentioned, the principal benefit of the explicit form of
the active contour consists of reducing the dimensionality of the representation,
allowing the computation time to decrease and the topology of the segmented
shapes to be constrained. As such, this type of representation is particularly
interesting for problems in 3D, as described here. Assuming the implicit form
of the functional [1.15], a relatively general form of the evolution equation can
be obtained under the following conditions:

– the explicit interface is represented parametrically with the help of
basis functions. Such an approach has been followed by [DUA 10, VAL 06],
who used the Hermite polynomial basis functions and [BAR 12] who have
implemented B-splines functions;

– a simplified form of the implicit functional [1.15] is considered, solely
taking region terms into account. Actually, even in its simplest form consisting
of a regularization term (that is Kc = constant) the calculation of the variations
corresponding to the contour terms proves to be complex [VAL 06]. Moreover,
the use of specific basis functions such as B-splines help to implicitly impose
a smooth character on the surface.

Consider the explicit form of the interface in a coordinate system
p = (u, v, w) in R

3. The choice of this coordinate system depends on the type
of object to segment, and most often corresponds to cylindrical, spherical or
elliptical coordinates. The interface is then defined by the explicit function Ψ :

Ψ : R2 → R, (u, v) �→ w = Ψ(u, v) [1.33]
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It should be noted that this explicit expression is linked to the implicit form
by:

φ(p) = φ(u, v, w) = Ψ(u, v)− w [1.34]

The function Ψ can be expressed as a linear combination of basis functions.
We will use B-splines, here, which leads to:

Ψ(u, v) =
∑

l,k∈R2

c[k, l]βd
h(u− k, v − l) [1.35]

where βd
h(u, v) represents the symmetric uniform B-spline function of degree

d, with dimension 2 and scale h and c[k, l] the coefficients of the B-splines.

It is worth highlighting the purely “region” version of the functional:

Eexp(φ) =

∫
Ω

F (p, H(φ)) dp [1.36]

with:

F (p, H(φ)) = KintH(φ) +Kext(1−H(φ)) [1.37]

The interest of B-spline decomposition is that the evolution of the
interface can be obtained by minimizing Eexp with respect to the coefficients
c[k, l]. There is therefore a shift from a variational calculation to a simple
differentiation relative to a finite set of parameters. This differentiation leads
to the following expression:

∂Eexp

∂c[k, l]
=

∫
Ω

∂F

∂φ

∂φ

∂c[k, l]
dp =

∫
Ω

g(p)δ(φ)
∂φ

∂c[k, l]
dp [1.38]

with:

g(p) = Kint(p)−Kext(p) [1.39]

By using the basic properties of the Dirac function, it can be shown for any
function f the following overall result [BAR 12], which helps in shifting from
the implicit expression to the explicit expression of an integral:

∫
Ω

f(p)δ(φ)dp =

∫
Γ

f(u, v)dudv [1.40]
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where f(u, v) is the restriction of f(p) on the interface Γ.

Applying this property, the variation of Eexp is thus written as:

∂Eexp

∂c[k, l]
=

∫
Γ

g(u, v)δ(φ)
∂φ

∂c[k, l]
dudv [1.41]

By using the linearity of the decomposition of φ [1.35] and relation [1.34],
it yields:

∂φ

∂c[k, l]
= βd

h(u− k, v − l) [1.42]

This last expression then leads to the final expression of the evolution of
the interface:

∂Eexp

∂c[k, l]
=

∫
Γ

g(u, v)βd
h(u− k, v − l)dudv [1.43]

It is of interest to emphasize the benefit of this expression in terms of
computation time, since it shows that the gradient of functional and therefore
the evolution of the surface corresponds simply to the convolution of the term
associated with the data, g(u, v), with a B-spline.

1.5.3.2. Shape gradients

In order to calculate the evolution equation relative to the criterion E(Γ),
another alternative consists of using shape gradients and the domain
derivation tools based notably on the theoretical works described in
[SOK 92, DEL 01]. This method was developed in [AUB 03, JEH 03]. Here
we will only recall the main elements. Let U be the domains set of R2, the
optimization problem can be reconsidered by searching for an optimal
partition of the image {Ωint,Ωext,Γ} where Ωi ∈ U . The criterion is then
written in the following manner as:

E({Ωint,Ωext,Γ}) =
∫
Γ

Kc(p)ds

+

∫
Ωint

Kint(p,Ωint)dp+

∫
Ωext

Kext(p,Ωext)dp

[1.44]
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The descriptors Ki are here generally considered as depending on Ωi or
not. In order to make the domain derivation understandable, we explicitly put
this dependency in the descriptor. The evolution equation will be calculated
from the domain derivative of the criterion E using the methodology and the
tools detailed in [AUB 03]. We recall here briefly the theorems and definitions
useful in this context.

1.5.3.2.1. Main definitions and theorems

The following theorem is the central theorem for the derivation of
integrals of shape domains

∫
Ωi

Ki(p,Ωi) dp. It facilitates establishing a
general relationship between the Eulerian derivative and the shape derivative.

