
1

Parametric Timed Automata

In this chapter, we present the formalisms used throughout this book. In
particular, we present timed automata [ALU 94], a powerful modeling
formalism for real-time systems. Since this book focuses on synthesizing
values for timing parameters of a system, guaranteeing a good behavior, we
will also use a parametric extension of timed automata, namely parametric
timed automata [ALU 93c]. This chapter presents their syntax and semantics,
and more generally all the necessary formalisms to understand the rest of
this book. Any reader who is not particularly interested in theory can skip
directly to Chapter 2, and return to Chapter 1 when needed.

Outline of the chapter

We describe clocks, parameters and constraints on the clocks and parameters in
section 1.1 and labeled transition system in section 1.2. We then introduce the syntax
and semantics of timed automata in section 1.3, and parametric timed automata in
section 1.4. Related works, including representation of time, and formalisms related
to timed automata, are discussed in section 1.5.

1.1. Constraints on clocks and parameters

1.1.1. Clocks

Throughout this book, we assume a fixed set X = {x1, . . . , xH} of clocks. A clock
is a variable xi with value in R+, which denotes the set of non-negative real numbers.
All clocks evolve linearly at the same rate. We define a clock valuation as a function
w:X → R+ assigning a non-negative real value to each clock variable. We will often
identify a valuation w with the point (w(x1), . . . , w(xH)). Given a constant d ∈ R+,
we use X + d to denote the set {x1 + d, . . . , xH + d}. Similarly, we write w + d to
denote the valuation such that (w + d)(x) = w(x) + d for all x ∈ X .

CO
PYRIG

HTED
 M

ATERIA
L

2 The Inverse Method

1.1.2. Parameters

Throughout this book, we assume a fixed set P = {p1, . . . , pM} of parameters,
that is unknown constants. A parameter valuation π is a function π: P → R+

assigning a non-negative real value to each parameter. There is a one-to-one
correspondence between valuations and points in (R+)

M . We will often identify a
valuation π with the point (π(p1), . . . , π(pM)).

1.1.3. Constraints

We define constraints here as a set of linear inequalities.

1.1.3.1. Syntax of constraints

DEFINITION 1.1.– Let V be a set of variables of the form V = {v1, . . . , vN}. A
linear inequality on the variables of V is an inequality e ! e′, where !∈ {<,≤} and
e, e′ are two linear terms of the form:∑

1≤i≤N

αivi + d

where vi ∈ V , αi ∈ R+, for 1 ≤ i ≤ N and d ∈ R+.

Note that we define the coefficients of the linear inequalities as positive reals. It
would be equivalent to define them as positive rationals, since we consider only linear
inequalities. Both definitions are found in the literature; we suppose here that, since
we are addressing the problem of the verification of real-time systems, we consider
real valued constants.

We assume in the following that all inequalities are linear, and we will simply refer
to linear inequalities as inequalities.

DEFINITION 1.2.– Let V be a set of variables of the form V = {v1, . . . , vN}. Given
an inequality J on the variables of V of the form e < e′ (respectively, e ≤ e′), the
negation of J , denoted by ¬J , is the linear inequality e′ ≤ e (respectively, e′ < e).

DEFINITION 1.3.– Let V be a set of variables of the form V = {v1, . . . , vN}. A
convex linear constraint on the variables of V is a conjunction of inequalities on the
variables of V .

We assume in the following that all constraints are both convex and linear, and we
will simply refer to convex linear constraints as constraints.

DEFINITION 1.4.– An inequality on the clocks is an inequality on the set of clocks X .
A constraint on the clocks is a constraint on the set of clocks X .

Parametric Timed Automata 3

DEFINITION 1.5.– An inequality on the parameters is an inequality on the set of
parameters P . A constraint on the parameters is a constraint on the set of
parameters P .

DEFINITION 1.6.– An inequality on the clocks and the parameters is an inequality
on X ∪ P . A constraint on the clocks and the parameters is a constraint on X ∪ P .

Throughout this book, we denote by L(X) the set of all constraints on the clocks,
by L(P) the set of all constraints on the parameters and by L(X ∪ P) the set of all
constraints on the clocks and the parameters.

In the following, the letter J will denote an inequality on the parameters, the
letter D will denote a constraint on the clocks, the letter K will denote a constraint
on the parameters, and the letter C will denote a constraint on the clocks and the
parameters.

1.1.3.2. Semantics of constraints

Given a constraint D on the clocks and a clock valuation w, D[w] denotes the
expression obtained by replacing each clock x in D with w(x). A clock valuation w
satisfies constraint D (denoted by w |= D) if D[w] evaluates to true.

Given a parameter valuation π and a constraint C on the clocks and the
parameters, C[π] denotes the constraint on the clocks obtained by replacing each
parameter p in C with π(p). Likewise, given a clock valuation w, C[π][w] denotes
the expression obtained by replacing each clock x in C[π] with w(x). We say that a
parameter valuation π satisfies a constraint C, denoted by π |= C, if the set of clock
valuations that satisfy C[π] is non-empty. We use the notation <w, π> |= C to
indicate that C[π][w] evaluates to true.

A convex linear constraint on the clocks and the parameters can also be interpreted
as a set of points in the space RM+H , more precisely as a convex polyhedron. We will
use these notions synonymously. In this geometric context, a valuation w satisfying a
constraint C is equivalent to the polyhedron C containing the corresponding point w,
written as w ∈ C. For a partial valuation w (i.e. a point of a subspace of C), we write
w ∈ C if and only if w is contained in the projection of C on the variables of w.

