Multisensor Data Fusion

1.1. Issues at stake

Why would anyone seek to combine multiple sensors
while this inevitably increases cost, complexity,
cumbersomeness and weight, etc.?

The first reason that often comes to mind is that we can
use multiple identical sensors to improve their performances.
Yet, if n sensors provide the estimation of the same value
with the same signal-to-noise ratio (SNR), at best, the joint

use of those n sensors will lead to a gain of v in relation to
that SNR, while multiplying by a factor close to n all the
material factors of the resulting system (cost, weight, bulk
etc.). Additionally, in such cases, there are often simpler and
more effective solutions available — particularly solutions
based on temporal integration of the data from a single
sensor.

This example highlights the fact that combining multiple
sensors is only irrefutably advantageous in the production,
in specific conditions, of information, which a single sensor
(whatever its type) would be unable to provide. In practice,
in order to identify the situations where it is helpful, we
consider three categories of objectives that a multisensor
approach may serve. Each of these categories can be
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illustrated by looking at a few situations, where observation
and surveillance systems are used.

The first major benefit of multisensor systems is their
robustness in any observation context, which is usually a
decisive factor in the choice to use such systems. For example,
the system may be less vulnerable to disturbances — whether
intentional (counter-measures specifically targeted at a
particular wave form or wavelength, but that do not affect
those of the other sensors), or natural (atmospheric
phenomena that adversely affect one sensor but not the
others, such as multiple trajectories to a low site, and the
effect of an evaporation duct on radar, or atmospheric
transmission in optoelectronics). Other examples include the
ability to function in an environment or conditions of
observation that impede the operation of a single sensor, but
do not have the same effect if a variety of appropriate
observation devices are used simultaneously. Thus, various
types of weather-related disturbances, geometrical masking
effect, problems of spatial or radiometric resolution, or
limitations in detection range may render one of the sensors
(though not always the same one) non-operational. In the
same vein of ideas, there is also the problem of
representativeness of certain data used to train a given
sensor to later recognize specific objects, in relation to the
reality on the ground. If the training data used are not
representative, the only way to recognize the target objects is
by cross-referencing the data from different sensors.

The second point of superiority of multisensor systems is
the acuity and richness of the information gleaned. For
example, one sensor might discriminate between targets
independently of their size on the basis of the features of
their rotating parts, while another sensor, which is not
capable of observing these features, distinguishes them by
their size. The combination of the distinguishing capabilities
of these sensors will, obviously, help to refine the taxonomy
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finally generated. Similarly, the relevant association of a
radar — which provides good distance — and Doppler
resolution with a passive optical device with good angular
resolution will generate a fine-grained analysis in a
four-dimensional space — those dimensions being the site,
the bearing, the distance and the Doppler. Partial
non-availability of data to one sensor (unobservable
measurements, non-availability of training data, etc.) can
also be compensated for by data from another sensor.

The third great capability of multisensor systems is a
better reaction time when presented with the most complex
requests, because they can share out the required tasks
between the different sensor components used. Indeed, each
of the different sensors can, in parallel, focus on dedicated
functions, which are appropriate to their capabilities. The
synergy of the work of acquisition and processing then
optimizes the reactiveness of the whole system. For example,
a radar can quite easily perform a quick “pre-screening” of
the space — a survey with a high detection rate but also a
high false alarm rate — with a simple wave form, in order to
provide a small number of potential targets for detailed
analysis with an optoelectronic identification system.

To begin with, it is useful to note that for these three
major categories of benefits reaped with the multisensor
approach, the expected gain can only be obtained by
appropriate complementarity of the sensors used and their
processing. Hence, above all else, the quality of a
multisensor system is dependent upon the diversity of its
components in the face of the problem at hand.
Consequently, the functional specificity of each of these
components, the diversity of the data they provide, and the
exponential increase in the volume of data to be processed
are all unavoidable complexifying factors for the design and
deployment of multisensor data fusion modules.
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In addition, combining multiple sensors only makes sense,
correlatively, to carry out functions that a lone sensor of any
type would be incapable of performing, in any and all
foreseeable circumstances. This means that the system’s
performances hinge upon the capabilities of one or other of
the sensors at different times. (The same sensor will not
always be fully functional, and different sensors will perform
better at different times; otherwise we would only need to
look at one sensor — we would have no need for the others).
What follows from this is that we must constantly fuse
relevant data with defective data. Yet, as we will see,
blithely combining good and bad data always yields an
inaccurate result, as the bad data “pollute” the good.
Therefore, we need to constantly use all of the available
information, both exogenous and previously collected, to
assess and qualify the observations feeding from the
different sensors, and exploit those observations on the basis
of their relevance. Of course, this further increases the
diversity and volume of the information needing to be
integrated, which in turn further increases the complexity of
the processing, because at all levels, this qualitative
dimension needs to be integrated in detail.

