
Chapter 1

Main Principles of Program Specialization

Who was it that said, “Let us lean heavily on principles; they will
always give way in the end”?

— Edouard Herriot Notes & Maxims

A program specialization is a type of optimizing program transformation. To
simplify this, we can take the following example: if we have a program, on the one
hand, and a context for its execution, on the other (i.e. a partial knowledge of the
data that will be input into the program at run time), we seek to create a new program,
whose behavior is identical to that of the original program (same effects, same results),
but which performs better because it is specialized to that particular execution context.
In a broad context, program specialization denotes an area of computer science that
brings together analytical and program transformation techniques to automatically
create specialized programs.

In this chapter, we examine the main principles of program specialization. We
build a cohesive framework to be used in the following chapters, which essentially
discuss and develop offline specialization techniques for the C language, but whose
scope is, in fact, broader than this, with the arguments being transposed or extended
to C++ and Java.

Here, we focus on the motives and the stakes involved in program specialization,
while attempting to maintain a fairly broad, general view. For more information about
particular language cases, especially as regards binding times, the reader is referred to
the publications and reference works cited in the text.

CO
PYRIG

HTED
 M

ATERIA
L

2 Program Specialization

Organization of this chapter

– Section 1.1 precisely defines what a specialized program is, in terms of
precomputations and semantic equivalence to the original program.

– Section 1.2 explains the advantages of specialization from the point of view of
performance (in time and space).

– Section 1.3, without detailing the techniques involved in program specialization,
constructs the general framework of an automated specialization process, and
examines the pros and cons of this.

– Section 1.4 describes the main applications of program specialization:
compiling with an interpreter (and more generally getting rid of layers of
interpretation), changing an interpreter into a compiler, and creating a compiler
generator.

– Section 1.5 distinguishes two specialization times (compile time and runtime)
and examines the uses to which the resulting specialized programs could be put (as a
specialization server and a specialization cache).

– Section 1.6, finally, discusses questions relating to whether or not specialization
is profitable, particularly in terms of time and space saved.

1.1. Specialized program

In this section, we define the most commonplace concepts associated with program
specialization, with the question of automatic production of a specialized program
being dealt with in subsequent sections.

1.1.1. Program specialization

Take L : Prog → Input → Output , a programming language. A version of a
program p ∈ Prog , specialized to a partial input in∈Input , is a program pin s

∈ Prog
such that for any complete input in ∈ Input that can be broken down into subinputs
(in s, ind) = in , we have:

[[pins
]]
L
ind = [[p]]

L
(in s, ind) [1.1]

The pins
program is also known as a specialized program. In certain ways, it is

equivalent to the program p for the input values in that make up the partial input
ins – equivalent, in the sense that it produces the same output – that is, it has the same
effects and provides the same results:

[[pins
]]
L
ind = [[p]]

L
(in s, ind) = [[p]]

L
in = out [1.2]

Main Principles of Program Specialization 3

If we are only interested in the input in that forms part of the partial input ins,
then the specialized program pin s

can, in a manner of speaking, be “substituted” for
program p. Strictly speaking, the input channels of pin s

are included in those of p,
and the programs p and pin s are only indirectly comparable from a semantic point of
view (see section 1.1.6). The above definitions are represented diagrammatically in
Figure 1.1.

Generic
program p

Execution in L Execution in L

Output out Output out

Complete
input

(ins, ind)

Specialized
program pins

Partial input
ind

Figure 1.1. Generic program and specialized program

On the other hand, program p has more input channels than pin s
– it can operate in

more execution contexts. That is why, by contrast to the specialized program pin s
, p is

referred to as a generic program.

NOTE 1.1. – This definition is purely semantic – it does not imply any link between
the generic and the specialized programs other than the inclusion of identical input to
yield identical output. In practice, a specialized program does not simply materialize,
but rather it is obtained by transforming a generic program (see section 1.3). Also,
as so often happens with nominalizations of verbs, the term “specialization” denotes
both the action (of transforming a generic program p into a specialized program pin s

)
and the result of that action (a specialized program pin s

). However, in this section, we
discuss only the actual nature of the specialized code.

The known partial input ins to which the program is specialized is termed static
input. The additional partial input ind is called dynamic input. This terminology
illustrates the fact that, for a specialized program pins

, the static input ins is fixed,
whereas the dynamic input ind can still vary, as it remains unknown up until the
moment of execution. The input values of ins are called specializing values.

According to this definition, in is not restricted to just the input that is
compatible with p, nor is ind restricted just to the input that is compatible with pins

4 Program Specialization

(see section A.2.9). In particular, the semantic terms [[pin s]]L ind and [[p]]L (in s, ind)
may be equal to a defined error in output, err . Consequently, if the partial input ins is
incompatible with p, then pin s

is a program whose execution systematically produces
an output with a definite error err . Also, remember that here we assume a program to
be complete and not to interact with external objects (see section A.2.10), hypotheses
that will be raised in Chapter 8.

We do not have to specialize all of a program; we can specialize only a portion of it
– in practice, one or more subprograms (see section 9.1). However, to avoid ambiguity,
hereafter we will not speak of specializing subprograms, but of specializing programs.
Similarly, we will use the term specialized program to refer to a program–one of
whose subprograms is specialized. When we use a subprogram accompanied by the
functions it calls upon (to an arbitrary call depth), we call this the specialization point
of entry.

In sections 3.3.3 and 6.6, we will look at a variant of this definition of specialization
in which an input in sd to the program may be considered to be both static and dynamic.
The idea is that it serves simultaneously to generate the specialized code pins,in sd

and
execute it [[pin s,in sd

]] (in sd, ind). Notably, this variant enables us to look at cases where
a piece of information cannot easily be integrated into a program’s code.

Examples of specialization

Take, for example, “program” C shown in Figure 1.2, which is deliberately
very simple. It is a three-argument function that calculates a scalar product1. A
specialization of that function dotprod, relating to the partial input size = 3, is
given in Figure 1.3. The specialized function dotprod_size3 is such that whatever
the values of x and y, a call to dotprod_size3(x,y) is semantically equivalent
to a call to the generic function dotprod(3,x,y): the same value is returned and
the effects on the memory are identical (in this case, none).

Note that the value of the static parameter size is fixed; for example,
we cannot calculate the equivalent of dotprod(2,x,y) using the function
dotprod_size3. For this, we need another specialized function, namely
dotprod_size2 (see Figure 1.4).

Figure 1.5 gives the example of dotprod_size3_u50m1, another
specialization of the function dotprod, this time relating to the partial input values
size = 3 and u = {5,0,-1} (a notation which we will use to represent the value
of a table, which is similar to the syntax used in C to initialize a table when declaring

1 It is fairly rare for a scalar product to operate on integers. We have made it so here for
educational purposes so that it is easier to speak of the complementary nature of certain
optimizations of the compiler, without having to deal with issues about representing floating
values, which would distract us from our main topic.

Main Principles of Program Specialization 5

it). However, a call to dotprod_size3_u50m1(y) is semantically equivalent to
a call to the generic function dotprod(3,u,y) where u = {5, 0,−1}.

Figure 1.2. Generic dotprod function

Figure 1.3. Specialized dotprod function for size = 3

Figure 1.4. Specialized dotprod function for size = 2

Figure 1.5. Specialized dotprod function for size = 3 and u = {5, 0,−1}

We might also note that the generic function dotprod and the specialized
functionsdotprod_size3 and dotprod_size3_u50m1 all have different input
channels. However, the functionsdotprod_size3 anddotprod_size2 have the
same channels.

The particular advantage to specialization comes from the fact that
specialized functions such as dotprod_size2, dotprod_size3, and

6 Program Specialization

dotprod_size3_u50m1 are relatively simpler than the generic function
dotprod, in the sense (informally) that they perform fewer computations for a given
dynamic input. In fact, they really do perform better (see section 1.2).

Of course, specialization is not restricted to such simple programs. A priori, it
relates to programs of any degree of complexity and any size, which may redefine
all the constructs in the language. For instance, in C, this includes while and goto
loops, structures and links, pointer arithmetic and dereferences, direct and indirect
function calls (via a pointer), dynamic memory allocation, etc.

1.1.2. Context of specialization

We use the term specialization conformation of a program or subprogram to
denote the specification of the static input channels to which it is specialized. For
instance, for the function dotprod, the specialization conformation corresponding to
dotprod_size3 is {size} and that corresponding to dotprod_size3_u50m1
is {size,u}. (This notion will be developed, in particular, in the context of the so-
called offline specialization, along with the concept of binding time, see section 3.1.1).

We use the term specialization context of a program or subprogram to denote an
abstraction of an execution context (see section A.4.1.3) – an abstraction that includes
all the information relating to which the program or subprogram is specialized. In
particular, a specialization context specifies not only the static input channels but also
the values. Specialization contexts for the dotprod function are, e.g. “size = 2”,
“size = 3”, or “size = 3 and u = {5, 0,−1}”. Rather than specialization context,
we also speak of specialized execution context or case of (specialized) execution,
particularly when we wish to speak of the execution context at the moment the
specialized function is called (see Chapter 9).