Given two constraints C1 and C2 on the clocks and the parameters, we say that C1

is included in C2, denoted by C1 ⊆ C2, if ∀w, π : <w, π> |= C1 ⇒ <w, π> |= C2.
We have that C1 = C2 if and only if C1 ⊆ C2 and C2 ⊆ C1.

Similarly to the semantics of constraints on the clocks and the parameters, we say
that a parameter valuation π satisfies a constraint K on the parameters, denoted by
π |= K, if the expression obtained by replacing each parameter p in K with π(p)
evaluates to true. Given two constraints K1 and K2 on the parameters, we say that
K1 is included in K2, denoted by K1 ⊆ K2, if ∀π : π |= K1 ⇒ π |= K2. We have

4 The Inverse Method

that K1 = K2 if and only if K1 ⊆ K2 and K2 ⊆ K1. We will consider true as a
constraint on the parameters, corresponding to the set of all possible values for P .

Given a constraint C on the clocks and the parameters, we denote by C↓P the
constraint on the parameters obtained by projecting C onto the set of parameters, that
is after elimination of the clock variables. Formally:

C↓P = {π | ∃w : <w, π> |= C}.

Sometimes we will refer to a variable domain X ′, which is obtained by renaming
the variables in X . Explicit renaming of variables is denoted by the substitution
operation. Given a constraint C on the clocks and the parameters, we denote by
C[X←X′] the constraint obtained by replacing in C the variables of X by the
variables of X ′.

We define the time elapsing of C, denoted by C↑, as the constraint over X and P
obtained from C by delaying an arbitrary amount of time. Note that, of course, only
clocks can evolve; parameters are unknown constants and therefore remain constant.
Formally:

C↑ =
(
(C ∧X ′ = X + d)↓X′∪P

)
[X′←X]

where d is a new parameter with values in R+ and X ′ is a renamed set of clocks. The
inner part of the expression adds a delay d to all clocks; the projection onto X ′ ∪ P
eliminates the original set of clocks X , as well as the variable d; the outer part of the
expression renames clocks X ′ with X .

1.2. Labeled transition systems

We now introduce labeled transition systems, which will be used later in this
section to represent the semantics of timed automata.

DEFINITION 1.7.– A labeled transition system over a set of symbols Σ is a triple
L = (S, S0,⇒), with S a set of states, S0 ⊂ S a set of initial states and ⇒ ∈ S×Σ×S

a transition relation. We write s
a⇒ s′ for (s, a, s′) ∈ ⇒. A run (of length m) of L

is a finite alternating sequence of states si ∈ S and symbols ai ∈ Σ of the form
s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm, where s0 ∈ S0. A state si is reachable if it belongs to some

run r.

1.3. Timed automata

Timed automata are an extension of standard finite-state automata allowing the use
of clocks, that is real-valued variables increasing linearly at the same rate. Such clocks

Parametric Timed Automata 5

can be compared with constants in constraints that allow us (or not) to stay in a location
(“invariants”) or to take a transition (“guards”). At each transition, it is possible to reset
some of the clocks of the system. This formalism allows the parallel composition of
several timed automata, which behave like a single one, and thus provides the designer
with a powerful and intuitive way to represent timed systems. It is important to note
that the formalism of timed automata is very sensitive to the size of the automata and
the number of automata in parallel, thus often leading to the state-space explosion
problem. However, powerful tools, such as the UPPAAL [LAR 97] model checker,
have been implemented, allowing designers to model and verify very efficiently timed
systems modeled by timed automata.

1.3.1. Syntax

DEFINITION 1.8.– A timed automaton A is a 6-tuple of the form A = (Σ, Q, q0, X,
I,→), where:

• Σ is a finite set of actions,

• Q is a finite set of locations,

• q0 ∈ Q is the initial location,

• X is a set of clocks,

• I : Q → L(X) is the invariant, assigning to every q ∈ Q a constraint I(q) on
the clocks and

• → is a transition relation consisting of elements of the form (q, g, a, ρ, q′), also
denoted by q

g,a,ρ→ q′, where q, q′ ∈ Q, a ∈ Σ, ρ ⊆ X is a set of clock variables to be
reset by the transition, and g ∈ L(X) is the guard of the transition.

Note that we use a more permissive definition of the constraints used in guards
and invariants than in the original definition of timed automata (see [ALU 94]).
Indeed, we allow the use of conjunctions of any linear inequalities on the clocks,
whereas the original definition usually considers conjunctions of comparisons of a
single clock with a constant. This more permissive definition usually has an impact
on the decidability (the addition of clock values within a constraint leads to
undecidability [ALU 94]), but this has no impact in this book, mainly because of the
use of parametric timed automata, where the parameters bring themselves
undecidability in the general case. Furthermore, many tools for (parametric) timed
automata allow more permissive definitions than the original one.

Timed automata are often extended in practice with discrete variables, which can
be used in guards and transitions, updated within the transitions, and sometimes even
used as a factor for clocks. However, in most cases, they represent only syntactic

6 The Inverse Method

sugar for the discrete space (i.e. locations). As a result, we will not use them in any
theoretical part of this book. Note, nevertheless, that many tools for (parametric)
timed automata allow the use of such discrete variables, and some of the case studies
contained here also use them.

