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General Points 

1.1. Introduction 

This book is the continuation of [TAR 11a] and [TAR 11b]. 
The series as a whole gives a broad-ranging presentation of 
the statistical properties of turbulent flows delimited by rigid 
walls. It is preferable, though not obligatory, for the readers 
to consult [TAR 11a] and [TAR 11b]. This chapter lays out 
the basic elements and the literature necessary for the 
understanding of this book. We limit ourselves to give an 
overview as brief as possible, without going into details, 
which the interested readers can find out in numerous 
publications referenced herein. 

First, we provide a summary of the fundamental 
equations in fluid dynamics (the Navier–Stokes (NS) 
momentum balance equations and the conservation of mass 
equations). We then proceed to discuss the Reynolds-
averaged equations. We lay down a number of exact 
solutions related to fully developed turbulent flows in a two-
dimensional (2D) channel, before providing a brief reminder 
about turbulent boundary layers and their overall 
characteristics. Wall turbulent scales are then introduced, 
alongside closures at a single point. We then present the 
characteristics of the mean velocity distribution and the  
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2     Transport and Coherent Structures in Wall Turbulence 

effects of the Reynolds number, analyzed in detail in  
[TAR 11a] and [TAR 11b]. Turbulence intensities of the 
velocity components are discussed in a separate section. The 
chapter ends with some reminders concerning vorticity, and 
its statistical characteristics in wall turbulent flows. 

1.2. General equations 

It will be assumed in this book that the readers are 
familiar with the basic concepts of fluid dynamics. Here, we 
will recap the basic equations applicable to fluid dynamics, 
limiting our examination to incompressible flows. 

1.2.1. Eulerian relations 

The two local equations that are fundamental in fluid 
dynamics express the conservation of mass and the first law 
of general mechanics, which results in the momentum 
balance equation. They are both expressed in terms of the 
material derivative1 defined by  

i
i

D U
Dt t x

∂ ∂
∂ ∂

= +  [1.1] 

The component of the instantaneous local velocity vector 
in direction ix  is written as ( ),iU x t . The position vector is 

( )1 2 3, ,x x x x  and t  is the time. The Einstein summation 
notation is applied to the above relation. The material 
derivative expresses the variation of a physical value, 
tracking the particle in the flow. 

                              
1 The material derivative can also be spoken of as the particle derivative 
or Lagrangian derivative. 
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1.2.1.1. Continuity equation 

The continuity equation expresses the conservation of 
mass throughout an elementary volume of fluid. It can be 
written in various forms, including 

0i

i

U
t x

∂ρ∂ρ
∂ ∂

+ =  [1.2] 

where ρ  is the density. This equation can also be written as 

0i

i

UD
Dt x

∂ρ ρ
∂

+ =  [1.3] 

using the definition of the material derivative. In the context 
of the applications envisaged in this book, the density ρ is 
considered to be constant in this equation; so the continuity 
equation is reduced to 

0i

i

U
x

∂
∂

=  [1.4] 

1.2.1.2. Momentum balance equations 

We obtain the momentum balance equations by applying 
Newton’s first law to an elementary volume. We obtain 

,
i

ji ext i
j

D U f
Dt x
ρ ∂ σ

∂
= +  [1.5] 

In this relation, ,ext if  represents the external forces and 

jiσ  is the shear stress tensor defined by 

2
3

j
ji ji ji ji

j

U
P D

x
∂μσ δ μ δ
∂

= − + −  [1.6] 
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for a Newtonian fluid.2 In this equation, ( ),P x t  represents 
the field of local instantaneous pressure, μ  is the dynamic 
viscosity and jiδ  is the Kronecker delta ( 1jiδ =  if j i= , and 0 

if not). The value ijD  is the strain tensor, which is expressed 

by 

j i
ji

i j

U UD
x x

∂ ∂
∂ ∂

= +  [1.7] 

The momentum balance equation [1.4] can be reduced to 
the NS equation for an incompressible Newtonian fluid with 
constant viscosity. The NS equation is written, in tensor 
form, as 

2

,
1 1i i i i

j ext i
j i j j

DU U U UPU f
Dt t x x x x

∂ ∂ ∂∂ ν
∂ ∂ ρ ∂ ∂ ∂ ρ

= + = − + +  [1.8] 

where ν μ ρ=  is the kinematic viscosity. A slightly different 
form of the NS equation is 

2
,

1 1i ji
i ext i

j i

U UU P U f
t x x

∂∂ ∂ ν
∂ ∂ ρ ∂ ρ

+ = − + ∇ +  [1.9] 

As a general rule, the Einstein summation over repeated 
indices is adopted in this book, except in certain very specific 
cases, which will be clearly indicated. The viscous terms are 
contained in the Laplacian operator 2 2

j jx x∂ ∂ ∂∇ =  in 

equation [1.9]. 

                              
2 The discussion in this book is strictly limited to incompressible flows of 
Newtonian fluids. 
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1.3. Notations 

The complexity of certain equations means that we have 
to use the mixed forms of notation in this book. Figure 1.1 
shows the notations that will be used. The position along the 
primary direction of the flow will be indicated by x  or 1x . 
The instantaneous local velocity in this direction will be 
denoted either by U  or by 1U  depending on the context. We 
will denote the component in the wall-normal direction y  (or 

2x ) by V  or 2U . The spanwise direction will be indicated by 
z  (or 3x ) with the corresponding velocity component written 
as W  or 3U . 

 

Figure 1.1. Notations 

1.4. Reynolds equations 

Consider the equation of instantaneous momentum along, 
say, the direction x  for an incompressible fluid: 

2
21U U UV UW P U

t x y z x
∂ ∂ ∂ ∂ ∂ ν
∂ ∂ ∂ ∂ ρ ∂

+ + + = − + ∇  [1.10] 
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where U , V  and W  are, respectively, the instantaneous 
components of the velocity vector in directions ,x y  and z , 
and P  is the (instantaneous) pressure. The final term 
includes all the viscosity terms. This equation is valid at any 
time t  (with the appropriate initial and boundary 
conditions). The instantaneous components of the velocity 
vector ( ),i iU U x t=  vary in time and space, while the flow, at 
any given time, is highly unsteady and three-dimensional 
(3D). If we look at the behavior of u  over long periods, then 
we need to average equation [1.10] over time. To do so, we 
decompose each physical value ( ),Q x t  into a temporal 

average value ( )Q x  and a fluctuating value ( ),q x t , where 

0q = . Thus we have, for example, 

( )( )i j i i j j i j i jU U U u U u U U u u= + + = + , and the correlation 

between the fluctuations i ju u  is generally non-null.  

Equation [1.10], subjected to this treatment and 
appropriately arranged, is written as 

21U U U P uu uv uwU V W U
x y z x x y z

∂ ∂ ∂ ∂ ∂ ∂ ∂ν
∂ ∂ ∂ ρ ∂ ∂ ∂ ∂

+ + = − + ∇ − − −  [1.11] 

and generally: 

21 i ji
ij

j i j

u uU PU U
x x x

∂∂ ∂ ν
∂ ρ ∂ ∂

= − + ∇ −  [1.12] 

The continuity equation, for its part, is of the same form 
for the average field and the fluctuating field; in other words, 

0i iU x∂ ∂ =  and 0i iu x∂ ∂ = , with the latter identity being 
valid instantaneously. What we need to take away from 
these equations (and by comparison with a laminar flow) is 
the existence of the terms of inter-correlation or cross-
correlation of the type i ju u . These terms, called Reynolds 
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stress (which, more specifically, are i ju uρ− ), introduce six 

unknowns, for which, a priori, we have no additional 
equations. The only possibility, then, is to link them to the 
shearing terms i jU x∂ ∂  by way of considerations that are 

usually phenomenological. The issue of turbulent flows in 
general, and wall turbulence in particular, lies precisely in 
the modeling of these terms, which enables us to close the 
system of equations. 