In view of this significant increase in the complexity of the
system and its processing, its real-time operation
necessitates objectives in terms of reactivity, and therefore
rapidity, often associated with constraints in terms of “on
board ability”. A crucial objective in terms of data fusion
processing, therefore, is to find a compromise between the
complexity needed to ensure the desired benefits and the
simplicity needed to be compatible with the operational
constraints.

1.2. Problems

In practice, the combination of different sensors may be
useful for two types of goals:
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— Distinguishing hypotheses in a discrete set: this is the
case for the functions of detection, extraction, classification,
recognition, identification, counting or diagnostics more
generally.

— Estimating variables in a continuous set: of particular
note here are the functions of localization, tracking,
navigation or, more generally, metrology (quantification of
descriptors on the basis of observations).

In both cases, the fusion algorithms must not only exploit
the richness of all the available information as best they can,
but also satisfy the expression of high-level operational
requirements imposed by the pooling of different means of
observation in increasingly complex systems.

As a support and as a reference for the coming discussion,
consider the expected evolution of a generic classification
system. Figure 1.1 illustrates the traditional structure of
such a system, where the objective is to find the class of
objects O; which an observed object most closely resembles,
choosing from an exclusive and exhaustive set of possible
classes. These objects will be entities in the broadest sense of
the term: vehicles, types of ground occupation,
infrastructures, states and generic situations, etc.

Learning of each . )
Observed object attribute u; Choice of most likely

for each class O, class O;

Likelihood
within {0},
exclusive
and exhaustive

Estimation

of each attribute u; - Comparison ‘
by each sensor

Figure 1.1. Usual approach in classification
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In this process, for each class O;, the system undergoes
prior training, learning the possible values of a number of
discriminating factors or attributes u; (e.g. descriptors of
size, shape or kinematics), for an object belonging to that
class. These values are then compared, for each class, to the
observations of those same distinguishing attributes on the
object needing to be classified. The resulting measurement of
the resemblance gives the likelihood that the observed object
belongs to each of the classes O; in turn. By maximizing this
likelihood, it is possible to identify the class to which the
observed object actually belongs.

The necessary integration of this classification function in
complex systems where a number of very diverse
components interact, requiring specific uses to be made of
the available dataset, leads to the general approach
presented in Figure 1.2.

Independent evaluation,
by the sensors, of any given properties

H; of the observed object and the
context, possibly at different times

Likelihoods
of each property H,
expressed on its own
set {H,~H;}

Transposition to

the same time
and combination

Likelihoods expressed
on the space {0},
which 1s exclusive and
exhaustive

@

Selection of a set of classes
most likely including the correct one

Figure 1.2. Evolution of the concept of classification

In this system, the sensors all give independent
evaluations of a number of properties H: of the object, or of
the context of the observation, and possibly at different
times. These properties are unrelated to one another, and in
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no way constitute an exclusive or exhaustive set, unlike the
set of classes discussed above. For example, the system may
evaluate whether or not a land vehicle has caterpillar tracks,
whether or not an aircraft has rotating parts, whether a
terrain is irregular with relief features, etc. As with the
traditional system, the properties of interest can be
evaluated by comparing the discriminating values u;
characterizing them against the same values observed on the
object being analyzed.

This yields a certain number of likelihood functions, each
expressed on its own set {H;,~H;}. These likelihood functions
must be adjusted to the same moment of a decision,
particularly using models of the evolution of the properties,
and combined in order to evaluate the likelihood that the
observed object belongs to one of the classes O; previously
listed, which, for their part, constitute an exclusive and
exhaustive set. This combination must, of course, integrate a
previously acquired description of each class O; in terms of
the properties being examined. Yet, it must be borne in mind
that in practice, the relations describing the object classes O;
in terms of the properties H; are usually poorly defined,
because of imperfect compatibility between the useful
information and the available information.

At this stage, to do as we did above and determine the
single most likely class may prove senseless, if not actually
dangerous: two classes may have similar likelihoods without
a significant difference, but they may lead to extremely
different actions, so the consequences may be drastic if a
mistake is made. One example would be confusing an enemy
target with an allied or civilian vehicle. The goal at this
level, therefore, is actually to identify a set of classes that is
as small as possible, but which is most likely to contain the
correct class, and where the uncertainties of discrimination
are brought to the attention of the decision-maker so as to
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grant him/her a better understanding of the consequences of
the choices.

A common use of this scheme is to directly identify a class
O: with a property Hi. It highlights two of the fundamental
advantages of this approach in comparison to that presented
in Figure 1.1: first, each class can be evaluated on the basis
of different attributes specifically appropriate to it and
therefore more effective; second, the different classes can be
processed separately depending on the availability of
information, which means that we can exploit an incomplete
fragment of knowledge, or enrich it gradually.

