
Chapter 1

Factor Models and General Definition

1.1. Introduction

Today, the linear factor model is a benchmark in portfolio
management theory [MAR 52, LIN 65], and arbitrage pricing
theory (APT) [ROS 76, ROL 80]. In practice, factor models are
also used widely to understand the cross-section dispersion of
asset returns, whatever the asset class is. Even in the hedge
fund industry, where returns feature high nonlinearity, this
approach is largely implemented, in general with some
improvement such as nonlinear factors or time-varying
parameters. This chapter introduces not only the common
version of linear factor models but also discusses its limits
and the developments described in the following chapters of
this book.

In section 1.2, we introduce the different notations and
discuss the model and its structure. We list in section 1.3 the
reasons why factor models are generally used in finance, and
discuss the limits of this approach. Section 1.4 describes the
different steps in the building of factor models, i.e. factor
selection and parameter estimation. This section is a direct
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2 Multi-factor Models and Signal Processing Techniques

introduction to Chapter 2 for the factor selection step, and
Chapters 3 and 4 for the parameter estimation step. Finally,
section 1.5 concludes the chapter by giving a historical
perspective on the use of factor models in finance.

1.2. What are factor models?

1.2.1. Notations

We first consider a set of N risky assets, indexed i = 1, ...,N .
We denote by si,t the price of the asset i at time t, and ri,t the
corresponding return for the period (t − 1, t). This return is
defined by:

ri,t = si,t

si,t−1 − 1. [1.1]

If prices are observed on a daily (respectively, weekly,
monthly, etc.) basis, then ri,t represents daily (respectively,
weekly, monthly, etc.) returns. We then denote by μi the
expected return of asset i, and σ2

i its variance:

μi = IE(ri,t) and σ2
i = V (ri,t). [1.2]

The variance σ2
i (or the volatility σi) is often used to

measure the risk relative to the asset i. The greater the
volatility, the greater is the risk. The covariance
σi,j = Cov(ri,t, rj,t) between assets i and j will be useful to
compute the risk of a portfolio of several assets.

As opposed to risky assets, we also consider a risk-free
asset that gives a return rf , called the risk-free rate
(supposed to be constant). In practice, short-term government
securities such as US Treasury Bills are used as a proxy for
the risk-free asset; this results in a non-constant rf .
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The expected excess return (or risk premium) of asset i is
the return we can expect from asset i in excess of rf , that is

IE(ri,t) − rf , [1.3]

and is the premium relative to the risk taken when investing
in asset i.

According to Markowitz’s [MAR 52] theory of
mean-variance efficiency, investors (should) therefore require
a higher expected return for holding a more risky asset and
want to earn the highest possible return for a level of risk
that they are willing to take. A portfolio is said to be
mean-variance efficient if we cannot create another portfolio
with a greater expected return and the same variance of
returns (or another portfolio with a lower variance and the
same expected return).

Figure 1.1 illustrates the time series evolution of three
risky assets in comparison to an asset that is a proxy for the
risk-free asset. Their mean-variance trade-offs are given in
Table 1.1.

Name μ(%) σ(%) (μ − rf)/σ
T-Bill 1Y (rf ) 2.93 1.19 -

HFRI ED Index 8.91 7.1 0.84

S&P500 4.28 14.69 0.09

APPLE 58.3 41.05 1.35

Table 1.1. Annualized return (μ), annualized volatility (σ) and
return-to-risk ratio (Sharpe Ratio) calculated between Feburary 2003

and November 2009 for the four financial instruments shown in
Figure 1.1 and ordered by increasing level of risk
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Figure 1.1. Monthly evolution of four time series (in US dollars and based
at $100 at the end of January 2003) representing: (1) an investment in the US
T-Bill 1 year, a 1 year maturity US Treasury Bill, considered as a proxy for
the risk-free asset, (2) the NAV of HFRI ED index, an index of event-driven
(ED) hedge funds, (3) the price of the S&P500, a US market index and (4) the
price of the equity APPLE (on the right axis)

The net asset value (NAV) gives the evolution over time of
$100 invested in each asset. We can easily compute the NAV
from the arithmetic returns with:

NAVi,t = NAVi,t−1 (1 + ri,t),∀i = 1,⋯,N and ∀t = 1,⋯, T
with NAVi,0 = 100 (end of January 2003).