Conversely, an execution context is compatible with a specialization context if
it is a concretization – i.e. an overspecification – thereof (see also section A.4.1.3).
For any execution context compatible with a specialization context, the corresponding
specialized program may be substituted for the generic program. Thus, the execution
context “size = 3, u= {1,2,3} and u= {4,5,6}” of dotprod is compatible
with the specialization context “size = 3”, and the specialized function call
dotprod_size3(u,v)may substitute dotprod(3,u,v).

A function-specialization context might include, e.g. arguments from that function,
global variables, and memory locations in the heap. However, a specialization context
does not contain only a known value for each of the static inputs. In the case of
a language with pointers like C, it may also contain alias information about the
variables in the program at the moment the function to be specialized is called. More

Main Principles of Program Specialization 7

generally, we need to model the context in which the function to be specialized is
called (see section 8.4). The specialization context may also include a modelization
of the effects of external functions (if there are any) called by the function to be
specialized (see section 8.5). Collectively, these data constitute the specialization
parameters.

Figure 1.6. Generic translate function

Figure 1.7. Specialized translate function for from = “abc”

By way of illustration, consider the translate function in Figure 1.6, which
reads the string str and replaces every character there that is present in the string
from, at a position i, with the character located at the same position i in the string to.
For instance, if the value of the variable s is “abcd” (i.e. if its value is a pointer to an
area of memory containing the series of characters ‘a’, ‘b’, ‘c’, ‘d’, ‘\0’), then
following a call to translate(“abc”,“bcd”,s), the value of s is “bcdd”.
A specialization of translate to the partial input from = “abc

 is given in
Figure 1.7.

8 Program Specialization

We might believe that if the value of the variable x is “abc”, then
translate(x,y,z) always behaves in the same way as translate_

fromabc(y,z), and therefore the two forms are mutually interchangeable in
any execution context. This is absolutely not so. Indeed, following the call
translate(x,“bcd”,x), the value of x is “bdd”; on the other hand, after
translate_fromabc(“bcd”,x), the value of x is “bcd”.

The difference in behavior arises from the fact that the memory associated
with the from string may vary when translate is called (by the assignments
*str = to[i]), whereas it is more or less constant in the specialized version
translate_fromabc. However, the two forms translate(x,y,z) and
translate_fromabc(y,z), always behave in the same way and are, therefore,
interchangeable in any execution context where the value of x is “abc” and where z
is not an alias of x (or, more precisely, if z does not point to the same area of memory
as does x).

In a specialization context such that the parameter from is declared as not being an
alias of the parameter str, the function translate_fromabcmay be considered
to be a specialization of translate. On the other hand, with a specialization context
with no restriction on the alias relation of the arguments, i.e. for all possible execution
contexts, the function translate_fromabc cannot be considered a specialization
of translate. (In this particular example, the absence of alias between from and
str is only one condition sufficing for the substitutability of the specialized function.
There are other sufficing conditions, specific to translate, such as the absence of
repeated characters in from and common characters between from and to).

1.1.3. Specialization of a fragment of program

Certain specializers have a granularity of specialization which is finer than that
of the function: they facilitate the specialization of program fragments even within a
function.

This does not significantly alter the problem. Like a function, a code fragment
to be specialized has an entry point and exit points that are clearly identified. It
generally corresponds to a basic block or to a connected set of basic blocks. Again
in the same way as a function, the code fragment has its input channels and values
and its output channels and values. However, unlike a function, there is no call stack
at the entry point of such a code fragment. Nevertheless, this entry point may be the
target of several branches in the function to which it belongs, and hence it may have
different execution contexts. Even if it is only the target of one branch, a code fragment
may be in a loop and therefore be executed in different execution contexts. In the
same way as for the specialization of functions, there is then also the notion of the

Main Principles of Program Specialization 9

specialization context, specific to the case of the program fragments, but similar to the
specialization context defined when the granularity of specialization is the function
(see section 1.1.2).

In what follows, we will speak almost exclusively of the specialization of
functions. However, most of what is said can be transposed to the specialization of
program fragments.

1.1.4. Partial computations

In terms of its interface, a specialized program expresses a sort of partial
application (with respect to (w.r.t.) λ-calculus); in terms of its contents, it expresses a
partial execution.

1.1.4.1. Partial application

A specialized program pin s
may be viewed as a curried and partially applied form

of p. Indeed, we have:

[[pins
]] = λx2 . [[pin s

]] x2

= λx2 . [[p]] (in s, x2) = (λx1.λx2 . [[p]] (x1, x2)) in s [1.3]

In this book, we will use λ-terms only as an algebraic mathematical notation to define
a function easily, not as a genuinely manipulatable term.

In a functional language such as Scheme or ML, partial application is a construct
that is peculiar to the language, which produces a new functional value (generally
implemented as a closure). The equivalent here would be to form the partial
application p(ins), which could then be applied to ind : (p(in s))(ind). It is on this
principle that Fabius is based [LEE 96] – a specializer of a subset of pure, first-order
ML (with no side effect).

However, a difference between the partial application of functional languages and
this type of partial application carried out by specialization is that the former applies
only to the first syntactical argument (x1 in λx1.λx2.exp) whereas the latter may
apply to any input in the function (including x2). Another (major) difference is that
partial application in specialization is coupled with immediate partial execution; we
do not wait for all the arguments to be supplied before beginning to execute the code
associated with the function.

1.1.4.2. Partial execution

The general idea largely underlying program specialization is that, because the
static input in s no longer varies for the specialized program pin s

, operations relating

10 Program Specialization

only to that input ins may even at that point be preexecuted (or precomputed).
A specialized program pins

may therefore result from a sort of symbolic
partial execution of p on the static input ins (Also see section 2.1.1 for the notion
of partial evaluation and section 2.4 for other forms of specialization).

The pre-executable terms and code fragments of p for a given partial input in s

are qualified as static; the others, which are not pre-executable because of their
dependency on the value of the complementary input ind, are known as dynamic.
We also speak of static computation for pre-executable or pre-executed computation.

// Bold: pre-executable fragments

Figure 1.8. Pre-executable fragments of dotprod when size is known

// Bold: pre-executable fragments

Figure 1.9. Pre-executable fragments of dotprod when size and u are
known

Ideally, in a specialized program pins , only the operations that depend on the
dynamic input ind remain to be executed in order to produce the same result as
[[p]] (in s, ind). Hence, we can consider the program pins

to be more efficient (faster)
than the program p because it has fewer computations to carry out.

Consider, for example, the dotprod function shown in Figure 1.8. All operations
relating to the input size have been put in bold. These operations can be preexecuted
as soon as the value of size is known. The first line of the function (the initialization
of rslt), which is independent of the arguments, is also pre-executable. On the other
hand, the operations not shown in bold cannot be pre-computed while the values of u

Main Principles of Program Specialization 11

and v are unknown. For instance, if the value of size is equal to 3, pre-execution can
generate a function dotprod_size3 such as that shown in Figure 1.3.

1.1.4.3. Specialization without static input

A particular case of specialization is when the partial static input ins of a program
p is null, i.e. when the ensemble of the static input channels is null. In this case, the
dynamic inputs, complementary to ins = ∅, are the standard inputs of p, and there is
semantic equivalence [[p∅]] = [[p]]. However, there is not necessarily equality p∅ = p
(except in the case of a trivial specialization, see below), because specialization can
still be carried out on the body of p.

This specialization without static input makes sense; it corresponds to a case where
we can exploit the constant values present in the code as though they were static inputs,
in order to carry out precomputations. In fact, in order to be precomputable, a term
may either depend on static inputs, or depend simply on constants within the program.

In reality, it is more correct to define a term as non-precomputable if it depends on
dynamic inputs, and precomputable otherwise – i.e. if it does not depend on dynamic
inputs, but may depend on constants or static inputs. However, for specialization
techniques such as deforestation and supercompilation (see section 2.4) that deal
more with expressions (patterns) than with values, this notion of dependency is not
applicable.

1.1.5. Range of specializations

Creating a specialized program pins
is a complex operation because we must

know how to “unravel” the computations programmed in p in order to distinguish
the precomputable terms, particularly those relating only to in s, which can be carried
out in advance, from those which are non-precomputable as they may also relate to
ind, which therefore cannot usually be altered. However, it is not inconceivable for all
the computations relating to ins to be precomputed in the code of pin s so that pin s is
qualified as a “specialized program”. In fact, specialization is not unique, even when
the specialization context in s is fixed; a whole range of variants are envisageable.

Indeed, given a program p and a partial input ins, the general problem involves
finding programs p
 that satisfy the equation [[p
]] ind = [[p]] (ins, ind) for every partial
complementary input ind. This problem may have an infinite number of solutions. In
practice, we seek a means of automatically constructing solutions to this problem by
transforming programs (see section 1.3). We also seek solution programs that are as
high performance as possible (see section 1.2), i.e. generally that integrate a maximum
of precomputations concerning ins [MAR 94].

