Chapter 1

Context

This chapter describes the general context in which this
work has been conducted, how our work takes its roots and
how this research can be placed in the field of electronic
design.

In section 1.1 of this chapter, we highlight the importance
nowadays of embedded systems. Section 1.2 stresses the
relationship between memory management and three
relevant cost metrics (such as power consumption, area
and performance) in embedded systems. This explains the
considerable amount of research carried out in the field of
memory management. Then, the following section presents a
brief survey of the state of the art in optimization techniques
for memory management, and, at the same time, positions
our work with respect to the aforementioned techniques.
Finally, operations research for electronic design is taken
into consideration for examining the mutual benefits of both
disciplines and the main challenges exploiting operations
research methods to electronic problems.

2 Memory Allocation Problems in Embedded Systems

1.1. Embedded systems

There are many definitions for embedded systems in the
literature (for instance [HEA 03], [BAR 06], [KAM 08] and
[NOE 05]) but they all converge toward the same point: “An
embedded system is a minicomputer (microprocessor-based)
system designed to control one specific function or a range of
functions; but, it is not designed to be programmed by the end
user in the same way that a personal computer (PC) is”.

A PC is built to be flexible and to meet a wide range of
end user needs. Thus, the user can change the functionality
of the system by adding or replacing software, for example
one minute the PC is a video game platform and the next
minute it can be used as a video player. In contrast, the
embedded system was originally designed so that the end
user could make choices regarding the different application
options, but could not change the functionality of the system
by adding software. However, nowadays, this distinction is
less and less relevant; for example it is more frequent to
find smartphones where we can change their functionality by
installing appropriate software. In this manner, the breach
between a PC and an embedded system is shorter today than
it was in the past.

An embedded system can be a complete electronic device or
a part of an application or component within a larger system.
This explains its wide range of applicability. Embedded
systems range from portable devices such as digital watches
to large stationary installations such as systems controlling
nuclear power plants.

Indeed, depending on application, an embedded system can
monitor temperature, time, pressure, light, sound, movement
or button sensitivity (like on Apple iPods).

Context 3

We can find embedded systems helping us in every
day common tasks; for example alarm clocks, smartphones,
security alarms, TV remote controls, MP3 players and traffic
lights. Not to mention modern cars and trucks that contain
many embedded systems: one embedded system controls the
antilock brakes, another monitors and controls the vehicle’s
emissions and a third displays information in the dashboard
[BAR 06].

Besides, embedded systems are present on real-time
systems. The main characteristic of these kinds of systems
is timing constraints. A real-time system must be able to
make some calculations or decisions in a timely manner
knowing that these important calculations or activities
have deadlines for completion [BAR 06]. Real-time systems
can be found in telecommunications, factory controllers,
flight control and electronic engines. Not forgetting, the
real-time multi-dimensional signal processing (RMSP) domain
that includes applications, like video and image processing,
medical imaging, artificial vision, real-time 3D rendering,
advanced audio and speech coding recognition [CAT 98b].

Contemporary society, or industrial civilization, is strongly
dependent on embedded systems. They are around us
simplifying our tasks and pretending to make our life more
comfortable.

1.1.1. Main components of embedded systems

Generally, an embedded system is mainly composed of a
processor, a memory, peripherals and software. Below, we give
a brief explanation of these components.

— Processor: this should provide the processing power
needed to perform the tasks within the system. This main
criterion for the processor seems obvious but it frequently
occurs that the tasks are either underestimated in terms

4 Memory Allocation Problems in Embedded Systems

of their size and/or complexity or that creeping elegancel
expands the specification beyond the processor’s capability
[HEA 03].

— Memory: this depends on how the software is designed,
written and developed. Memory is an important part of any
embedded system design and has two essential functions:
it provides storage for the software that will be run, and
it provides storage for data, such as program variables,
intermediate results, status information and any other data
created when the application runs [HEA 03].

— Peripherals: these allow an embedded system to
communicate with the outside world. Sensors that measure
the external environment are typical examples of input
peripherals [HEA 03].

— Software: this defines what an embedded system does and
how well it does it. For example, an embedded application
can interpret information from external sensors by adopting
algorithms for modeling external environments. Software
encompasses the technology that adds value to the system.