THEOREM 1.1.– Let Ωi ∈ U and V be a vector field relative to the
deformation of the domain Ωi(τ): Ωi(τ) = Tτ (V)(Ωi) with τ > 0. Under
certain hypotheses on the transformation Tτ [DEL 01], the criterion
J(Ωi) =

∫
Ωi

Ki(p,Ωi) dp is differentiable, and its Eulerian derivative in the
direction V can be expressed as follows:

< J ′(Ωi),V >=

∫
Ωi

Ki
s(p,Ωi)dp−

∫
∂Ωi

Ki(p,Ωi)(V ·N)ds

where Ki
s is the derivative of Ki domain. The term N corresponds to the unit

norm interior to the contour ∂Ωi. The Eulerian derivative J in the direction
V is defined as follows: < J ′(Ωi),V >= limτ→0

J(Ωi(τ))−J(Ωi)
τ

. The domain
derivative of Ki is defined by Ki

s(p,Ωi) = limτ→0
Ki(p,Ωi(τ))−Ki(p,Ωi)

τ
.

A proof of the previous theorem can be found in [DEL 01, SOK 92] and is
also recalled in [AUB 03].

1.5.3.2.2. Methodology adopted for the calculation of the evolution equation

The following proposition provides a simple way to calculate the evolution
equation of the active contour when the Eulerian derivative can be expressed
as a contour integral.

PROPOSITION 1.1.– We begin from the hypothesis that the shape derivative of
the criterion J(Ωi) in the direction V can be written as follows:

< J ′(Ωi),V >= −
∫
∂Ωi

v(s)(V ·N)ds

Based on the previous equation, the most direct choice in order to
minimize J(Ωi) consists of choosing V = vN for the deformation of the
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contour (enables the decay of energy to a minimum). We can thus derive the
following evolution equation:

∂Γ

∂τ
= v(p, τ)N

1.5.3.2.3. A calculation example of the evolution equation

As an example, we use here Ki(p,Ωi) = (I(p) − ci(Ωi))
2, which

corresponds to Chan and Vese’s model [CHA 01]. The average ci depends on
property Ωi and will be recalculated at each evolution of the contour. This
term can also be written as a domain integral:

ci(Ωi) =
1

|Ωi|
∫
Ωi

I(p)dp

In this case, using Theorem 1.1, the Eulerian derivative of J(Ωint) can be
written as follows:

< J ′(Ωint),V >=

∫
Ωint

Kint
s (p,Ωint)dp−

∫
∂Ωint

(I(p)− cint)
2(V ·N)ds

[1.45]

with the domain derivative Kint
s = 2 < cint

′(Ωint),V > (cint − I(p)). The
first term of derivative [1.45] is canceled out because < cint

′(Ωint),V > does
not depend on p and

∫
Ωint

(cint − I(p)) dp is canceled. Thus, we obtain:

< J ′(Ωint),V >= −
∫
∂Ωint

(I(p)− cint)
2(V ·N)ds

Then, we can calculate the velocity of the contour using proposition 1.1
and taking into account the fact that the inner norm of ∂Ωout is the inverse of
N. It then yields:

∂Γ

∂τ
=
[
(I − cint)

2 − (I − cout)
2 +Kcκ− (∇Kc ·N)

]
N

The derivative of the contour term can be obtained directly using the
theorems resulting from the domain optimization [DEL 01]; the term
calculated by Caselles et al. [CAS 97] is then found again.

The advantage of this derivation is that it allows explicitly taking into
account the dependence of the descriptors in the region by facilitating the
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derivation in this case. Thus, in the case of more complex descriptors, the
term comprising the derivative of domain Ki

s may not be null and give rise to
additional terms in the equation of evolution (see [JEH 03] for more details).
In the case of more complex descriptors, numerous works have also benefited
from domain derivation tools to calculate the evolution equation. These
include the case of probability density (parametric or non-parametric)
functions that have been studied by various authors [HER 06, LEC 10]. The
domain derivation tools have also been used to introduce descriptors based on
Legendre moments [FOU 06].

1.5.4. Level set digital implementation

The implementation of the evolution equation is equivalent to solving a
time-dependent differential equation. The vast majority of implementations
make use of finite difference techniques. This method was initially developed
by Osher and Sethian [OSH 88, OSH 02] to ensure the convergence of the
algorithm towards unique and oscillatory solutions. We present here the
essential points.

It may be noted, however, that some authors have recently proposed to
resolve this PDE by using a continuous parametric representation of the level
set. Thus, Gelas et al. use a collocation method and a representation by radial
basis functions (RBF) [GEL 07]. Bernard et al. propose to use a
representation with B-spline functions directly in the functional, which leads
to a linear filtering-based formulation [BER 09].

A common problem that comes across involving the practical
implementation of the previously described scheme is as follows: during its
evolution, the level set tends to develop very flat areas or in contrast very
steep fronts [MAL 95, OSH 02], which can lead to problems in terms of
numerical estimation of the partial derivatives and convergence speed. The
strategy commonly used to solve this problem is as follows. The level set is
initialized as the signed distance function to the contour. It should be
observed that such a choice leads to the fact that the gradient module of φ is
constant, namely that ‖∇φ(p)‖ = 1, ∀p ∈ Ω.