1.5. Exact relations in a fully developed turbulent 
channel flow 

We will now lay out a few exact solutions in the case of a 
fully developed 2D turbulent channel flow. These solutions 
will enable us to link the wall shear stress to the distribution 
of the Reynolds stresses and clearly establish the reason why 
turbulence increases transfers at the wall. The flow is 
homogeneous along the streamwise x  and spanwise z  
directions, which gives us 0x z∂ ∂ ∂ ∂= = . The channel is 
considered to be infinite. Consequently, the spanwise 
velocity is 0W = . For reasons of continuity, 0V =  and 

( )U U y= . The Reynolds equations along the streamwise and 
wall-normal directions then assume the exact forms: 

2

2

10

10

P U uv
x y y

P vv
y y

∂ ∂ ∂ν
ρ ∂ ∂ ∂

∂ ∂
ρ ∂ ∂

= − + −

= − −
 [1.13] 

We can see, from this last equation, that the pressure is 
not solely a function of x , but rather there are variations 
along y , induced by the gradient of vv . This is the first 
difference from a laminar Poiseuille flow. Integration of 
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equation [1.53], from the wall ( 0y = ) to a point of ordinate y  
in the flow, enables us to write  

( )
0 0

1 y yP vvdy dy vv y
y y

∂ ∂
ρ ∂ ∂

= − = −   

such that ( ) ( ) ( )0,P x y vv y P xρ= − + , where ( )0P x  is the 

pressure at the wall. Thus, 0dPP
x dx

∂
∂

=  for reasons of 

homogeneity ( vv  depends only on y ).  

We can then integrate the Reynolds equation relating to 
( )U y , from the wall to the center of the channel ( y h= ), 

noting that the shear ( ) 0
y h

U y∂ ∂
=

=  because of symmetry. 

We obtain  

0
0

1 10 dP h
dx

τ
ρ ρ

= − −  

because the Reynolds shear stress uvρ−  is null at the wall 
and in the center of the channel, again for reasons of 
symmetry. This last equation links the pressure gradient 

0dP dx  to the friction at the wall ( )0 0y
U yτ μ ∂ ∂

=
= . By 

putting this value back into the equation of U  and 
integrating it this time from the wall to y  in the flow, we 
obtain  

( ) ( ) 0 1U yy uv y
y h

∂μ ρ τ
∂

− = −  

where on the left, we can clearly see the total shear stress  

( ) ( )tot
U y uv y
y

∂τ μ ρ
∂

= −  [1.14] 
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which is the sum of the viscous stress and the Reynolds 
stress. We introduce the friction velocity uτ  

2
0uτρ τ=  [1.15] 

and the internal length scale  

l
uν

τ

ν=  [1.16] 

The values rendered dimensionless by the wall units uτ  

and lν  are indicated by ( )+ . The dimensionless form of 
equation [1.14] in inner variables is  

1tot
U yuv
y h

∂τ
∂

+ +++
+ += − = −  [1.17] 

 

Figure 1.2. Reynolds stress in wall units as a function of the distance to 
the wall. The solid line represents the total stress. These results are 

obtained on the basis of direct numerical simulations in a fully developed 
turbulent channel flow for 180huRe τ

τ ν= = . (From [DOC 06]) 

Thus, the total stress varies linearly with the distance 
from the wall. Relation [1.17] is exact. Figure 1.2 shows the 
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distributions of the Reynolds stress uv
+

−  and the total stress 

totτ +  obtained by direct numerical simulations (DNS s) in a 
fully developed turbulent channel flow at a low Reynolds 
number. The results demonstrate perfect linearity of totτ + , 
and this type of analysis enables us to check the quality of 
the results (such as the statistical convergence, for example), 
both experimental and numerical. DNS s resolve the 
integrality of the scales defined by discretization of the 
domain of calculation, and of course, do not require closure. 
We can go one step further and also determine the friction 
coefficient. Integration of equation [1.17], from the lower 
wall of the channel to y+  in the flow, gives us the velocity 
distribution. 

( ) ( )
2

02

yyU y y uv d
h

η η
++ ++ + + + +

+= − +  [1.18] 

By integrating this relation from the wall to the center  
( y h+ += ), we arrive at: 

( ) ( )
2

0 0 03

yh hhU y dy uv d dyη η
++ ++ ++ + + + + += +  

The latter integral can be calculated by integration by 
parts: 

( ) ( ) ( )
0 0 0

yh h

uv d dy h y uv y dyη η
++ +

+ ++ + + + + + += −  

Using the definition of the bulk velocity 

( )
0

1 h

mU U y dy
h

+

+ + + +
+= , we find:  
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( )
0

1
3

h

m
h yU uv dy

h

++ ++ + +
+= − − −  

It is interesting to rewrite this equation using the scales 
h  and mU , known as “external (outer) scales”, to find a 
relation concerning the friction coefficient, here defined by 

2 21/ 2 2f p m mC U Uτ ρ += = . By introducing mRe U h ν= , noting 

that mh Re hu Re Uτ τ ν+ += = = , and using the notation ( )*  to 

represent the values rendered dimensionless by h  and mU , 
we obtain: 

( )( )
1

** *

0

6 6 1fC y uv dy
Re

= + − −  [1.19] 

The quantity 6 Re  is nothing but the friction coefficient 
for a laminar flow. It can be interpreted as the laminar 
contribution flC  in this specific case. The second term on the 

right of the previous equation is a weighted integral of the 
distribution of the Reynolds stresses and constitutes the 
direct contribution of the turbulence to the friction 
coefficient, written as ftC . The turbulence considerably 

increases the friction coefficient, because of this contribution. 
Equation [1.19] was also obtained, in a slightly different 
manner, by [FUK 02]. 

We can go further with the analysis and see whether it is 
possible to decompose the velocity field into laminar and 
turbulent contributions. Equation [1.18] used with the 
external scales h  and mU  is 
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( ) ( )
**2 ** * * * *

02 2

y

f
Re yU y C y uv dη η= − +  

We propose the decomposition * * *
l tU U U= + , where, for a 

given Re  ( mU ), ( )* * *3 2 2lU y y= −  is the laminar (Poiseuille) 

velocity profile and *
tU  is the turbulent contribution to *U , 

which remains to be determined. By decomposing 
f fl ftC C C= +  in equation [1.19] and after arrangement, we 

obtain: 

( ) ( )( ) ( )
*1

* ** * * * * * *

0 0

3 2 1
2

y

t
ReU y y y uv dy uv dη η= − − − − −  [1.20] 

in the absence of Reynolds stresses, obviously, *
tU  becomes 

null. 

1.6. Equations for a turbulent boundary layer 

Consider a 2D turbulent boundary layer. The Reynolds 
equations for an incompressible fluid with constant physical 
properties are: 

2 2

2 2

2 2

2 2

1

1

U U P U U uu uvU V
x y x x y x y

V V P V V uv vvU V
x y y x y x y

∂ ∂ ∂ ∂ ∂ ∂ ∂ν
∂ ∂ ρ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ν
∂ ∂ ρ ∂ ∂ ∂ ∂ ∂

+ = − + + − −

+ = − + + − −

 [1.21] 

The terms in z∂ ∂  disappear because the turbulent flow 
is 2D (in the case of a boundary layer on a flat plate, for 
example, its spanwise extent is assumed to be infinite). The 
last terms in these equations represent the contributions of 
fluxes of turbulent shear stresses. The boundary layer 
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approximations, which we are about to develop, are based on 
an important peculiarity concerning the order of magnitude 
of u , v  and w . The continuity equation for the fluctuating 
components is written thus: 

0u v w
x y z

∂ ∂ ∂
∂ ∂ ∂

+ + =  

However, a structure responsible for turbulent 
fluctuations has no prevailing direction (in a rough sense), 
and its characteristic scales in the three directions are, 
locally, of the same order of magnitude 

 x y zl l l≅ ≅ = l  

The symbol ≅  needs to be interpreted as being of the order 
of rather than approximately equal to. The continuity 
equation thus implies 

 u v w ′′ ′ ′≅ ≅ = u   

(Figure 1.3). The order of magnitude of the fluctuations is, 
therefore, estimated by 

2 2u u u v
x y

∂ ∂
∂ ∂ δ

′ ′′ ′ ′ ′
≅ << ≅u u

L
 

because δ << L . It follows that 

( )

2 2

2 2

U U
x y
P P P P x
y x

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∞

<<

<< =

 1 dP dUU
dx dxρ

∞ ∞
∞− =  
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The turbulent boundary layer equations are finally 
reduced to: 

2

2

dUU U U uvU V U
x y dx y y

∂ ∂ ∂ ∂ν
∂ ∂ ∂ ∂

∞
∞+ = + −  [1.22] 

 

Figure 1.3. Scale characteristics of a turbulent boundary layer  
and a local turbulent structure 

1.7. Scales in a wall-bounded turbulent flow 

We will begin by introducing the velocity and length 
scales needed to describe the physics of wall turbulence and 
turbulent transfer at the rigid boundary. The meaning of 
these scales will become clearer when we introduce the 
mixing-length-type closures later in this chapter. Generally 
speaking, we can distinguish two zones in a wall flow: a 
near-wall zone, where the flow is controlled by the internal 
scales, and a zone relatively far from the wall, governed by 
the external scales. 