In this work, we are interested in the management of
embedded system memory. Consequently, the other embedded
system components are not addressed here. The next section
justifies this choice.

1.2. Memory management for decreasing power
consumption, performance and area in embedded
systems

Embedded systems are very cost sensitive and in practice,
the system designers implement their applications on the

1 Creeping elegance is the tendency of programmers to disproportionately
emphasize elegance in software at the expense of other requirements such
as functionality, shipping schedule and usability.

Context 5

basis of “cost” measures, such as the number of components,
performance, pin count, power consumption and the area of
the custom components. In previous years, the main focus
has been on area-efficient designs. In fact, most research in
digital electronics has focused on increasing the speed and
integration of digital systems on a chip while keeping the
silicon area as small as possible. As a result, the design
technology is powerful but power hungry. While focusing on
speed and area, power consumption has long been ignored

[CAT 98b].

However, this situation has changed during the last
decade mainly due to the increasing demand for handheld
devices in the areas of communication (e.g. smartphones),
computation (e.g. personal digital assistants) and consumer
electronics (e.g. multimedia terminals and digital video
cameras). All these portable systems require sophisticated
and power-hungry algorithms for high-bandwidth wireless
communication, video-compression and -decompression,
handwriting recognition, speech processing and so on.
Portable systems without low-power design suffer from either
a very short battery life or an unreasonably heavy battery.
This higher power consumption also means more costly
packaging, cooling equipment and lower reliability. The latter
is a major problem for many high-performance applications;
thus, power-efficient design is a crucial point in the design of
a broad class of applications [RAB 02, CAT 98b].

Lower power design requires optimizations at all levels of
the design hierarchy, for example technology, device, circuit,
logic, architecture, algorithm and system level [CHA 95,
RAB 02].

Memory design for multi-processor and embedded systems
has always been a crucial issue because system-level
performance strongly depends on memory organization.
Embedded systems are often designed under stringent energy

6 Memory Allocation Problems in Embedded Systems

consumption budgets to limit heat generation and battery
size. Because memory systems consume a significant amount
of energy to store and to forward data, it is then imperative
to balance (trade-off) energy consumption and performance in
memory design [MAC 05].

The RMSP domain and the network component domain
are typical examples of data-dominated applications2. For
data-dominated applications, a very large part of the power
consumption is due to data storage and data transfer. Indeed,
a lot of memory is needed to store the data processed; and
huge amounts of data are transfered back and forth between
the memories and data paths3. Also, the area cost is heavily
impacted by memory organization [CAT 98b].

Figure 1.1, taken from [CAT 98b], shows that data
transfers and memory access operations consume much more
power than a data-path operation in both cases: hardware
and software implementations. In the context of a typical
heterogeneous system architecture, which is illustrated in
Figure 1.2 (taken from [CAT 98b]), this architecture disposes
of custom hardware, programmable software and a distributed
memory organization that is frequently costly in terms of
power and area. We can estimate that downloading an
operand from off-chip memory for a multiplication consumes
approximately 33 times more power than the multiplication
itself for the hardware processor. Hence, in the case of a
multiplication with two factors where the result is stored in
the off-chip memory, the power consumption of transferring

2 Data-dominated applications are so named like this because they process
enormous amounts of data.

3 Data-path is a collection of functional units, such as arithmetic logic units
or multipliers, that perform data processing operations. A functional unit is
a part of a central processing unit (CPU) that performs the operations and
calculations called by the computer program.

Context 7

data is approximately 100 times more than the actual
computation.

40
33
30
Relative
Energy/op
20
10
10 9
4.4
3.6
1 .
0 | | |
16b 16b 8X128X16 8X128X16 External 16b Memory
Carry-Select Multiplier SRAM (Read) SRAM (Write) 1/0 Access Transfer
0.4
Relative
Energy

0.2

; [] []
Storage Interconnect Clocks Others

Figure 1.1. Dominance of transfer and storage over data-path
operation both in hardware and software

Furthermore, studies presented in [CAT 94], [MEN 95],
[NAC 96], [TIW 94] and [GON 96] confirm that data
transfer and storage dominates power consumption for
data-dominated applications in hardware and software
implementations.