The graphical representation of a timed automaton A is an oriented graph where
vertices correspond to locations, and edges correspond to actions of A. We follow the
following conventions for the graphical representation of timed automata: locations
are represented by nodes, above of which the invariant of the location is written;
transitions are represented by arcs from one location to another location, labeled by
the associated guard, the action name and the set of clocks to be reset (guards and
invariants equal to true are omitted). The initial location is represented here using a
double circle.

EXAMPLE 1.1.– We give in Figure 1.1 an example of a timed automaton containing
four locations (viz. q0, q1, q2 and q3), three actions (viz. a, b and c) and two clocks
(viz. x1 and x2). The initial location is q0.

q0

q1

q2 q3

x1 ≤ 5

x2 ≤ 5 x2 ≤ 5

x1 ≥ 4
a

x1 ≥ 2 ∧ x2 ≥ 3
b

x2 := 0

x2 ≥ 4
c

b
x1 := 0
x2 := 0

Figure 1.1. An example of a timed automaton

In this timed automaton, q0 has invariant x1 ≤ 5, q1 has invariant true and both q2
and q3 have invariant x2 ≤ 5. The transition from q0 to q1 has guard x1 ≥ 4 through
action a; no clock is reset. The transition from q0 to q2 has guard x1 ≥ 2 ∧ x2 ≥
3 through action b, and resets clock x2. The transitions between q2 and q3 can be
explained similarly.

Parametric Timed Automata 7

1.3.2. Semantics

The semantics of timed automata is given under the form of a labeled transition
system, where states are pairs made by a location and a valuation for each clock.

DEFINITION 1.9.– Let A = (Σ, Q, q0, X, I,→) be a timed automaton. The concrete
semantics of A is the labeled transition system (S, S0,⇒) over Σ, where

S = {(q, w) ∈ Q× (X → R+) | w |= I(q)},
S0 = {(q0, w) | w |= I(q0) ∧ w = (w0, . . . , w0) for some w0 ∈ R+}

and the transition predicate ⇒ is specified by the following three rules. For all
(q, w), (q′, w′) ∈ S, d ≥ 0 and a ∈ Σ,

• (q, w)
a→ (q′, w′) if ∃g, ρ : q

g,a,ρ→ q′ and w |= g and w′ = ρ(w);

• (q, w)
d→ (q′, w′) if q′ = q and w′ = w + d;

• (q, w)
a⇒ (q′, w′) if ∃d, w′′ : (q, w) a→ (q′, w′′) d→ (q′, w′).

We consider with the definition of S0 that all clocks are initially set to 0, or have
evolved linearly in the bounds given by I(q0). A state (respectively, run) in the
concrete semantics will be referred to as a concrete state (respectively, concrete run).

A concrete run is represented under the form of a branch where states are shown
within nodes containing the name of the location and the value of each of the clocks,
and transitions are shown using edges labeled with the name of the action.

EXAMPLE 1.2.– Consider again the timed automaton A of example 1.1. Then,
Figure 1.2 shows an example of a concrete run for A.

q0
x1 = 3
x2 = 3

q2
x1 = 7
x2 = 4

q3
x1 = 7.5
x2 = 4.5

q2
x1 = 4.2
x2 = 4.2

q3
x1 = 5
x2 = 5

. . .b c b c b

Figure 1.2. Example of a concrete run for a timed automaton

This run is obtained as follows: we start from the initial location q0 where both
clocks have evolved during three time units. Then, we take action b, reset x2 and spend
four time units in q2. Then, we take action c, and spend 0.5 time unit in q3. Then, we
take action b, reset both clocks and spend 4.2 time units in q2. Then, we take action c,
and spend 0.8 time units in q3, and so on.

The power of timed automata relies on the fact that one can construct a finite
partition of the infinite space of clock valuations. In particular, this construction is
suitable to perform reachability analysis. The main theoretical advantage of timed

8 The Inverse Method

automata relies in its decidability results. In particular, it has been shown that the
reachability of a state is decidable. Moreover, various timed temporal logics
(e.g. [ALU 93a]) have been designed and various decidability results have been
shown (e.g. [ALU 93a, HUN 02, WAN 03, FIN 06, BAI 09]).

1.3.2.1. Traces

We now introduce the notion of trace, that abstracts part of a system’s behavior.
In the literature, we usually consider either a state-based approach or an action-based
approach (see, e.g. [BAI 08]). We consider here a combined state- and action-based
approach: a trace is an alternating sequence of locations and actions. Note that, for a
deterministic timed automaton, that is a timed automaton such that there is at most
one transition leaving a given location with a given action, there is an equivalence
between the state-based, the action-based and the combined approaches (because of
the unicity of the initial location). This can be the case for hardware verification
when one models circuits at the gate level. Indeed, when we model each gate of the
circuit with a different timed automaton, where each location corresponds to a
different value of the input and output signals of the gate, and each transition
corresponds to a rise or a fall of a signal of the global system, then the composition
of the timed automata modeling each gate is deterministic. In that case, if we
consider a sequence of locations, it is possible to retrieve the corresponding sequence
of actions (from a given initial location), and conversely.

We define more formally the notion of trace in the following definition.

DEFINITION 1.10.– Given a timed automaton A and a concrete run r of A of the
form (q0, w0)

a0⇒ · · · am−1⇒ (qm, wm), the trace associated with r is the alternating
sequence of locations and actions q0

a0⇒ · · · am−1⇒ qm. We say that location qi, for
1 ≤ i ≤ m, belongs to the trace.