The near-wall zone is characterized by the wall shear 
stress ( )0 0

u yτ μ ∂ ∂=  and the kinematic viscosity ν . We 

introduce a fictitious velocity 0uτ τ ρ=  based on the shear 
at the wall, called the friction velocity. This velocity scale 
accurately describes the turbulent state near to the wall, 
because without shear (vorticity), no turbulence can be 
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sustained. The length scale based on the friction velocity and 
the viscosity is l uν τν= . The couple ( ),u lτ ν  constitutes the 
internal scales. The quantity q , rendered dimensionless by 

the internal scales, is denoted by q+ , such as, e.g. the 

velocity U U uτ
+ = , the Reynolds stress 2

i j i ju u u u uτ
+

− = − , the 

time 2t t uτ ν+ =  or the frequency 2f f uτν+ =  in wall units. 
The internal scale is constant in the case of a turbulent flow 
in a channel, but it depends on the streamwise direction x  in 
a turbulent boundary layer. Consequently, the 
adimensionalization by the wall scales ( )( ),u x lτ ν  only makes 

sense for a given local position x  in the latter case. Among 
other things, this requires that the turbulent boundary layer 
should be at equilibrium. The notion of turbulence at 
equilibrium is an important one, and one that is sometimes 
tricky to grasp. Interested readers can, for example, consult 
[TOW 76], which is one of the classic works in this domain. 

The external velocity scale is either the velocity cU  in the 

center of the channel or its bulk velocity mU , or the velocity 

in the irrotational zone of a boundary layer U∞ . In parallel, 
the external length scale 0Λ  is the half-height of the channel 
h  or the thickness of the turbulent boundary layer. The 
external scales are universal, unlike the internal scales, 
which are linked to the localized phenomenology, near to the 
wall. 

1.8. Eddy viscosity closures 

Consider the terms: 

( )2

2

1uvU U uv
y y y y

∂∂ ∂ ∂ν μ ρ
∂ ∂ ρ ∂ ∂

− = −  
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in the Reynolds equation. As previously indicated, and a 
fortiori in the above representation, it is clear that uvρ−  
plays the physical role of a stress. The Reynolds stress is 
positive in a flow where the gradient 0U y∂ ∂ > , and it 
increases the total stress. 

Thus, the stress uvρ−  is added to the viscous stress to 

yield the total stress totτ . One typical way to model uvρ−  is 

to link it to the average gradient U y∂ ∂ , because, without 
shear, no turbulence is produced. We then introduce a 
fictitious viscosity, ( )t yν , called the eddy (or turbulent) 
viscosity, and express the Reynolds stress as 

( )t
Uuv y
y

∂ν
∂

− =  [1.23] 

The eddy viscosity ( )t yν  is not strictly linked to vortices, 
although coherent vortex structures, particularly near to the 
wall, play an important part in generating turbulence. The 
turbulent viscosity is not a physical property of the fluid – 
far from it. It is not a constant, and varies spatially. There is 
no universal model for ( )t yν , and it depends on the 
phenomenology of the particular flow. 

Thus, the total stress can be written as 

( )tot t
Uy
y

∂τ ρ ν ν
∂

= +  

Essentially, we can distinguish two zones in a wall layer, 
depending on whether the eddy viscosity is greater or lesser 
than the kinematic viscosity. The kinematic viscosity is 
predominant in a confined sublayer near to the wall, where 
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( )t yν ν<< . We can expand the velocity ( )U y  into a Taylor 
series near to the wall: 

( )
2 3

2 3
2 3

0 0 0

1 1 ....
2 6y y y

U U UU y y y y
y y y

∂ ∂ ∂
∂ ∂ ∂= = =

= + + +  

and by virtue of how thin the sublayer is, we can neglect the 
terms of greater order than y : 

( ) 0

0y

uU y y y
y

τ∂
∂ μ=

≈ =  

Using the internal scales ( , )uτν introduced in section 1.7, 
we find: 

( )U y y+ + +=  [1.24] 

in this layer commonly known as the viscous sublayer. The 
linearity of the velocity distribution in relation to the wall-
normal distance is nothing out of the ordinary, and also, 
such a zone exists whether we are dealing with a laminar or 
a turbulent flow. The fact that the viscosity is predominant 
in this zone absolutely does not mean that the flow is 
laminar, and in fact the term “laminar sublayer” is utterly 
erroneous: the turbulent fluctuations are very strong in the 
viscous sublayer. For example, the turbulent intensity of the 

wall shear stress fluctuations 0 0 0
'τ τ τ′  is as high as 0.40. 

Now let us consider the zone of flow, where the eddy 
viscosity is dominant, with tν ν>> . This zone, in which the 
viscous effects are negligible with respect to the effect of 
turbulent mixing, is relatively far from the wall. We suppose, 
however, that the total stress totτ  remains constant and is 
equal to the stress at the wall 0τ  (Figure 1.4). For this 
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reason, this layer is called the constant stress sublayer. With 
these hypotheses made, we can write: 

( )0tot t y U yτ τ ρν ∂ ∂≡ =  

We still need to model the eddy viscosity ( )t yν . It can 
take the form ( )t yν ≈ v , where  and v  are the length- and 
velocity scales characterizing the turbulent mixing. In 
relation to v,  the choice of the friction velocity uτ  proves 
logical, given that the phenomenon, overall, is determined by 
the stress at the wall. The length scale typical of the 
turbulent viscosity is the wall-normal distance: the extent of 
the turbulent mixing increases with y  and yκ= , where κ  
is a constant. Closure in turbulent flows is generally based 
on phenomenology. Thus, the hypotheses made must be 
compared against the experimental results or the direct 
numerical simulations. There is no general rule that can be 
applied here. The closure yκ= , where κ  is the universal 
von Kárman coefficient, was one of the earliest propositions 
to be made. 

 

Figure 1.4. Sublayers in a turbulent wall flow 
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By expressing these different hypotheses using internal 
scales (in particular, t tν ν ν+ = ) we conclude: 

( )1tot t
dU dUy y
dy dy

τ ν κ
+ +

+ + + +
+ += = =  

and by integrating this expression, we find a logarithmic 
velocity distribution: 

( ) 1 lnU y y B
κ

+ + += +  [1.25] 

The constant B  does not depend greatly on the Reynolds 
number, and varies between 4.5B =  and 5.5B = . The von 
Kárman constant, within the limit of large Reynolds 
numbers, is 0.37κ = , as is also predicted by the 
renormalization group theory [TAR 11a, TAR 11b]. The zone 
of overlap between the viscous sublayer and logarithmic 
sublayer is called the buffer sublayer. It plays a dynamic role 
which is crucially important in wall turbulence. The so-called 
coherent vortex structures are concentrated mainly in this 
zone. The coherent vortices, to which this book is entirely 
dedicated, are responsible for the regeneration of the 
Reynolds stresses and the turbulent mixing. A semi-
empirical expression for the velocity distribution, which 
corresponds well to the measurements, particularly in the 
lower buffer sublayer, is 

( ) 14.5tanh
14.5
yu y

+
+ + =  [1.26] 

This expression is based on [RAN 56]3, which suggests 

( )2sinht yν χ+ +=  

                              
3 See [HIN 75, p. 622].  
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in the viscous- and buffer sublayers, and the empirical value 
of χ  is 14.5χ = . The validity of this expression in wall 
turbulence with very large Reynolds numbers has not been 
established. 