8 Memory Allocation Problems in Embedded Systems

In the context of memory organization design, there are two
strategies for minimizing the power consumption in embedded
systems. The first strategy is to reduce the energy consumed
in accessing memories. This takes a dominant proportion of
the energy budget of an embedded system for data-dominated
applications. The second strategy is to minimize the amount of
energy consumed when information is exchanged between the
processor and the memory. It reduces the amount of required
processor-to-memory communication bandwidth [MAC 05].

memory custom programmable memory
(hardware) (software)

Accelerator
data-path

DRAM Accelerator
data-path

Master control
Glue logic
9 1/0 interfaces

Figure 1.2. Typical heterogeneous embedded architecture

DSP core SRAM

cOo>»

1.3. State of the art in optimization techniques for
memory management and data assignment

It is clear that memory management has an impact
on important cost metrics: area, performance and power
consumption. In fact, the processor cores begin to push the
limits of high performance, and the gap between processor
and memory widens and usually becomes the bottleneck
in achieving high performance. Hence, the designers of
embedded systems have to carefully pay attention to minimize
memory requirements, improve memory throughput and limit
the power consumption by the system’s memory. Thus, the
designer attempts to minimize memory requirements with the
aim of lowering overall system costs.

We distinguish three problems concerning memory
management and data assignment. The first problem is

Context 9

software oriented and aims at optimizing application code
source regardless of the architecture; it is called a software
optimization and it is presented in section 1.3.1. In the
second problem, the electronic designer searches for the best
architecture in terms of cost metrics for a specific embedded
application. This problem is described in section 1.3.2. In the
third problem, the designer is concerned with binding the
application data into memory in a fixed architecture so as to
minimize power consumption. This problem is presented in
section 1.3.3.

1.3.1. Software optimization

We present some global optimizations that are independent
of the target architectural platform; readers interested in
more details about this are refereed to [PAN 01b]. These
optimization techniques take the form of source-to-source
code transformations. This has a positive effect on the area
consumption by reducing the amount of data transfers and/or
the amount of data to be stored. Software optimization often
improves performances cost and power consumption, but not
always. They are important in finding the best alternatives in
higher levels of the embedded system design.

Code-rewriting techniques consist of loop and data-flow
transformations with the aim of reducing the required amount
of data transfer and storage, and improving access behavior
[CAT 01]. The goal of global data-flow transformation is to
reduce the number of bottlenecks in the algorithm and remove
access redundancy in the data flow. This consists of avoiding
unnecessary copies of data, modifying computation order,
shifting of “delay lines” through the algorithm to reduce the
storage requirements and recomputing issues to reduce the
number of transfers and storage size [CAT 98a]. Basically,
global loop and control-flow transformations increase the
locality and regularity of the code’s accesses. This is clearly

10 Memory Allocation Problems in Embedded Systems

good for memory size (area) and memory accesses (power)
[FRA 94] but of course also for performance [MAS 99].
In addition, global loop and control-flow transformations
reduce the global life-times of the variables. This removes
system-level copy overhead in buffers and enables storing
data in smaller memories closer to the data paths [DEG 95,
KOL 94].

The hierarchical memory organization is a memory
optimization technique (see [BEN 00c] for a list of references).
It reduces memory energy by exploiting the non-uniformities
in access frequencies to instructions and data [HEN 07].
This technique consists of placing frequently accessed data
into small energy-efficient memories, while rarely accessed
information is stored in large memories with high cost per
access. The energy cost of accessing and communicating with
the small memories is much smaller than the cost required
to fetch and store information in large memories [BEN 00a,
CUP 98].

A good way for decreasing the memory traffic, as well as
memory energy, is to compress the information transmitted
between two levels of memory hierarchy [MAC 05]. This
technique consists of choosing the set of data elements to
be compressed/decompressed and the time instants during
execution at which these compressions or decompressions
should be performed [OZT 09]. The memory bottlenecks are
mainly due to the increasing code complexity of embedded
applications and the exponential increase in the amount
of data to manipulate. Hence, reducing the memory-space
occupancy of embedded applications is very important.
For this reason, designers and researchers have devised
techniques for improving the code density (code compression),
in terms of speed, area and energy [BAJ 97]. Data compression
techniques have been introduced in [BEN 02a, BEN 02b].