A trace is built from a run by removing the valuation of the clocks, and therefore
can be seen as a time-abstract run. We show traces under a graphical form using boxed
nodes labeled with locations and double arrows labeled with actions.

EXAMPLE 1.3.– The trace associated with the concrete run of example 1.2 is shown
in Figure 1.3.

q0 q2 q3 q2 q3 . . .b c b c b

Figure 1.3. Example of a trace associated with a concrete
run for a timed automaton

We define below the notion of acyclic trace as a trace that never passes twice by
the same location, that is a trace whose locations are all different.

Parametric Timed Automata 9

DEFINITION 1.11.– Given a trace T = q0
a0⇒ · · · am−1⇒ qm, T is said to be an acylic

trace if:

∀qi, qj , i < j < m, qi ̸= qj

Given two traces, we define the following notion of prefix of a trace.

DEFINITION 1.12.– Given a trace T = q0
a0⇒ · · · am−1⇒ qm, the prefix of length n

of T is the trace denoted by |T |n and defined as follows:

|T |n =

{
q0

a0⇒ · · · an−1⇒ qn if n < m

q0
a0⇒ · · · am−1⇒ qm otherwise

Similarly, we say that a trace T1 is a prefix of a trace T2 if there exists n ≥ 0 such
that |T2|n = T1.

We now define the following notion of trace set.

DEFINITION 1.13.– Given a timed automaton A, the trace set of A refers to the set
of traces associated with the runs of A.

Often, when depicting trace sets, we will not depict each trace separately, but
depict the trace set under the form of a tree or a graph. Note, however, that this graph
structure is only used for the sake of simplicity of representation of the possible
traces, and does not contain any information on the possible branching behavior of
the system.

EXAMPLE 1.4.– The trace set associated with the timed automaton of example 1.1
is shown in Figure 1.4.

q0

q2 q3 q2 q3

q1

b

a

c b
c

b

Figure 1.4. Example of a trace set of a timed automaton

This trace set contains an infinite number of finite traces. Note also that it is
obviously not acyclic, because there are (actually infinitely many) traces passing
several times by locations q2 and q3.

10 The Inverse Method

We extend the notion of acyclicity of a trace to trace sets, and say that a trace set
is acyclic if all its traces are acyclic. We also say that a location q belongs to the trace
set of A if it belongs to a trace of the trace set of A.

In the following, we are interested in verifying properties on the trace set of A.
For example, given a predefined set of “bad locations”, a reachability property is
satisfied by a trace if this trace never contains a bad location; such a trace is “good”
with respect to this reachability property. A trace can also be said to be “good” if a
given action always occurs before another one within the trace (see example in
section 2.1.1). Actually, the good behaviors that can be captured with trace sets are
relevant to linear-time properties [BAI 08], which can express properties more
general than reachability properties.

DEFINITION 1.14.– Given a timed automaton A, and a property on traces, we say
that a trace of A is good if it satisfies the property, otherwise it is bad. Likewise, we
say that the trace set of A is good if all its traces are good, otherwise it is bad.

1.4. Parametric timed automata

Parametric timed automata are an extension of the class of timed automata to the
parametric case. Parametric timed automata allow within guards and invariants the use
of parameters in place of constants [ALU 93c]. This model is interesting when we do
not only want to check that a system is correct for one value of the constants, but for a
whole dense set of values. The model of parametric timed automata is also interesting
to synthesize parameters for which a given property is satisfied.

Unfortunately, for most interesting problems, parametric timed automata lose the
decidability results proved for timed automata. In particular, the reachability of a
state is not decidable (although semi-algorithms do exist, i.e. if the algorithm
terminates, then the result is correct). Moreover, parametric timed automata are even
more sensitive to the state space explosion problem because of the addition of the
parameters. In practice, this comes also from the fact that the data structures used to
represent parametric timed automata are far less efficient than the data structures
used for timed automata (typically difference bound matrices, proposed in [BER 83]
for the analysis of time Petri nets, and introduced in [DIL 89] for timed automata).
Structures handling parametric timed models include parametric difference bound
matrices (an extension of difference bound matrices, proposed in [HUN 02]),
SAT-solvers, SMT-solvers and polyhedra. Avoiding the explosion of the state space,
and finding cases for which analyses are decidable for parametric timed automata,
are actually some of the motivations for the techniques described in this book.

Parametric Timed Automata 11

1.4.1. Syntax

DEFINITION 1.15.– A parametric timed automaton A is a 8-tuple of the form
A = (Σ, Q, q0, X, P,K, I,→), where:

• Σ is a finite set of actions,

• Q is a finite set of locations,

• q0 ∈ Q is the initial location,

• X is a set of clocks,

• P is a set of parameters,

• K is an initial constraint on the parameters of P ,

• I : Q → L(X ∪ P) is the invariant, assigning to every q ∈ Q a constraint I(q)
on the clocks and the parameters and

• → is a transition relation consisting of elements of the form (q, g, a, ρ, q′), also
denoted by q

g,a,ρ→ q′, where q, q′ ∈ Q, a ∈ Σ, ρ ⊆ X is a set of clock variables to be
reset by the transition, and g ∈ L(X ∪ P) is the transition guard.

