
Chapter 1

Mathematical Prerequisites

Digital holography is a discipline that associates the techniques of traditional
optical holography with current computational methods [GOO 67, HUA 71,
KRO 72, LYO 04, SCH 05]. In the framework of the scalar theory of diffraction
[BOR 99, GOO 72, GOO 05], digital holography tackles, based on diffraction
formulae, the propagation of a light wave in an optical system, the study of
interference between coherent light waves, and the reconstruction of surface waves
diffracted by objects of various natures. In this context, the propagation of a light
wave can be considered as the transformation of a two-dimensional signal by
a linear system–the optical system. Various representations of the scalar amplitude
of a light wave carrying information use special mathematical functions; the
transformation of a light wave across a linear system uses a fundamental
mathematical tool: two-dimensional Fourier analysis. The digital treatment of
optical information leads us to treat the problems of sampling and discretization,
under the restriction given by Shannon’s theorem. Thus, the mathematical
prerequisites for a good understanding of this book concern the frequently used
mathematical functions, the two-dimensional Fourier transform, and the notions of
the sampling theorem [GOO 72].

1.1. Frequently used special functions

Many mathematical functions that we will present in this section are frequently
used in this book. To understand their properties, we give a brief account of their
physical meaning.
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2 Digital Holography

1.1.1. The “rectangle” function

The one-dimensional rectangle function is defined by:

� � � �1 1/ 2
rect

0 otherwise

­ d° ®
°̄

x
x [1.1]

This function is represented in Figure 1.1.

Figure 1.1. Rectangle function

Depending on the nature of the variable x, the rectangle function has various
meanings. For example, if x is a spatial variable (a spatial coordinate in millimeters),
we can use the function to represent the transmittance from a slit pierced in an
opaque screen. In this book, we generally use the two-dimensional rectangle
function that is obtained by the product of two one-dimensional functions. As an
example, the following function is very useful:

� � 0 0, rect rect
� �§ · § ·

 ¨ ¸ ¨ ¸
© ¹ © ¹

x x y y
f x y

a b
[1.2]

This function is shown in Figure 1.2. It allows us to simply represent the
transmittance from an aperture of a rectangular shape, centered on the point with
coordinates � �0 0,x y and of lengths a and b along the x- and y-axes, respectively.

This binary function is very useful for considering the amplitude of an optical
wave limited to a rectangular region, by eliminating the values outside the zone of
interest.
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Figure 1.2. Two-dimensional rectangle function centered on (x0,y0)

1.1.2. The “sinc” function

The one-dimensional sinc function is defined by:

� � sinsinc xx
x
S

S
 [1.3]

Its curve is presented in Figure 1.3.

Figure 1.3. The sinc function
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Also, the two-dimensional sinc function is formed by the product of two
functions of independent variables:

� � � � � �sinc , sinc sinc x y x y [1.4]

Let us consider two positive values a and b; Figure 1.4 shows the curve of the
function � �2sinc / , /x a y b . In Chapter 2, we will see that such a function represents
the intensity distribution of Fraunhofer diffraction from a rectangular aperture
illuminated by a coherent wave.

Figure 1.4. Two-dimensional sinc function

1.1.3. The “sign” function

The one-dimensional sign function is defined as:

� �
1 0

sgn 0 0
1 0

!­
°  ®
°� �¯

x
x x

x
[1.5]

The curve of this function is given in Figure 1.5.

If a function is multiplied by the function sgn(x–a), for a < 0, the sign of the
function will be inverted. If a coherent optical field is multiplied by this
function, the resulting change corresponds to a phase shift of . We can also
form a two-dimensional sign function by taking the product of two one-
dimensional functions.
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Figure 1.5. The sign function

1.1.4. The “triangle” function

The triangle function is defined as:

� � 1 , 1
0, otherwise

x x
x

­ � d
/  ®

¯
[1.6]

The curve of this function is given in Figure 1.6. Later, we will see that the
Fourier transform of the function � �x/ is sinc2(fx) (with the fx coordinate
corresponding to the spatial frequency). This function will be very useful in the
Fourier analysis of optical diffracting functions (e.g. diffraction grating). As noted
earlier, we can form a two-dimensional triangle function by taking the product of
two one-dimensional functions.