12 Program Specialization

Figure 1.10. Specialized dotprod function (loop unrolling only)

Figure 1.11. Specialized dotprod function (unrolling and propagated
indices)

1.1.5.1. Different precomputations

The main source of variants of specialization arises from the number of
precomputations carried out. Figures 1.10 and 1.11 give different examples of
specializations of the function dotprod to the partial input size = 3,
specializations other than dotprod_size3 (see Figure 1.3) because they
correspond to different precomputations.

In the function dotprod_size3_unroll, all the computations that affect the
loop variable i (i.e. each increment) have been carried out, as have all branching
decisions relating to that variable (to repeat or exit the loop), but the references to i in
table readings have not been precomputed.

In the function dotprod_size3_propag, all references to the loop variable i
have been replaced by a constant (in table keys) and the affectations of i, which are
now useless, have been deleted.

Main Principles of Program Specialization 13

1.1.5.2. Specialization opportunity

A specialization opportunity is a fragment of code in a program that may be
precomputed by specialization in a certain execution context (Note: this is when the
fragment and the context occur simultaneously). In practice, the title of specialization
opportunity only deserves to be applied to fragments and contexts that are likely
to improve the program’s performance (see section 1.2), i.e. which correspond
to substantial precomputations, either in terms of reducing size or in terms of
computation time (by enumerating the possible multiple executions of the fragment).

In standard use, the code fragments considered as specialization opportunities
are generally at the level of the function’s granularity – hence, we are interested in
the number of precomputations in a certain function for certain static inputs. It is
often in this guise that the question of specialization opportunity-searching is raised:
given a program and a context for its execution, we search in the functions of that
program and their execution contexts for instances that constitute good specialization
opportunities, i.e. specialization opportunities that would lead to significant gains in
terms of performance (see sections 9.1.2 and 12.3.2).

1.1.5.3. Degree of specialization

The degree of specialization of a function is a measurement (usually informal) of
the quantity of precomputations carried out during the specialization of that function.
The choice of static input channels has an impact on the degree of specialization, as
does a specializer’s capacity to identify the terms to be precomputed, in the context of
automated specialization.

This notion is related to that of a specialization opportunity. The degree of
specialization is, in a manner of speaking, an absolute measure (few or many
precomputations) whereas the specialization opportunity is a relative measurement
(few or many precomputations in relation to the total number possible). It should
also be noted that a high degree of specialization for a code fragment implies the
specialization of a large number, or most, of its specialization opportunities. On
the other hand, a low degree of specialization may be due to the intrinsic lack of
specialization opportunities in the function, or due to a shoddy specializer that cannot
identify the specialization opportunities or manage to exploit them.

1.1.5.4. Trivial specialization

The extreme case is when no precomputations at all are carried out. Consider
the specialized trivial program trivp,ins , defined as the program that has the same
input channels xd as a dynamic input ind that is complementary of ins, and the body
of which, is constituted by the call to p on the whole input (in s, xd). Informally,
we have trivp,in s = λxd.p(in s, xd). All sufficiently generalist languages allow this

14 Program Specialization

kind of construction, but the form this may take in practice varies greatly from one
language to another, and may even show different forms within the same language.
An example applied to the dotprod function, for the partial input size = 3, is
shown in Figure 1.12.

Figure 1.12. Trivial specialization of dotprod for size = 3

Figure 1.13. Trivial specialization of dotprod for size = 3 (variant)

The program trivp,in s is a trivial specialization of p to in s: it is a program
that, in a manner of speaking, “waits” to be provided with the partial input ind

before executing the generic program p on the whole input (in s, ind), in the
manner of a partial functional application (see section 1.1.4.1). To a certain extent,
this is the “degree zero” of specialization because no precomputation is carried out
either on the inputs ins or on the possible constant values in p. Only its semantics
[[triv

p,in s
]] ind = [[p]] (in s, ind) is in fact a specialization of p.

A variant of trivial specialization consists of defining a program triv

p,in s

that
also has the same input channels xd as a dynamic input ind, complementary to
ins, and whose body is defined as an affectation of the value of in s on the
corresponding formal parameters, followed by the code of p. Informally, we have
triv

p,in s
= λxd.{xs:= in s; p}. Most generalist languages also allow this type of

construction, with different forms for the affectation of the variable. We can also see
this variant as the result of inlining of the previous case (see section 2.1.3). An example
of a trivial specialization of this type is given in Figure 1.13.

Main Principles of Program Specialization 15

The advantage of trivial specialization is overarchingly theoretical2. However,
it may also sometimes have a practical advantage, particularly when providing the
program with the input values is slower than including them beforehand in the program
itself, e.g. if they have to be read on disk and converted in to an internal processing
format3.

1.1.6. Equivalence between the specialized program and the generic program

As mentioned in the previous section, the specialized program has fewer inputs
than the generic program (except in the particular case of specialization without static
input, see section 1.1.4.3). Their definition domains are therefore not comparable. To
say that a specialized program retains the semantics of generic program, the general
definition of program equivalence (see section A.7.2) needs to be adapted.

Let L : p → Input → Output be a programming language, p a program written
in L, in s a partial entry for Input, and pins

a specialization of p to in s. It only makes
sense to compare the generic program p to the specialized program pin s on the input
ind complementary to ins. We then say that the specialized program pin s

is strictly
(respectively lazily) equivalent w.r.t. specialization to the generic program p if and
only if (iff) the following respective conditions are satisfied4.

p

≡ins

pins
iff [[p]] ◦ (λind . (ins, ind))

= [[pin s
]] [1.4]

p

�ins

pins
iff [[p]] ◦ (λind . (ins, ind))

= [[pin s]]| {ind ∈ Input | (in s,ind)∈ Dom(p)} [1.5]

2 Kleene’s iteration theorem (notated theorem Sm
n) [KLE 52] indirectly defines a specializer for

the partial recursive functions, a specializer that produces trivial specializations (the theorem,
on the other hand, is not trivial).
3 The program xphoon, which sets the root window X Window to a picture of the moon with
its different phases, illustrates this scenario. This specific program was written, at the time in
1988, because the program for setting the root window (xsetroot) was too slow: it took
approximately 15 seconds to load a bitmap. By including that image in the form of information
in the program, compiled with the rest of the code, the execution time fell to less than 1 second
(the circumstances of xphoon’s birth are described on its ReadMe page).
4 In a certain sense, the term “equivalence” may be considered misleading because the
programs p and pins do not have the same input channels. In fact, the relations

≡ins and

�ins

do not admit the same types of programs on the left and on the right of the relation sign. The
symbol
 above these signs is a simple reminder.

16 Program Specialization

Or, if we want to highlight the terminating executions:

Dom(p)�ins

def
= {ind ∈ Input | (in s, ind) ∈ Dom(p)} [1.6]

p

≡ins

pin s
iff

�
Dom(p)�ins = Dom(pin s

)

∀ ind ∈ Dom(p)�ins [[p]] (in s, ind) = [[pin s
]] ind

[1.7]

p

�ins

pin s iff

�
Dom(p)�ins ⊂ Dom(pin s)

∀ ind ∈ Dom(p)�ins [[p]] (in s, ind) = [[pin s
]] ind

[1.8]

Alternatively, we can say that a specialized program pins
is strictly (respectively

lazily) equivalent w.r.t. specialization to a generic program p iff it is strictly
(respectively lazily) equivalent to the trivial specialization trivp,in s (see section 1.1.5)
in the normal sense of program equivalence (see section A.7.2). In other words:

p

≡ins

pins
iff trivp,in s ≡ pin s

[1.9]

p

�ins

pins
iff trivp,in s � pin s

[1.10]

This definition assumes that it is always possible to construct a trivial specialized
program.

It should be noted that actually these definitions relate only to the “final interface”
of the specialized program. In the course of transformation, i.e. between successive
stages of transformation, it is the ordinary definitions of strict and lazy equivalence
(see section A.7.2) that apply. In other words, it may be considered that we
have a first stage of equivalence w.r.t. specialization, as defined above, in order
to go from p to trivp,in s , and then stages of equivalence in the normal sense to
yield pins

.

1.2. Specializing to improve performance

A specialized program does fewer things than a generic program, but it does them
better. By restricting a program to a given specific use, program specialization allows
us to improve its performance (see section A.5) for that particular use. It usually
reduces execution time, and sometimes the size of the code. It may also reduce power
consumption [CHU 01].

Main Principles of Program Specialization 17

1.2.1. Execution time

If it has fewer computations to perform than the generic program p, we might
expect that the specialized program pins

will be faster, i.e. it will have a shorter
execution time (see section A.5.1):

time[exec pin s ind]
?
< time[exec p(ins, ind)] [1.11]

This indeed is the case for the specialized function dotprod_size3: all the
computations in dotprod that depended on the parameter size have already been
carried out; only the other computations, which depend on the two parameters u and
v, remain. For whatever arguments x and y, the execution time of the specialized
function dotprod_size3(x,y) is less than the execution time of the generic
function dotprod(3,x,y) in any reasonable execution model.