 

Figure 1.5. Mean velocity profiles in a fully developed turbulent channel 
flow. The results were obtained by Bauer [BAU 14] using direct numerical 

simulations in the range 180Reτ =  to 1,100Reτ =  

The mean velocity is a value, which is relatively simple to 
measure, and there is a huge database of experimental 
readings taken of ( )U y+ + . By way of illustration, in  

Figure 1.5, we show the mean velocity profiles obtained by 
direct numerical simulations4 in a fully developed turbulent 

                              
4 We present our own direct numerical simulations for illustrative 
purposes. Larger Reynolds numbers have now been attained in channels 
and boundary layers, in wide domains of calculation up to 2, 000Re

τ
=

[HOY 08] and turbulent boundary layers with 1,271Re
τ

=  in [SCH 10] and 

2,000Re
τ

=  in [SIL 11]. These limits increase as our computational 

capacities increase. Readers can usefully consult http://www.mech.kth. 
se/~pschlatt/DATA/, and http://torroja.dmt.upm.es/channels/data/. At 
present, J. Jiménez and R. Mosser are working on direct numerical 
simulations in a pipe with 5,000Re

τ
= . 
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channel flow covering a range from small Reynolds numbers 
/ 180Re u hτ τ ν= =  to moderate values 1,100Reτ = . Indeed, we 

can see a sublayer wherein ( )lnU y+ +∝  which, apparently, 

begins at 30y+ = . A more detailed analysis, though, reveals 
that the von Kárman constant κ  has not yet reached its 
asymptotic value, because the Reynolds numbers in question 
here are small, and the “logarithmic layer” is not entirely 
free of viscous effects in the case shown in Figure 1.5. Let us 
stress the highly restrictive nature of the numerous 
hypotheses that have led us to relation [1.25], which, in 
particular, requires that the viscous stress be negligible and 

the Reynolds stress uv
+

−  be constant and equal to 1 in that 
zone. However, rigorously speaking, these hypotheses are 
valid only within the range Reτ →∞ . Thus, in the range of 
Reτ  values considered here, the zone wherein the Reynolds 
stress is constant and “approximately” equal to the stress at 
the wall (though not exactly equal) is greatly restricted, as 
shown by Figure 1.6. 

 

Figure 1.6. Profiles of the Reynolds stress in units wall in a fully 
developed turbulent channel flow. The results are obtained by Bauer  

[BAU 14] by direct numerical simulations in the range  
180Reτ =  to 1,100Reτ =  



22     Transport and Coherent Structures in Wall Turbulence 

 

Figure 1.7. Inverse of the “diagnostic” function depending on the distance 
to the wall in a turbulent channel flow using direct numerical simulations, 

taken from [BAU 14] 

Consider the so-called “diagnostic” function  

1
dUy
dy

−+
+

+ℑ =  [1.27] 

 

Figure 1.8. “Diagnostic” function based on the wall-normal distance in 
wall scales, according to [OST 00]. The data are averaged over different 

profiles in the inner layer 0.15y δ < , where δ  is the thickness of the 
boundary layer 
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This quantity can be reduced to the von Kárman constant, 
κℑ = , which should be independent of the Reynolds number 

in a universal logarithmic sublayer.5 Figure 1.7 shows the 
distributions of 1( )y− +ℑ  found by direct numerical simulation 
by Bauer [BAU 14]. Note the emergence of a zone beginning 
at approximately 50y+ =  in which 1( )y− +ℑ  varies little but 
does not remain perfectly constant. The size of this zone 
increases with increasing Reτ , as might be expected.  

Let us attempt to clarify the situation by analyzing  
Figure 1.8, which shows the distribution of ( )y+ℑ  on the 

basis of the wall-normal distance in inner units. The figure is 
adapted from [OST 00], and includes the experimental data 
on the boundary layer in a wide range of Reynolds number 
values, based on the momentum thickness covering 
2,500 27,000Reθ≤ ≤ . We note that κℑ =  does indeed tend 
toward a universal value independent of the Reynolds 
number, but quite far from the wall at 200y+ ≥  (the data are 
averages over different profiles with different Re  values). 
Although they are slight, the viscous effects extend from the 
end of the buffer sublayer 30y+ =  to 200y+ = , depending on 
the Reynolds number. A universal logarithmic sublayer of 
significant extent would, therefore, exist only beyond 

200y+ = , and then only if the Reynolds number is sufficiently 
high – typically 6,000Reθ ≥ .6 The logarithmic zone would not 
be entirely free of viscous effects at 6,000Reθ ≤ , and the von 
Kárman constant would depend on the Reynolds number, as 
shown in [OST 00] and Figure 1.8. 
                              
5 Readers can consult [TAR 11a] and [TAR 11b], and the references cited 
therein, for a detailed discussion of the state of the art on the structure of 
the mean velocity distribution in different sublayers. In this chapter, we 
content ourselves with a very restricted overview. 
6 Using the semi-empirical relation 0.30Re Reτ θδ + = =  from [GEO 97], we 

obtain the limit 1,800Reτ > . 
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Figure 1.9 shows the von Kárman constant deduced from 
the measurements taken by Osterlund et al. [OST 00] and 
Nagib and Hites [NAG 95]. The maximum Reynolds number 
attained in these experiments is approximately 328 10Reθ = × . 
The von Kárman constant was determined in the inner layer 
delimited by 50 0.15y δ+ +≤ ≤ . We have expressed κ  as the 
value predicted by the renormalization group 0.37RNGκ = , 
and represent the data as a function of 1 lnReθ . In spite of 
an inherent dispersion, we note that the von Kárman 
constant increases with 1 lnReθ . A linear regression suggests 
the variation 5 lnRNG Reθκ κ ∝ . According to the results 
presented in  

Figure 1.9, the von Kárman constant reaches its value 
0.37RNGκ =  at 350 10Reθ = ×  – a limit beyond which it should, 

in theory, remain constant. 

 

Figure 1.9. The von Kárman constant expressed as its value obtained by 
the renormalization group as a function of the Reynolds number. 

Experimental data harvested from [OST 00] and [NAG 95].  
This figure is adapted from [TAR 11b] 
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The logarithmic sublayer in the “universal” sense of the 
term would thus exist only when 1800Reτ > . Recent research 
has shown that it begins at 3y Reτ

+ ≡  [KLE 09, ALF 11, 
MAR 13] within the range of moderate Reynolds numbers 
(Figure 1.4), and ends at approximately 0 0.15y Λ = , where, 
remember, 0Λ  is the integral scale (the half-height of the 
channel, or the thickness of the boundary layer). The outer 
limit in internal scales is clearly 0.15Reτ  [MAR 13]. The von 
Kárman constant determined by analysis of experimental 
data by Marusic et al. [MAR 13] is 0.39κ =  in the range 

3 418 10 63 10Reτ× < < × , which differs only very slightly from 
the value RNG 0.37RNGκ = .7 Regarding the constant B  in the 
logarithmic distribution [1.25], its value is 4.3B = . 

 

Figure 1.10. The profiles ( )1 / lnU yκ+ +− according to [MAR 13]. Top to 
bottom: 98,190Re

τ
= , 68,780 and 18,010. The vertical dotted lines delimit 

the zone 3 0.15Re y Reτ τ
+≤ ≤ . The experimental error bands are also 

shown in the figure 

                              
7 It is interesting to note that the lowest Reynolds number used in 
Marusic’s study corresponding to 318 10Reτ = ×  is approximately 

360 10Reθ = × . The von Karman constant must, therefore, have reached its 
asymptotic value of RNG, in light of Figure 1.9, which is perfectly the case. 



26     Transport and Coherent Structures in Wall Turbulence 

Figure 1.10, adapted from [MAR 13], shows three 
experimental profiles ( )1 / lnU yκ+ +− , where 0.39κ = , in the 

range 98,190 18,010Reτ≤ ≤ . We can see that the profiles do 
indeed reach plateau regions in the zone 3 0.15Re y Reτ τ

+≤ ≤ . 