Figure 1.6. Triangle function

1.1.5. The “disk” function

In practice, an optical system is generally constructed with lenses whose mounts
(cylinders) are circular in form. Their pupils are therefore circular and the disk
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function is often used to model the diffraction of circular elements (iris diaphragms,
mounts, etc.). The definition of this function, in polar and Cartesian coordinates, is:

� � � �
2 2

2 2

2 2

1 1
circ circ

0 1

­  � d° �  ®
°  � !¯

r x y
r x y

r x y
[1.7]

The surface of the disk function is given in Figure 1.7.

Figure 1.7. The disk function

1.1.6. The Dirac function

1.1.6.1. Definition

In the field of optical treatment of information, the Dirac distribution
(henceforth called the “function”) in two dimensions is very widely used. Strictly
speaking, is a distribution but for convenience we will hereafter call it a function.
According to the Huygens–Fresnel principle of the propagation of light, a wave
front can be considered as the sum of spherical “secondary” sources [BOR 99,
GOO 72, GOO 05]. The two-dimensional function is often used to individually
describe point sources. The fundamental property of the function is that, as for an

infinitely narrow pulse of infinite height, the sum � �, d dG
f f

�f �f³ ³ x y x y is equivalent

to one (x and y being Cartesian coordinates). The function can be defined by
various mathematical expressions, one of which is presented here.

Let us consider a series of the function fN(x) = N rect(Nx) (N = 1, 2, 3,…).
Figure 1.8 shows the curves corresponding to the number N = 1, 2, 4. It is evident
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that the greater the value of N, the narrower the non-zero zone of the function. It is
not difficult to imagine that if N tends to infinity, the value of the function

� � � �rect Nf x N Nx will be infinite as well. On the other hand, the surface
enclosed by the curve of the function and the x-axis stays unchanged, and equals
one. Thus, by using the rectangular function, the one-dimensional function can
also be defined as:

� � � �lim rectG
of

 
N

x N Nx [1.8]

Figure 1.8. Graph of fN (x) for N=1, 2, 4

Evidently, we can also define the two-dimensional function as:

� � � �2, lim rect rect( )
N

x y N Nx NyG
of

 [1.9]

To facilitate the use of the function, we give some equivalent definitions:

� � � �2 2 2 2, lim exp -
N

x y N N x yG
of

ª º �¬ ¼
[1.10]

� � � � � �2, lim sinc sinc
N

x y N Nx NyG
of

 [1.11]

� � � �
2

2 2, lim circ
N

Nx y N x yG
of

 � [1.12]

� �
� �2 2

1

2 2

2
, lim

N

J N x y
x y N

x y

S
G

of

�
 

�
[1.13]
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In the last expression, J1 is a first-order Bessel function of the first kind.
Depending on the problem being studied, these definitions can be more or less
appropriate and we can also choose which definition to apply in each case.

1.1.6.2. Fundamental properties

We will now consider some of the mathematical properties of the function.
These properties will be used frequently in this book.

1.1.6.2.1. Contraction–dilation of coordinates

If a is any constant, we have:

� � � �1G G ax x
a

[1.14]

1.1.6.2.2. Product

If the function (x) is continuous at the point x0, we have:

� � � � � � � �0 0 0M G M G�  �x x x x x x [1.15]

1.1.6.2.3. Convolution

Let us consider the convolution of two functions and :

� � � � � � � �0 0 0dG M G M
f

�f


  �³x x x x x x [1.16]

Then we have:

� � � � � � � � � �G M M G M
  
  x x x x x [1.17]

The function is the unity of the convolution product.

1.1.6.2.4. Translation

The property of translation of the function is often used for theoretical analyses
and proofs. Here we present this property and the corresponding proof. If (x) is
continuous at the point x0, then we have:

� � � � � �0 0dG M M
f

�f

�  ³ x x x x x [1.18]
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PROOF.– Let 0 ',x x x�  on the left of the previous expression we can write:

� � � �

� � � � � � � � � � � �

0

0 0 0

d

d d d
H H

H H

G M

G M G M G M

f

�f
� � f

�f � �

�  

� � � � �

³

³ ³ ³

x x x x

x x x x x x x x x x x x

[1.19]

If 0, the first and third terms on the right will be zero, therefore:

� � � � � � � �

� � � � � �

0 00

0 0

d lim d

d

x x x x x x x x

x x x x

H

H
H
H

H

G M G M

M G M

f �

o
�f �

�

�

�  �

  

³ ³

³
[1.20]

In the same way, we can show that the two-dimensional function possesses the
same property of translation.