Context 11

Ordering and bandwidth optimization guarantees that the
real-time constraints are presented with a minimal memory
bandwidth-related costs. Also, this determines which data
should be made simultaneously accessible in the memory
architecture.

Moreover, storage-bandwidth optimization takes into
account the effect on power dissipation. The data that are
dominant in terms of power consumption are split into smaller
pieces of data. Indeed, allocating more and smaller memories
usually results in less power consumption; but the use of
this technique is limited by the additional costs generated
by routing overheads, extra design effort and more extensive
testing in the design [SLO 97].

This chapter does not cover optimization techniques on
source code transformation. It is focused on optimization
techniques on hardware and on data binding in an existing
memory architecture.

1.3.2. Hardware optimization

We now present some techniques for optimizing the
memory architecture design of embedded systems.

The goal of memory allocation and data assignment is to
determine an optimal memory architecture for data structures
of a specific application. This decides the memory parameters,
such as the number and the capacity of memories and
the number of ports in each memory. Different choices
can lead to solutions with a very different cost, which
emphasize how important these choices are. The freedom of
the memory architecture is constrained by the requirements of
the application. Allocating more or less memories has an effect
on the chip area and on the energy consumption of the memory
architecture. Large memories consume more energy per access

12 Memory Allocation Problems in Embedded Systems

than small memories, because of longer word — and bit — lines.
So the energy consumed by a single large memory containing
all the data is much larger than when the data are distributed
over several smaller memories. Moreover, the area of a single
memory solution is often higher when different arrays have
different bit widths [PAN 01b].

For convenience and with the aim of producing
sophisticated solutions, memory allocation and assignment
is subdivided into two subproblems (a systematic technique
has been published for the two subproblems in [SLO 97],
[CAT 98c] and [LIP 93]). The first subproblem consists of
fixing the number of memories and the type of each of
them. The term “type” includes the number of access ports
of the memory, whether it is an on-chip or an off-chip
memory. The second subproblem decides in which of the
allocated memories each of the application’s array (data)
will be stored. Hence, the dimensions of the memories are
determined by the characteristics of the data assigned to
each memory and it is possible to estimate the memory
cost. The cost of memory architecture depends on the
word-length (bits) and the number of words of each memory,
and the number of times each of the memories is accessed.
Using this cost estimation, it is possible to explore different
alternative assignment schemes and select the best one
for implementation [CAT 98b]. The search space can be
explored using either a greedy constructive heuristic or a
full-search branch and bound approach [CAT 98b]. For small
applications, branch and bound method and integer linear
programming (ILP) find optimal solutions, but if the size of
the application gets larger, these algorithms take a huge
computation time to generate an optimal solution.

For one-port (write/read) memories, memory allocation and
assignment problems can be modeled as a vertex coloring
problem [GAR 79]. In this conflict graph, a variable is

Context 13

represented by a vertex, a memory is represented by a color
and an edge is present between two conflicting variables.
Thus, the variable of the application is “colored” with the
memories to which they are assigned. Two variables in
conflict cannot have the same color [CAT 98b]. This model is
also used for assigning scalars to registers. With multi port
memories, the conflict graph has to be extended with loops and
hyperedges and an ordinary coloring is not valid anymore.

The objective of in-place mapping optimization is to find the
optimal placement of the data inside the memories such that
the required memory capacity is minimal [DEG 97, VER 911].
The goal of this strategy is to reuse memory location as much
as possible and hence reduce the storage size requirements.
This means that several data entities can be stored at the
same location at different times. There are two subproblems:
the intra-array storage and inter-array storage [CAT 98bl].
The intra-array storage refers to the internal organization
of an array in memory [LUI 07b, TRO 02]. The inter-array
storage refers to the relative position of different arrays in
memory [LUI 07a]. Balasa et al. [BAL 08] give a tutorial
overview on the existing techniques for the evaluation of the
data memory size.

A data transfer and storage exploration methodology
is a technique for simultaneous optimization of memory
architecture and access patterns. It has also been proposed
for the case of data-dominated applications (e.g.multimedia
devices) and network component applications (e.g. Automated
Teller Machine applications) [CAT 98b, BRO 00, CAT 94,
CAT 98a, WUY 96]. The goal of this methodology is to
determine an optimal execution order for the data transfer
and an optimal memory architecture for storing the data of a
given application. The steps in this methodology are decoupled
and placed in a specific order, which reduces the number of

14 Memory Allocation Problems in Embedded Systems

iterations between the steps and shortens the overall design
time. These steps are:

— global data-flow transformations;

— global loop and control-flow transformations;
— data reuse decision;

—ordering and bandwidth optimization;

— memory allocation and assignment;

— in-place mapping.