The velocity in the outer sublayer depends on the friction 
velocity uτ , the velocity U∞  in the potential zone  
of a boundary layer (or the velocity at the center of the 
channel cU ), the distance y  from the wall and the external 
length scale 0Λ  (the thickness δ  of the boundary layer or the 
half-height h  of channel). A simple similarity analysis shows 
that ( )U y  is of the form: 

( ) ( )
0

U U y yU U y g
uτ

∞ + + +
∞

−
= − =

Λ
 [1.28] 

in that zone. More generally, and taking account of u Uτ ∞ , 
we can write 

( ) ( )
0

,
U U y uyU U y g

u U
τ

τ

∞ + + +
∞

∞

−
= − =

Λ
 [1.29] 

The introduction of the Rotta thickness [ROT 50] 

( )
0

R

U U y
dy

uτ

δ
∞

∞ −
=  [1.30] 

enables us to express the velocity defect distribution as 

( ) ( )
R

U U y yU U y g
uτ δ

∞ + + +
∞

−
= − =  [1.31] 

with the function g from equation [1.29] repeated here for 
ease of notation. 
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The Rotta thickness is linked to the displacement 
thickness dδ by 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

0 0
R

d

U U y U U y U x
x dy dy

u U u x

U x
x
u x

τ τ

τ

δ

δ

∞ ∞
∞ ∞ ∞

∞

∞

− −
= =

=
 [1.32] 

where it must be remembered that x and y  are, respectively, 
the coordinates in the streamwise and wall-normal 
directions. Equation [1.32] is also written as 

( ) ( ) ( )
( ) ( )( )

1
1

d R R

U x
x x x U

u xτ

δ δ δ
−

−∞ +
∞= =  [1.33] 

By introducing the outer variable Ryη δ= , it is easy to 
verify that the definition of the Rotta thickness yields 

( )
0

1g dη η
∞

=  [1.34] 

It is also possible to determine a simple relation 
concerning the form factor ( ) ( ) ( )dH x x xδ θ= . Indeed 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 1

0 0

1R

U y U U y
x dy x U U g g d

U U
θ δ η η η

∞ ∞
− −∞ + +

∞ ∞
∞ ∞

−
= = −  

which, in light of equation [1.34], is reduced to 

( ) ( )( ) ( )( ) ( )1 2 2

0
R Rx x U x U g dθ δ δ η η

∞
− −+ +

∞ ∞= −  [1.35] 
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Hence, the shape factor is 

( )
( ) ( )1 2

0

1

1
H x

U g dη η
∞

−+
∞

=
−

 [1.36] 

The linking of the profiles in the inner and outer layers 
results in an intermediate logarithmic distribution. In the 
internal layer, the velocity is governed by a function that 
depends on the wall variables, so that  

( ) yuU y u f τ
τ ν

+ =  [1.37] 

This profile needs to be linked to the outer profile, 
described by equation [1.28] in the intermediate layer. We 
have: 

( )
0

yu yU U y U u f u gτ
τ τν∞ ∞− = − =

Λ
 [1.38] 

at the overlap point. The derivative in relation to y  in the 
above equation enables us to write: 

( ) ( )
0 0 0

1 1u yf y g gτ η
ν

+′ ′ ′= − = −
Λ Λ Λ

 

where 0yη = Λ . By multiplying both sides of the above 
equation by y, we obtain: 

( ) ( ) 1y f y gη η
κ

+ +′ ′= − =  [1.39] 

which necessarily implies that the left-hand and right-hand 
sides are constant and equal to 1 κ . The integration of  
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equation [1.39] gives us the following logarithmic 
distribution: 

( ) 1 lnf y y B
κ

+ += +  [1.40] 

and the outer distribution: 

( ) 1 ln extg Bη η
κ

= − +  [1.41] 

The constant extB  is directly linked to B  by the relation: 

1 lnextB U h B
κ

+ +
∞= − −  [1.42] 

The logarithmic distribution can be interpreted as the 
consequence of two distinct zones, where the scales are, 
respectively, linked to the inner and the outer flow. This 
argument, which is commonly called the Izakson–Millikan–
von Mises overlap, constitutes an indirect proof of the 
existence of the logarithmic layer. The underlying hypothesis 
is that the intermediary zone is independent of the Reynolds 
number, i.e. the function f  accepts a local similarity, it is 

not in the form ,yuf Reτ

ν
. Panton [PAN 07] proceeded 

differently to reach a similar conclusion. He used the 
asymptotic Poincaré series in the outer and inner regions 
and rigorously overlaped them to create the composite 
profiles of mean velocity and the Reynolds shear stress. He 
clearly showed that the logarithmic law is the internal 
asymptote of the distribution in outer scales, and the 
external asymptote of the profiles in wall units. 

The structure of the external layer is greatly similar to 
that of a wake. The structures with large scales, which 
depend essentially on the inertia, and depend little on the 
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viscosity, govern the mechanism of turbulent transport in 
both cases. Coles8 proposed a velocity distribution that is 
valid both in the logarithmic sublayer and the outer layer, by 
adding a function known as a “wake function”, to the 
distribution [1.25]: 

( )
0

1 ln ,c
yU y y B W

κ κ
+ + + Π= + + Π

Λ
 [1.43] 

where the argument of the wake function cW  is the distance 
from the wall, rendered dimensionless by the external scale 

0Λ  (the half-height h  of a channel or the thickness δ  of a 
boundary layer) and Π  is a constant that depends slightly 
on the Reynolds number in a canonic boundary layer without 
pressure gradient and varies between 0.54 and 0.55. The 
empirical function cW , proposed by Coles, is 

( ) ( )2 1
1 sin

2cW
η π

η
−

= +  [1.44] 

where 0yη = Λ . The constant Π  depends (slightly) on the 
Reynolds number in a boundary layer without pressure 
gradient and typically varies between 0.54 and 0.55. 

Let us look again at the distribution [1.28] in outer scales. 
Generally speaking, this distribution depends not only on the 
variable 0y yη δ= Λ = , but also on the Reynolds number, 

expressed as uτδ δ ν+ = . Thus, relation [1.28] is expressed in 
the general form: 

( ) ( ),
U U y

g
uτ

η δ∞ +−
=  [1.45] 

                              
8 These results were published in the first edition of the Journal of Fluid 
Mechanics (vol. 1, p.  191, 1956), a renowned journal in this field. 
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The displacement thickness can thus be written as 

( )
0 0

,d
uU U dy g d

U U
τδ δ η δ η

∞ ∞
+∞

∞ ∞

−= =  

which leads to 

( ) ( )1
d uA

U
τδ δ δ

δ
+ +

∞

=  [1.46] 

The quantity 1A , which replaces the integral ( )
0

,g dη δ η
∞

+ , 

depends normally on the Reynolds number δ + . In parallel, 
the momentum thickness assumes the form: 

( ) ( )
2

2

0 0 0

1 , ,u uU U d g d g d
U U U U

τ τθ η η δ η η δ η
δ

∞ ∞ ∞
+ +

∞ ∞ ∞ ∞

= − = +

 

which results in 

1 21u uA A
U U

τ τθ
δ ∞ ∞

= −  [1.47] 

with 

( ) ( )2
2

0

,A g dδ η δ η
∞

+ +=  

The shape factor H  is directly obtained from equations 
[1.46] and [1.47], 

1

21d uH A
U

τδ
θ

−

∞

= = −  
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Equation [1.47] can be re-arranged as 

( )
( )

( )
( )1 1

H HU Re
A A θ

δ δθδ
νδ δ

+ +
+ ∞

+ +
= =  [1.48] 

Readers are invited to consult Chapter 2 of [TAR 11a] and 
[TAR 11b] for further detail. 

1.9. Turbulent intensities of the velocity components 

The turbulent intensity of the streamwise velocity 
fluctuations in wall units is illustrated in Figure 1.11. We 

can see that the maximum value of uu uτ  is reached at 

approximately 15y+ = , and it increases in line with the 
Reynolds number. 

 

Figure 1.11. Profiles for the turbulent intensity of the streamwise velocity 
fluctuations, according to the DNSs performed by Bauer [BAU 14] 

The component with the highest energy is uu , followed 

by the spanwise component ww  (Figure 1.13) and the wall-
normal component (Figure 1.12). The mechanism of inter-
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component transfer is found by way of different terms of the 
transport equations, as will be discussed in the next chapter. 