� � � � � �0 0 0 0, , d d ,G M M
f f

�f �f

� �  ³ ³ x x y y x y x y x y [1.21]

1.1.7. The “comb” function

The comb function is a periodic series of functions. It is frequently used to
model the sample of continuous functions. The definition of the one-dimensional
comb function is:

� � � � � �comb 1,2,3,...G
f

 �f

 �  ¦
n

x x n n [1.22]

Figure 1.9 shows the curves of (x) and comb(x). The two-dimensional comb
function can be defined by the product of two one-dimensional comb functions:

� � � � � � � �comb , , 1, 2,3,...G G
f f

 �f  �f

 � �  ¦ ¦
n m

x y x n y m n m [1.23]

Since the comb function is a periodic series of functions, it has analogous
properties and is used in numerous analyses of optical signals.
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comb(x)

Figure 1.9. The (x) and comb(x) functions

1.2. Two-dimensional Fourier transform

The Fourier transform is a very useful mathematical tool for the study of both
linear and nonlinear phenomena. As the propagation of the optical field can be
considered as a process of linear transformation of the “object” field to the “image”
field, we are immediately interested in the two-dimensional Fourier transform
[BOR 99, GOO 72].

1.2.1. Definition and existence conditions

The Fourier transform of a complex function g(x, y) of two independent variables,
which we write here as � �^ `,F g x y , is defined as ( 1j   �� ):

� �^ ` � � � � � �, , , exp 2 d dS
f

�f

ª º  � �¬ ¼³ ³x y x yF g x y G f f g x y j f x f y x y [1.24]

Thus defined, the transform is itself a complex-valued function of the two
independent variables G(fx, fy), called the spectral function, or spectrum, of the
original function g(x, y). The two variables fx and fy are considered, without loss of
generality, as frequencies. In optics, (x, y) are spatial variables and (fx, fy) are spatial
frequencies (mm-1). Similarly, the inverse Fourier transform of the function G(fx, fy),
which we write as F–1{G( f x, f y)}, is defined as:

� �^ ` � � � �1 , , exp 2 d dx y x y x y x yF G f f G f f j f x f y f fS
f

�

�f

ª º �¬ ¼³ ³ [1.25]
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We note that the direct and inverse transformations are completely analogous
mathematical operations. They differ only by the sign of the exponent in the double
integral. However, for some functions, these two integrals cannot exist in a
mathematical sense. Therefore, we will briefly discuss the conditions of their
existence. Among the various conditions, we concern ourselves with the following:

– g(x, y) must be absolutely integrable in the xy-plane;

– g(x, y) must have a finite number of discontinuities and a finite number of
maxima and minima in any rectangle of finite area;

– g(x, y) cannot have any infinite discontinuities.

In general, one of these three conditions can be ignored if we can guarantee
strict adherence to the other conditions, but this is beyond the scope of discussions
in this book.

For the representation of real physical waves by ideal mathematical functions, in
the analysis of tools, one or more of the existing conditions presented above may be
more or less unsatisfied [GOO 72]. However, as Bracelet [BRA 65] remarked, “the
physical possibility is a sufficient condition of validity to justify the existence of a
transformation”. Furthermore, the functions of interest to us are included in the
scope of Fourier analysis, and it is evidently necessary to generalize definition [1.24]
somewhat. Thus, it is possible to find a transformation that has meaning for
functions that do not strictly satisfy the existing conditions, provided that these
functions can be defined as the limit of a sequence of transformable functions.
In transforming each term of this sequence, we generate a new sequence whose limit
is called the generalized Fourier transform of the original function. These
generalized transforms can be handled in the same way as the ordinary transforms,
and the distinction between the two is often ignored. For a more detailed discussion
of this generalization, the reader may refer to the work of Lighthill [LIG 60].

To simplify the study of Fourier analysis, including this generalization, Table 1.1
shows the Fourier transforms of some functions expressed in Cartesian coordinates.