However, as we will see below (see section 1.2.3), non-monotonous specificities
of the execution machines mean that we cannot always guarantee that a specialized
program will have a better execution time. This is not peculiar to program
specialization; certain optimizations of optimistic compilation may accelerate
execution in most cases but hinder it in particular situations.

In addition, note that because the specialized program carries out fewer
computations than the generic program, it is also possible that it will allocate and
free up less memory. In languages with garbage collection (GC), or implementations
of languages that have been equipped with GC, the operations of dynamic memory
management of a specialized program may also be reduced. All this contributes to a
reduction in execution time.

1.2.2. Memory space

Performance improvement relates also to the size of the program, and in particular
its static size (see section A.5.2): if it has fewer computations to carry out than the
generic program p, we would expect the specialized program pin s to be smaller:

size[pin s
]

?
< size[p] [1.12]

In fact, dotprod_size3 is smaller than dotprod, whatever the measuring
unit used: number of lines of code, number of characters, or number of bytes of
the compiled program (with various levels of optimization and on different material
architectures).

However, because two different uses of the same code fragment can be specialized
differently, specialization may also duplicate code fairly precisely. This is the case

18 Program Specialization

with the addition/multiplication “+ u[i] * v[i]”, which is reproduced three times
here but could be reproduced more times. In fact, Figure 1.14 gives an example of the
specialization of dotprod to the partial input size = 10000, where the increase
in size is manifest. Hence, specialization does not always guarantee reduced program
sizes.

Figure 1.14. Specialization of dotprod for size = 10000

The situation is the same in functional or logic programming with recursive
inlining of functions or predicates. In an incorrect use of language (due to the tropism
here orientated toward C), we mainly speak of loop unrolling. However, what is said
on this topic is generally applicable to recursive inlining as well.

Finally, we might also expect the dynamic size of a specialized program to be
smaller than that of a generic program:

size[exec pins
(ind)]

?
< size[exec p (in s, ind)] [1.13]

Indeed, when fewer computations are carried out, we also avoid certain dynamic
memory allocations that are only useful during precomputation. Thus, the allocations
serving only for the intermediary computations can be eliminated. Only the memory
space needed to store the results of these precomputations remains.

1.2.3. Effect of the compiler

The execution model (or execution platform) and the possible optimizations of
it (see section A.5.3) are very important in comparing the performance of a generic
program and a specialized program, and also between different specialized programs.
In reality, in the examples below, the difference in performance is determined by the
C compiler used, and by the optimizations available to it.

Main Principles of Program Specialization 19

For instance, with the compiler gcc with no optimization (i.e. with the option
-O0), the specialized functions defined above – dotprod_size3_unroll,
dotprod_size3_propag, and dotprod_size3 – are of noticeably different
sizes. On the other hand, with a reasonable level of optimization (option -O1), these
functions are all the same size and have the same execution time, for the simple reason
that the compiler generates exactly the same code.

Figure 1.15. Simple specialization of dotprod for size = 3 and
u = {5,0,-1}

Figure 1.16. Optimized specialization of dotprod for size = 3 and
u = {5,0,-1}

In fact, the same is true for the function dotprod_size3_triv because
an optimizer such as that of gcc is capable of unrolling simple loops (option
-funroll-loops) when the number of iterations can be determined at compile
time. However, as we will see later on (see section 2.4.5), most “substantial”
specializations are as yet beyond the scope of a compiler, particularly when the loops
relate to complex objects.

Figures 1.15 and 1.16 show other possible specializations of the dotprod
function relating to the partial inputs size = 3 and u = {5,0,-1}. With
no optimization, the functions dotprod_size3_u50m1_unroll_propag and
dotprod_size3_u50m1_optim differ in terms of their execution time, but with
an optimizing compilation, their equality is restored.

On the other hand, a trivial specialization such as the one shown in Figure 1.17
cannot reach the same level of performance because, while the optimizer in gcc does
have the capacity to unroll loops, it can only operate on scalars and therefore cannot

20 Program Specialization

dereference elements of tables even if they are known. Although in theory there is no
reason why an optimizer should not be able to carry out this type of dereferencing,
we are approaching the limits of what an ordinary optimizer knows how to do –
limits that also serve as the starting point beyond which program specialization offers
benefits in terms of performance (see section 2.4.5). We will also see that, even if its
performance can be equaled by that of an optimizer, program specialization is also
more advantageous in terms of predictability (see section 3.2.1).

Figure 1.17. Trivial specialization of dotprod for size = 3 and
u = {5,0,-1}

The possible compiler of the execution platform does not only have a bearing on
the execution time; it may also influence the memory space taken up. Certain data
structures can be stored in the memory to a greater or lesser degree of effectiveness,
and particularly of sharing (see section A.5.3.2).

1.2.4. Opacity of the code generated

From the point of view of specializer engineering, it is futile, during specialization,
to carry out optimizations that would already be present in the compiler5. This would
pointlessly duplicate functionalities that are complicated to fine-tune and that we may
deem it better to maintain and update in a compiler.

From a practical point of view, simple optimizations are nevertheless welcome
in a specializer when they allow us to improve the readability of specialized
programs: dotprod_size3 is manifestly more pleasant and easier to read than
dotprod_size3_unroll.

However, specialized programs are not intended to be looked at. From the point of
view of automatic specialization, only the generic program needs to be developed and

5 That is, assuming the exact effect of the compiler’s optimizations is indeed known or can be
discovered, which is not always an easy task.

Main Principles of Program Specialization 21

maintained. A specialized program, from this point of view, holds as much (as little)
interest as a binary code generated by compilation. However, in practice, it may be
useful to look at a specialized program in order to fully comprehend a viewing of the
specialization information (see section 3.2.2) or for debugging – which is sometimes
necessary – of the specialization-optimized code (as opposed to generic code).

1.2.5. Effect of the memory cache

To analyze and compare the execution times of specialized programs, we can
count the computations saved in relation to the original generic program. However, we
should be careful not to accidentally count the computations to be carried out. Indeed,
as mentioned in section A.5.1, the execution time of a program is not monotonous
in relation to the computations to be carried out (instructions to be executed). In
particular, if a program is too big to be contained in the memory cache (or caches),
there will be cache misses, and time will be lost while the cache being executed is
refereshed. A large program could therefore be far slower than a program that was
more compact but capable of performing more computations.

However, as pointed out in section 1.2.2, a specialized program may indeed be
significantly larger than a generic program it arises from. This can be seen in the
functions in Figures 1.10, 1.11, and 1.13, even though in practice, the orders of
magnitude on these particular examples are such that the cache effect will not be very
noticeable, or visible at all (depending not only on the size of the cache but also on
the rest of the code to be executed). On the other hand, there is a drastic increase in
size with the function dotprod_size10000 (see Figure 1.14), which is roughly
10,000 times larger than the generic function dotprod, whatever the value used to
measure the size.

If it is able to fit in the memory cache at execution, the specialized function will
be faster than the generic function. If not, it may be many times slower. By attempting
to reduce the number of computations at all costs, we may occasionally cause the size
of a specialized program to burgeon (known as combinatorial explosion), and hence,
paradoxically, increase its execution time.

This possible increase in size is not in fact limited to loops only. It can also be
found when a specializer carries out too many specializations of a subprogram for
different static input values, particularly in the case of recursive inlining.

This phenomenon of dependency in the cache is not only observed for imperative
programs compiled in machine language; it can also be seen, for instance, for Prolog
compiled toward a virtual machine [LEU 02b].

22 Program Specialization

1.3. Automatic specialization

All that has been presented in the preceding section (see section 1.1) may be
implemented “by hand”: given a subprogram p in a language L and a partial input
ins of p, we can seek to propagate the knowledge gleaned from in s in p, and modify
p each time we identify that a construction can be pre-executed w.r.t. L. However, this
task can also be automated.

1.3.1. Specializer

The specialization of programs written in L is a transformation of programs from
L to L (see section A.7.1), and a specializer is a program, written in a language L

that is not necessarily the same as L, which implements that transformation.

More specifically, a specializer is a program spec (in a language L
) that, based
on a program p (written in a language L : p → Input → Output) and a partial input
ins ∈ Input produces a specialized program pin s

(written in the language L). In other
words, for any program p and any partial input in s of p, a specializer spec verifies the
equations:

[[spec]]
L� (p, ins) = pins

[1.14]

[[pin s
]]
L
ind = [[p]]

L
(in s, ind) [1.15]

For any complete input in = (in s, ind) of p, we then have:

[[[[spec]]
L� (p, ins)]]L ind = [[p]]

L
(in s, ind) = out [1.16]

These equations correspond to the following diagrams, where L also appears in
its de-curried form L̃:

L
 :
� spec

Prog
 ��

⊃ Prog × Input
Input
 ��

⊃ Prog
Output
 [1.17]

L̃ : Prog × Input ��

id

��◆◆
◆◆◆

◆◆◆
◆◆◆

[[spec]]
L�

��

Output

id

��
L : Prog �� Input

��◆◆◆◆◆◆◆◆◆◆◆
�� Output

��
[1.18]

Alternatively, we can also view in s as a parameter of the program transformation
T = [[spec]]

L� and apply T ins (see section A.7.1):

Main Principles of Program Specialization 23

L : Prog

[[spec]] ins
L�

��
�� (Input �� Output) [1.19]

This involves considering a curried form of [[spec]]
L� to the second argument (in

Input), and applying it to ins to form the program transformation λp.[[spec]]
L� (p, in s).