During its evolution, the level set is periodically reinitialized in order to
preserve its form of distance map. One immediate way to implement this
strategy is to extract the contour points (current zero level) and recalculate
distance map properties. However, this method is very costly in terms of
computation time. Thus, the most commonly implemented method consists of
taking advantage of the property of the distance map gradient and applying
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periodically to the contour the following auxiliary evolution equation
[PEN 99, SUS 99]:

∂φ(p, τ)

∂τ
= sign (φ0(p, τ)) (1− ‖∇φ(p, τ)‖) [1.46]

where φ0 is the function to reinitialize, sign(·) is the sign function.

However if φ0 is not regular, the zero level corresponding to the implicit
function obtained from [1.46] may be offset relative to that of the original
function. To remedy this problem, Li et al. proposed [LI 05] to add a new term
to the functional energy [1.21]:

Ereg =

∫
Ω

1

2
(‖∇φ(p, τ)‖ − 1)

2
dp [1.47]

This regularization term penalizes the level set if it moves away from a
distance map. This method allows the characteristics of the level sets to be
maintained as a distance map signed without needing explicit reinitialization.

In order to reduce the computation time, it should be finally pointed out that
most implementations do not perform the calculations on the whole domain
corresponding to the image, but in a narrow band surrounding the interface
[MAL 95]. Unfortunately, this aspect of the implementation makes it more
sensitive to the initialization algorithm.

1.6. Integration of a priori constraints in the formalism of variational

contours

As mentioned at the beginning of the chapter, due to imperfections
presented by images, performing a segmentation by using only the
characteristics of the region or the contour proves in most cases difficult, if
not impossible. These problems may be due to various factors such as
significant noise, defects in contrast or occlusions related to limitations of the
acquisition (see, for example, Figure 1.9). This problem can be generally
managed by introducing a priori knowledge, relating to the shape of the
object to be detected or its motion when it comes to image sequence. In this
section, we describe the formulation of such a priori in the context of active
contours.
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1.6.1. Shape a priori

1.6.1.1. Shape models

Geometric models provide an approximation of the shape of the object to
be detected using analytic expressions, most often depending on a low
number of parameters. The adaptation of the shape to the object during the
segmentation process is usually performed according to the principle of least
squares. The shapes that have been used for this purpose are generally
quadrics or their generalization, such as ellipses [ALE 11], hyperbolas
[HAM 10], superellipses [GON 04, SAR 08] and hyperquadrics [DIE 12].
The advantage of this approach is that it requires no learning phase, which
can be long and which can be moreover dependent on the acquisition plane
orientation in 2D imaging. Furthermore, this type of shape does not require
any alignment phase, insofar as the pose (position, orientation and scale) of
the shape is an integral part of the model parameters. A contrario, this
approach lacks generality in the sense where it assumes that the shape of the
object to represent be simple enough to be approximated by an analytical
form.

1.6.1.2. Shape training

The construction of a shape a priori through training assumes that a
representative set of the shapes of the object to detect is available. Many
modes of representation have been proposed for these shapes, such as a
parametric curve [CHE 02, CHE 07], an implicit function defined as the
signed distance at the interface [BRE 06, CHA 05, LEV 00] or a binary mask
[FOU 06, LYN 06, ROU 02]. It is worth pointing out that a realignment phase
must be applied to these forms in order to remove the variations simply due to
differences in pose. This phase can be complex and it may be useful to
consult [ZHA 04] for more details on re-alignment techniques.

Representation of variations in shapes originating from the training set is
most often performed using a PCA, as is the case in works done in
[BRE 06, CHA 05, COO 01, CRE 06a, LEV 00, TSA 03a]. Shape variations
are thus synthesized through an average shape and the main modes of
variation determined by the PCA. It should be noted that Foulonneau et al.
have proposed an alternative approach based on Legendre moments, which
exhibits the advantage of being invariant by affine transformation, and
therefore can avoid the realignment phase [FOU 06].

1.6.1.3. Shape constraint integration in a variational formulation

The first approaches to integrate shape constraints in an active contour-
based segmentation correspond to the ASM mentioned above [COO 95], and
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to the similar approach described by Leventon et al. [LEV 00] for level sets.
These approaches use an a priori described through PCA. In both cases, these
approaches are not variational however, in the sense that the shape constraint
is integrated directly in the evolution terms of the active contour.

A contrario, Tsai et al. have suggested an approach based on a shape a
priori represented via a PCA, but expressed following a variational approach.
In this approach, a shape is represented according to the set of parameters
{α,vp}, where α corresponds to the coordinates of the shape in the shape
space derived from the PCA and vp corresponds to the pose (translation,
rotation and scale) of the shape. Constrained segmentation is then performed
by minimizing a functional associated with the data directly in the parameter
space {α,vp}, which is therefore equivalent to implicitly imposing the
constraint shape, according to an approach philosophically close to ASMs.