1.2.2. Theorems related to the Fourier transform

We now present some important mathematical theorems followed by a brief
account of their physical meaning [GOO 72]. The theorems mentioned below will
be used frequently as they constitute fundamental tools for the use of Fourier
transforms; they allow us to simplify the calculation of solutions to problems in
Fourier analysis.
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Original function Fourier transform

� � � �, ,
f x y g x y � � � �, ,u� �x y x yf f f g f f

� � � �0 0, exp 2 Sª º�¬ ¼f x y j xf yf � �0 0,� ��
x yf f f f f

1 � �,G x yf f

� �,G x y 1

� �0 0,G � �x x y y � �0 0exp 2Sª º� �¬ ¼x yj f x f y

� � � �rect rectx y � � � �sinc sin cx yf f

� � � �/ /x y � � � �2 2sin c sin cx yf f

� � � �sgn sgnx y
1 1

x yj f j fS S
u

� �2 2exp Sª º� �« »¬ ¼
x y � �2 2exp Sª º� �« »¬ ¼x yf f

� �exp 2Sª º� �¬ ¼j ax by � �,G � �x yf a f b

2 2circ§ ·�¨ ¸
© ¹
x y 2 2 2 2

1 2 /x y x yJ f f f fS§ ·� �¨ ¸
© ¹

� �0cos 2S f x � � � �0 0
1
2
G Gª º� � �¬ ¼x xf f f f

� � � �0 0
1
2
G Gª º� � �¬ ¼x x x x � �0cos 2 xf xS

� �0sin 2S f x � � � �0 0
1
2

G Gª º� � �¬ ¼x xf f f f
j

� � � �0 02
G Gª º� � �¬ ¼

j x x x x � �0sin 2 xf xS

� � � �comb combx y � � � �comb combx yf f

� �2 2 2 2exp Sª º�« »¬ ¼
j a x b y � �2 2 2 2exp / /x y

j j f a f b
ab

Sª º� �¬ ¼

� �2 2 2 2exp Sª º� �« »¬ ¼
j a x b y � �2 2 2 2exp / /x y

j j f a f b
ab

Sª º� �¬ ¼

� �� �exp � �a x b y � �� �2 2 2 2 2 2
4

4 4x y

ab

a f b fS S� �

Table 1.1. Fourier transforms of some functions expressed in Cartesian coordinates
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1.2.2.1. Linearity

The transform of the sum of two functions is simply the sum of their respective
transforms:

� � � �^ ` � �^ ` � �^ `,D E D E�  �F g x, y h x y F g x, y F h x, y [1.26]

Where and are complex constants.

1.2.2.2. Similarity

If � �^ ` � �, , x yF g x y G f f , and a and b are two real constants (different

from 0), then:

� �^ ` 1, ,
§ ·

 ¨ ¸
© ¹

yx ffF g ax by G
ab a b

[1.27]

This theorem is also known as the “contraction/dilation” theorem. It means that a
“dilation” of the coordinates of the spatial domain (x, y) is expressed as a
“contraction” of the coordinates in the frequency domain (fx, fy) and by a change in
the amplitude and the width of the spectrum.

1.2.2.3. Translation

If � �^ ` � �, , x yF g x y G f f , then:

� �^ ` � � � �, , exp 2Sª º� �  � �¬ ¼x y x yF g x a y b G f f j f a f b [1.28]

The translation of a function in the spatial domain introduces a linear phase
variation in the frequency domain.

1.2.2.4. Parseval’s theorem

If � �^ ` � �, , x yF g x y G f f , then:

� � � � 22
, d d , d d

f f

�f �f

 ³ ³ ³ ³ x y x yg x y x y G f f f f [1.29]

This theorem is generally interpreted as an expression of the conservation of
energy between the spatial domain and the spatial frequency domain.
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1.2.2.5. The convolution theorem

If � �^ ` � �, , x yF g x y G f f and � �^ ` � �, , x yF h x y H f f , then:

� � � � � � � �, , d d , ,[ K [ K [ K
f

�f

­ ½° °� �  ® ¾
° °¯ ¿
³ ³ x y x yF g h x y G f f H f f [1.30]

The Fourier transform of the convolution of two functions in the spatial domain
is equivalent to the multiplication of their respective transformations. We will see in
Chapter 3 that the Fourier transform can be calculated by the Fast Fourier Transform
(FFT). This theorem offers the opportunity to calculate a convolution using FFT
algorithms.

1.2.2.6. The autocorrelation theorem

If � �^ ` � �, , x yF g x y G f f , then:

� � � � � �, * , d d ,[ K [ K [ K
f

�f

­ ½° °� �  ® ¾
° °¯ ¿
³ ³ x yF g g x y G f f

2
[1.31]

� �^ ` � � � �2
, , * , d d[ K [ K [ K [ K

f

�f

 � �³ ³ x yF g G G f f [1.32]

This theorem can be considered as a particular case of the convolution theorem.