These definitions are illustrated in Figure 1.18 where the executed programs are in
rectangular boxes and the data are in ovals. Note that certain entities are treated both
as data and as programs, depending on the arrow that produces or exploits them. Thus,
the program p is treated as a piece of data by spec, which also produces the specialized
program pin s

as a piece of data.

For instance, a specializer for the language C must be capable, based on the
source of the dotprod function (see Figure 1.2) and the partial static input value
size = 3, of automatically producing the specialized function dotprod_size3
(see Figure 1.3) or one of its variants, such as dotprod_size3_propag
(see Figure 1.11).

A program pins
specialized in this way is sometimes also called a residual program

and is denoted as pres. This nomenclature refers to the fact that the specialized program
is generally the result of a transformation process during which fragments of the
program are precomputed (replaced by the result of their evaluation), and the residual
program is what is left when there is nothing more to pre-execute.

Specializers are also sometimes denoted by mix rather than by spec, which
comes from the notion of mixed computation [ERS 78]. The principles for building
a specializer using program transformations are provided in Chapter 2.

(A variant of this definition of a specializer is given in section 3.4.3, where
an argument insd of the program may be considered to be static and dynamic,
and serve both for creating the specialized code pin s,insd

and for executing it
[[pin s,in sd

]] (in sd, ind). This variant enables us to speak of cases where a piece of
information cannot easily be integrated into a program’s code).

NOTE 1.2.– The form of specialization we have just defined corresponds to
automatic specialization in the sense that it is enough to provide a generic program and
static inputs. However, it is also possible to program specialization, i.e. to explicitly
program the generation of the specialized code.

By comparison, owing to the programming effort needed, we rather consider
this approach as semi-automatic specialization. This other form of specialization
also shows a number of disadvantages in relation to automatic specialization
(see section 2.4.6).

24 Program Specialization

Static
inputs

ins

Program p

Specializer spec

Specialized
program

pins

Outputs out

Data

Solid line: normal execution

Dotted line: execution via specialization

Program

Dynamic
inputs

ind

Figure 1.18. First Futamura projection

1.3.2. Operation of specialization

A specializer spec for the language L is a program in the language L
 like any
other; it is executed in a certain model of execution M
 for L
: exec

M� spec (p, in s).
In keeping with our conventions, when the execution model is not ambiguous in the
context, the model indicator is omitted: exec spec (p, ins).

The operation of specialization splits an execution into two successive parts. The
first part is the creation of the specialized program; this is carried out according to
an execution model M
 of L
, on a specialization platform, i.e. on the execution

Main Principles of Program Specialization 25

platform of a specializer: exec
M� spec (p, in s). The second part, execM pin s (ind), is

the execution of the specialized program; this is carried out according to an execution
model M of L, on an execution platform that is not necessarily the same as the
specialization platform but that is generally the platform on which the generic program
would have been executed had it not been specialized beforehand.

When the specialization platform and execution platform are the same (which
implies that L = L
), transformation of spec programs can use the language’s
own execution mechanisms to carry out the precomputations in p on the data in s

(see section 2.1.5). When the specialization platform and execution platform for
the specialized program are different, e.g. when L �= L
, we can speak of cross-
specialization, in a similar sense to cross-compilation. In this case, in order to carry
out the precomputations in p on the data in s, there has to be a means in L
 of executing
code fragments written in L, e.g. an L-interpreter in L
 (see section 2.1.5).

1.3.3. Execution times

We said that specialization split the execution of a program (or subprogram)
into two successive parts: execution of the specializer and execution of the
specialized program. These two executions have two corresponding execution times:
specialization time and (specialized) run time. Note: Specialization time as defined
here must not be confused with the moment of specialization (at compile time or run
time, see section 1.5).

The term static is generally applied to what is done before the actual execution
of the (specialized) program, and dynamic to what is done once the program
has launched. For instance, we can draw a parallel between static and dynamic
memory allocations (see section A.1.2), also carried out, respectively, before the
commencement of execution and during the execution.

In particular, we use the term static computation to denote any precomputation
carried out during specialization (see section 1.1.4.2), and dynamic computation to
denote any computation carried out by the specialized program. We term the code
in the generic program corresponding to static computations the static slice, and
code fragments in the generic program corresponding to dynamic computations the
dynamic slice. These notions acquire a stronger meaning in the context of offline
specialization (see sections 3.1.2 and 3.1.6).

1.3.4. Advantages and disadvantages to automatic specialization

Manual specialization (writing a specialized program by sight, based on a
generic program) is a long, tedious, and complex task, even for small programs

26 Program Specialization

(see section 5.1). It requires expertise both in the field of application of the
programs and in specialization methodologies. Owing to this complexity, it is easy
to make mistakes when trying to identify precomputable terms and carrying out the
precomputations; in this case, the specialized program created does not conserve the
semantics of the original program exactly. In addition, this type of error may remain
undiscovered for a long time. It is also possible to “miss” (not to see) specialization
opportunities, and thus produce underspecialized programs. Finally, it is a task that
must be repeated each time the generic program or static input changes, which is a
more or less frequent operation depending on the lifecycle of the software. Hence,
the code is more difficult to maintain because there are numerous variants that exist
simultaneously (generic code and specialized versions).

On the other hand, automatic specialization reduces the need for human
intervention, and for expertise: an expert user of a specializer can prepare an automatic
specialization once and for all so that a non-expert user of the specialization can
effortlessly produce specialized versions at will for different values of the static inputs,
or even make small modifications to the generic program afterward. The user of the
specialized program is usually also a user of the specialized code.

Automatic specialization also ensures6 that the specialized code behaves in exactly
the same way as the generic code. In particular, the level of security is the same
as that of the original program. Automatic specialization also guarantees systematic
specialization, at least within the limits of the capability of the specializer in question
(see Chapter 6); there is no risk of overlooking code fragments to be specialized. With
certain techniques, the degree of specialization can even be predicted or controlled
before any actual specialization is carried out (see section 3.2.1). Finally, the issues
of maintenance are also solved because only the generic code needs to be maintained
and adapted; specialized variants are obtained automatically.

There are only a few exceptional cases (only very incompletely studied, if at
all) where the level of security or reliability can be altered, if care has not been
taken to prevent specialization deleting certain deliberate7, apparently superfluous
computations or redundancies. This is not peculiar to specialization; it is a general
characteristic of optimizing program transformations. For instance, the issue is just
as prevalent for compilers, which may factor repeated computations by common
subexpression elimination.

6 That is, of course, assuming the specializer is correct, in the same way that a compiler or an
interpreter is always assumed to be so.
7 Superfluous computations allow us to “noise” the execution of sensitive systems (such
as chip cards) in order to restrict the deductions that can be made on the program
or its data by monitoring electromagnetic radiation, electrical consumption, etc. As for
redundant computations, they protect against harware or software errors, and against deliberate
interference, e.g. in terms of the power supply, which favors the observation of information that
is supposed to remain hidden during normal execution of the program.

Main Principles of Program Specialization 27

However, the degree of automation needs to be relativized. To be implemented
and exploited, the functionality of specialization must in practice be accompanied
by various peripheral tasks (see section 12.2), which are still partly manual
(see section 12.3) and which do require a certain degree of expertise. In particular,
it is still largely intrusive: usually a program has to be manually modified in order to
implant specialization within it, making the process of software engineering more
arduous. Also, the fact that automatic specialization is systematic may also be a
disadvantage, particularly with excessive loop unrolling (see section 1.2.5). A similar
problem arises if the same subprogram is called with a large number of different partial
static inputs: an excessive number of specialized subprograms (which is problematic
or not financially viable) may then be produced by recursive inlining. However,
techniques to avoid this problem are presented in Chapter 11.

1.4. Main applications of specialization

Program specialization is a “transverse” optimization technique, independent of
any particular field of application. In Chapter 5, we will look at a number of examples
in different fields: exploitation and network systems, scientific calculations, graphics,
and software engineering. We might also cite lexical and syntactical analysis (parsing)
(see below), ecological simulation [AND 94], simulation of memory caches and
microprocessors [GRA 99, GRA 00a], Web services [MAO 04a] or grid services
[MAO 04b], etc. However, there is one field of application for which specialization
is particularly apt: compilation using an interpreter.

1.4.1. Application 1: compiling using an interpreter

A specializer enables us to automatically create a compiled program using a simple
interpreter.