Of course, the scheme in Figure 1.2 can be extended to the
situation where certain properties have a number of states
greater than the two discussed here, H; and -~H..

This example illustrates the need to manage, in detail, the
uncertainty, the distinct sets, the evolutions over time, the
combination of information fragments with complex relations
between them and the principles of decision-making.

More generally, the requirements in terms of functional
development relate to the major areas introduced below.

1.2.1. Interpretation and modeling of data

The data input in the fusion processes are obviously the
output from the sensors, such as measurements, signals or
images, but also all of the knowledge that helps to draw full
benefit from those data — e.g. databanks, expert knowledge,
previously learnt features, or models identified previously or
online — be they dynamic, statistical, descriptive or
behavioral.

Consequently, these data are extremely varied, first in
terms of their nature and secondly in terms of the use that
can be made of them, but also, above all, in terms of the
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disparity of their points of insufficiency. The goal of data
fusion is to exploit this diversity as fully as possible so as to
gain the greatest possible benefit from the relevant available
information, without it being polluted by the imperfections.
Therefore, it is crucially important to correctly interpret the
potential contribution of each piece of information, and thus
model it in the theoretical framework, which corresponds
most closely to its peculiarities. The difficulty then lies in
jointly processing the different theoretical frameworks
involved in the same form.

The most challenging of these imperfections are
uncertainty and imprecision. Uncertainty expresses a lack of
knowledge regarding the occurrence of an event (e.g. it may
rain), while imprecision characterizes a value that is not
accurately known (e.g. estimated speed of a sea current). For
example, uncertainty would be caused by insufficient or
inappropriate training of the system, or by atmospheric
conditions, which reduce the perceptive capacities.
Imprecision typically arises from insufficient resolving power
or approximate descriptions. These problems can be taken
into account due to uncertainty theories.

The data are also usually incomplete, because the system
has not had all of the necessary training, or because of
temporary non-observability events of interest. Certain
desired characteristics can therefore not be directly
evaluated on the basis of appropriate observations, and must
be approximated as closely as possible on the basis of any
other available information. Hence, the idea is to reduce the
initial uncertainty as far as possible with an appropriate
processing architecture, developed in the context of
uncertainty theories.

The reliability of the gathered data is certainly one of the
most sensitive points, as the main aim of data fusion is to
compensate for the deficiencies of one sensor by using one or
more others. It is therefore helpful to formalize the
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reliability of each piece of information and thus model its
impact in terms of the uncertainty induced about the
observations, using theories capable of handling this
uncertainty.

Finally, apart from the observations, the fusion system
must adequately exploit all of the previous exogenous or
contextual knowledge accessible to it. This knowledge,
usually gained from human assessment or interpretation, is
of course tainted with subjectivity, which must be accounted
for in terms of the uncertainty and imprecision caused.

In addition to the diverse nature of the information taken
into account, we also need to consider the heterogeneity of
the respective imperfections in the different information
fragments. These fragments must therefore be able to be
processed jointly in the same overarching theoretical
framework.

1.2.2. Reliability handling

As the main goal of data fusion is to compensate for the
deficiencies of one sensor by using one or more other sensors,
the process must, at all times, be robust when faced with a
loss of reliability of one or more of the pieces of information
being processed — that is, it must @ minima ensure that the
good-quality pieces of information are not polluted by the
erroneous ones. This is crucially important, because when a
good and a bad piece of information are carelessly fused, the
result usually inherits the poorer of the two quality levels.

Thus, this objective can only be served if the system has
sufficient knowledge of the relative reliability of the different
sources, and is capable of exploiting that knowledge
effectively. This poses the problem of evaluating that
reliability as accurately as possible on the basis of additional
information, either compiled beforehand or acquired in real
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time as regards the context and the environment, or possibly
provided by exogenous sources. This additional information
must be processed in an appropriate theoretical framework,
which is capable of handling the uncertainty regarding the
more or less pertinent knowledge that the new information
provides, as well as the uncertainty caused in the process of
exploiting the observations.

Furthermore, it is important that the fusion process
ensures that information about reliability is integrated into
the processing of the observations. With this in mind, we
need to define an appropriate process architecture, and
employ fitting operators to adjust the knowledge drawn from
the observations on the basis of the relevance of each
knowledge fragment.

1.2.3. Knowledge propagation

Whichever theoretical set we use, the rules usually put
forward for data fusion assume that the input sets and
output sets are all the same. Yet in practice, this is hardly
ever the case. To begin with, the inevitable diversity of the
input data (both in terms of type and quality), as discussed
above, means that in modeling those data, we have to use
sets which are adapted to the particular distinguishing
potential of each type of data and which are therefore
necessarily distinct. Additionally, in accordance with the
need expressed in terms of the expected decision, we have to
fit the available knowledge into a set appropriate for that
decision, which must necessarily be higher level than the
input sets. Furthermore, in complex systems, a number of
resources are pooled, and interact with one another on
different levels. The same piece of information may be used
for different purposes, and if so it will need to be expressed
in different sets.