1.2.2.7. The duality theorem

Let us consider two functions f and g linked by the following integral
development:

� � � � � �, , exp 2 d dD E D E
f

�f

ª º � �¬ ¼³ ³g f u v j u v u v [1.33]

We pose (u, v) = (x, y) and (D, E) = (fx, fy), then:

� �^ ` � �, , x yF f x y g f f [1.34]
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We now pose (D, E) = (x, y) and (u, v) = (fx, fy), then:

� � � � � �, , exp 2 d dS
f

�f

ª º � �¬ ¼³ ³ x y x yg x y f f f j xf yf u v [1.35]

being equally:

� � � � � �, , exp 2 d dS
f

�f

ª º � � � �¬ ¼³ ³ x y x yg x y f f f j xf yf u v [1.36]

giving

� � � �^ `1, ,� � �x yg x y F f f f , [1.37]

and by applying the Fourier transform operator to the left and right,

� �^ ` � �, , � �x yF g x y f f f . [1.38]

Hence the property of duality of the Fourier transforms:

if

� �^ ` � �, , x yF f x y g f f [1.39]

then

� �^ ` � �, , � �x yF g x y f f f [1.40]

This property is very useful for determining Fourier transforms as it means that a
pair of functions where one is the transform of the other generate a second pair of
functions where one is the transform of the other. For example, if we consider the
function rect(x)rect(y), whose Fourier transform is sin c( fx )sin c( fy ) (see Table 1.1),
then we can easily deduce that the Fourier transform of sin c(x)sin c(y) is
rect(–fx)rect(–fy) = rect( fx )rect( fx ) by the parity of the rect function.

1.2.3. Fourier transforms in polar coordinates

For a two-dimensional function with circular symmetry, it is more convenient to
use polar coordinates. We consider a plane described by rectangular (x, y) and polar
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(r, ) coordinates and the corresponding spectral coordinates are (fx, fy) and (U, M),
respectively. We then have:

cos
sin

T
T

 ­
®  ¯

x r
y r

[1.41]

cos
sin

U M
U M

 ­°
®  °̄

x

y

f
f

[1.42]

Let f(x, y) be an original function with spectral function F(fx, fy). We can rewrite
these as functions of polar coordinates:

( , ) ( cos , sin )T T T g r f r r [1.43]

� �, ( cos , sin )U M U M U M G F [1.44]

By substituting these two relations into [1.23] and [1.25], we obtain direct and
inverse Fourier transforms, respectively, in polar coordinates:

> @
2

0 0
( , ) ( , ) exp 2 cos( ) d d

S
U M T S U T M T

�f
 � �³ ³G rg r j r r [1.45]

> @
2

0 0
( , ) ( , ) exp 2 cos( ) d d

S
T U U M S U T M U M

�f
 �³ ³g r G j r [1.46]

Most optical systems are circularly symmetric, and in this case the function f(r, )
depends only on the variable r. We, therefore, have g(r, T) = gR(r). We substitute
this relation into [1.45] and, using the identity of the Bessel function:

> @
2

0
0

1( ) exp cos( )
2

T M T
S

 � �³J a ja d [1.47]

we can deduce the Fourier transform of gR(r) in polar coordinates:

� � 0
0

( , ) 2 ( ) ( 2 )U T U S S U
�f

  ³R RG G rg r J r d r [1.48]

where )(0 aJ is a zero-order Bessel function of the first kind. Thus, the Fourier
transform of a circularly symmetric function is itself circularly symmetric and the
expression [1.48] is called a Fourier–Bessel transform or Hankel transform of zero
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order. In the same way, by substituting GR(U) = G(U, M) into [1.46], we determine
the expression of inverse Fourier transform in polar coordinates:

0
0

( ) 2 ( ) (2 )S U U S U U
�f

 ³ Rg r G J r d [1.49]

We note that the mathematical forms of the direct and inverse transformations
are the same.

1.3. Linear systems

An optical system allows the transformation of an input signal into an output
signal. The device situated between the two planes (“input” and “output”)
perpendicular to the direction of propagation will be henceforth called an “optical
system”. An optical system may have linear or nonlinear properties. In most cases,
considering the system to be linear as a first approximation, we are able to obtain
sufficiently precise representations of the observed phenomena. Here we will
consider only linear systems.