Let interp be a source language Lsrc interpreter written in an object language Lobj.
By definition (see section A.4.2.1), it verifies [[interp]]

Lobj
(psrc, in src) = [[psrc]]Lsrc

insrc

for any program psrc and input insrc of Lsrc. If we have a specializer spec for
the language Lobj, written in a language L, then we can specialize the program
interp in Lobj to a partial input that is a program psrc in Lsrc: thus, we get
interppsrc

= [[spec]]
L
(interp, psrc). The resulting specializer interpreter then verifies

[[interppsrc
]]
Lobj

insrc = [[psrc]]Lsrc
insrc. We can therefore recognize in interppsrc

the
result of a compilation of the source program psrc in the object language Lobj

(see section A.4.3.1). In other words:

pobj = [[spec]] (interp, psrc) [1.20]

This equation, illustrated in Figure 1.19, is called the first Futamura projection
[FUT 71]. The compiled program pobj indeed verifies [[pobj]]Lobj

= [[psrc]]Lsrc
.

28 Program Specialization

Program
Out

pobj

Spec

interp psrc in

Data

Figure 1.19. First Futamura projection

In practice, although compiled programs pobj formed in this manner cannot always
compete with compiled programs produced by Lobj-dedicated optimizing compilers,
they often perform well – better, at any rate, than would the interpretation of psrc
[THI 00]. This is even more so when the basic instructions of the language Lobj

perform operations that are so different from one another that there is no universal
optimizing rewriting scheme, as is often the case when the object language commands
are coarse-grained. See section 5.3 for concrete results regarding the specialization of
interpreters.

Consider the case where interp, a program written in Lobj, is a layered
Lsrc-interpreter in terms of an object language L

obj, a sublanguage of Lobj

(see section A.4.2.4). Hence, if we prevent the pre-execution of the building blocks
of L

obj (see section 8.3.5), the specialization pobj = [[spec]]L (interp, psrc) may enable
us to compile from Lsrc into the sublanguage L

obj, which is trickier than simply
compiling into Lobj. This is the case when all the computations written in Lobj that
relate to the running of a fragment of the program psrc and its (JIT) translation in terms
of building blocks of L

obj can be pre-executed. The execution of these building blocks,
which in any case may also relate to the input insrc, remains differed hypothetically.
If the specializer also manages to eliminate everything relating to the running and
JIT translation of psrc, what remains in pobj is made up purely of unexecuted building
blocks of L

obj and, therefore, belongs to L

obj rather than Lobj: the interpretation layer

is thus eliminated.

Main Principles of Program Specialization 29

// Bold: pre-executable fragments

Figure 1.20. Pre-executable fragments of mini_printf when fmt is known

To illustrate this, let us look once more at the function mini_printf, the
display format interpreter presented in section A.4.2.4. The source language Lsrc

here is the display format language, the object language Lobj is C, and the
(sub-) display language L

obj is built on the foundations formed by the display
functionsputint, putchar, and prterror, as well as the table-reading operation
val[]. The commands in mini_printf that can be pre-executed when a format
fmt is known are shown in bold in Figure 1.20. The specialization of mini_printf
to a format fmt = “<%d,%d>” is shown in Figure 1.21. It corresponds to the
compilation of the display format “<%d,%d>” in terms of the display language
L

obj (see section A.4.3.1). In reality, the specialization compiles a display format in a

program of the abstract display machine.

Other cases of interpretation of “mini-languages” in that sense may benefit from
compilation by specialization. For instance, a regular-expression interpreter may be
compiled by specialization in a program that more or less represents an automation
[BON 90, MOG 92]. Specific LR parsers can also be generated from a generic parser
[SPE 00].

Similarly, a naïve implementation of a “character-string interpreter” (which
searches for occurrences of a character string in a text), of quadratic complexity
(length of the string searched for times length of the text), may in a manner of speaking
be compiled by specialization to automatically produce a program that implements an
effective searching algorithm, of linear complexity (in the length of the text), such as
the Knuth-Morris-Pratt (KMP) algorithm [AGE 02, AGE 06, CON 89, KNU 77] or
the Boyer-Moore algorithm [BOY 77, DAN 06b].

30 Program Specialization

Figure 1.21. Specialization of mini_printf for fmt = “<%d,%d>”

Not every specializer, in the general sense of the term, is necessarily
capable of eliminating interpretation in a program, i.e. the running of static data
(see section A.4.2). For instance, this is not possible with a trivial specializer,
i.e. a specializer that produces only trivial specialized programs. A specializer that
is capable of getting rid of interpretation is said to be Jones-optimal [MOG 00].

1.4.2. Application 2: transforming an interpreter into a compiler

A specializer also enables us to automatically create a compiler based on an
interpreter.

Suppose, for this purpose, that the object language Lobj (in which the interpreter
interp is written) and the language L (in which the specializer spec is written) are
identical.

We can then define a program comp in L = Lobj as follows:

comp = [[spec]] (spec, interp) [1.21]

This other equation is called the second Futamura projection. It describes how spec
enables us to automatically create a compiler comp from Lsrc to Lobj, written in Lobj, if
we have an Lsrc interpreter interp, also written in Lobj. The program comp is defined as
the specialization of the specializer itself, to the interpreter. Hence, we have comp =
specinterp and [[comp]] psrc = [[specinterp]] psrc = [[spec]] (interp, psrc) = pobj. The
program comp created in this way is therefore indeed a compiler (see section A.4.3.1):

[[comp]]Lobj
psrc = pobj [1.22]

[[pobj]]Lobj
insrc = [[psrc]]Lsrc

in src [1.23]

Main Principles of Program Specialization 31

These equations are illustrated in Figure 1.22. The possibility of applying a
specializer to itself is called auto-application.

Out

Data

Program

pobj

Spec

Spec

Comp

interp psrc in

Figure 1.22. Second Futamura projection

Note that such a compiler comp generates exactly the same compiled programs
as those in the first Futamura projection. Hence, the issues relating to the code’s
performance are identical.

The important point arises from the fact that it is always easier to write a code that
carries out actions (e.g. an interpreter) than a code that generates a code that carries
out actions (e.g. a compiler). The advantage of the second Futamura projection is that
it enables us to develop the easy-to-write code of an interpreter and automatically
produce the difficult-to-write code of a compiler.

1.4.3. Application 3: creating a compiler generator

Finally, also based on an interpreter, a specializer enables us to automatically
create a compiler generator (or compiler).

32 Program Specialization

Out

Data

Program

pobj

Spec

Spec

Spec

Comp

Cogen

interp psrc in

Figure 1.23. Third Futamura projection

To illustrate this, let us again suppose that the object language Lobj (in which
the interpreter interp is written) and the language L (in which the specializer spec
is written) are identical. We can then define a program cogen in L = Lobj as follows:

cogen = [[spec]] (spec, spec) [1.24]

This final (or perhaps not [GLÜ 09]) equation is the third Futamura projection.
It expresses the way in which spec enables us to construct a program cogen that
automatically generates Lsrc compilers in Lobj. This compiler generator is defined
as the specialization of the specializer to itself; therefore, we have cogen = specspec .
The program cogen formed in this manner generates compilers based on interpreters:

[[cogen]] interp = comp [1.25]

Main Principles of Program Specialization 33

Indeed, we have [[cogen]] interp = [[specspec]] interp = [[spec]] (spec, interp) =
comp. These equations are illustrated in Figure 1.23.

As above, such a compiler generator can only generate compilers that correspond
to the second Futamura projection, which, in turn, generate the same compiled
programs as those in the first Futamura projection. The remark made above about the
performance of the compiled programs produced therefore also applies here (also see
Glück’s works [GLÜ 91, GLÜ 94b, GLÜ 09] for a general overview of the Futamura
projections). Depending on the techniques used, it may sometimes be beneficial to
write cogen directly rather than writing spec, in order to eliminate redundancies that
decrease the specializer’s performance (though not the performance of the specialized
programs computed) [BIR 94, THI 96].

Also see section 3.1.7 for the definition, in the context of offline specialization,
of a compiler generator also called cogen, but which differs from what has been
defined here.

1.5. Specialization times

We can distinguish two particular specialization times, which are two key moments
when specializations can be created during the course of the development and
execution of a program: “compile time” and “run time”8.

These two specialization times are not mutually exclusive; they can be
implemented simultaneously within the same program (see, e.g. section 9.3.2).

NOTE 1.3.– This “specialization time” must not be confused with the
“specialization time” (moment of specialization – see section 1.3.3), which for its part
denotes the moment when the specialized code is constructed (specialization time)
when we want to speak of it in comparison to the moment when the specialized code
is executed (run time).

1.5.1. Compile-time specialization

Compile-time specialization is a specialization carried out some time before the
program is executed.

8 We could also define other specialization times: load-time specialization and link-time
specialization; link-time specialization may be “static” (before execution) or “dynamic”
(during execution, see section A.4.1). The techniques to be used in order to exploit these
other specialization times largely resemble those for compile-time and runtime specialization.
However, some are specific, as is the resolution of symbols (introduction of the address values)
at link time. Also see Chambers’ works as regards staged compilation [CHA 02].