 

Figure 1.12. Profiles for the turbulent intensity of the wall-normal velocity 
fluctuations, according to the DNSs performed by Bauer [BAU 14] 

 

Figure 1.13. Profiles for the turbulent intensity of the spanwise velocity 
fluctuations, according to the DNSs performed by Bauer [BAU 14] 
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The increase in the peak of the turbulent intensities 
observed in Figures 1.11–1.13 suggests that the influence of 
the Reynolds number is not limited to the mean velocity 
distribution ( )U y+ , but also applies to the characteristics of 

the fluctuating field. For example, Figure 1.14 shows the 
distribution of the maximum streamwise velocity turbulent 
intensity as a function of the Reynolds number 0Re uτ τ ν= Λ . 

We can clearly see that ( )2

max
uu uτ  increases by a factor of 2 

in the range 6180 10Reτ≤ ≤ . 

 

Figure 1.14. Maximum of streamwise velocity turbulent intensity as a 
function of the Reynolds number. This figure is adapted from [HUT 07b]. 
Boundary layer (experimental): [DEG 00, UED 75, LIG 87, BAL 91,  
JOH 87, JOH 89, CHI 95, PUR 81]. Boundary layer, direct numerical 
simulations (DNSs): [SPA 88]. Channel by DNS: [ALA 01, ALA 03,  
ALA 04, JIM 04, MOS 99] 

The maxima of the intensities ( )2

max
vv uτ  and ( )2

max
ww uτ  

also increase in approximately linear fashion with ( )ln Reτ  
[TAR 11a, TAR 11b], under the influence of the passive 
structures discussed in [TOW 76]. These structures are 
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irrotational and contribute to uu , vv  (to a lesser degree) and 
ww , but not to the Reynolds stress uv− .9 Thus, the effect of 

the Reynolds number on ( )
max

uv−  is lesser, and reflects the 

simple fact that the constant shear stress sublayer must 
emerge with high Reynolds numbers. Panton [PAN 07] 
suggests 

2
max

21 foruv Re
u Re τ

τ τκ
− ∝ − → ∞  [1.49] 

and 

,max  for uv

Rey Reτ
τκ

+
− ∝ → ∞  [1.50] 

for the position at the wall where the Reynolds stress 
reaches its maximum value. Figure 1.15 recaps the 
experimental results analyzed by Fernholz and Finley [FER 
96], and compares these measurements with the estimation 
[1.49] (the von Kárman constant used for the estimation is 

0.37RNGκ κ= = ). We note a non-insignificant dispersion of the 

experimental results around 310Reθ = . On the other hand, 
the measurements are indeed grouped around relation [1.49] 
at 34 10Reθ ≥ × . 

                              
9 We will see, in particular in the last chapter, that structures with large 
scales are, in reality, not totally passive and transport significant amounts 
of Reynolds shear stress in a limited area of the logarithmic sublayer, at 

large Reτ  values. In this  chapter, however, we will content ourselves with 

highlighting the lesser sensitivity of uv−  to Reτ  in comparison to that of 

the i iu u , and presenting the classical points of view, without lingering on 
the topic of the recent advances, which will be discussed in subsequent 
chapters. 
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Figure 1.15. Distributions of the maximum value of the Reynolds stress in 
external (boundary layer) flows. This figure is adapted from [FER 96]. The 

estimation is based on relation [1.49]. See [TAR 11b] for further detail 

Approaches based on the spectral behaviors and the 
effects of the attached structures found by Townsend  
[TOW 76] are in agreement, yielding the logarithmic 
distributions of the intensities uu  and ww  in the constant 
stress sublayer. Readers are invited to consult Chapters 3 
and 4 of [TAR 11a] and [TAR 11b] for the details and the 
many references related to these aspects. In summary, the 
turbulent intensities in the fully turbulent zone are 
expressed as: 

( )

( )

( )

2
0

2

2
0

ln

ln

uu uu

vv

ww ww

uu yy A B
u

vv y B
u

ww yy A B
u

τ

τ

τ

+

+

+

= − +
Λ

=

= − +
Λ

 [1.51] 
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These distributions attain their asymptotic form with 
universal constants within the limit of large Reynolds 
numbers, in the zone with no viscous effect, where the total 
stress is reduced to the Reynolds stress – in other words, in 
the logarithmic sublayer delimited by 3 0.15Re y Reτ τ

+≤ ≤  

[EYI 08, KLE 09, MAR 13]. The coefficient uuA  is then 1.26 
[MAR 13]. Figure 1.16 shows the experimental profiles of 

( )2uu u yτ
+  across a wide range of large Reynolds numbers. 

The emergence of the logarithmic distribution with a 
“universal” constant uuA  is clearly visible. 

 

Figure 1.16. Distributions of the turbulent intensity of the streamwise 
velocity for 628, 000Re

τ
=  (A), 98,190  (B), 68,780  (C), 18, 010  (D).  

The vertical dotted lines delimit the zone 3 0.15Re y Reττ
+≤ ≤ .  

This figure is adapted from [MAR 13] 

Various semi-empirical corrections can be made to 
relations [1.51], in particular to take account of the viscous 
effects with lower Reynolds numbers [TAR 11a, TAR 11b]. 



38     Transport and Coherent Structures in Wall Turbulence 

We can see that the streamwise and spanwise intensities 
behave in a similar manner, while the turbulent intensity of 
the wall-normal velocity fluctuations is constant, essentially 
because of the impermeability. A recent study conducted by 
Meneveau and Marusic [MEN 13] revealed that the 
moments of order 2 p  of the fluctuations of ( )u t  (and 
probably also ( )w t ) also respect a logarithmic distribution, 
with  

( )
1/

2

2
0

ln

p
p

p

u yy A
uτ

+ ∝ −
Λ

 [1.52] 

where p  is an integer. 

1.10. Fine structure 

Analyzing the third- and fourth-order moments of the 
fluctuating quantities is a classic statistical analysis method, 
commonly used in wall turbulence. The  
third-order moment of a normalized fluctuating quantity q  
is the skewness factor, defined by 

( )
( )

3

3/2
2

qS q
q

=  [1.53] 

The skewness factor is null for any normalized random 
variable with symmetrical probability density function. 
Thus, positive or negative values of qS  are, therefore, 

precursors of the probability density’s shifting, respectively, 
toward 0q >  and 0q < . 

The odd-order moments of the spanwise component are 
null in a fully developed turbulent channel flow, because of 
the reflectional invariance with respect to the spanwise 
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direction.10 Consequently, ( ) 0S w = , as shown in 
Figure 1.17(c). The skewness factor ( )S u  attains values close 
to 1 near to the wall, and tends toward ( ) 0.5S u = −  at the 
centerline, irrespective of the Reynolds number, within the 
range 180 1,100Reτ< < . The dissymmetry of the wall-normal 
velocity fluctuations is positive in the viscous and 
logarithmic sublayers and ( ) 0S v <  in the buffer sublayer 
(Figure 1.17(b)). The profiles of the third- and fourth-order 
moments with 180Reτ =  correspond closely to the results 
recently published in [VRE 14]. 

The fourth-order moment is a measure of intermittence. 
Its dimensionless form  

( )
4

2
2

( ) qF q
q

=  [1.54] 

is called the flatness (kurtosis) factor. The kurtosis of a 
random Gaussian variable is 3. Figure 1.18 shows that the 
F  factor of the three velocity components approaches this 
value near the centerline, though never completely reaches 
it. The exception is the spanwise velocity with ( ) 0S w =  and 

( ) 3F w =  in a relatively extensive area of the outer layer 
(Figure 1.18(c)). The normal component v  is most 
intermittent near to the wall, and ( )F v  clearly increases 
with the Reynolds number, as shown in Figure 1.18(b), 
reaching values as high as ( ) 42F v =  at 1,100Reτ =  at 0y+ →
. Then comes the spanwise component w , whose flatness 
factor is near to 10 in a layer adjacent to the wall. 