1.3.1. Definition

From a mathematical point of view, a linear system corresponds to a
transformation operation. We conveniently represent such a system by an operator
L{}, at whose output the two-dimensional function f(x, y) becomes a new function
p(xc, yc). This is expressed as:

`^( , ) ( , )c c  p x y L f x y [1.50]

f(x, y) and p(xc, yc) are called the input function and the output function of the
system, respectively.

Let us consider some input functions f1(x, y), f2(x, y),}, fn(x, y) and some output
functions p1(xc, yc), p2(xc, yc),}, pn(xc, yc). We then have:

`^1 1( , ) ( , )c c  p x y L f x y

`^2 2( , ) ( , )c c  p x y L f x y

#
`^( , ) ( , )c c  n np x y L f x y [1.51]



18 Digital Holography

Assuming a1, a2,…, an to be complex constants, if the set of a system’s input and
output functions satisfy:

),( yxp cc = ^ `),(),(),( 21 yxfyxfyxfL n��� "
),( yxp cc = `^ ),(1 yxfL + `^ ),(2 yxfL +}+ `^ ),( yxfL n
),( yxp cc = ),(1 yxp cc + ),(2 yxp cc +}+ ),( yxpn cc [1.52]

and

),( yxp cc = ^ `),(),(),( 2211 yxfayxfayxfaL nn��� "
),( yxp cc = `^ ),(11 yxfLa + `^ ),(22 yxfLa +}+ `^ ),( yxfLa nn
),( yxp cc = ),(11 yxpa cc + ),(22 yxpa cc +}+ ),( yxpa nn cc [1.53]

then this system can be considered linear.

The linear approach presents a considerable advantage: it allows us to express
the response of a system to any input function in the form of a response to
“elementary” functions into which the input has been decomposed. In conclusion, if
we can decompose, by a simple method, the input function into “elementary”
functions for which the response of the system is well known, we will obtain the
output function by the sum of these responses.

1.3.2. Impulse response and superposition integrals

Using the translation property of the two-dimensional function, we can express
a function f(x, y) describing a light wave in the input plane as:

0 0 0 0 0 0( , ) ( , ) ( , )d dG
f

 � �³³f x y f x y x x y y x y [1.54]

The physical meaning of this expression is that the distribution of the input
optical signal f(x, y) can be considered as the linear combination of functions
weighted by the value f(x0, y0) and shifted with respect to each other, the elementary
functions of the decomposition being precisely these functions. Since the system is
linear, its response to the input signal f(x, y) is determined by:

^ `0 0 0 0 0 0( , ) ( , ) ( , )d dG
f

 � �³³p x y L f x y x x y y x y [1.55]
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We notice that the number f(x0, y0) is a simple weighting factor applied to the
elementary function G(x�x0, y�y0). For any point with coordinates (x0, y0), f(x0, y0) is
constant. According to its property of linearity, the operator L{} can move inside the
summation (integral) sign, giving:

^ ` `0 0 0 0 0 0( , ) ( , ) ( , ) d dG
f

 � �³³p x y f x y L x x y y x y [1.56]

If we consider h(x, y; x0, y0) as the response of the system at the point (x, y) of the
output space, when the input is a function situated at the point (x0, y0), we have:

� �^ `0 0 0 0( , ; , ) ,G � �h x y x y L x x y y [1.57]

The function h is called the impulse response of the system. The magnitude of
the input and output of the system can then be related by the following equation:

0 0 0 0 0 0( , ) ( , ) ( , ; , )d d
f

 ³³p x y f x y h x y x y x y [1.58]

This fundamental expression goes by the name of the “superposition integral”.

To completely determine the output signal, we note that we must know the
responses to local impulses at every possible point of the input plane. In general,
the determination of the impulse responses is very complex. However, we will see in
the following section that for an important subclass of linear systems called invariant
linear systems, which are invariant in the space, we can determine the impulse
responses in a simple way. In most cases, an optical system can be approximated by
a space-invariant linear system.

1.3.3. Definition of a two-dimensional linear shift-invariant system

Two-dimensional invariant linear systems are an important subclass of linear
systems. If the impulse response of a system h(x, y; x0, y0) depends only on the
distances (x�x0) and (y�y0), this system is considered as a linear shift-invariant
system, that is:

� �0 0 0 0( , ; , ) , � �h x y x y h x x y y [1.59]

Thus, the optical system is invariant in space if the output signal of a point in the
input plane changes position only but not shape when the source point moves around
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the input plane. For a shift-invariant optical system, the superposition integral can be
rewritten as:

0 0 0 0 0 0( , ) ( , ) ( ; )d d ( , ) ( , )
f

 � �  
³³p x y f x y h x x y y x y f x y h x y [1.60]

This relation corresponds to the two-dimensional convolution of the input
function with the impulse response of the system. Consequently, if an optical system
is a linear shift-invariant system, on the condition that we are able to determine the
impulse response of a point in the input plane (which is often considered on the axis
of the system), whatever the optical input signal f(x0, y0), the output signal p(x, y)
can be determined using expression [1.60].