34 Program Specialization

The advantage of this type of specialization is that we can take an arbitrary amount
of time (and more generally, an arbitrary amount of resources) to create an efficient
specialized program. The process of generation itself does not have to be particularly
optimized, and we can afford to seek out the best optimizations [BOD 98, PAR 02a].
However, the only static input we can exploit in order to specialize a (sub)program
in this way is data that must be known far enough in advance of execution. However,
optimistic specialization circumvents this limitation by prespecializing the program
(at compile time) to the most common static inputs (see section 9.3).

Compile-time specialization is generally a transformation from a source code (of a
generic subprogram) to a source code (of a specialized subprogram). By incorrect use
of language, the term “compile-time specialization” has come to denote any source-to-
source specialization. Nevertheless, generating specialized source code, immediately
compiled and then integrated into a running program, has also been put forward as a
runtime execution technique [BHA 04b] (see section 1.5.3).

1.5.2. Runtime specialization

Runtime specialization, or JIT specialization, is a specialization that is carried out
during the actual execution of a program.

The advantage of runtime specialization is that it enables us to exploit information
that is unknown until after the program is launched, e.g. data received over a network
or interactively entered by the user. The disadvantage of this type of specialization is
that the time required to create a specialized subprogram must be taken into account in
the total run time of the program. Consequently, the cost of producing this specialized
code, which is more efficient than the generic code, is only covered if it is executed
enough times (see section 1.6).

Runtime specialization is generally a transformation into immediately executable
machine code, e.g. by an indirect function call in the case of C. Directly generating
binary code avoids a costly additional call to a JIT compiler, or to a standalone
compiler. By incorrect use of language, the term “runtime specialization” has come
to denote any direct specialization into machine code without going through source
code, once the program has been launched. However, as indicated above, certain forms
of runtime specialization do go through the source code [BHA 04b]; others do away
with the analysis of the source code by deforestation but retain most of the phases
of a compiler before producing machine code [SPE 97b]. Still others operate on an
intermediary manifestation [MAS 02].

Currently, in general, the performance of compilation platforms is such that
generating the source code and compiling it JIT with a static compiler becomes an
acceptable alternative in certain particular contexts, such as for dynamic programming

Main Principles of Program Specialization 35

languages. Hence, some platforms offer dynamic compilation of script languages by
generating C source code, and also because this provides, “for free”, a degree of
portability that is otherwise extremely expensive for direct generation of binary code
for different environments and material architectures [WIL 09].

A form of runtime specialization that produces machine code directly is presented
in section 10.4.1. In this chapter, we only illustrate its use in the case of C. In
terms of the interface, this runtime specialization produces dedicated specializers, i.e.
specializers that are specific to a particular configuration of static and dynamic data.

Thus, for example, we might have a function dotprod_size_gen that
generates runtime specializations of dotprod to the static parameter size. In
concrete terms, dotprod_size_gen returns a pointer to a function with two
arguments (the dynamic parameters u and v of dotprod) that, in turn, returns
an integer. In other words, the function dotprod_size_gen has the following
signature:

typedef int ((*ii2i)(int,int));

ii2i dotprod_size_gen(int size);

Thus, it is used:

// The value of the size is arbitrary; it can be the result of a computation
sizex = exp;
...

// Generation of the specialized code
dotprod_size = dotprod_size_gen(sizex);

...

// Use of the specialized code
r = (*dotprod_sizex)(ux, vx);

More complex forms of exploitation are detailed in Chapter 9.

1.5.3. Specialization server

Specializing a code fragment is a very clearly delimited task, which can be carried
out in parallel with the rest of the execution of a program: in a separate thread or
process, or on another processor or even another machine. In this case, the financial
viability of specialization can be improved in two ways: by reducing the time taken
for specialization (under certain conditions) and enhancing the quality of optimization
of the specialized code produced.

This idea can be put into practice in the form of a specialization server,
accessible over the network, which produces specialized code on demand following
a specialization request [BHA 04b]. This type of delocalized specialization is
particularly pertinent in the case of onboard systems where resources (time, space,

36 Program Specialization

and electricity) are limited [BHA 04b]. Specializations that would be impossible to
carry out directly on the onboard system because of the lack of resources then become
possible via the server. Even those specializations that could be carried out on the
onboard system itself can be performed more efficiently on the specialization server
(depending on the server’s power, its load, the size of the data to be exchanged, the
number of precomputations to be carried out, the bandwidth and the latency of the
network, etc.).

The specialized codes produced may also be optimized further. Indeed, as users,
we are often prepared to accept a little delay for a function to start, in the interests
of better quality of service once that function is properly initiated (e.g. to watch a
movie). However, for such a form of specialization to become financially viable, the
specialized code has to be used a great many times (see section 1.6). Also, in the case
where we can make requests to several specialization servers, we are dealing with
distributed specialization rather than delocalized specialization [SPE 97a].

When the value of the static data is discovered a certain number of times before
the subprogram that uses them is actually invoked, it is useful to make calls for
anticipated specialization in the hope that the specialized code will already be
available when the subprogram is called. If the specialized code is not yet available at
that point, we can, depending on the strategies, wait for it to become available or use a
default subprogram – e.g. the (non-specialized) generic subprogram. On condition that
adequate clustering is available, the specialized codes produced can also be conserved
and reused, or shared with other running programs.

However, delocalized specialization involves dealing with additional problems:
cross-specialization because the specialization server and the machine or program
that is run may have different processors and execution environments; data-sharing
with the execution in progress, which may necessitate additional exchanges over the
network (with or without data caches); and static calls to system functions, which
must be made, at the server’s request, on the client execution machine that initiated
the specialization request.

In terms of the order of magnitude, the time taken to carry out a delocalized
specialization may be approximately one second, with two-thirds of this time being
spent generating the code, and the remaining one-third for the transfers over the
network [BHA 06, BHA 08].

1.5.4. Specialized code cache

Cache techniques, similar to the technique of memorization [MIC 68], can be
used when we have to specialize the same function several times over, be it on a
specialization server (see section 1.5.3) or in the more usual case of a simple “locally”

Main Principles of Program Specialization 37

executed specialization. In return for a (usually only slightly) increased expense to
look for already-generated specialized codes, when the contexts of specialization are
identical, we avoid costly and pointless code productions.

In this specialized code cache (or specialization cache), runtime specializations
coexist with compile-time specializations carried out optimistically to cover frequent
cases (see section 9.3). These frequent cases may be known if we have prior
knowledge of the domain and the code, or can be empirically discovered
using profiling.

Like any cache, a specialization cache has to handle not only additions but also
deletions (of specialized code). For this purpose, besides standard cache strategies,
strategies specific to runtime specialization have been studied with a view to limiting
the cache size [VOL 97]. Cache strategies linked to the relative invariance and the
way in which the specialized code is used (see Chapter 9) have also been put
forward [GRA 00b]. Techniques for identifying the contexts of specialization based
on chopper functions have also been used in the context of a specialization server
[BHA 06, BHA 08]. A specialized code cache server (memorization master) has even
been proposed in the context of distributed specialization [SPE 97a].

The notion of a specialized code cache may also be compared to that used in online
specialization, where it is an integral part of the code generation process; it enables
us to ensure the termination of a sequence of reductions by creating recursive call
code [RUF 91, WEI 91]. The same kind of mechanism also enables us to terminate
specializations and share specialized functions in the context of offline specialization
(see Chapter 3).

1.6. Financial viability of specialization

Two main parameters need to be taken into account in order to evaluate
the profitability of automatic program specialization: the quality of the resulting
specialized program (how it is better than the original generic program) and the
resources consumed in order to transform the generic program into a specialized
program – particularly the specialization time and the memory space taken up.

In addition to a few definitions, we also give some orders of magnitude of practical
results obtained using Tempo, a specializer for C that is presented in Chapter 4.
It would be imprudent to draw too hasty conclusions from these, given that the
results can vary depending on the type of program, the choice of static inputs, the
execution platform, etc. In addition, the gains presented here are only measured on
the code fragment being specialized, rather than on the entire program into which
the specialized code is inserted. Nevertheless, these orders of magnitude enable us to
“clarify our ideas”. More concrete figures are given in Chapter 5, which recounts some
genuine experiences with Tempo.

38 Program Specialization

1.6.1. Specialization gain

The specialization gain is a comparison of a measure of resource consumption
between a generic program p and a specialized program pinstat. Unless explicitly
stated, this comparison is generally expressed as the ratio between the measurement
for the generic program and the measurement for the specialized program. The gain is
greater than one if the performance is improved, and less than one if it is hindered.

1.6.1.1. Gain in terms of time

Unless otherwise indicated, the resource measured is generally the execution time,
on a given execution platform M and for given sets of input values (in s, ind). This
time gain therefore expresses an increase in the speed of execution, i.e. a reduction in
execution time, also called speedup:

time gain =
time[exec

M
p (in s, ind)]

time[exec
M

pin s
(ind)]

[1.26]

The “gain” may be less than one if the performance is adversely affected, e.g. in case
of cache misses if a loop is unrolled too much, or a recursion is excessively inlined
(see section 1.2.5).