The initial constraint K is useful to define constrained models, where some
parameters are already related. For example, in a timed model with two parameters
min and max , we may want to constrain min to be always smaller or equal to max ,
that is K = {min ≤ max}. Although it does not add expressive power (this
constraint could be “simulated” by simply adding it to the invariant of the initial
location), it is largely used in practice. All case studies considered here make use of
this initial constraint. Furthermore, this constraint K can be refined in order to
constrain the model further. In the following, given a parametric timed automaton
A = (Σ, Q, q0, X, P,K, I,→), we will often denote this parametric timed
automaton by A(K) when clear from the context, in order to emphasize that only K
will change when performing repeated analysis on refined models of A.

We make use for parametric timed automata of the same graphical representation
as for timed automata, that is an oriented graph where vertices correspond to the
locations, and edges correspond to the actions. The graphical representation of a
parametric timed automaton will be referred to as its associated graph.

EXAMPLE 1.5.– We give in Figure 1.5 an example of a parametric timed automaton
containing four locations (viz. q0, q1, q2 and q3), three actions (viz. a, b and c),
two clocks (viz. x1 and x2) and two parameters (viz. p1 and p2). The initial location
is q0.

In this parametric timed automaton, q0 has invariant x1 ≤ 5p1, q1 has invariant
true and both q2 and q3 have invariant x2 ≤ 5p2. The transition from q0 to q1 has

12 The Inverse Method

guard x1 ≥ 4p1 through action a; no clock is reset. The transition from q0 to q2 has
guard x1 ≥ 2p1 ∧ x2 ≥ 3p2 through action b and resets clock x2. The transitions
between q2 and q3 can be explained similarly.

q0

q1

q2 q3

x1 ≤ 5p1

x2 ≤ 5p2 x2 ≤ 5p2

x1 ≥ 4p1
a

x1 ≥ 2p1 ∧ x2 ≥ 3p2
b

x2 := 0

x2 ≥ 4p2
c

b
x1 := 0
x2 := 0

Figure 1.5. An example of a parametric timed automaton

1.4.1.1. Instantiation of a parametric timed automaton

Given a parametric timed automaton A = (Σ, Q, q0, X, P,K, I,→) and a
parameter valuation π = (π(p1), . . . , π(pM)), A[π] denotes the parametric timed
automaton A(Kπ), where Kπ is K ∧ ∧M

i=1 pi = π(pi). This corresponds to the
parametric timed automaton obtained from A by substituting every occurrence of a
parameter pi by constant π(pi) in the guards and invariants. We say that pi is
instantiated with π(pi). Note that, as all parameters are instantiated, A[π] is a
standard timed automaton.

EXAMPLE 1.6.– Consider again the parametric timed automaton A described in
example 1.5. Also consider the following reference valuation π of the parameters:
π : {p1 = 1, p2 = 1}. Then, the (non-parametric) timed automaton A[π] is the one
described in example 1.1.

We now define the notion of acyclic parametric timed automaton. This acyclicity of
a parametric timed automaton can be deduced purely syntactically from its graphical
representation, that is if this representation is acyclic.

DEFINITION 1.16.– We say that a parametric timed automaton is graphically acyclic
(or, more simply, acyclic) if its associated graph is acyclic.

Note that the trace set associated with an acyclic parametric timed automaton is
necessarily acyclic. (However, note that if a trace set is acyclic, its parametric timed
automaton is not necessarily acyclic.)

Parametric Timed Automata 13

1.4.1.2. Parallel composition of parametric timed automata

We now introduce the notion of network of parametric timed automata, and show
in the following definition how N parametric timed automata can be composed into a
single parametric timed automaton, by performing a product of the N automata.

DEFINITION 1.17.– Let N ∈ N. For all 1 ≤ i ≤ N , let Ai = (Σi, Qi, (q0)i, Xi, Pi,
Ki, Ii,→i) be a parametric timed automaton. The sets Qi are mutually disjoint.
A network of parametric timed automata is A = A1∥ . . . ∥AN , where ∥ is the
operator for parallel composition defined in the following way. This network of
parametric timed automata corresponds to the parametric timed automaton A =
(Σ, Q, q0, X, P,K, I,→), where:

• Σ =
∪N

i=1 Σi,

• Q = ΠN
i=1Qi,

• q0 = ⟨(q0)1, . . . , (q0)N ⟩,
• X =

∪N
i=1 Xi,

• P =
∪N

i=1 Pi,

• K =
∧N

i=1 Ki,

• I(⟨q1, . . . , qN ⟩) = ∧N
i=1 Ii(qi) for all ⟨q1, . . . , qN ⟩ ∈ Q,

and → is defined as follows. For all a ∈ Σ, let Ta be the subset of indices i ∈ 1, . . . , N
such that a ∈ Σi. For all a ∈ Σ, for all ⟨q1, . . . , qN ⟩ ∈ Q, for all ⟨q′1, . . . , q′N ⟩ ∈ Q,
(⟨q1, . . . , qN ⟩, g, a, ρ, ⟨q′1, . . . , q′N ⟩) ∈ → if:

• for all i ∈ Ta, there exist gi, ρi such that (qi, gi, a, ρi, q′i) ∈ →i, g =
∧

i∈Ta
gi,

ρ =
∪

i∈Ta
ρi, and,

• for all i ̸∈ Ta, q′i = qi.