The first three steps refer to architecture-independent
optimizations; that is optimizations of the form
of source-to-source code transformations. If these
transformations are not applied, the resulting memory
allocation is very likely far from optimal. The remaining
stages consist of optimization techniques that address target
memory architecture.

Memory partitioning has demonstrated very good potential
for energy savings (in [MAC 05], a survey of effective memory
partitioning approaches is presented). The basic idea of this
method is to subdivide the address space into several smaller
blocks and to map these blocks to different physical memory
banks that can be independently enabled and disabled
[FAR 95].

Incorporating scratchpad memory (SPM) [PAN 00, PAN 99]
in the memory architecture is another very popular
technique in memory management for reducing energy
consumption. A scratchpad is a high-speed internal memory
used for temporary storage of calculations, data and
other work in progress. There are many works on this
topic, for instance [CHO 09], [KAN 05], [ANG 05], [RAM 05],
[PAN 97b], [PAN 97a] and [EGG 08]. An SPM is a high-speed
internal memory that is used to hold small items of data for
rapid retrieval. In fact, both the cache and SPM are usually

Context 15

used to store data, because accessing to the off-chip memory
requires a relatively longer time [PAN Ola]. The memory is
partitioned into data cache and SPM to exploit data reusability
of multimedia applications [SIN 03].

Methods on using SPMs for data accesses are either static or
dynamic. Static methods [BAN 02, VRE 03, AVI 02, STE 02]
determine which memory objects (data or instructions) may
be located in SPM at compilation time, and the decision is
made during the execution of the program. Static approaches
generally use greedy strategies to determine which variables
to place in SPM, or formulate the problem as an ILP program
or a knapsack problem to find an optimal allocation. Recently
in [AOU 10al, [AOU 10b], [AOU 10e], [AOU 10d], [AOU 10c]
and [IDO 10], operation research techniques (e.g. tabu search,
and genetic and hybrid heuristic) have been proposed for this
problem. Dynamic SPM allocation places data into the SPM,
taking into account the latency variations across the different
SPM lines [CHO 09, VER 04, ISS 07, FRA 04].

In memory allocation for high-level synthesis, the
application addressed involves a relatively small number
of signals%. Thus, techniques for dealing with the memory
allocation are scalar oriented and use a scheduling phase
([SCH 92, STO 92, BAL 07]). Therefore, the major goal is
typically to minimize the number of registers for storing
scalars. This optimization problem is called register allocation

[GAJ 92].

ILP formulations [SCH 92, BAL 88], line packing
[KUR 87, HUA 09], graph coloring [STO 92] and clique
partitioning techniques [TSE 86] have been proposed
for register allocation. One of the first techniques, a
graph coloring-based heuristic, is reported in [CHA 04].

4 In literature, the term “signal” is often used to indicate an array as well.

16 Memory Allocation Problems in Embedded Systems

It is based upon the fact that minimizing the number
of registers is equivalent to the graph coloring problem.
A graph is constructed for illustrating this problem.
Vertices represent variables, edges indicate the interference
(conflict) between variables and each color represents
a different physical register. Many other variants of
this coloring problem for register allocation have been
proposed (e.g. see [BLA 10, ZEI 04, KOE 06]). More and more
metaheuristic methods are used to find good solutions to
this problem (e.g. see [SHE 07, TOP 07, MAH 09]). General
approaches have been proposed for this problem (e.g. see
[GRU 07, KOE 09, PER 08, PIN 93, CUT 08]).

We are only interested in the optimization techniques
for memory architecture involving one-port memories.
Consequently, the other techniques using multi-port or
scratchpad are not addressed in this chapter.

1.3.3. Data binding

This section presents some references for the data binding
problem, which is to allocate data structure from a given
application to a given memory architecture. Because of the
provided architecture, the constraints considered and the
criterion to optimize, there is a wide range of data binding
problems.