Other approaches explicitly express the constraint. In this case, the
integration of the shape constraint in a variational approach implies the
definition of an energy term that enables the assessment of a distance between
the current active contour (that is at iteration i) and the shape a priori. In
practice, this term is usually added, via a possible weighting, to the data
attachment terms described in [1.14] or [1.15]. The first terms proposed in
this framework [CRE 03a, CRE 06a, PAR 02, ROU 02, ROU 04] are most
often based on the difference of the implicit functions representing the active
contour φ(p) and the shape a priori Ψ(p):

ECF (φ,Ψ) =

∫
Ω

(φ(p)−Ψ(p))
2
dp [1.48]

In this equation, the implicit functions are the distance functions relative
to the zero level of the level set. The evolution of the active contour is usually
performed for each iteration by alternating minimization: full energy is
initially minimized depending on φ keeping Ψ constant, then the a priori is
updated by setting φ and by evolving Ψ. The characteristics of this evolution
depend on the type of representation of the a priori: for a geometric a priori,
the parameters defining the shape will be the ones updated. In the case of an a
priori obtained by training, the evolution will include an update of the pose
parameters, usually obtained by minimizing equation [1.48] based on these
parameters (that is, rotation, translation and scaling) and keeping φ constant.

If equation [1.48] has the merit of being simple, it does present however a
number of drawbacks. As this term depends on the square of the difference
between φ and Ψ, the property of the distance function of these
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representations must be preserved during iterations such that ECF (φ,Ψ) still
makes sense, which implies a systematic reinitialization of these functions
throughout the definition domain Ω. Moreover, this formulation restricts the
type of a priori it is possible to use: as a matter of fact, the result of a PCA on
a set of implicit functions does not generally lead to a distance function. The
same problem arises in the case of a geometric a priori where the expression
of the shape most often corresponds to an algebraic distance. As shown in
[SAM 82] and [MAT 06], the algebraic distance cannot actually be regarded
as a valid approximation of the Euclidean distance in the immediate vicinity
of the zero level of the level set.

Consequently, [CHA 05] have proposed a new definition of energy,
according to the following expression:

ECF (φ,Ψ) =

∫
Ω

(H(φ(p))−H(Ψ(p)))
2
dp [1.49]

where H is the Heaviside step function. This expression uses the indicator
function of φ and Ψ, and thus makes the energy independent of the shape of
these implicit functions.

Another expression was defined by Chen et al. [CHE 02], based on the
distance of each point of the active contours (that is the zero level of φ) to the
a priori. The energy that is derived is as follows:

ECF (φ,Ψ) =

∫
Ω

δ(φ(p))Ψ2(p) ‖∇φ(p)‖ dp [1.50]

This expression can be interpreted as a search for a geodesic in a
Riemannian space deriving from the a priori, namely Ψ2(p). The interest of
this expression lies in the fact that the two implicit functions φ and Ψ are not
being directly compared: thus, Ψ can be chosen as any implicit function,
which consequently eliminates the constraints on the representation of the a
priori identified for equation [1.48]. This energy has been so used by
[ALE 11, BRE 06, CHE 02, DIE 12] and an example of its use is given in
Figure 1.9.

1.6.2. Motion a priori

Processing image sequences offers the possibility to take advantage of the
motion of the structure to be detected in order to improve and accelerate
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segmentation. If certain approaches are intended to use motion as information
to detect the structure of interest, others incorporate it in the form of an
additional constraint. We will show a more particular preference for this last
type of method.

Figure 1.9. Comparison of the segmentation of an object involving occlusion (Saturn’s
rings): a) without shape constraint and b) with the application of a shape constraint
that allows avoiding occlusion and detecting the rings. The shape constraint is
geometric here and corresponds to an ellipse. It is applied according to the
approach corresponding to equation [1.50] and data fitting is a simple term of local
difference of average intensity [ALE 11]. For a color version of this figure, see
www.iste.co.uk/clarysse/cardiac.zip

1.6.2.1. Motion used as detection information

A first approach consists of using motion, estimated jointly with the
segmentation or before segmentation, as information to detect the structure, in
the same way as the information derived from the intensity of the images that
we have discussed in section 1.5.2.2. Similarly to the image information, such
an approach therefore implies that the motion of the object presents
homogeneity properties that help separate it from other structures present in
the sequence. The works described in [BRO 04, BRO 06, CRE 03b, CRE 05,
EHR 08, PAR 05b] follow this approach by achieving in a joint fashion the
segmentation and the motion estimation. Another application of this approach
can be found in [HER 04, HER 06, PAP 00, UNA 05], applied this time to
image sequences where motion is estimated a priori, namely before the
proper segmentation phase.
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1.6.2.2. Motion used as a constraint

The usage of motion in a segmentation framework gave rise to a vast
literature, involving approaches often dependent on the type of motion being
considered and therefore on the application considered. It is therefore
impossible to detail exhaustively or even to summarize all of the approaches
in this section. We will therefore be limited here to a brief description of the
techniques integrated into an active contour-based approach.

Within this framework, the majority of approaches involving the use of
motion information as a constraint rely on a generalization of the technique
consisting of modeling the space of eligible shapes via a PCA. In its simplest
form, this approach is equivalent to considering shape variations due to motion
on the same level as variations due to the inter-individual variability observed
in the case of static image segmentation. However, such an approach becomes
impractical when motion causes too significant shape variations: in this case
the PCA must be a function of time, which leads to an a priori with a dynamic
shape.