1.2.2. Factor representation

A factor model is a multivariate regression linking the
returns of a set of risky assets to several factors. We focus our
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attention on linear factor models where the relationship
between factors and returns is linear.

Factors represent fundamental data, statistical factors or
specific portfolios. Fundamental data are specified using
economic theory and the knowledge of financial markets and
include macroeconomic variables such as the inflation rate,
the unemployment rate and the gross national product.
Typically, macroeconomic variables are correlated.

To select uncorrelated factors, empirical dimension
reduction techniques, such as factor analysis (FA) or principal
component analysis (PCA), are performed on the covariance
matrix of the returns of the risky assets. It gives rise to
eigenfactors arising from an eigenvalue decomposition of the
covariance matrix.

However, factors can be substituted by specific portfolios,
especially if they represent different strategies that an
investor can pursue at a low cost. The factors represent the
various sources of risk present in the market to which an
investor is exposed.

We now introduce the following linear factor model
specification. The returns of a set of N risky assets indexed
by i = 1,⋯,N are assumed to be wide-sense stationary, and
can be expressed, for t = 1,⋯, T , by:

rt = α +Bft + t, [1.4]

where:
– rt = [r1,t,⋯, rN,t]′ is the N -dimensional vector of the risky

asset returns at time t;
– ft = [f1,t,⋯, fK,t]′ is the K-dimensional vector of values of

common risk factors at t whose covariance matrix is Σf ;
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– B = [b1,⋯,bK] is a N × K matrix where each element
bi,k ∈ IR defines the exposure (or sensitivity) of the asset i to
risk factor k. The sensitivities of asset i to the K factors are the
K-dimensional row-vector b′i = [bi,1,⋯, bi,K]. It is also referred
to as the beta;

– α = [α1,⋯, αN ]′ denotes the N -dimensional vector of
intercepts and is called alpha; and

– t = [ 1,t,⋯, N,t]′ is the N -dimensional vector of the zero-
mean asset-specific residual returns whose covariance matrix
is Σ .

In [1.4], the unknown N × (K + 1) matrix of parameters is
Θ = [θ1,⋯,θN ]′ = [α B] and the inputs of the model are rt
and ft. Let i = [ i,1,⋯, i,T ]′ and fk = [fk,1,⋯, fk,T ]′ denote the
T -dimensional vectors of, respectively, the residual returns of
asset i and the values of factor k.

Additional assumptions are made for [1.4]:

A1) The residual returns are uncorrelated with each of the
factors: IE( i f

′
k) = 0T , i = 1,⋯,N , k = 1,⋯,K.

A2) The residual returns are temporally uncorrelated:
IE( t1

′
t2) = 0N for t1 ≠ t2.

A3) The residual returns are uncorrelated, that is Σ is a
diagonal matrix.

Assumption A3 means that the only sources of correlation
among asset returns are those that arise from their
exposures to the factors and the covariances among the
factors. Residuals of asset returns are assumed to be
unrelated to each other and hence totally specific to each
asset. In other words, the risk associated with the residual
return is idiosyncratic to the asset in question.
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Note that the covariance matrix of the asset returns
specified by [1.4] is:

Σr =BΣf B
′ +Σ . [1.5]

The right-hand side of [1.5] consists of two distinct terms:
BΣf B

′ is called the systematic risk, that is the risk explained
by the K common factors and also known as non-diversifiable
risk, beta risk or market risk.

The second term, Σ , is called the idiosyncratic risk, also
known as diversifiable risk or asset-specific risk and is totally
specific to the assets.