First, we introduce some interesting works about the
memory partitioning problem for low energy. Next, we
present the works that take into account the number and
capacities of memory banks, and the number of accesses to
variables. Finally, we discuss other works that consider the
aforementioned constraints and use an external memory.

These works have similarities with the last three versions
of the memory allocation problem addressed in Chapters 3, 4

Context 17

and 5. A fixed number of memory banks is the main feature
that they have in common. The two more complex versions
of the memory allocation problem consider the memory bank
capacities, the number of accesses to variables and the use of
an external memory.

1.3.3.1. Memory partitioning problem for low energy

Section 1.3.1 introduced the memory partitioning problem,
which is a typical performance-oriented solution, and energy
may be reduced only for some specific access patterns. In
contrast, the memory partitioning problem for low energy
reduces the energy for accessing memories [BEN 02¢]. The
main characteristics of this problem are the fixed number of
memory banks and the ability of independently accessing the
memory banks.

There are some techniques to address the memory
partitioning problem for low energy, and some different
versions of this problem depending on the considered
architecture.

In [KOR 04], a method for memory allocation and
assignment is proposed using multi-way partitioning, but the
partitioning algorithm to resolve the conflicts in the conflict
graph is not described. In [KHA 09], a min-cut partitioning
algorithm, initially proposed in [SHI 93], is used for memory
allocation and assignment. To apply this algorithm, the
conflict graph is needed and the designer must set a number
of partitions (i.e. the number of memory banks). Moreover, the
min-cut algorithm tends to find minimum cuts in the conflict
graph, resolving minimum conflicts only. The conflict graph
is modified so as to maximize the cuts. Maximizing the cut
results in resolving the maximum number of conflicts in the
conflict graph.

In [BEN 00b], Benini et al. propose a recursive algorithm
for the automatic partitioning of on-chip memory into multiple

18 Memory Allocation Problems in Embedded Systems

banks that can be independently accessed. The partitioning
is carried out according to the memory access profile of an
embedded application, and the algorithm is constrained to the
maximum number of banks.

In [CON 09], Cong et al. present a memory partitioning
technique to improve throughput and reduce energy
consumption for given throughput constraints and platform
requirement. This technique uses a branch and bound
algorithm to search for the best combination of partitions.

Sipkova [SIP 03] addresses the problem of variable
allocation to a dual memory bank, which is formulated
as the max-cut problem on an interference graph. In an
interference graph, each variable is represented by a vertex,
an edge between two vertices indicates that they may be
accessed in parallel, and that the corresponding variables
should be stored in separate memory banks. Thus, the goal
is to partition the interference graph into two sets in such a
way that the potential parallelism is maximized, that is the
sum of the weights of all edges that connect the two sets
is maximal. Several approximating algorithms are proposed
for this problem. Furthermore, [MUR 08] presents an integer
linear program and a partitioning algorithm based on coloring
techniques for the same problem.

1.3.3.2. Constraints on memory bank capacities and number
of accesses to variables

The work presented in [SHY 07] takes into account
memory bank capacities, sizes and the number of accesses
to variables for addressing the problem of reducing the
number of simultaneously active memory banks, so that
the other memory banks that are inactive can be put
to low-power modes to reduce energy consumption. The
considered architecture has multiple memory banks and
various low-power operating modes for each of these banks.

Context 19

This problem is modeled like a multi-way graph partitioning
problem, and well-known heuristics are used to address it
[SHY 07].

A recent work that also considers the capacity constraints,
sizes and the number of accesses is presented in [ZHA 11].
This paper proposes an ILP model to optimize the performance
and energy consumption of multi-module memories by
solving variable assignment, instruction scheduling and
operating mode setting problems simultaneously. Thus, this
model simultaneously addresses two problems: instruction
scheduling and variable assignment. Two methods are
presented for solving the proposed ILP model. The first method
is a linear programming (LP)-relaxation to reduce the solution
time, but it gives only lower bounds to the problem. The
second method is a variable neighborhood search (VNS), which
drastically reduces the computation time without sacrificing
much to the solution quality.