In this definition, the set of actions is the union of the “local” sets of actions (i.e.
of each automaton Ai), and similarly for the sets of clocks and parameters. The set
of locations of the resulting automaton is the product of the local sets of locations:
hence, each location of the resulting automaton is composed of a location of each local
automaton. The initial location is made of the initial location of each local automaton.
The initial constraint is the intersection of the local initial constraints. Each invariant
is the intersection of the local invariants associated with a local location. Finally, a
global transition can be taken as follows. For an action a, we compute the set of local
automata (denoted by Ta) such that a ∈ Σi. Then, this transition can be taken if there
exists a successor location through a for each automaton in Ta. The guard is obtained
by intersecting the local guards of Ta, and the set of clocks to reset is the union of

14 The Inverse Method

the local sets of clocks to reset. The local location of automata not in Ta remains
unchanged.

Sometimes we meet in practice the requirement that the set of clocks and
parameters of each of the timed automata in parallel must be mutually disjoint. Here,
for the sake of generality, we do allow the shared use of clocks and parameters
between different automata.

Note that, in practice, most tools perform an on-the-fly (and partial) composition of
the product. Indeed, the computation of this product is usually prohibitively expensive.
For example, the composition of 10 automata with 10 locations will each result in a
global automaton with a set of locations of size 1010. Hence, most tools only compose
the state space that is effectively reached, by computing each state when needed only.

EXAMPLE 1.7.– We give in Figure 1.6 an example of a network of two parametric
timed automata.

q′0

q′1

q′2

x1 ≤ 5p1

x1 ≥ 4p1
a

x1 ≥ 2p1
b

b
x1 := 0

(a) A′

q′′0 q′′1 q′′2

x2 ≤ 5p2 x2 ≤ 5p2

x2 ≥ 3p2
b

x2 := 0

x2 ≥ 4p2
c

b
x2 := 0

(b) A′′

Figure 1.6. Example of a network of parametric timed automata

The composition of those two parametric timed automata in parallel (viz. A′∥A′′)
corresponds to the parametric timed automaton from example 1.5, where
q0 = (q′0, q

′′
0), q1 = (q′1, q

′′
0), q2 = (q′2, q

′′
1) and q3 = (q′2, q

′′
2).

1.4.2. Semantics

We now define the semantics of parametric timed automata. We first introduce the
notion of symbolic state.

DEFINITION 1.18.– Let A = (Σ, Q, q0, X, P,K, I,→) be a parametric timed
automaton. A (symbolic) state s of A(K) is a pair (q, C), where q ∈ Q, is a location,
and C ∈ L(X ∪ P) a constraint on the clocks and the parameters.

Parametric Timed Automata 15

For each valuation π of the parameters P , we may view a symbolic state s = (q, C)
as the set of pairs (q, w) where w is a clock valuation such that <w, π> |= C.

We define the inclusion of a state in another one as the equality of locations and
inclusion of constraints.

DEFINITION 1.19.– We say that a state s1 = (q1, C1) is included in a state s2 =
(q2, C2), denoted by s1 ⊆ s2, if q1 = q2 and C1 ⊆ C2.

We say that two states s1 = (q1, C1) and s2 = (q2, C2) are equal, denoted by
s1 = s2, if q1 = q2 and C1 = C2.

We now define the inclusion of a set S1 of states in another set S2. Observe that
this notion does not refer to the inclusion of each state of S1 into a state of S2, but
to the equality of each state S1 with a state S2. Hence, all states of S1 exactly appear
in S2.

DEFINITION 1.20.– We say that a set of states S1 is included into a set of states S2,
denoted by S1 ⊑ S2, if

∀s : s ∈ S1 ⇒ s ∈ S2.

We say that two sets of states S1 and S2 are equal, denoted by S1 = S2, if S1 ⊑ S2

and S2 ⊑ S1.

In this book, we will be interested in checking whether the constraint associated
with a symbolic state is satisfied by a given valuation of the parameters. This refers to
the following notion of π-compatibility.

DEFINITION 1.21.– Let A be a parametric timed automaton, and s = (q, C) be a
state of A. The state s is said to be compatible with π (or, more simply, π-compatible)
if π |= C, and π-incompatible otherwise.

The initial state of A(K) is a symbolic state s0 of the form (q0, C0), where
C0 = K ∧ I(q0) ∧

∧H−1
i=1 xi = xi+1. (Recall that H is the number of clocks.) In this

expression, K is the initial constraint on the parameters, I(q0) is the invariant of the
initial state, and the rest of the expression lets clocks evolve from the same initial
value.

The semantics of parametric timed automata is given in the following under the
form of a labeled transition system.

DEFINITION 1.22.– Let A = (Σ, Q, q0, X, P,K, I,→) be a parametric timed
automaton. The symbolic semantics of A is the labeled transition system (S, S0,⇒)
over Σ where

S = {(q, C) ∈ Q× L(X ∪ P) | C ⊆ I(q)},
S0 = {(q0,K ∧ I(q0) ∧

∧H−1
i=1 xi = xi+1)}

16 The Inverse Method

and a transition (q, C)
a⇒ (q′, C ′) belongs to ⇒ if ∃C ′′ : (q, C)

a→ (q′, C ′′) d→
(q′, C ′), with:

• discrete transitions (q, C)
a→ (q′, C ′) if there exists (q, g, a, ρ, q′) ∈ → and

C ′ =
((

C(X) ∧ g(X) ∧X ′ = ρ(X)
)↓X′∪P ∧ I(q′)(X ′)

)
[X′←X]

, and

• delay transitions (q, C)
d→ (q, C ′) with C ′ = C↑ ∧ I(q)(X).