                              
10 See section 2.2. 
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Figure 1.17. Distribution of the skewness of the a) streamwise velocity 
fluctuations, b) wall-normal velocity fluctuations and c) spanwise velocity 

fluctuations according to the DNSs performed by Bauer  [BAU 14] 
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Figure 1.18. Distribution of flatness factor of a) streamwise, b) wall-
normal and c) spanwise velocity fluctuations according to the DNSs 

performed by Bauer [BAU 14] 
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1.11. Vorticity 

Chapter 5 of [TAR 11a] and [TAR 11b] is entirely devoted 
to the characteristics of the vorticity field near to the wall. 
We will briefly summarize certain aspects here because the 
generation of near-wall coherent structures is closely linked 
to the dynamics of the vorticity, and in particular to its 
streamwise component xω . The vorticity is the rotational 

uω = ∇ ∧  of the velocity field. The transport equations for iω  
are thus obtained by applying the rotational to the 
momentum balance equations (which eliminates  
the pressure terms). The transport equation for the 
instantaneous vorticity field thus obtained is 

( ) ( ) ( ) ( )
2

i i

i i
j j i i i i

j l l

D
U u

Dt x x x
P Dω ω

ω ∂ ∂ω ν ω
∂ ∂ ∂

Ω +
= Ω + + + Ω +

= +
 [1.55] 

where the choice of indicial notation enables us to make use 
of the Einstein convention of summation over the repeated 
indices. The component ( ) ( )i i

x U xΩ = ∇ ∧  corresponds to 

the average vorticity and ( ) ( ), ,i i
x t u x tω = ∇ ∧  represents 

the fluctuating component. The left-hand term in equation 
[1.55] contains the inertial terms. The first term on the 
right-hand side represents the terms of vorticity production 

i
Pω , which are of crucial importance in the dynamics of wall 

turbulence, and which we will discuss in detail later on. The 
last term in equation [1.55] represents the diffusion 

i
Dω  of 

( ) ( ),i ix x tΩ ω+ . The mean vorticity in a fully developed 
turbulent channel flow, homogeneous in the streamwise and  
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spanwise directions (respectively, ( 1)x i =  and ( 3)z i = ), is 
nothing but the spanwise component ( )z y dU dyΩ = − . We 

have 

( ),z x y V x U y∂ ∂ ∂ ∂Ω = −  

in a canonical turbulent boundary layer on an infinite flat 
plate. Given that the order of magnitude of V x∂ ∂  is lesser 

than that of the shear U y∂ ∂ , the average spanwise 
component is approximately ( ),z x y U y∂ ∂Ω ≈ −  in these 

conditions. 

The components of the fluctuating vorticity field are: 

( )

( )

( )

, , ,

, , ,

, , ,

x

y

z

w vx y z t
y z
u wx y z t
z x
v ux y z t
x y

∂ ∂ω
∂ ∂
∂ ∂ω
∂ ∂
∂ ∂ω
∂ ∂

= −

= −

= −

 [1.56] 

respectively, in the streamwise, wall-normal and spanwise 
directions. The vector form of the transport equation [1.55] is 
useful, particularly if we want to express that equation in 
the general curvilinear coordinates, 

( ) 2u u
t

∂ ω ω ω ν ω
∂

+ •∇ = •∇ + ∇  [1.57] 

where the details of the decomposition into an average and 
fluctuating value are deliberately omitted for the sake of 
conciseness. In order to save the readers from needlessly 
wasting time, we now briefly recap the vectorial operators 
appearing in the above expression in a curvilinear 
coordinates system ( )1 2 3, ,e e e  and the transformations 
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( )1 2 3, ,x x x x x= , ( )1 2 3, ,y y x x x=  and ( )1 2 3, ,z z x x x= . The metric 
coefficients are 

2 2 2

i
i i i

x y zh
x x x

∂ ∂ ∂
∂ ∂ ∂

= + +  [1.58] 

for 1,2i =  and 3. The gradient is expressed by 

31 2

1 1 2 2 3 3

ee e
h x h x h x

∂ ∂ ∂
∂ ∂ ∂

∇ = + +  [1.59] 

The rotational (and the vorticity) in the system ( )1 2 3, ,e e e  
is 

1 1 2 2 3 3

1 1 2 2 3 3
1 2 3

1 1 2 2 3 3

h e h e h e

e e e u
x x x
h u h u h u

∂ ∂ ∂ω ω ω ω
∂ ∂ ∂

= + + = ∇ ∧ =  [1.60] 

The operator 2∇  is expressed by 

2 2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h h
h h h x h x x h x x h x

∂ ∂ω ∂ ∂ω ∂ ∂ωω
∂ ∂ ∂ ∂ ∂ ∂

∇ = + + [1.61] 

Let us supplement these relations with the expression of 
the divergence, which could be applied, for example, to the 
velocity vector ( )1 2 3, , ;u x x x t  

2 3 1 1 3 2 1 2 3

1 2 3 1 2 3

1 h h u h h u h h uu
h h h x x x

∂ ∂ ∂
∂ ∂ ∂

∇ • = + +  [1.62] 

The vorticity transport equation in the curvilinear 
coordinates will be used (although not frequently) in  
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Chapter 5. The vectorial forms enable us to easily transform 
any transport equation in any curvilinear system.  

1.11.1. Characteristics of vorticity field near to the wall 

The generic structures of wall turbulence are the quasi-
streamwise vortices (QSVs) responsible for turbulent 
production and mixing. The streamwise vorticity in the 
direction of the flow is of capital importance for these 
reasons, and is worthy of a separate comment even at this 
early stage. The instantaneous transport equation for the 
streamwise vorticity can be easily obtained on the basis of 
equation [1.55]: 

( ) ( )
2

x
x y z z x

l l

U uD u u
D t x y z x x

∂ω ∂ ∂ ∂ω ω ω ν ω
∂ ∂ ∂ ∂ ∂

+
= + + + Ω +  [1.63] 

for a fully developed channel flow homogeneous in x  and z . 
The first three terms on the right in equation [1.63] 
correspond to the production terms. The term x u xω ∂ ∂
represents production by stretching of the material lines of 
vorticity by the instantaneous local gradient u x∂ ∂ . The 
elongation of the material line of vorticity by stretching 
increases the intensity of that vorticity, as predicted by 
Kelvin’s theorem. Production by tilting of wall-normal 
vorticity yω  by the local shear gives rise to ( )y U u yω ∂ ∂+ , 

while the spanwise component zω  creates xω  by rotation 

around ( )z z u zω ∂ ∂+ Ω . The three mechanisms of 

production are shown schematically in Figure 1.19. 

By combining and simplifying equations [1.56] and [1.63], 
we find: 

( ) 2
x x

l l

U uD w v u w v u
Dt y z x x y x z x x

∂ω ∂ ω∂ ∂ ∂ ∂ ∂ ∂ ν
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+
= − − + + [1.64] 
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Figure 1.19. Mechanisms of vorticity production in a canonical turbulent 
wall flow. a) Production by stretching: the local and instantaneous 
streamwise gradient pulls the vortex cores, which become more intense.  
b) Production by tilting of the wall-normal vorticity by the local shear.  
c) Production by rotation of the spanwise component and the spanwise 
gradient of the local streamwise velocity component of the velocity 

There are two interesting aspects in this relation. First, 
we can see that after simplification, the term representing 
production by tilting is reduced to 

( )
xI

U uwP
x yω

∂∂
∂ ∂

+
= −  

where the subscript I denotes the tilting. A simple analysis 
of the order of magnitude of the production terms also  
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reveals that the dominant terms are those that contain the 
mean shear U y∂ ∂ . Put differently 

x xI
w UP P
x yω ω

∂ ∂
∂ ∂

≈ ≈ −  

In other words, streamwise vorticity production is 
essentially due to the tilting of the shear layers w x∂ ∂ . The 
spanwise structure, therefore, plays a very significant role. 
The process of regeneration of the layers w x∂ ∂  is complex 
and will be analyzed in detail in Chapter 5. The mean 
vorticity at the wall runs in the spanwise direction and is 
nothing but  

2
0

0
0

x
z

uU
y

τ∂ τ τ
∂ μ μ ν

Ω = − = − = − = −  [1.65] 

where the subscript 0, as usual, refers to the wall and 0τ  is 
the mean wall shear stress (in the direction of the mean 
flow). Two fluctuating vorticity components in the 
streamwise and spanwise directions, respectively, remain at 
the wall: 