As opposed to the non-diversifiable systematic risk, an
investor has the possibility to reduce the amount of the
asset-specific risk by properly diversifying his (or her)
investments. Note also that Σf is diagonal when eigenfactors
are selected.

When N is large, using [1.5] helps to narrow down the
dimensionality to estimate the covariance matrix Σr. On the
one hand, the number of terms that must be estimated
reduces significantly and on the other hand, K < T usually
meets the requirement to obtain an invertible estimated
covariance matrix.

1.3. Why factor models in finance?

1.3.1. Style analysis

Let us consider a portfolio of n risky assets whose returns
are ri,t, i = 1, ...,N . The portfolio returns are denoted by rp,t and
are obtained from ri,t, i = 1, ...,N by the following formula:

rp,t = N∑
i=1airi,t = a′rt,
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where rt = [r1,t,⋯, rN,t]′ and a = [a1,⋯, aN ]′ is the vector of
(fixed) weights of assets in the portfolio. The distribution of
rp,t depends directly on the joint distribution of the vector rt,
which can be considered as the factors explaining the
portfolio performance. However, these factors can be highly
correlated and/or unobserved (when we do not know the
portfolio manager investment universe). A more
parsimonious and tractable representation is then obtained
using a small number of observed factors correlated with the
portfolio performance. However, we must consider in this case
the potential error made in explaining portfolio returns with
a set of “common” factors. This explains why we introduce
error terms in the linear factor representation.

A given portfolio allocation basically reflects the portfolio
manager’s bets. If we assume that these bets remain
unchanged over the whole observation period, then the
approach described above is relevant. However, from a
practical standpoint, these bets are in general time-varying.
The portfolio manager reallocates his/her portfolio on a
continuous basis, and only the average exposure to factors is
obtained through this classical return-based style analysis
(see [SHA 92] for greater details on this approach). The linear
combination of factors exposures and their respective
performance gives then the strategic or long-term portfolio
benchmark. The value added by the portfolio manager (or
market timing ability) is then defined as the return difference
between this portfolio returns and the strategic long-term
benchmark (see [DAR 12]).

As a portfolio manager’s bets are made on a continuous
basis, it could also be interesting to track their impacts on the
portfolio performance in the short term. Tactical portfolio
allocation decisions rely on short-term portfolio manager’s
forecasts of risk premia (bets on factors) and can, as a result,
also be captured using a linear factor model, but with
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time-varying exposures. Since information arrives randomly,
and tactical bets are assumed to be responses to new
information, we expect the exposure to risk factors to evolve
randomly over time. Equation [1.4] in this case becomes:

rt = αt +Bt ft + t,

where Bt (respectively, αt) denotes the time-varying exposure
of assets to factors (respectively, alpha). Risk factor exposures
are not directly observed and must be filtered from rt.

Let us consider the case of a portfolio of hedge funds (or
fund of hedge funds). Hedge funds are used in the following
chapters to give empirical illustrations. Although the trend is
very clearly toward more transparency, investors do not
systematically have access to the full composition of hedge
funds, and their evolution over time. Fund of hedge fund
managers themselves do not always have a complete view of
the risk factor exposures of their underlying investments,
and, as a result, of the bets they implicitly make. This is all
the more true when the trading frequency of the underlying
funds is significantly higher than their reporting frequency
(i.e. embedded risks can be dramatically different from those
shown at a specific date), or when the number and the
diversity of positions make it difficult to come up with
accurate aggregated factor exposures. Tactical bets explicitly
(at the portfolio level) and implicitly (at the underlying level)
made by the fund of hedge fund manager can alternatively
add up or cancel each other. Using a return-based style
analysis therefore allows us to mitigate one of the main
shortcomings of holding-based approaches, by capturing and
assessing both effects concomitantly.