12 Uncertainty Theories and Multisensor Data Fusion

Also, in order to implement operational systems, it is
necessary to take account of the observations delivered at
different times with regard to situations likely to evolve in
the meantime, and consequently to deliver conclusions at
very specific moments, which are, themselves, different from
the instants of observation. It is therefore useful to be able to
look at a piece of knowledge available at a certain time in a
given set, and transpose it to a later time in the same set,
using a model of the possible evolution of the situation over
time.

The implication of all this is that there is a need to
develop the capability to transpose a given piece of
knowledge in one set into a second, different set. This
transformation is, of course, possible only if the relations
linking the elements of the second set to those of the first are
known. However, in general, the definitions of these
relations given by the available expertise are uncertain or
imprecise, and account needs to be taken of this in the
processing performed. Also, the relations in question must
integrate any inter-dependency between the knowledge
fragments used.

1.2.4. Matching of ambiguous data

For the reasons of complementarity discussed above, a
single object observed by multiple sensors is wusually
analyzed by each of them in a set specific to the object. Thus,
the different sensors used acquire different views of the
object and by comparing and contrasting these views, the
system is able to gain a more accurate picture of it. Matters
become more complicated, however, when numerous objects
are being observed simultaneously. In this case, the
difficulty lies in correctly combining the observations taken
of the same object by each sensor, ensuring that only the
data relating to that particular object are being fused. This
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very common issue, which affects all possible types of sets,
can be exemplified in detail for two classic contexts.

The first problem is that of matching spatially ambiguous
data, which is better known as “deghosting”. For example,
imagine that two remote passive sensors observe a target in
a plan passing through both the sensors. Each sensor then
reports an azimuth at which it is detecting a target, and the
target being observed is localized by triangulation, i.e. the
intersection of the two directions reported by the sensors.
Now, if two targets are present in the plane, each sensor
reports two azimuths, so triangulation finds four
intersections. Two of those intersections correspond to the
actual positions of the targets, whereas the two others are
artifacts, also known as “ghosts”. The system then needs to
try to eliminate the two artifacts so as to unequivocally
determine the positions of the two targets.

The second problem is that of fusing temporally
ambiguous data. This time, imagine that any sensor detects
two nearby moving targets at a given moment in time, and
another sensor detects the same targets asynchronously, i.e.
at two different times. The positions detected by the second
sensor will, obviously, be different to those detected by the
first sensor, because the targets have moved in the interim.
The problem then becomes one of determining which
detections from the first and second sensors correspond to
the same target.

Generally speaking, ambiguous data fusion requires us to
examine the available information to identify the data likely
to characterize the similarity of the observations, with a view
to matching them. In general, unfortunately, the available
data are insufficient to reliably determine the correct
association when data fragments are considered in isolation,
and the process can only work by using numerous imperfect
fragments of information, jointly. The resulting uncertainty
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must be taken into account when modeling these data, and
processed when matching them.

1.2.5. Combination of sources

Combination of sources is, of course, the heart of the data
fusion process. Hence, naturally, it is the focal point of the
main difficulties. First, as we have seen in section 1.2.1, the
diverse nature and quality of the data taken into account
force us to model each piece of information using the most
appropriate theoretical formalism. Therefore, we now need to
combine data expressed in different theoretical frameworks.
Consequently, in each case, it is useful to find the formalism
that is capable of encapsulating all of the issues at stake,
while minimizing the complexity induced.

Additionally, as introduced in section 1.2.3, the data being
fused are usually expressed in different sets, and the result
of the fusion, in turn, needs to be expressed in a different set
from the input sets. For example, for a classic problem of
classification such as that discussed above, the input sets are
those peculiar to each distinguishing attribute, and the
output set is the set of classes of objects. Therefore, it is
helpful to be able to simultaneously fuse and propagate the
data, while ensuring as “optimal” as possible an exploitation
of their “useful” content.

A crucially important point for a combination operator is
the definition of the underlying logic, and the expression of
that logic in terms of axioms needing to be satisfied. The
logic might, for instance, be that of a conjunction
(consensus), disjunction (plurality), etc., and the axioms
typically the definition of the neutral element, monotony,
commutativity, associativity etc. Naturally, the aim when
choosing the logic is to satisfy the requirements imposed on
the fusion process. As the desire is usually to maximize the
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amount of information output, conjunction is generally the
first candidate to be considered.