Some heuristics to solve a buffer allocation problem
applicable to explicitly parallel architectures are proposed
in [MAR 03]. This problem is related to the multi-way
constrained partitioning problem. Here, each partition is a set
of buffers accessed in parallel and the number of buffers in
each partition is less than or equal to the number of memory
banks. The list of partitions is periodically executed. A set of
memory banks of a fixed capacity is given. Thus, the objective
is to compute an assignment of each buffer to a memory bank
so as to minimize memory bank transfer overheads. All buffers
have to be assigned and the buffers in the same partition are
assigned to distinct memory banks.

1.3.3.3. Using external memory

In most cases, a processor requires one or more large
external memories to store the long-term data (mostly of
the DRAM type). In the past, the presence of these external

20 Memory Allocation Problems in Embedded Systems

memories in the architecture increased the total system power
requirements. However, now these memories improve the
throughput, but they do not improve the latency [NAC 01].
Some works that use an external memory are presented below.

Kumar, et al. [KUM 07] present a memory architecture
exploration framework that integrates memory customization,
which is logical to physical memory mapping and data layout.
For memory architecture exploration, a genetic algorithm
approach is used, and for the data layout problem, a heuristic
method is proposed. This heuristic is used to solve the data
allocation problem for all memory architectures considered in
the exploration phase, which could be in several thousands.
Hence, the heuristic must consider each architecture (on-chip
memory size, the number and size of each memory bank,
the number of memory ports per bank, the types of memory,
scratchpad, RAM or cache) to perform the data allocation.

This heuristic starts considering the critical data (i.e. the
data that have high access frequency) for designing an initial
solution. Then, it backtracks to find changes in the allocation
of data, which can improve the solution. These changes
are performed considering the data size, and the minimum
allocation cost of data in the memory bank.

Hence, the first step to build the initial solution is to
identify and place all the critical data in the internal memory
and the remaining data in the external memory. In the
second step, the algorithm tries to resolve as many conflicts
as possible (self-conflicts and parallel-conflicts) by using the
different dual/single access memory banks. The data that are
on self-conflict are first allocated and then the data on critical
parallel-conflict. The metaheuristic first uses the dual-access
memory bank to allocate data; the single-access memory
banks are used only when the all dual-access memory banks
are full.

Context 21

Corvino et al. [COR 10] present a method to map data
parallel applications into a specific hardware accelerator.
Data parallel applications are executed in a synchronous
architectural model. Initially, the data to be processed are
stored in the external memory, and during the cycles of
application, the manipulated data can be stored in local
memories.

The general idea of the proposed method is to mask the
times to transfer data with the time to perform computations.
A method based on an integer partition is used to reduce the
exploration space.

Most of the works presented in this section do not
provide a mathematical model and a comparison with an
exact method. Moreover, their proposed approaches are only
tested on a single instance. In this work, we propose a
formal mathematical model for each version of the memory
allocation problem. Additionally, the proposed metaheuristics
are compared with exact approaches on a large set of
instances.

No version of memory allocation problem is totally
concerned with the architecture, constraints and/or the
criterion to optimize the problems presented in this section.

1.4. Operations research and electronics

This section is inspired from the works of the CNRS GDR-RO

working group “Problématiques d’optimisation discrete en
micro-électronique” [MAR 10a, MAR 10b, KIE 11].

In the last decades, researchers and practitioners of
electronics have revealed needs for further optimizations.
Additionally, even “old” problems have become more
challenging due to the larger instances and increasing
complexity of the architecture.

22 Memory Allocation Problems in Embedded Systems

However, the complexity, size and novelty of problems
encountered in microelectronics make this area a source
of exciting and original optimization problems for the
community of operations research (OR). Indeed, the models
and data are complex and poorly formalized, and problems
are often very challenging. Furthermore, the integration of
more components on the circuit reveals new and/or large-size
problems to model and solve.

These are the reasons why a new discipline has appeared
at the border of operations research and electronics. This
discipline is concerned with addressing electronic problems
using operations research methods. Isolated experiments have
first been reported, which explain both the heterogeneity in
the electronic topics addressed, and the great diversity in the
operations research methods used to solve them. The following
paragraphs mention some examples of OR methods used for
addressing electronics problems.