This example shows that this return-based style analysis
must be done with time-varying parameter to filter from
portfolio returns both long-term and short-term bets.
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1.3.2. Optimal portfolio allocation

Let us consider a portfolio of N risky assets whose returns
are ri,t, i = 1, ...,N , with N large. According to Markowitz’s
[MAR 52] theory, optimal diversified portfolios are obtained
by inverting the covariance matrix of asset returns Σr. This
matrix is unknown, and we have to estimate it from
observations ri,t, i = 1, ...,N, t = 1, ..., T by using, for example,
the empirical covariance matrix:

Σ̂r,T = 1

T

T∑
t=1(rt − IE(rt))(rt − IE(rt))′,

where rt = [r1,t,⋯, rN,t]′ is the vector of asset returns. If the
dimension T is lower than N , then Σ̂r,T is not invertible, and
the optimal Markovitz’s portfolios cannot be computed.
Moreover, even in the case where N is lower than T , this
empirical covariance matrix can have a determinant close to
zero, and we can encounter numerical problems when trying
to invert it with the usual algorithms. This is, in particular,
the case when correlations between assets are high. Factor
models can be used to manage these high correlations and
therefore give an alternative to the direct numerical
inversion approach.

Let us develop these computations in the very simple case
[1.4]. We assume in the following that the risk-free rate is set
to zero and excess risky asset returns rt satisfy the following
linear single risk factor model:

ri,t = bift + i,t, i = 1, ...,N,

where the unobserved single factor ft is assumed to be
Gaussian N(mf , σ

2
f) and i,t, i = 1, ...,N have Gaussian

distribution N(0, σ2). The expected excess return is
IE(ri,t) = bimf and the idiosyncratic risk σ2. The systematic
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source of risk (i.e. the unobserved single factor) creates an
additional individual risk equal to b2iσ

2
f , but also a covariance

between excess returns of two different assets:

Cov(ri,t, rj,t) = bibjσ2
f ,

for i ≠ j. This covariance term can lead to correlation close to 1
when the systematic risk is high relative to the idiosyncratic
risk. However, we can compute explicitly the mean-variance
optimal allocation. The vector of efficient allocations in the N
risky assets is indeed proportional to:

a∗ = V (rt)−1IE(rt),
where rt = [r1,t,⋯, rN,t]′. Using the factor structure, we can
explicit the two first moments of rt and get the following
closed-form formula:

a∗ = (σ2 I + σ2
f BB′)−1mf B = mf

σ2 + σ2
f B

′B B,

where B = [b1,⋯, bN ]′. We then obtain the efficient allocation
by estimating the parameters involved in the previous
formula, without having to numerically invert the covariance
matrix.

In this example, the single factor is unobserved and then
must be filtered from asset returns, or replaced by a proxy
that is able to explain all the correlation structure observed
between risky assets.

1.4. How to build factor models?

1.4.1. Factor selection

The factor selection problem is not new in the financial
literature. The main issue is related to the delicate balance



12 Multi-factor Models and Signal Processing Techniques

between using too many or too few factors. On the one hand,
adding too many factors lowers the regressors efficiency when
we estimate factor exposures using equation [1.4]. On the
other hand, working with too few factors also has an
important risk of missing the correlation structure observed
between asset returns. This raises the question whether it is
possible to build a factor selection methodology allowing us to
consider only the appropriate factors.

The first solution consists of using a predefined set of
observable factors, already documented in the financial
literature for their ability to explain the cross-section of asset
returns. These factors are used to build long- and short-term
benchmarks in the style analysis of section 1.3.1. They are
also used to reduce the dimension of the covariance matrix,
when optimal portfolio allocation must be computed for a
large set of risky assets in section 1.3.2. If we miss some risk
factors in the style analysis, both long- and short-term
benchmarks are misspecified, and the portfolio manager’s
added value is not correctly calculated. In particular, we can
interpret positive risk-adjusted returns as a manager’s skills
and omit an important risk exposure. In the portfolio
allocation example, omitted factors imply residual
correlations between idiosyncratic risk terms. As these
correlations are not taken into account in the calculation of
the optimal portfolio, we underestimate the portfolio risk or,
in other words, we overestimate the diversification effect.