However, the underlying logic also needs to compensate
for the pitfalls which may occur in certain particular
situations. Of these, the recurrent problem of conflict
between sources is a major concern, which can render the
conjunction utterly meaningless. If, for example, one source
gives a set “A” of solutions and a second source produces a
set “B” which is totally separate from “A”, the conjunction of
these opinions yields a null set of solutions! An in-depth
analysis of these situations of complete discord between
sources shows that they necessarily correspond to the use of
a theory or method in conditions, which violate the axioms or
principles of that approach. For example, the set of solutions
considered is not exhaustive, or not exclusive, or not all the
sources are reliable, etc. In this case, the best approach is to
analyze the conflict, identify its cause and, having duly
rectified it, repeat the modeling of the problem. If this proves
insufficient or impossible, the only option is to look for the
formulation of the combination which exploits only the
consistent portion of the available data, ignoring data which
are not mutually validated. This is often a tricky task, both
in terms of fitting into a rigorous theoretical framework and
ensuring pertinent implementation.

Another major challenge for data fusion is taking account
of the dynamic aspects, linked particularly to the fact that
the sources do not all deliver their data at exactly the same
time. Thus, in general, the combination is referenced to the
moment the result of the data fusion is delivered. Therefore,
it is usually necessary to extrapolate the knowledge from
each source to that moment, by modeling the temporal
evolution of the objects. In addition, certain sources may
yield information which is more or less frequent, more or less
up to date, etc. In particular, this covers problems of
prediction, updating, revision of knowledge, etc.



16 Uncertainty Theories and Multisensor Data Fusion

As well as the other unavoidable difficulties, it must be
remembered that the processing of the data delivered by the
sources also has to include all the contextual or expert
information needed to deal with the imperfections in those
data. This is a key point in the performance of data fusion,
discussed above. It is therefore necessary to put in place the
formalism which effectively positions the information about
the quality of the data when modeling those data.

One final point, which is not overly easy to deal with,
relates to the fact that generally, the sources being combined
are actually not independent, as they are assumed to be by
most conventional combination laws. If ignored, the
interdependency relations between the data being fused may
cause undue confirmation or undermining of certain points of
view. Therefore, the effect of such relations needs to be
modeled and taken into account in the processing so as to
prevent any harmful effects on the conclusions of the
process. On the other hand, in certain cases, the correlations
between the data may, in fact, provide additional useful
information, and therefore necessitate a particular
appropriate exploitation.

1.2.6. Decision-making

This step in data processing is the final operation, which
actually produces the required intelligence on the basis of
the observations carried out, or directly the actions required
in view of the observed situation. Decision-making may be
involved at different levels, and the task can prove difficult
in practice, depending on the nature of the problem at hand.
To introduce the different types of difficulty encountered,
Figure 1.3 illustrates the paths taken by the available data
for decision-making for different major types of systems.
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Figure 1.3. General process of decision-making on the basis of data

The first step is to look at all of the data, whose nature we
have already discussed above, to evaluate the likelihood of
different hypotheses pre-determined as relevant to the
particular problem at hand. Fusion of those likelihoods then
generates an estimation of the situation, which can either be
transmitted directly to an operator to serve in decision
support or exploited by automated processing to help an
autonomous system. In the latter case, preference criteria
need to be defined for each of the possible actions, and
optimized in order to determine which action to perform.
These criteria must express the mechanisms of choice, which
an operator would use to take a decision in the context of the
situation produced by the fusion of the observations. Their
formalism, therefore, must be compatible with an imperfect
knowledge of that situation, subjective preferences that are
often difficult to express, complex mechanisms of
comparison, and compromises needing to be found between
contradictory objectives. The action thus determined will be
directly implemented by a fully autonomous system such as
an unmanned, non-linked vehicle, or suggested to an
operator for approval in the context of decision support.
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Finally, the process will usually improve the system’s
decision-making capacity by using a resource allocation
function that sends requests back to the sensors in order to
obtain the information likely to enrich the discerning
capacity of the decision step, as quickly as possible.

The first difficulty in such a process relates to the greater
or lesser compatibility that it is possible to ensure between
the informative content of the input data and that of the
required conclusions. The models of the information at all
levels of the chain, and the underlying decision-making
principles, therefore need to be defined in order to produce
only legitimate conclusions in regard to the only available
knowledge, both in terms of their nature and their acuity.
The more or less complex decision-making principles which
serve that aim must, correlatively, be able to be expressed
rigorously in terms of operators defined in the theoretical
framework adopted for processing the information, which
generally requires specific developments, and the formalism
of the conclusions must be capable of expressing strictly the
available knowledge as accurately as possible. For example,
as mentioned at the beginning of section 1.2 with regard to
the illustrative problem of classification, it may prove
pointless or even dangerous to determine the single most
likely hypothesis if it is based on an insignificant difference
between the most likely hypotheses, while the consequences
may be drastic in case of error. In this case, the need is
actually to identify as small a set of classes as possible,
which is most likely to contain the correct class, but where
the uncertainties in discrimination are brought to the
attention of the decision-maker to facilitate a better grasp of
the consequences of their choices.