1.3.4. Transfer functions

By taking the Fourier transform of both sides of [1.60] and using the convolution
theorem, we obtain:

� � � � � �, , , x y x y x yP f f F f f H f f [1.61]

with:

� � � � � �, , exp 2 d dS
�f

�f
ª º � �¬ ¼³ ³x y x yF f f f x y j f x f y x y [1.61a]

� � � � � �, , exp 2 d dS
�f

�f
ª º � �¬ ¼³ ³x y x yP f f p x y j f x f y x y [1.61b]

� � � � � �, , exp 2 d dS
�f

�f
ª º � �¬ ¼³ ³x y x yH f f h x y j f x f y x y [1.61c]

Expression [1.61] shows that the spectral function of the output signal is the
product of the spectrum of the input signal with the function H(fx, fy). This product is
the frequency response to one of the elementary functions of the input signal and the
function H(fx, fy) is called the transfer function of the system. The transfer function
of the system is determined by the Fourier transform of the impulse response
[1.61c]. The output signal can be determined by the inverse Fourier transform of the
spectrum of the output signal, that is:

� � � � � �^ `1, , ,� x y x yp x y F P f f H f f [1.62]
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The spectrum of the output signal P(fx, fy) can be calculated by the Fourier
transform [1.61b]. If the transfer function of the system can be determined, the
output signal can be obtained by [1.61b].

1.4. The sampling theorem

It is often convenient to represent a continuous function g(x, y) by a table of
sampled values taken at a discrete set of points in the xy-plane. Current numerical
methods allow the presentation, storage, and propagation of almost all information
of a physical nature. It is intuitive that if the samples of the continuous function
g(x, y) are taken at points sufficiently close together, the given samples are able to
reliably represent the original function using a simple interpolation. However, for a
given function, the question is to know the maximum sampling interval that we must
respect. The answer is less evident. Yet, for a particular class of functions known as
“bandwidth-limited functions”, the reconstruction can be carried out exactly, on the
condition that the interval between two samples is not larger than a certain limit.
A bandwidth-limited function is such that its Fourier transform is only non-zero on a
finite region of the frequency space. The sampling theorem was initially proven by
Whittaker [WHI 15] and was later revisited by Shannon [SHA 49] during his studies
on information theory. This principle, which allows us to determine the maximum
sampling interval, is called the Shannon–Whittaker sampling theorem.

The following section states the two-dimensional sampling theorem and refers to
the work of Goodman [GOO 72].

1.4.1. Sampling a continuous function

Let us consider a set of samples of the function g(x, y), taken over a rectangular
mesh. The sampled function gs(x, y) is defined as:

),(combcomb),( yxg
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xyxgs ¸
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¸
¹
·

¨
©
§ [1.63]

This function therefore consists of a set of functions separated by intervals of
length X along the x-axis and of length Y along the y-axis, as shown in Figure 1.10,
whose amplitude is the value of the function g(x, y) at the point being considered.

The volume enclosed by the function representation in the space and the
xy-plane is proportional to the value of g(x, y) at each point of the sampling mesh.



22 Digital Holography

Applying the convolution theorem, we obtain the spectrum GS(fx, fy) of gs(x, y) by
convoluting the transform of (x/X)comb(y/Y) with the transform of g(x, y), that is:

� � � �yxyxs ffG
Y
y

X
xFffG ,combcomb, 
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Figure 1.10. Two-dimensional sampling
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then we have:
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The spectrum of gs(x, y) can therefore be simply deduced by considering
the spectrum of g(x, y) localized at each point with coordinates (n/X, m/Y) in the
fxfy-plane, as shown in Figure 1.11.