A second solution is to use statistical approaches to filter
from the asset returns distribution (and, in particular, the
covariance matrix) unobservable factors that are able to
explain the cross-section of asset returns. If this approach
seems appealing to a statistical point of view, it has also
many drawbacks from a financial point of view. First, it is, in
general, difficult to give an economic interpretation of these
statistical factors. Second, the factor representation is not
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unique, and any linear combination of a given set of factors
defines an equivalent factor model. Third, the factor
decomposition is, in general, time-varying and then difficult
to interpret. Both approaches are described in detail in
Chapter 2.

1.4.2. Parameters estimation

Once a set of factors is chosen, parameters estimation
consists of computing numerical values of factors exposures.
When parameters are not time-varying, least squares (LS)
approaches can be used to compute these estimators,
depending on the residual properties. However, both in the
style analysis of section 1.3.1 and the optimal portfolio
allocation problem of section 1.3.2, parameters can be
time-varying and more complex statistical filtering
approaches must be used (see e.g. [BOL 09, PAT 13]) such as
the Flexible Least Squares [KAL 89, MAR 04], the Kalman
filter (KF) [RON 08a, RON 08b, RAC 10] or Markov
switching regimes [BIL 12].

The LS estimator can always be computed on rolling
windows, updated each time we get new data. This provides a
time series of estimators that have then a time-varying
behavior. However, this approach, if useful when changes in
parameters over time are smooth, can be misleading when
big changes occur. A style analysis computed using rolling
window LS can miss a sudden style rotation decided by the
portfolio manager. On the contrary, this estimation method
provides very good results when style drifts are small and/or
implemented step by step.

The KF approach is by definition more reactive and can
capture in theory quick style rotations. However, this
approach works well only when the relevant factors are used
in equation [1.4]. Indeed, assumptions made up of the
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statistical behavior of the residual returns are more
constraining, and any failure can have a huge impact of the
filtered time-varying exposures. It is, for example, the case
when residual returns do not follow a Gaussian distribution.
Commonalities and discrepancies between LS and KF are
discussed in Chapter 3, and an enhanced version of KF is
discussed in Chapter 4.

1.5. Historical perspective

Factor models have been the focus of numerous studies in
empirical finance since Treynor [TRE 62], Sharpe [SHA 64],
Lintner [LIN 65] and Mossin [MOS 66] developed the capital
asset pricing model (CAPM) in the 1960s.

1.5.1. CAPM and Sharpe’s market model

CAPM lays the foundation for all the existing factor models.
It gives the theoretical equilibrium relationship that should
occur between the returns and the risks of individual assets
with regard to the market returns.

Its conception is based on two fundamental financial
concepts: market equilibrium that occurs if the amount of
demand is balanced by the amount of supply (represented by
the market portfolio), and, as a result, the mean-variance
efficiency of the market portfolio.

Given the risk-free rate rf and the risk σm of the market
portfolio m, the CAPM stipulates that the returns we expect
from individual assets in excess of rf are given in proportion
to the excess returns expected from the market, as follows:

IE(ri,t) − rf = βi (IE(rm,t) − rf), [1.6]
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where βi = γim/σ2
m is related to the amount of risk given by

i, with γim being the covariance between ri and rm. Larger
values of βi correspond to larger expected return and larger
risk for asset i. The term (IE(rm,t) − rf ) is called market risk
premium.

In practice, the unknown parameter βi is estimated
through the following univariate regression using historical
data for the asset returns, the market portfolio and the
risk-free rate:

ri,t − rf = αi + βi (rm,t − rf) + i,t, [1.7]

where i,t satisfies IE( i,t) = 0. Additional parameter αi is the
asset alpha. The strict form of [1.6] specifies that alpha must
be zero and that deviation from zero is the result of
temporary disequilibrium. With αi = 0 in [1.7], this model
coincides with Sharpe’s market model that is an output of
[1.6]. The market portfolio is usually replaced by a major
standard equity index (such as the S&P500) since Black
[BLA 72] has shown that in market equilibrium, such
market-value weighted indices are always efficient. The
parameter αi can be used to perform fitted performance
analysis (see [DAR 10]).