The second major difficulty of decision-making processes
is handling the inevitable inconsistencies. This type of
situation is, for example, illustrated by Condorcet’s paradox,
which involves three decision-makers D1, D2 and D3,
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charged with choosing between three possible actions Al, A2
and A3. Suppose the decision-makers’ preferences are as
follows:

-D1: A1 > A2 > A3;
-D2: A2 > A3 > Al;
—-D3: A3 > Al > A2.

If the actions are compared two by two in order to
establish the consensual preferences by majority vote, the
result is that which is illustrated by Figure 1.4 — in other
words, an intransitive set of equal preferences which renders
any conclusion impossible.

Al

Preference Preference

D2 & D3 DI & D3

Preference

Nl & D2

Figure 1.4. Intransitiveness of Condorcet’s paradox

More generally, the properties of collective decisions were
examined by Arrow, on the basis of five axioms responsible
for their consistency [ARR 63]:

— Unrestricted domain: all individual choices can be
catered for.

— Unanimity: if x > y for all voters, then x > y for the
group vote.

— Pairwise independence: the collective ranking of two
options depends only on the individual rankings of those two
options alone.
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— Completeness: all pairs can be ranked (indifference is a
possibility).

— Transitivity: if x >y and y > z then x > z.

Arrow demonstrates that the only decision-making rule
capable of satisfying all five of these axioms is dictatorship,
i.e. only taking one opinion into account, ignoring all the
others! Thus, any practical solution must be the result of a
compromise between rationality (expressed by Arrow’s
axioms), effectiveness (to reach a conclusion whatever the
circumstances), and consensus (which respects the plurality
of opinions). All of these notions therefore need to be
accounted for in detail in the decision-support algorithms.

The third difficulty is to approximate the behavior of
human decision-makers, as closely as possible, with all
of their peculiarities, relating particularly to the subjectivity
of perception, to knowledge, intuition, greater or lesser
temerity, level of wisdom, etc. Evidently, this has a direct
impact on the interpretation and modeling of the information
being manipulated, on the plurality of the criteria used, on
the logic underlying the process of decision-making (the
extent to which it is conjunctive, disjunctive or consensual,;
complete or partial aggregation, etc.), and on the
architecture of the process — particularly in terms of
centralization/distribution of the decision.

In practice, the perimeter which is of interest to us in our
coming discussion of multisensor observation systems is that
of situation elaboration, as the choice of actions to be
performed stems from the operation of those systems. Thus,
we will, on the one hand, be dealing with decision-making for
extraction of useable intelligence, and, on the other, with
expression of information in a formalism, which is
compatible with the techniques of decision-making for
choosing actions.
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1.3. Solutions

Evidently, there is no universal, ready-to-use solution
available to deal with all of the problems presented above.
On the other hand, there are a number of theoretical
frameworks, each specifically designed to deal with a
different aspect of the requirements expressed, and which
provide good coverage when used together. Generally, these
theories were not initially designed for data fusion, but they
exhibit a satisfactory potential for this purpose. The
objective of this book is therefore to put forward a set of
original tools exploiting, first, the specificities of each of the
theories in order to deal with a particular aspect of
the problem, and second, all the synergies which can be
established between those theories to ensure the overall
consistency of the chain of processing in which they
constitute the different links.

1.3.1. Panorama of useful theories

The theories and techniques potentially concerned by the
process of multisensor data fusion as defined above are
graphically represented in Figure 1.5. Areas of overlap
between the boxes indicate the links that can be formalized
between the theories in question, with a view to their joint
exploitation.

Compl | ]
transitive

aggregation Belief functions

Probabilities Connectionism

Optinmzation

Information Partial aggregation
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Figure 1.5. Diagram of the main theoretical frameworks
concerned by multisensor data fusion
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More specifically, they include:

— theories designed to deal with uncertainty: the theory of
belief functions, with its two intrinsically distinct particular
cases — probability theory and possibility theory, which
we will examine later on; these theories are obviously at the
heart of the need expressed above regarding the multiple
imperfections of the data being manipulated;

— theories designed to deal with imprecision: essentially
the fuzzy sets theory; quite apart from the duality between
uncertainty and imprecision which fuzzy sets theory helps to
exploit, in conjunction with possibility theory, it can easily be
combined with uncertainty theories to jointly deal with
uncertainty and imprecision; we will see later on that it is
possible, for example, to determine the probability of a fuzzy
event; it therefore also fits into the working model outlined
above;

— measures of information, which can be used to evaluate
the degrees of uncertainty and imprecision conveyed by the
processing, in particular for the purpose of evaluating
the data fusion processes; such measures constitute an
invaluable addition to the aforementioned theories, but
relate more closely to the aspects linked to the engineering of
the process or real-time resource management; hence they
are beyond the strict context of data fusion methods per se in
which we are interested here;