To give some idea of the orders of magnitude, with the specializer Tempo, the
gain in execution speed for compile-time specialization varies, in practice, from a
few percent to a factor of 10, with points at nearly 100 (generally for very small
functions). The time gain for runtime specialization, for its part, typically varies from
a few percent to a factor of five, with points at 40. Because of the techniques used
to generate code rapidly, a runtime specialized program is generally slower than one
specialized (and highly optimized) at compile time, by a factor that varies between 1.1
and 1.5, with points at 4.

1.6.1.2. Gain in terms of space

The gain in terms of space (program size, see section A.5.2) may be formulated in
a number of different ways, depending whether we are interested in the static memory:

space gain (1) =
size[p]

M

size[pin s
]
M

[1.27]

the dynamic memory:

space gain (2) =
size[exec

M
p (in s, ind)]

size[exec
M

pin s
(ind)]

[1.28]

Main Principles of Program Specialization 39

or indeed both of them:

space gain (3) =
size [p]M + size[execM p (in s, ind)]

size[pin s
]
M

+ size [exec
M

pin s
(ind)]

[1.29]

In practice, it is usually the gain in terms of size of the static memory that is
reported. Also in practice, in that it is more commonplace to specialize subprograms
than entire programs, this size must include that of the extra code written into the
program in order to exploit the specialized code (see Chapter 9).

To give the reader some idea of the orders of magnitude, with Tempo, the gain in
terms of the size of the code (for the fragment being specialized) can in certain cases
attain a factor of 10, equating to a space gain of up to 30% for the whole program.

1.6.2. Specialization time

The specialization time (or specialization rate) is the execution time
time[exec spec (p, in s)] of a specializer spec for a program p and a static input
ins to produce a program pin s . The specialization time is often a not-very-
important parameter in compile-time specialization because it is generally negligible
in comparison to all the other tasks of development. Similarly, compilation time does
not tend to be taken into account except for very large systems, and in these cases more
attention is paid to the incrementality of separated compilation than to the individual
compilation times (However, see section 1.6.4 for an example where the program to
be specialized must be executed as soon as possible once the input values are known).

However, the specialization time is a crucially important parameter for runtime
specialization because the time taken to generate the specialized code is included in
the total execution time of the program (except with a separate specialization server,
see section 1.5.3).

It must also be borne in mind that, depending on the program and the static inputs,
the amount of precomputations carried out during a specialization operation, and
hence the specialization time, may be arbitrarily large. For example, depending on how
a program for searching for character strings within a text (see section 1.4.1) is written,
the specialization computations may be linear or quadratic along the length of the
string [AGE 06]. In this manner, the specialization time differs from the compilation
time, which is usually fairly limited (even if it is not necessarily linear), and which
depends only on the program and not on the value of certain inputs.

In terms of orders of magnitude, with Tempo, compile-time specialization is
rarely faster than a tenth of a second. Indeed, a priori, the source code of the
generic program must be read, analyzed and transformed, and the resulting specialized

40 Program Specialization

program must be written. Even though a fair number of operations can be carried out in
advance and factored (particularly the analysis of the program in the context of offline
specialization, see Chapter 3), in practice, this entails reading from and writing to
disk, creating files, manipulating symbolic data (character strings and data structures
that represent programs), and translating formats. Depending on the context (see
sections 1.5.3 and 2.1.5), a compile-time specialization may also include compiling
and editing links.

On the other hand, using techniques based on assembling precompiled code
fragments, the time consumed by runtime specialization may drop to less than a
microsecond for very simple programs [MAR 99a] because it is possible to reduce the
operations needed to a few copies and memory-writes. The specialization time may
be less than a millisecond for a variety of algorithms used in scientific computations
and in image processing [NOË 98]. The time taken for memory allocations may have
to be added to this figure, depending on the management of the memory space that is
regained by creating and storing specialized programs (see section 1.5.4).

1.6.3. Size of the specializer

As regards compile-time specialization, the size of the specializer is usually
unimportant because the specialization generally takes place on platforms with
abundant memory, even if the specialized program generated must then be executed
on a system where the memory is limited (which may, however, cause problems of
cross-specialization, see section 1.3.2). Similarly, we rarely concern ourselves with
the size of a compiler.

On the other hand, for runtime specialization and if we are using a system with
limited memory, we must take account of the size of the dedicated specializer or
specializers (see section 3.1.6) that are incorporated into the program so they can
be called. Account must also be taken of the size of the extra code written into the
program to exploit the specialized code, starting with the call to the specializer and
the calls to the specialized codes generated (see Chapter 9). The possible specialized
code cache system must also be taken into account.

In addition, similarly as for all program sizes, the sizes above may be broken down
into static sizes and dynamic sizes.

1.6.4. Specialization before execution

If we have to execute a program p on a known input in and wish to minimize
the execution time, it may sometimes be advantageous to begin by specializing it to

Main Principles of Program Specialization 41

a partial input ins of in = (in s, ind). This operation is profitable if the following
condition is satisfied:

time[exec spec (p, ins)] + time[exec pins
(ind)] [1.30]

< time[exec p (in s, ind)]

This condition may be fulfilled, for example, when the input ins is a piece of
information that is constantly being used in p’s computations: in this case, a great
deal of time is saved by eliminating all computations involving in s from p. Hence,
it is sometimes profitable to specialize a program before executing it, even if it is
only executed once on that data set. This observation chiefly relates to compile-time
specialization, but it is also applicable to runtime specialization of a function of a
program.

Repeat interpretation is common in this scenario (see section A.4.2.4). If a program
psrc in a language Lsrc performs a great many computations, e.g. if it contains loops or
recursions, a lot of time will be spent in an interpreter interp of Lsrc to repeatedly
decode the same instructions. In this case, instead of proceeding to execute the
interpreter directly, we can first specialize that interpreter to the program, then execute
the resulting specialized interpreter interp psrc:

exec interp(psrc, insrc) =⇒
�

interppsrc
:= exec spec (interp, psrc) ;

exec interppsrc
(insrc)

[1.31]

This is exactly what we do when we wish to compile a program before executing
it, rather than interpreting it. At any rate, the specialized interpreter interppsrc

has the
status of compiled code pobj as per the first Futamura projection (see section 1.4.1).

However, for programs that perform few computations, e.g. in “languages” that do
not have iterative constructs, such as the display format language discussed in section
A.4.2, specialization takes too long in comparison to the actions of the interpreter. In
this case, if the program is only executed once, it is not financially viable to specialize
it before executing it; it is better to interpret directly.

However, the specialization time can be reduced by using a strategy of offline
specialization (see Chapter 3), particularly with interpretation of specialization actions
(see section 3.1.5) or creation of a generating extension (see sections 3.1.6 and
3.1.7). In the particular case of an interpreter, we can also speed specialization up
by using a dedicated compiler obtained through auto-application (see section 1.4.2,
second Futamura projection), for an identical specialized code interppsrc

produced.

42 Program Specialization

1.6.5. Runtime specialization and break-even point

More generally, the profitability of specialization depends on the number of uses
of the specialized program: the cost of creating it may be recouped over several
executions. Thus, if we have to successively execute a (sub)program p on each of
the inputs in i = (in s, ind,i) for 1 � i � n, it is profitable to first specialize p to the
partial input in s on the following condition:

time[exec spec (p, ins)] +

n�
i=1

time[exec pin s
ind,i] [1.32]

<

n�
i=1

time[exec p (in s, ind,i)]

Assuming the specialized program is faster than the original program, there is still
a minimum number of uses of the specialized program beyond which specialization
becomes profitable; this is called the profitability threshold or break-even point. Thus,
to simplify, when the execution time does not depend on the actual value of the
different partial inputs ind,i, specialization is profitable beyond the following number
of executions:

break-even point =
time[exec spec (p, in s)]

time[exec p (in s, ind)]− time[exec pin s
(ind)]

[1.33]

Whether or not to favor specialization time (at the expense of the quality of the
code produced) or the rapidity of the specialized program (at the expense of the
specialization time) is a contextual choice; there is no better systematic strategy. It
is the number of uses of a specialized program – generally unknown, but can be
estimated by an expert or by using profiling – which guides the best choice. In practice,
in terms of specializer engineering, the design choices made often lead us to prefer one
strategy over another. However, a specializer may offer optimization options that slow
down the production time, to the benefit of the quality of the specialized program
produced.

In terms of an order of magnitude, again with Tempo, the break-even point for
runtime specialization typically varies between 10 and 100 executions, with points at
only three utilizations [NOË 98].

The same type of calculation may be carried out with program size. In terms of
dynamic memory, account may have to be taken of whether the codes specialized
during run time are stored in a specialization cache rather than systematically
regenerated (see section 1.5.4) or erased and the corresponding memory space
freed up.