CAPM results can be represented by the so-called security
market line (SML) as shown in Figure 1.2. The SML is the
plot of the expected return of any asset i as a function of its
beta, as given by [1.6]. It is obtained for a fixed period of time
through [1.6] where rf is the mean of the risk-free asset
returns, IE(rm,t) is the mean of the returns for the proxy of
the market portfolio and where some theoretical values for
the βis are chosen. For each risky asset i, αi and βi are
estimated through [1.7] and μ̂i is the estimated mean of its
returns. According to CAPM, given β̂i, if μ̂i does not lie on the
theoretical SML, then the asset is mispriced.
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In practice, this model has received several criticisms
(e.g. see Roll’s critique [ROL 77]). First, the market portfolio
is unobservable. Standard equity indices usually substitute
for it but do not reflect all the wealth in the economy as the
market portfolio does. Second, the mean-variance approach
depends only on the first two moments of the asset returns,
which is too restrictive.
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Figure 1.2. The security market line (SML, the black line) shows the
expected return of asset i as a function of its beta, as given by [1.6], and given
in annualized values over the period August 2004 / October 2010: rf = 2.93%,
IE(rm,t) = 4.41%, and σm = 22.81%. Here, rf is the average rate of the US T-
Bill 1 year over the whole period, m is the S&P500 and the risky assets are
some of its components. Each (blue) point has for coordinates (β̂i, μ̂i) – the
estimated values, for asset i, of βi and IE(ri,t). If μ̂i is lower (respectively,
higher) than IE(ri,t), obtained from [1.6] given rf , IE(rm,t) and β̂i, then the
asset is said to be under (respectively, over) valued. Stocks with an * have
significant (at 99.5%) non-zero αi

Finally, empirical studies often invalidate the CAPM
because of its strong assumptions and show that more than
one factor is necessary to identify the market risks.
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1.5.2. APT for arbitrage pricing theory

Ross [ROS 76] and Roll and Ross [ROL 77, ROL 80]
developed an alternative arbitrage model to the CAPM, called
APT model. APT follows from two basic postulates:

P1) the risky assets follow a K-factor structure like [1.4]
with three additional assumptions:

A4) K << N ;

A5) IE(fk) = 0, k = 1,⋯,K that leads to IE(rt) = α;

A6) ∃ s < ∞ such that σ2
i
= IE( 2

i,t) ≤ s2.
P2) pure arbitrage profits are impossible.

Pure arbitrage profits are risk-free profits at zero cost: an
investor can earn a positive return on any combination of
assets without undertaking risk and without making some
net investment of funds. With P1 and P2, APT stipulates that
the risk premiums of the risky assets are given through a
linear combination of the factor risk prices weighted by the
factor sensitivities bi of [1.4]:

IE(ri,t) = rf + K∑
k=1 bi,k λk, [1.8]

where λk defines the price of risk for factor k. The full APT
expression is then obtained by replacing αi, i = 1,⋯,N in [1.4]
by [1.8]. Jointly estimating the K-dimensional vectors bi and
λ = [λ1,⋯, λK]′ is not trivial. In practice, a two-pass
methodology can be used: first estimate bi through [1.4]
(giving rise to b̂i), then use b̂i as input to estimate λ through:

ri,t = rf + K∑
k=1 b̂i,k λk + ui,t,
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where ui,t represents zero-mean residual errors with usual
assumptions. Unlike the CAPM, APT does not provide any
information about the nature of the K factors.

1.6. Glossary

Volatility

The volatility σ of an asset a refers to the standard
deviation of the continuously compounded returns of a within
a specific time horizon. Volatility is usually expressed in
annualized terms: if the volatility σ is computed using daily
(respectively, weekly) returns and if we consider that a year
is made us of 250 business days (respectively, 52 weeks), then
the annualized volatility will be equal to

√
250σ (respectively,√

52σ).