—the different methods of multi-criterion aggregation,
which can be classified into two main categories. The first
category relates to complete transitive aggregative methods,
which synthesize a single criterion which needs to be
optimized in the decision space. The archetype of these
methods is the multiple attribute utility theory; uncertainty
theories can, fairly easily, give rise to methods in this
category (e.g. see sections 6.3.5 and 6.4), or be coupled with
other methods, such as utility functions. Therefore, with
these methods, we are well equipped to deal with the
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imperfections in the data conveyed in the decision-making
processes. The second category includes partial aggregation
methods, which compare all the solutions two by two before
drawing the conclusion about the preferences obtained. The
ELECTRE family of methods is certainly the most
representative of this approach; in addition, most partial
aggregation methods have a “fuzzy” version to regulate their
behavior (for example ELECTRE 3 for the aforementioned
ELECTRE family of methods). Fuzzy sets also have their
own approach to partial aggregation, based largely on
exploiting fuzzy order relations. Uncertainty theories can
also deliver a partial aggregation type approach on the basis
of binary comparisons (section 7.4). However, multi-criterion
aggregation methods are designed for problems stemming
from the choice of actions to perform, for which they are able
to find appropriate solutions quite easily, rather than for
intelligence extraction. Therefore, they will not be discussed
further in this book;

— mathematical logics, which facilitate high-level
reasoning processes. These logics can advantageously be
combined with imprecision and uncertainty theories to
integrate the imperfection of the knowledge (fuzzy logic,
possibilistic logic, etc.); they are more closely linked to a
specific exploitation of the information produced by the
multisensor data fusion than to the system itself which we
are interested in;

— connectionist approaches — particularly neural
networks. The idea is to repeat a behavior that has been
directly learnt from a sufficient number of real cases. Thus,
it is a wuseful support (especially for complex learning
processes), but one which must necessarily be based, from a
methodological point of view, on analytical approaches such
as those mentioned above, to overcome the problems of
generalization on the basis of imperfect learning. With this
in mind, for example, it is relevant to mention neuro-fuzzy
approaches and certain analogies which have been
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established with Bayesian approaches, but the connectionist
aspect is not at the heart of the breakthroughs likely to serve
the requirements expressed previously;

—robust optimization methods, which are crucial in
searching for solutions in large spaces using complex cost
functions, at all levels of the process; however, in this case
the need is fairly generic and disconnected from the concept
of data fusion per se.

In conclusion, in view of the above remarks, the coming
discussion will focus on uncertainty— and imprecision
theories, with the aim being to discover the tools capable of
serving the requirements expressed.

1.3.2. Process architectures

The recurrent problem in this area is the problem of the
level of fusion, i.e. the position of the fusion operator in the
chain of processing between the raw data from the sensors
and their high-level exploitation, and correlatively that of
the centralization or distribution of the processing. In fact
these two aspects are closely connected, as data fusion close
to the point of output from the sensors necessitates
centralized processing of those data, while fusion of the data
at a higher semantic level facilitates local processing of each
measurement, which is generally exploited to compress the
useful information and thereby decrease the throughput
needed in data transmission.

To begin with, the type of fusion that produces the richest
result is that which takes place closer to the sensors, when
the data are least compressed, and can therefore be
compared in greater detail. However, this common-sense
principle may be incompatible with other requirements or
constraints. In particular, it may prove senseless to fuse the
data at a very early level, and it may be useless or even
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damaging to the quality of the result, depending on the
granularity and the intention of the desired conclusions.

For example, the interpretation of perfectly registered
multispectral spatial images to determine soil occupation
would be based on the fusion of pixels, because they are
naturally and easily associable and correspond to the spatial
resolution of the information being sought. On the other
hand, the extraction of particular objects in airborne
optoelectronic and RADAR images would focus on the fusion
of attributes of objects estimated on both sides, because it
makes little sense to fuse pixels of different size and
geometry, and additionally the nature of the final
characterization must be pertinent to the level of the objects.

In addition to this, we may come up against a certain
number of operational constraints such as the limitation or
vulnerability of communications for a delocalized function, or
the volume and time of the processing with regard to
requirements such as reactivity, time restrictions or onboard
capability.

Another problem relating to the architecture of the
processing is the need to respect the hierarchical ranking of
the information fragments, which may cover very different
forms. For example, not all the sensors used necessarily
deliver information of the same semantic level, and the
fusion of such data must begin with the lowest semantic
levels, working up gradually to the highest semantic level
with the processes of extraction and dissemination of the
usable information, in accordance with the ontology provided
by the application.

A different type of hierarchization relates to the inclusion
of quality information that may be gathered about the
sensors (acuity, reliability and usefulness, etc.), and serves to
help manage the observations. This information thus needs
to be integrated into the formalism of processing these
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observations to usefully modify their impact, by properly
exploiting the difference in quality between the different
sensors. The quality data can, of course, be fused themselves,
at a different level to that of the observations, while
respecting the particular effect that each measurement is
intended to produce.