C

g

I(q′)

C ′

ρ

Figure 1.7. Forward reachability for timed automata

Let us explain this definition. A transition in the symbolic semantics is the
combination of a discrete transition followed by a delay transition. A discrete
transition can be taken as follows: first, the original constraint C is intersected with
the guard g. We use notation g(X) to denote that the set of variables is X; similarly,
I(q)(X ′) is used to denote that the set of variables is X ′. Then, the reset operation is
performed by X ′ = ρ(X); we use X ′ = ρ(X) to denote that all clocks of X ′ are
equal to clocks of X , except clocks belonging to the set ρ, that are equal to 0. Then,
variables in X are eliminated (using, e.g. Fourier–Motzkin elimination [SCH 86]),
which is denoted by the projection onto X ′ ∪ P . The constraint is then intersected
with the invariant of the destination location I(q′). Finally, clocks in X ′ are renamed
with X , to get a constraint C ′ on X and P . A delay transition is obtained by delaying
the constraint, using the time elapsing operation, and intersecting it with the invariant
of the destination location I(q).

In Figure 1.7, we present in a graphical way the computation of the successor
constraint of a state (q, C). First, C is intersected with the guard g of the transition.
Then, the clocks that must be reset by the transition (as in ρ) are projected onto zero.
Then, the constraint is intersected with the invariant of the destination location I(q′).
Time elapsing is then applied. The resulting constraint C ′ is finally obtained by
intersecting again with the invariant of the destination location I(q′).

Parametric Timed Automata 17

DEFINITION 1.23.– A step of the semantics of a parametric timed automaton A(K)
will be referred to as a symbolic step of A(K). Similarly, a run of the semantics of a
parametric timed automaton A(K) will be referred to as a symbolic run of A(K).

A symbolic run of A(K) is a finite alternating sequence of symbolic states and
actions of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm such that for all i = 0, . . . ,m − 1, and

ai ∈ Σ we have that si
ai⇒ si+1 is a symbolic step of A(K).

A symbolic run is represented under the form of a branch where states are shown
within nodes containing the name of the location and the constraint on the clocks and
the parameters, and transitions are shown using edges labeled with the name of the
action.

EXAMPLE 1.8.– Consider again the parametric timed automaton A of example 1.5.
Then, Figure 1.8 shows an example of a symbolic run of A.

q0

x1 ≤ 5p1

∧ x1 = x2

q2
x1 ≥ x2 + 2p1

∧ x1 ≥ x2 + 3p2

∧ x2 ≤ 5p2

∧ x1 ≤ x2 + 5p1

q3
x1 ≥ x2 + 2p1

∧ x1 ≥ x2 + 3p2

∧ x2 ≤ 5p2

∧ x1 ≤ x2 + 5p1

∧ x2 ≥ 4p2

q2

x1 = x2

∧ x1 ≤ 5p2

∧ 3p2 ≤ 5p1

. . .
b c b c

Figure 1.8. Example of a symbolic run for a parametric timed automaton

We give below some results on the constraints on the parameters associated with
the symbolic runs of a parametric timed automaton, which will be used later on.

We first show that the constraint on the parameters associated with the symbolic
states becomes more restrictive within a run, i.e. the constraint on the parameters of a
given state of a run is included into the constraint on the parameters of a previous state
of the same run. The parameter constraints associated with the reachable states can
only get stronger, since the parameters do not evolve under the time elapse operation,
and can only be further constrained by invariants or guard conditions.

LEMMA 1.1.– Let A(K) be a parametric timed automaton and R be a symbolic run
of A of the form (q0, C0)

a0⇒ · · · (qi, Ci)
ai⇒ (qi+1, Ci+1)

ai+1⇒ · · · am−1⇒ (qm, Cm).
Then Ci+1↓P ⊆ Ci↓P , for all 0 ≤ i ≤ m− 1.

PROOF. From the semantics of parametric timed automata, Ci+1 can be computed
from Ci by addition of new constraints on the clocks and the parameters and
elimination of clock variables only. Thus, Ci+1 is more restrictive.

Note that the above result does not mean that the constraints on the clocks and
the parameters become more restrictive within a run due to the elimination of clock
variables. The relation Ci+1 ⊆ Ci does not hold in the general case.

18 The Inverse Method

We now state that, given a parametric timed automaton A(K), the constraint on
the parameters associated with any symbolic state of A is included into K.

LEMMA 1.2.– Let A(K) be a parametric timed automaton, and (q, C), a symbolic
state of a symbolic run of A. Then C↓P ⊆ K.

PROOF. From the definition of the initial state (q0, C0) (see definition 1.22), we have
C0↓P ⊆ K. The result is then obtained by induction on lemma 1.1.

These two lemmas are the basis for the inverse method, which is described in
Chapter 2.

1.4.2.1. Reachability and post-computation

Recall from definition 1.7 that a symbolic state s is reachable in one step from
another symbolic state s′ if s is the successor of s′ in a symbolic run. This definition
extends to sets of states. One defines Post iA(K)(S) as the set of states reachable from
a set S of states in exactly i steps, and Post∗A(K)(S) as the set of all states reachable
from S in A(K) (i.e. Post∗A(K)(S) =

∪
i≥0 Post

i
A(K)(S)).

In this book, we will be, in particular, interested in computing the set
Post∗A(K)({s0}), where s0 is the initial state of A(K). Note that if
Post i+1

A(K)({s0}) ⊑ ∪i
j=0 Post

j
A(K)({s0})), then Post∗A(K)({s0}) =∪i

j=0 Post
j
A(K)({s0}).