Since we assumed that the function g(x, y) had a spectrum of limited scope, its
spectrum G(fx, fy) is only non-zero in the corresponding frequency space domain. If
X and Y are sufficiently small, in other words, if the samples are taken on points that
are sufficiently close to each other, the intervals 1/X and 1/Y between the various
spectral regions will be large enough to ascertain that the neighboring regions do not
overlap. To determine the maximum interval between two sampled points, let us
suppose 2BX and 2BY to be the dimensions following the respective directions of the



Mathematical Prerequisites 23

fx- and fy-axes of the smallest rectangle containing the whole spectral domain of
g(x, y). As shown in Figure 1.11, if the following two inequalities:

XB
X

2
1

d

yB
Y

2
1

d [1.67]

are satisfied, the different terms of the spectrum [1.66] of the sampled function are
separated by the distances 1/X and 1/Y in the fx and fy directions, respectively. The
maximum dimensions of the mesh of the sample network, which allow an exact
restoration of the original function, are therefore 1/2BX and 1/2BY. Having
determined the maximum allowed distances between samples, we now study how to
obtain the spectrum of g(x, y) by a filter function, and how to reconstruct the original
function g(x, y).

Figure 1.11. Spectrum of the sampled function

1.4.2. Reconstruction of the original function

Following Figure 1.11, we consider a two-dimensional rectangular function with
sides 2BX and 2BY along the fx- and fy-axes, respectively. The filter function is:
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We note that G(fx, fy) is obtained from GS(fx, fy) since:

� � � � � �yxyxsyx ffHffGffG ,,, { [1.69]

This means that, if the sampled function gs(x, y) is considered as the input signal
of a system, the function g(x, y) will be considered as the output signal. Thus, H(fx, fy)
is the transfer function of the system. In this case, the identity [1.64] translates into
the spatial domain by:

),(),(),( yxgyxhyxgs {
 [1.70]

where

( , ) comb( )comb( ) ( , ) s
x yg x y g x y
X Y

( , ) ( , )G
f f

 �f  �f

 � �¦ ¦
n m

XY g nX mY x nX y mY [1.71]

and h(x, y) is the impulse response of the filter, which is written as:

� � � � � �1, rect rect 4 sinc 2 sinc 2
2 2
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Consequently:

( , ) 4 X Yg x y B B XY
f f
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Finally, when we choose the maximum allowed values 1/2BX and 1/2BY for the
sampling intervals X and Y, the identity becomes:
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Expression [1.74] represents a fundamental result that we will henceforth call the
Whittaker–Shannon sampling theorem. It states that the exact reconstruction of a
bandwidth-limited function can be carried out from the sampled values of the
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function, taken after a suitable rectangular mesh sampling. The reconstruction is
carried out by interpolating each sample point by an interpolation function
constituted by the product of two sinc functions.

Note that this result is not the only possible sampling theorem. We chose two
rather arbitrary sampling frames in the course of this study; with different
assumptions we would have obtained a different sampling theorem. We first
arbitrarily chose a rectangular sampling frame. Also, we chose the particular transfer
function given by [1.68]. By making different choices we would establish other,
equally valid theorems. For more detail, readers may refer to the articles by
[BRA 56], [PET 62], and [LIN 59].

1.4.3. Space-bandwidth product

For a bandwidth-limited function g(x, y), which is mainly non-zero in a region of
the xy-plane bounded by �LX d x d LX and�LY d y d LY and whose maximum sampling
intervals along the fx- and fy-axes are 1/2BX and 1/2BY, respectively, to thus satisfy
the sampling theorem, the minimum value of the number of sampling points able to
represent the function g(x, y) is therefore:

(2 2 )(2 2 ) 16 u u  X Y X Y X Y X YN L L B B L L B B [1.75]

This relation is called the space-bandwidth product of the function g(x, y)
[GOO 05] and expresses the value of the product of the space and frequency
surfaces in which the function g(x, y) and its spectrum F{g(x, y)} are bounded. As a
result, for a two-dimensional bandwidth-limited function, the space-bandwidth
product determines the minimum number of degrees of freedom, N, that correctly
represent it. When g(x, y) is real, its number of degrees of freedom is N, since the
samples are real; if g(x, y) is a complex function, its number of degrees of freedom
becomes 2N as each sample must be represented by two real values. Given the
theorems of similarity and translation relating to the Fourier transform, the dilation
of the coordinates and the translation of the function in the spatial or spectral domain
do not affect the space-bandwidth product of the considered function. This means
that, for a given function, the number of degrees of freedom is constant. This
number can therefore be considered as a significant piece of information expressing
the complexity of the function, and as a criterion that allows us to verify whether
there is any loss of information during the sampling process.