The development of modern algorithms for the placement
problem is one of the oldest applications of OR to
microelectronics. This problem consists of placing the
elements of a circuit in the target area so that no
elements overlap with each other, and the total length
of interconnections is minimized. The circuits may have
billions of transistors, and five times more connections.
A team in Bonn, led by Bernhard Korte and Jens
Vygen, work on this problem in collaboration with IBM.
They develop combinatorial optimization methods [KOR 08],
which are implemented in their solver called “Bonn Tools”
[BRE 08]. Futhermore, [CHA 09] summarizes the algorithms
implemented for this problem, which are mainly based
on simulated annealing, min-cut and analytical placement
basics.

Another well-known example of OR for electronics is the
implementation of metaheuristics for the register allocation

Context 23

problem [SHE 07, TOP 07, MAH 09, BLA 10, ZEI 04, KOE 06,
GRU 07, PER 08]), as mentioned in section 1.3.2.

Advanced metaheuristics have been designed for high-level
synthesis tools [TRA 10, COU 09, TRA 08, SEV 11, ROS 08].
They are considered to be efficient approaches, and some
of them have been implemented in the high-level synthesis
platform, [GAU 93].

Many metaheuristics have been developed
for the management of scratchpad memories
([AOU 10a, AOU 10b, AOU 10e, AOU 10d, AOU 10c,
IDO 10]), and management of system on-chip
(IDAF 08, CRE 10, KOR 04, DU 08]), as mentioned in
section 1.3.2.

Some OR methods have been applied for evaluating
communication processors [SEN 09], for very large scale
integration (VLSI) [PEY 09], for improving the performance
of ASiCs chips [HEL 03] and for the memory architecture
exploration [KUM 07, ZHA 11].

1.4.1. Main challenges in applying operations research
to electronics

There is not a single scientific object of interest in
the activity of operations research for electronics, and the
operational researcher usually faces the following issues when
entering the electronics field.

—The first difficulty is with communication. Generally,
electronic practitioners do not have good knowledge of OR
and vice versa. Often electronic designers are not interested
in trying different methods that come from an unknown
field of science, because they rely on their experience and
competences to tackle the problems in their own field. Hence,
at the beginning of a research project, electronic practitioners

24 Memory Allocation Problems in Embedded Systems

can be reluctant to work with an OR team and to communicate
the electronic problems and needs.

— The microelectronic culture is difficult to access because
of the large amount electronic subjects involved with
microelectronics and a hermetic language employed by
electronic practitioners. This language is related to technology
and only numerous interactions make it possible to
understand some terms.

Similarly, for electronic practitioners, entering into the
OR field requires an adaptation time. Hence, the electronic
practitioners, who design the conception tools, often develop
their own heuristics, which are often considered poor by OR
standards.

—The objectives of electronic industries and researchers
are very different. The complexity of problems, the variety
of techniques and time constraints presented in the industry
suggest a “greedy” approach, which does not always make
it possible to understand the nature of theoretical issues.
Furthermore, the notion of the problem in the academic
sense is often not known by the practitioners in the industry.
Moreover, the choice of the optimization methodologies may be
influenced by the application domain depending on whether
or not the industrialists want to develop and partially or
totally implement the proposed solutions (i.e. heuristics vs.
algorithms). For these reasons, modeling the problem is
crucial.

— Some technological difficulties may arise. The continuous
development of miniaturized chips changes the properties of
electronic components. All of this means that the operations
research models are applied to problems whose dimensions
are not necessarily known or even fixed. Thus, the problems
can easily change over time. Hence, it is, here, more difficult
to fix models than in other areas.

Context 25

— Sometimes data are not easy to obtain. In the industry,
information can be confidential or accessing it may take
longer due to a large hierarchy in the administration. In
some cases, there are no efficient tools to generate data. Also,
for technological reasons in component design, the typical
dimension of instances is often difficult to obtain.

—Appreciation /| Enhancement. Another difficulty is
presented in the publication of results. Currently, there is no
specialized journal dedicated to this kind of interdisciplinary
work; and general OR or electronic journals do not easily
accept these kinds of papers. In particular, electronic
practitioners find it difficult to accept OR type communications
in their journals and at their conferences. On the one hand,
OR researchers are not familiar with the applications,
motivations and vocabulary used in the electronic literature.
On the other hand, it is not easy to explain and motivate the
electronic problems in the OR community, and thus it is hard
to capture the interest of an OR audience.