In the process of fusion, we must also rank the effect of
the different pieces of information on the final conclusions of
the processing, on the basis of their (more or less specific)
utility for the problem at hand, in view of the potential for
that information to evolve (context, requests, etc.).

Finally, the hierarchization may be linked to the
particular relations that exist between certain pieces of
information, starting with statistical dependencies and, as
before, to the operational constraints, relating to the
distribution of the sensors or the processing capacity, for
example.

Of course, the architecture of the data fusion process is
also guided by the desire to create synergy between the
different analytical functions. For example, we will see the
advantage in having a global approach to target extraction
for surveillance (detection, numbering, classification and
tracking, etc.), which leads to these different functions being
implemented simultaneously, rather than sequentially, as
happens in single-sensor mode. The different sensors may
also be led to cooperate with one another, to mutually enrich
their respective capacities. Finally, judicious sharing and
parallelism of the tasks wusually helps optimize the
effectiveness of each component, so the yield of the whole
system is enhanced.

What emerges from this brief overview of existing fusion
architectures is that it would be ill-advised — dangerous,
even — to attempt to set a universal methodology in stone.
Every application requires a solution specific to it, which can
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only come from an in-depth analysis of the peculiarities of
that application, in keeping with the few common-sense
rules mentioned above. The important thing for our coming
discussion is to be aware of these different architectural
problems in providing developers with all the processing
tools they need to deal with the variety of situations they are
likely to encounter.

1.4. Position of multisensor data fusion

Before discussing the development of the tools necessary
for multisensor data fusion, it is helpful to situate this issue
within the broader framework of data fusion in general, and
identify the intended uses of the aforementioned tools.

1.4.1. Peculiarities of the problem

Data fusion actually covers a very broad range of
problems, depending on the nature of the information being
exploited and the goal of the procedure, as shown by
the discussion presented in [BLO 01]. With regard to the
information being exploited, four major categories can be
distinguished, a priori:

— The observations captured by the sensors.

—The knowledge available in the form of databases,
expert knowledge bases, information, intelligence, etc.

— The preferences used in multi-criterion decisions, with
multiple decision-makers, etc.

—The multiple regulations, the conflicts and
inconsistencies between which need to be resolved in order to
determine the rights, responsibilities, etc., of all the actors in
all cases.

The output, for its part, may lead to the development
and/or updating of two types of model:
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— A model of the real world, of which we are seeking to
form an estimation on the basis of an imperfect perception of
it; this approach stems from what is usually called an
“inverse problem”.

— A model of the ideal world which we wish to create, e.g.
by way of a decision which satisfies several points of view, or
by balancing several regulations.

Clearly, in this panorama, the input to multisensor data
fusion comprises observations and knowledge (contextual, a
priori, exogenous, etc.), and the objective is the development
and updation of models of the real world.

The perimeter we are interested in for our discussions is
even, more specifically, that of sources providing concurrent
information fragments, which mutually enrich one another
when compared. In particular, this excludes signal — or
image — processing to reconstruct a particular physical
value, e.g. the processing of networks of RADAR antennas
(beam forming by calculation, etc.) or stereo-vision. Indeed,
in this case, first, the processing methods are highly specific
and well known, and second, the set of sensors and
processing constitute a single sensor yielding an original
physical measurement.

1.4.2. Applications of multisensor data fusion

While there are, as yet, few implementations which truly
draw the full benefit from the techniques presented above,
the range of applications is still very broad. Of course,
defense systems are the main applications — particularly
with regard to tactical situation assessment, cooperative
multiplatform engagement, aerial defense systems,
surveillance and alarm systems, recognition systems and
intelligence. The requirements in terms of data fusion are
increased, in particular, by the networking of all the means
of observation, command and intervention.
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Another sector of interest, which is highly similar to the
previous one, is that of global security, be it in the
prevention, alert, intervention or resilience phase. Here,
again, all of the available resources are pooled. The objective
may be the protection of persons, property or interests, and
the requirements in terms of data fusion are very similar to
those in the area of defense.

A number of other domains should also be mentioned,
though. The extent of the requirements in these domains is
not yet fully defined, but they have a high potential for
investment. They include:

—information systems in general, which are intended to
handle varied datasets, and often designed for decision
support;

— autonomous vehicles, such as drones, which exploit and
respond to numerous measurements of their environment;

—robotics in general, where data captured by different
sensors are used to automate functions of greater or lesser
complexity;

— agile multisensor perception systems, used particular
for observation of the environment;

— non-invasive diagnostic means — notably in the medical
or engineering field;

— and more generally, cooperative smart systems.

In the discussion to come, the different techniques
presented are, as far as possible, illustrated in terms of the
implementation in one of these domains — most often that of
defense, because of its richness and its advances, but with a
view to facilitating transposition to the other domains as
soon as possible.