Risk

The risk of holding an asset a may be quantified by the
volatility of a.

Risk-free rate

The theoretical rate of return of an investment with zero
risk; the risk-free rate, commonly denoted rf , represents the
minimum return an investor expects for any investment
when taking no risk. This is often considered as a lower
bound of what should at least give any riskier investment
since bearing any risk should be more remunerating than a
risk-free investment.

Expected (excess) return

The expected return of an asset a is the return on a
expected in the future and is computed by IE(ra). The
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expected excess return is the expected return on a in excess of
the return given by the risk-free rate (or by any other market
measure): IE(ra) − rf .

Risk premium

The risk premium of an asset a is the expected return on a
in excess of the risk-free rate, that is IE(ra) − rf .

Zero-cost portfolio

A zero-cost portfolio is a portfolio for which the weights
add up to zero. For example, the excess return of an asset a,
that is IE(ra) − rf is a zero-cost portfolio. It invests 100% in a
and −100% in the risk-free rate. The amount borrowed at rf is
invested in a. As the investor will have to pay the interest for
borrowing money at rf , he/she would therefore expect to
receive more than rf in return for his/her investment in a.

Tradable portfolio

A portfolio is said to be tradable if it is a zero-cost portfolio.

Portfolio diversification

Diversifying a portfolio is the act of adding more
investments to one’s portfolio to reduce the risk inherent in
any one investment. It increases the possibility of making a
profit, or at least avoiding a loss. In general, the broader the
diversification, the less is the risk and the return. Adding
more investments to the portfolio for diversification involves
subdividing the portfolio among many smaller investments. If
the portfolio’s size increases instead of remaining constant,
the portfolio’s risk may not decrease especially if the assets
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added in the portfolio are uncorrelated. Here is a very simple
example of diversification benefits on the variance of the
portfolio. If the N assets in the portfolio are mutually
uncorrelated and have identical variances σ2, portfolio
variance is minimized by holding all assets in the equal
proportions 1/N . Then, the portfolio variance equals σ2/N
that is monotonically decreasing in N . So, even if the added
assets are uncorrelated, the portfolio variance decreases.
Benefits of diversification amplify when adding negatively
correlated assets in the portfolio. The modern understanding
of diversification dates back to the work of Harry Markowitz
[MAR 52] in the 1950s.

Market portfolio

A market portfolio is a perfectly well-diversified portfolio
and represents the evolution of the market as a whole. In the
factor model framework, a perfectly diversified portfolio
admits a pure factor structure, that is a factor structure
where there is no additional idiosyncratic risk.

Market efficiency

The market is said to be efficient if the price of the assets
in the market reflects all information available.

Market equilibrium

The market equilibrium occurs if the amount of demand is
balanced by the amount of supply. In this condition, the prices
should tend not to change unless demand or supply change.

Arbitrage

Arbitrage is the possibility of a risk-free profit at zero cost.
For example, if the same asset does not trade at the same
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price on all markets, buying and selling this asset
simultaneously and instantaneously on two different markets
will take advantage of the price difference.

Market capitalization

Market capitalization, also known as Market Cap. or cap.
(MC), is the number of outstanding shares of a firm times the
price of its share in the market. MC measures the size of the
firm. It changes every day because of the quoted firm price (P).
For example, in October 24, 2010, the six largest MC in the
world were (T$ is for trillions US dollars and B$ for billions
US dollars):

(1) Telecom Brasil with MC = T$6.57 and P = $5.99,

(2) Exxon Mobil with MC = B$337.69 and P = $66.32,

(3) Apple with MC = B$282.77 and P = $309.52,

(4) PetroChina with MC = B$229.20 and P = $125.23,

(5) BHP Billiton with MC = B$224.83 and P = $80.81, and

(6) Microsoft with MC = B$219.97 and P = $25.42.