1.6.2.2.1. ASM and AAM technique generalization

The approach proposed by Bosch et al. [BOS 02] consists of a
generalization of the AAMs and is applied in ultrasound echocardiographic
imaging. The construction of the model is carried out with the set of images
from the training sequences. Similarly, the segmentation phase is applied to
the whole cardiac sequence to process. Casero et al. [CAS 08] offer, for their
part, a generalization of ASMs where the temporal dimension is explicitly
taken into account using a kernel-based PCA, which corresponds to a
nonlinear form of the PCA. In a recent study, Leung et al. propose to define
the constraint by applying a PCA to motion itself [LEU 11]. This PCA is
performed by approximating the inter-frame motion by means of an affine
transformation. This motion model is then used to constrain a motion
estimation based on the conventional optical flow. The knowledge of the
initial contour in the sequence and of motion thus estimated makes it possible
to segment all the images in the sequence.

1.6.2.2.2. State model prediction

In combination or independently of these dynamic PCA, a number of
approaches focus on predicting and/or constraining the segmentation at a
given time by applying a motion model to the segmentations achieved in the
preceding instants. In the field of medical imaging and in particular in that of
cardiac and pulmonary imaging, this approach is confronted with the fact that
explicit motion modeling is not available. As a result, motion is often
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exploited in the form of a discrete field of velocity/motion obtained via a
numerical estimation (such as optical flow-based for example) applied to the
data to be processed. When modeling becomes necessary, it is frequently
performed in the form of a state system, which presents several advantages.
On the one hand, the parameters of the model can be estimated from a set of
training sequences and/or directly from the sequence to process and on the
other hand, prediction/filtering approaches such as Kalman filter-based can
then be deployed.

Malassiotis was one of the first to follow this approach [MAL 99]. In the
proposed approach, a shape model is built via a PCA applied on the fly to the
data to be processed: the contour detected in an image is therefore used to
update the PCA and process the following image. A Kalman filter is
implemented to merge the information provided by a “snake”-based active
contour in the current image (measurement step of the filter) and the
application of a simple dynamic system of order 0 to the parameters of the
PCA provides the prediction step. In the same spirit, Jacob et al. also use an
approach based on PCA and Kalman filtering [JAC 99]. In these works, the
measurement step of the Kalman filter corresponds to the evaluation of the
image gradient or to the phase operator developed in [MUL 00]. The dynamic
aspect is taken into account by expressing the evolution of the parameters of
the shape model using an autoregressive model of order 2, whose parameters
are estimated over a training sequence. The implementation of this dynamic
model then allows the prediction of the filter stage to be achieved. Comaniciu
et al. have, for their part, formulated the segmentation of a sequence as an
information fusion problem, based on a Kalman filter and a particular form of
the PCA, named strongly adapted PCA (SA-PCA) [COM 04]. For a sequence
to be processed, the latter consists of updating the PCA with the initial
contour of the sequence, in order to take into account the shape variations that
might not be reflected by the standard PCA. In this approach, an initial
contour is provided then propagated taking into account both the estimated
motion [COM 03] and the shape model. The robustness of the approach lies
in the fact that the fusion stage of the Kalman filter takes into account three
sources of uncertainties related to the dynamics of the associated state system,
to the shape model provided by the PCA and the measurement of the motion
field. In this approach, a dynamic system of order 0 is used. Finally, it is
worth noting the approach proposed in [PAP 08], which is based on purely
variational modeling combined with a dynamic model applied not only to the
contour but also to the motion field to follow.
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1.6.2.2.3. Constraint application in a variational approach

Other authors have addressed image sequence segmentation by expressing
motion constraint in a variational framework. There again, the constraint
expression often passes through a modeling phase via a PCA.

Thus, Kohlberger et al. address three-dimensional (3D) image sequences
segmentation by performing a PCA in 4D and by using an implicit
representation of the considered surfaces [KOH 06]. Segmentation is then
achieved by minimizing energy with a conventional data fitting term and a
constraint term of the form given in [1.48]. As in [TSA 03a], this
minimization is performed in the parameters space of the PCA. In the same
vein, the technique described in [PAR 05a] is specifically adapted for cardiac
imaging. It also relies on a PCA achieved on an implicit representation of
contours. This PCA is applied to two particular instants, corresponding to the
systolic and diastolic ventricular contours. The dynamic aspect of the problem
is then taken into account by building a model corresponding to a linear
combination of the systolic and diastolic models. After a model updating
phase, segmentation is then carried out for each image in the sequence by
minimizing the energy describing the distance of the model to the data in the
space defined by the PCA. For their part, Cremers et al. develop an approach
that is defined in the same spirit as Jacob et al. [JAC 99] but is formalized in a
variational framework and uses an implicit representation [CRE 06b]. A PCA
is performed on each image of a set of training sequences and modeling the
dynamics of the a priori thus obtained is achieved by representing the
evolution of the parameters of the PCA through an autoregressive model of
order 2. The segmentation of an image of the sequence to process is then
performed by minimizing the energy consisting of a data-fitting term under
the hypothesis of a Gaussian distribution of the gray levels and of a constraint
term calculated by applying the autoregressive model to the parameters of the
PCA representation of the previous contours.