( ) ( ) ( )

( ) ( ) ( )

0
0

0
0

0

, , , ,
, ,

, , , ,
, ,

z z
x

x x
z

x z t x z twx z t
y

x z t x z tux z t
y

τ τ∂ω
∂ μ μ

τ τ τ∂ω
∂ μ μ μ

′ ′
= = =

′ ′ ′
= − = − = − = −

 [1.66] 

whereas 0 0yω = . The turbulent intensity 0 0τ τ′ ′  of the wall 

shear stress is directly linked to 0 0z zω ω . We have precisely: 
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( ) ( )
( )

0

0

0 0 0 0
0 0 0 0

0 0

0 0

0

x z

z x

z z
z z

z

x x
z z

z

τ ω

τ ω

τ τ ω ω
τ τ σ ω ω σ

τ

ω ω
τ τ σ σ

+ +
+ +
′

+
+ +
′

′ ′
′ ′ = = = = =

Ω

′ ′ = = =
Ω

 [1.67] 

in inner scales. The value qσ  corresponds to the quadratic 

mean of q .11 Considering the asymptotic behaviors of the 
mean velocity and the fluctuations of velocity near to the 
wall: 

( ) ( )

( )

( )

2

0

2

0

2

0

UU y y O y
y

uu y O y
y

ww y O y
y

∂
∂

∂
∂

∂
∂

= +

= +

= +

 

where ( )O  indicates terms of order greater than ,y  it is 
easy to show that: 

0

0

lim

lim

x

z

y

y

uu
U

ww
U

τ

τ

σ

σ

+
′ →

+
′ →

=

=

 [1.68] 

The statistics on the fluctuating wall shear stress can, 
therefore, be determined on the basis of the velocity field 
near to the wall. However, this requires us to determine 
(either experimentally or by precise direct numerical 

                              
11 For the sake of conciseness, the quantities qσ  and the variance 2

qσ  

will be used indiscriminately to denote the turbulent intensity of q . 
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simulations) the fluctuating components in the viscous 
sublayer, also at distances very near to the walls ( 2y+ ≤ ). 

Let us now consider the instantaneous and local 
momentum balance equations directly at the wall. In a 
canonical flow in the absence of any action exerted at the 
walls (such as distributed blowing/suction for example), 
these equations can be written as 

( ) ( ) ( )
2

0 0
0

10i i i i
i l l

D U u P p U u
Dt x x x

∂ ∂ν
ρ ∂ ∂ ∂

+ = = − + + +  

Noting that the diffusion terms can be expressed as: 

( ) ( )
2

i i ijk k k
l l j

U u
x x x
∂ ∂ν νε ω

∂ ∂ ∂
+ = − Ω +  

we obtain: 

( ) ( )0 0ijk k k
i j

P p
x x

∂ ∂με ω
∂ ∂

+ = − Ω +  

which finally gives us 

( )

( )

0
0

0
0

z

x

p
x y

p
z y

∂ω∂ μ
∂ ∂

∂ω∂ μ
∂ ∂

= −

= −
 [1.69] 

This relation clearly indicates that the fluxes of 
fluctuating spanwise and streamwise components of vorticity 
are directly linked to the instantaneous and local pressure 
gradients at the wall, respectively, in the directions x  and z . 
Equation [1.69] is accurate, and it is at the heart of certain 
strategies for controlling wall turbulence. It is easy to see 



50     Transport and Coherent Structures in Wall Turbulence 

that the wall flux of mean vorticity zΩ  is linked to 
P
x

∂
∂

 along 

( )0zP x y∂ ∂ μ ∂ ∂= − Ω  in a turbulent channel flow, 

homogenous in x  and z . In a boundary layer on a flat plate, 
on the other hand, ( )0

0z y∂ ∂Ω =  since the average pressure 

gradient is then null because of the boundary layer 
approximation. Equation [1.69], which relates to the 
fluctuating fields, of course remains valid in this latter case. 

The momentum balance equations at the wall give no 
indication about the wall flux of wall-normal vorticity 
( )

0y y∂ω ∂ , which may not necessarily be zero although 

strictly speaking, 0 0yω = . Indeed, we actually have: 

( ) 0uω∇ • = ∇ • ∇ ∧ =  

which implies 

00

y x z

y x z
∂ω ∂ω ∂ω
∂ ∂ ∂

= − +  

and there is no reason for the flow ( )
0y y∂ω ∂  to become null 

locally and instantaneously. 

The wall is a source of vorticity. The vorticity is created at 
the wall and subsequently diffuses. It is then advected  
and regenerated in a highly 3D environment. The transfer  
of vorticity from one component to another is  
perpetually occurring during this process. The dominant 
component of vorticity near to the wall is in the spanwise  
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direction, ( ) ( ),z zx x tωΩ + . If we now consider the evolution of 
the wall-normal vorticity component, we have 

( )
2

y y
x y z z

l l

D v v v
Dt x y z x x
ω ∂ ω∂ ∂ ∂ω ω ω ν

∂ ∂ ∂ ∂ ∂
= + + +Ω +  [1.70] 

which can be simplified as: 

2

y

z y
l l

D v w u w v
Dt x y z x y

u v
y z x x

ω ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ν ω
∂ ∂ ∂ ∂

= + −

+ Ω − +
 

 

Figure 1.20. Transfer of the spanwise vorticity component into wall-
normal and streamwise vorticity in the inner sublayer of a turbulent wall 

flow. The local zones of streamwise vorticity may roll up into coherent 
quasi-streamwise vortices (QSVs) 

A simple analysis of the order of magnitude is sufficient to 
show that the predominant production term of yω  is 

z v z∂ ∂Ω  in the inner sublayer, where 1z
+Ω ≈ , which is 

nothing but the stretching of the spanwise vorticity zΩ  by 
the shear v z∂ ∂ . We can, therefore, suggest a simplified 
physical image of the dynamics of vorticity in the buffer 
sublayer. The normal vorticity is null at the wall, but is 
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created by the stretching of the spanwise vorticity in 
immediate proximity. It is then tilted, again because of the 
mean shear, to create the streamwise component xω , which 
can “roll up” and develop into QSVs that play a fundamental 
role in the structure of the wall turbulence, and constitutes 
the main subject of this book. This suggestion is represented 
in Figure 1.20. 

 

Figure 1.21. Turbulent intensities of the spanwise, wall-normal and 
streamwise vorticity components in a fully developed turbulent channel 
flow for 180 1,100Reτ< < , respectively, according to Bauer [BAU 14]. The 
turbulent intensities of the spanwise and streamwise components increase 
with the Reynolds number, whereas the intensity of the wall-normal 
component is remarkably immune to variations in Reτ . Also see [GIR 06] 

1.11.2. Turbulent intensities of the fluctuating vorticity 
components 

Figure 1.21 shows the distribution of turbulent intensities 
of the vorticity components in the range 180 1,100Reτ< <  
arising from our own direct numerical simulations [BAU 14] 
and corresponding closely to the results found by [HOY 08]. 
The intensities of the streamwise and spanwise components 
increase in line with the Reynolds number, particularly in 
the buffer sublayer. However, the intensity 

yωσ +  remains 
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remarkably insensitive to Reτ  for reasons that have not yet 
been elucidated. One of the plausible arguments is that this 
insensitivity arises from the universality of the spatial 
distribution of the QSVs in the buffer sublayer. The wall-
normal vorticity is dominated by the term y u zω ∂ ∂∝  at 

15y+ ≤ , particularly near to the vortex structures, where the 
u z∂ ∂  shear layers are engendered by purely kinematic 

effects. They form thin walls of vorticity separating the 
QSVs. We can, therefore, consider the fact that 

yy zu z uωω ∂ ∂ λ+ + + + +∝ ∝ , where 
y

uω
+  is the velocity scale linked 

to yω +  and zλ+ , is the spanwise spacing between the QSVs 

(directly linked to the spacing of the high- and low-velocity 
streaks, as we will see later on). It occurs that zλ+  depends 
only slightly on Reτ , which could, in part, explain why 

yωσ +  is 

independent of the Reynolds number, if only for 1,100Reτ ≤ . 

 