A number of other works based on variational formulations do not take
advantage of modeling with PCA, but express very specific constraints to the
intended application.

In cardiopulmonary imaging by MRI, Zhang and Pless use a manifold
training technique to integrate a motion a priori in a segmentation approach
with a level set φ [ZHA 05]. Manifold learning is applied to MRI sequences
before segmentation in order to represent the temporal variations of the image
according to two degrees of freedom corresponding to the phases of cardiac
motion, u, and the phases of the respiratory motion ν. This training indicates
that when considering a trajectory only along the respiratory phases, the heart
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motion corresponds to a global translation of vector V = (ωx, ωy), while a
trajectory along the cardiac phases is close to a dilation or a pure expansion,
which can simply be expressed in implicit form such as the addition of a
constant ωu at all levels φ. This observation has led the authors to introduce
an additional energy term, ECM (φ), making it possible to constrain the
variation of the level set according to the two dimension u and ν of the
manifold. This term is then of the form:

ECM (φ) = η1

∫
Ω

(
∂φ

∂x
ωx +

∂φ

∂y
ωy +

∂φ

∂ν

)2

dp+ η2

∫
Ω

(
ωu − ∂φ

∂u

)2

dp

[1.51]

with φ : R4 → R, (x, y, u, ν) �→ φ(x, y, u, ν) where x and y correspond to
the spatial coordinates. In this approach, the authors use the region data fitting
term defined in [CHA 01] and described in section 1.5.2.2.

Zhu et al. [ZHU 07, ZHU 10] propose to use the incompressibility of the
myocardium to constrain the segmentation of 3D echocardiographic image
sequences. In this approach, the myocardium is represented using two
implicit surfaces corresponding to the endocardium and the epicardium φi

and φo, which allows the myocardial volume to be expressed in the form:

V =

∫
Ω

(H (φo(p))−H (φi(p))) dp [1.52]

The problem is then formalized in a Bayesian framework where the data
fitting term makes the assumption of a Rayleigh distribution and where the
variation of the myocardial volume around the mean is modeled through a
Gaussian distribution of the form:

p(V ) =
1√
2π

exp

(
− (V − Vo)

2

2σ2

)
[1.53]

where Vo and σ represent, respectively, the mean and the standard deviation of
the volume.

In the same spirit as in [ZHU 10], Lynch et al. have introduced a global
constraint relating to the evolution of the ventricular volume in the
segmentation of 3D cardiac MRI images by level sets [LYN 08]. This
constraint makes it possible to express the evolution of the level set in a
parametric form whose parameters are estimated from a coarse
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pre-segmentation of the ventricle. It should be pointed out, however, that this
approach is not variational since the constraint is introduced directly into the
evolution term of the level set.

1.7. Implementation examples in cardiac imaging

We present in this section the implementation of variational active contour
methods in cardiac imaging, describing the choices carried out and locating
them relative to the previous general sections. Such an approach implies a
significant restriction of the number of examples that can be processed.
Accordingly, we are focused here on two examples of active contours, applied
to the segmentation of cardiac ultrasound images in 2D and 3D ultrasound
echography. The reader eager to obtain more information about heart and/or
chest segmentation in other modalities can refer to journal articles concerning
the segmentation of heart images [KAN 12, MIT 02], and more specifically
[LEU 10, NOB 06] in ultrasound heart imaging, [PET 11] in cardiac MRI and
[LO 10, SLU 06, VAN 12] for the segmentation of CT lung structures.

1.7.1. Echographic imaging: choice of the data fitting term

As we have mentioned, the choice of the data fitting term depends on
relevant information that it is possible to extract from the image with the aim
to separate the structures to segment, and thus, it depends on the modality
considered. In terms of segmentation, ultrasound images present a number of
well-known specificities: inhomogeneous contrast, possible presence of
shadow cones, granularity in homogeneous tissue (speckle). Figure 1.10
shows a few examples of these specificities.

Among these characteristics, the main one is the presence of speckle,
inevitable as intrinsically linked to the formation process of the ultrasound
image in biological tissues. As such, the use of conventional differential terms
such as gradients proves difficult and many authors have suggested building
data fitting terms based on the statistics of the ultrasound images by using
functionals originated in the explicit modeling of speckle statistics of the form
given in [1.24]. According to the type of tissue or to the acquisition
conditions, some authors have proposed a Gaussian [LIN 03], a generalized
Gaussian [BER 07], a Rayleigh [DYD 06, SAR 05], a gamma [TAO 07],
Nagakami’s distribution [ZHU 10]. Other authors make use of statistical
global parameters, such as the regional dispersion of gray levels relative to the
average, as we have already seen with Chan and Vese [CHA 01] with the
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energy given in [1.15] or the difference of the average gray levels according to
the form proposed by Yezzi [YEZ 02]:

E(φ) = − (cint − cext)
2 [1.54]

where cint and cext are the averages of the regions intensities corresponding
respectively to the inner and outer regions of the contour.

Figure 1.10. Example of inhomogeneities in ultrasound heart imaging with a short-
axis a) and apical four-chamber b) parasternal views. Images c) and d) provide for
these same images the contours of the epicardium (in green) and the endocardium (in
red) traced by a cardiologist. In (a), the inhomogeneity of the image causes a drop in
contrast in region 1 relative to region 2. In (b), the apical region (region 1) is fuzzy
and present a lower contrast than the septum region (region 2) due to the fact that
the apex is located in the field near the probe. For a color version of this figure, see
www.iste.co.uk/clarysse/cardiac.zip

As we have mentioned above, diffraction, attenuation phenomena as well
as the variation in orientation of the ultrasonic beam relative to the diffusers
make the properties of the image inhomogeneous. That is why the use of global
statistics, estimated over the whole image, is generally poorly adapted in order
to obtain a satisfactory segmentation. Thus, a number of authors [ALE 11,
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ALE 09, BEL 11, DIE 12] have suggested to locate these statistics using the
formulation described in [LAN 08] for implicit active contours, and given in
previous sections in [1.26].

1.7.2. Example of 3D echocardiography image segmentation

One of the major interests of ultrasound imaging is its ability to acquire
data in real-time, which makes it particularly well suited for the examination
of dynamic phenomena such as the cardiac cycle. The segmentation methods
developed for this type of data are most often committed to preserve this
dynamic aspect by providing results with computation times compatible with
the flow of 3D images [BAR 12, DUA 08, ORD 08, ZHU 10].

The example presented here is taken from the works described at the
methodological level in [BAR 12] and evaluated at the level of the medical
application in [BAR 13a, BAR 13b]. The representation of the active surface
(surface and not contour, the problem being 3D) is an explicit representation
of the type presented in [1.33], using spherical coordinates and modeled by
B-splines. In the context of the segmentation of 3D echocardiographic data,
this expression has two points of interest. First, the restriction of the solution
to functions defined on a B-spline basis make it possible to introduce implicit
a priori smoothing in the segmentation, smoothing controlled by the degree
and the scale of the B-splines being used. It thus avoids introducing the usual
smoothness term associated with the curvature (see [1.22]) and thereby
improves computation time. In the second place, as has been demonstrated in
[1.43], the evolution of the surface simply corresponds to a B-spline
convolution, which also helps there to improve in computation time and thus
to develop a fast algorithm to handle sequences of 3D images.

The data fitting term used in this approach [BAR 13a] is inspired by the
term due to Yezzi and previously mentioned [1.54]. This term is symmetric in
the sense where, because of the square, it will be sensitive to a difference in
average, whether positive or negative. The effective term used is simply the
following:

E(φ) = cint − cext [1.55]

It facilitates to take advantage of the fact that in echocardiography, the
inner region of the ventricle is darker than the outer: as a matter of fact, it is
positive otherwise and then causes an increase of energy, which will be
therefore penalized during the minimization of functional. Finally, it should
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be observed that this fitting term is applied in a local context according to the
approach of [LAN 08], described in section 1.5.2.2. The function g(x, y)
governing the evolution of the active surface (see [1.43]) is then given by:

g(x, y) =
1

Aint
(I(x, y)− cint)− 1

Aext
(I(x, y)− cext) [1.56]

where Aint and Aext are the area of the regions inside and outside the surface
used to locally estimate the averages cint and cext.

Figure 1.11 provides an example of results obtained on a cardiac volume.
The approach has been evaluated for the measurement of the left ventricular
volume in [BAR 13a]. In this study, the initialization phase of the active
surface, which is difficult and time-consuming in 3D, is performed using an
automatic procedure. The study was conducted with a set of 24 cardiac
volumes acquired at the end of the systole and of the diastole on healthy and
pathological subjects and the achieved volumes have been compared with
those originated from the segmentation provided by three experts. It has
allowed us to obtain correlation coefficients higher than 0.97. Computation
times are of the order of the second for the initialization phase and
segmentation itself corresponds to computation times smaller than 60 ms.

Figure 1.11. Segmentation results with end-diastolic cardiac 3D data: a) visualization
of three sliceal views and of the segmented volume; minor-axis b) and major-axis c)–d)
views, presented with the intersection of the segmented volume. For a color version of
this figure, see www.iste.co.uk/clarysse/cardiac.zip
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1.7.3. Example of 2D echocardiography image segmentation

The segmentation of 2D cardiac echography images raises specific issues:
the shape of the heart is highly variable depending on the chosen observation
plane and the limited acquisition angle can lead to the fact that the cardiac
structures are only partially visible. The example presented here is based on
the works described in [DIE 12] and helps to detail the implementation of data-
fitting terms, of shape constraints and motion.

Figure 1.12. Approximation examples of the shape of the myocardium by a
pair of hyperquadrics in major-axis parasternal a), small-axis parasternal b)

and apical 2 chamber c) views. For a color version of this figure, see
www.iste.co.uk/clarysse/cardiac.zip

The representation of the active contour chosen in this work is implicit. The
data-fitting term is based on the conventional mean-deviation term [CHA 01],
realized with the local estimation [LAN 08], seen in section 1.5.2.2.

This type of term is however not able to compensate for inhomogeneities
leading to the near-disappearance of the contrast already mentioned. This
problem is all the more reinforced in 2D imaging by the fact that cardiac
structures may only be partially visible. Moreover, segmentation must avoid
including papillary muscles that may appear within the image field during the
cardiac cycle. This observation has led to the introduction of a geometric
shape a priori based on hyperquadrics [DIE 12]. This constraint is introduced
by using the implicit representation of the hyperquadrics and the functional
measuring the distance between the active contour and the a priori according
to the formulation given in [1.50]. This choice presents several interests. At
the application level, the implicit representation chosen for this a priori
allows both the outline of the endocardium and the epicardium to be modeled
by a couple of hyperquadrics. Moreover, the flexibility of this type of shape
enables this modeling to be achieved for the four echocardiographic views
commonly used in clinical routine (short-axis parasternal, long-axis
parasternal, two-chamber apical and four-chamber apical), as shown in
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Figure 1.12. At the implementation level, this formulation yields the fact that
the adaptation of the two hyperquadrics to a set of points simply summarizes
to a least squares problem. During the direct application of the approach
described above, the authors have noted that some images were driving the
contours of the level set corresponding to the endocardium and the
epicardium to merge. This problem has been addressed by introducing an
additional constraint consisting of locally imposing a minimum thickness to
the detected myocardium. On the variational level, this specific constraint is
expressed as follows:

Ethickness(φ) =

∫
Ω

φ (p+REN) ·H (φ (p+REN)) · δ (φ(p))dp [1.57]

where N is the normal to the active contour at the point p and RE the minimum
value of the desired thickness. Figure 1.13 allows us to observe the influence
of this single term on a simple segmentation (using no shape constraint).

Figure 1.13. Illustration of the local influence of the thickness constraint term on the
result of the segmentation. The active contour initialization is in yellow and the final
result of the segmentation is in red. The figure helps to compare the result obtained
without thickness constraint a) and with thickness constraint b). For a color version of
this figure, see www.iste.co.uk/clarysse/cardiac.zip

This segmentation algorithm was in the first place evaluated on static
images. The data included 80 images acquired according to the usual four
echocardiographic views and coming from 20 healthy patients. The reference
contours have been traced by three cardiologists for each image. The error
obtained under these conditions and measured as the absolute average
distance to the reference contour was equal to 1.31 mm in average and has
proved close to the inter-observer variability (1.29 mm).
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The approach was subsequently extended to the segmentation of temporal
sequences of images [DIE 13]. This extension was carried out by introducing
in the variational approach a motion constraint term, formally close to the
approach described in [ZHA 05] and mentioned in section 1.6.2.2. In this
approach, motion is modeled as a dense velocity field, assumed as known a
priori. This motion has been estimated by an optical flow approach adapted to
the monogenenic representation of the ultrasonic image [ALE 13a, ALE 13b].
By analogy with the constraint used in optical flow, the constraint used
presupposes the conservation of the zero level of the implicit function by
means of the motion. This assumption leads to the following functional:

ECM (φ) =

∫
Ω

δ(φ(p)) (∇φ(p) ·V(p) + φt(p))
2
dp [1.58]

where V(p) is the velocity field and φt(p) is the time derivative of the implicit
function.

In terms of evaluation, this approach has been applied to 20 sequences
representing approximately 1200 images acquired in three usual
echocardiographic views with healthy patients. The reference contours have
been traced by two experts. The quality of the results is reflected by the value
of the error (mean absolute distance to the reference contour) which amounts
to 0.90 mm on average and is significantly lower than the inter-observer
variability (1.41 mm). An example of segmentation obtained for several
moments in three echocardiographic views is given in Figure 1.14.

1.8. Conclusion

The segmentation of cardiac structures remains an open problem, despite
several decades of methodological development. Today, however, fairly
effective methods have been developed in 2D and 3D whose performance are
now evaluated for example through challenges which have emerged in the
international congresses of the field. The comparative evaluation of methods
in terms of segmentation quality, speed and ease of implementation, is
required to envisage a use in a clinical context. Section 1.5 offers a panorama
of the different evaluation strategies and of the measures used in this area.
Finally, beyond the contours, it is also important to be able to distinguish the
different types of identifiable myocardial tissues, for example, in different
varieties of MR images (T1-weighted imaged, delayed enhancement, etc.).
Delayed enhancement MR images facilitate in particular the identification of
necrosis areas. Numerous analysis methods of these images based on more or
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less sophisticated image processing have been proposed to help the automated
categorization of myocardial tissues [AMA 04, BEE 09, HEN 13, HSU 06b,
HSU 06a, KAC 08, POS 05, VAL 11]. All these developments constitute an
essential building block to deliver quantitative parameters of clinical interest
(cavities volume, myocardial mass, lesion volume, ejection fraction, etc.) and
to feed heart “specific patient” models which are the subject of Chapter 9.

Figure 1.14. Examples of the segmentation of 2D echocardiographic image sequences
for three common views. For each example, four equidistant moments in the sequence
are shown with the contours of reference in green and the result of segmentation in red.
a) Short-axis parasternal view, b) apical four-chamber view, c) apical two-chamber
view. For a color version of this figure, see www.iste.co.uk/clarysse/cardiac.zip
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