1.4.2.2. Traces

The notion of trace associated with a concrete run, and the notion of trace set
associated with a timed automaton apply in a straightforward manner to parametric
timed automata.

DEFINITION 1.24.– Given a parametric timed automaton A and a symbolic run r

of A of the form (q0, C0)
a0⇒ · · · am−1⇒ (qm, Cm), the trace associated with r is the

alternating sequence of locations and actions q0
a0⇒ · · · am−1⇒ qm. We say that

location qi, for 1 ≤ i ≤ m, belongs to the trace.

Note that the traces associated with symbolic runs of parametric timed automata
are the same mathematical object (i.e. alternating sequences of locations and actions)
as the traces associated with concrete runs of timed automata. As a result, we extend
the notions of acyclicity and prefixes, defined for traces associated with concrete runs,
to traces associated with symbolic runs. Moreover, we show them under the same
graphical form as traces associated with concrete runs, that is boxed nodes labeled
with locations and double arrows labeled with actions.

Parametric Timed Automata 19

q0 q2 q3 q2 . . .b c b c

Figure 1.9. Example of a trace associated with a symbolic run of a parametric
timed automaton

EXAMPLE 1.9.– The trace associated with the symbolic run of example 1.8 is shown
in Figure 1.9.

DEFINITION 1.25.– We say that two (symbolic or concrete) runs are equivalent, if
their associated trace is equal.

DEFINITION 1.26.– Given a parametric timed automaton A, the trace set of A refers
to the set of traces associated with the runs of A.

As for the traces associated with concrete runs, we extend the notion of acyclicity
of a trace to trace sets and say that a trace set is acyclic if all its traces are acyclic.

EXAMPLE 1.10.– The trace set associated with the parametric timed automaton of
example 1.5 is shown in Figure 1.10.

q0

q2 q3 q2 q3

q1

b

a

c b
c

b

Figure 1.10. Example of a trace set of a parametric timed automaton

1.5. Related work

We discuss in this section several approaches to model distributed timed systems.
We first justify our choice for the dense-time formalism in section 1.5.1. We then recall
timed automata in section 1.5.2 and show some of the advantages of such a formalism.
We present time Petri nets and compare them to timed automata in section 1.5.3. We
also recall hybrid systems in section 1.5.4 and compare them to timed automata.

1.5.1. Representation of time

When modeling timed systems, two major representations of time are used in the
literature: the discrete time representation and the dense (or continuous) time
representation. In the discrete time model, events can happen only at the integer time

20 The Inverse Method

values. This allows the designer to describe the behavior of synchronous systems,
where all components are driven by a single common global clock. This discrete time
representation is the traditional model for synchronous hardware verification, where
events (i.e. changes of signals) happen only at clock ticks, that is at the integer time
values. On the contrary, in the dense time representation, events can occur at any real
(or rational) time value. As a result, formalisms making use of a dense time
representation are usually more complex than formalisms using a discrete
representation, but also more expressive.

In this book, we focus on the dense time representation, and more specifically on
the formalism of timed automata. A classical formal justification for the dense time
model can be found in [ALU 92a]. Furthermore, in this book, we will be in particular
interested in verifying asynchronous circuits, where events (changes of signals) can
happen at any real-time value. As a result, the dense time representation is certainly
more suitable than the discrete time representation. However, one could argue that, for
a discrete time with enough precision (i.e. using time steps small enough), the discrete
time representation can be suitable for the study of asynchronous circuits. Actually, it
was shown that, in certain cases, finding the appropriate time step can be as difficult as
doing the real-time model checking. The main interest of dense time representation,
though, is that it gives a criterion of robustness. The discrete time representation can
prove the correctness of a timed system for several integer values of the timing delays,
but no information can be given in between two integers, whereas the dense time
representation is able to guarantee intervals of values for which the system is correct.
This is of particular interest in the sense that, when implementing a timed system,
timing delays may slightly differ from the (exact and punctual) integer value they
have been designed for.

1.5.2. Timed automata

Timed automata [ALU 94] have been used to model and successfully verify
various case studies, e.g. communication protocols [DAR 97, COL 01], and allowed
famous bug discoveries (e.g. [HAV 97]). It has been shown that model-checking
properties expressed using the Timed CTL logic [ALU 93a] are
decidable [ALU 93a, HEN 94] for timed automata and some of their extensions
(e.g. [BOU 04]).

Recent work on timed automata focused on the notion of robustness, or
implementability. As mentioned in [DE 04], timed automata consider perfect clocks
with infinite precision while implementations can only access time through finitely
precise clocks. Moreover, timed automata react instantaneously to events while
implementations can only react within a given usually small, but not zero, reaction
delay. Also note that timed automata may describe control strategies that are
unrealistic, such as zeno-strategies or strategies that ask the controller to act faster

Parametric Timed Automata 21

and faster [CAS 02]. As a result, models that have been proven correct may not be
implementable. A first notion of robust timed automata has been considered
in [GUP 97], with the following semantics: “if a robust timed automaton accepts a
trajectory, then it must accept neighboring trajectories also and if a robust timed
automaton rejects a trajectory, then it must reject neighboring trajectories also”. The
authors show in particular that the emptiness problem for robust timed automata is
still decidable. Another work introducing the notion of “implementable” timed
automata is given in [DE 04]. This work is based on the “Almost ASAP semantics”
defined in [DE 05]. This semantics relaxes the classical semantics of timed automata
in the sense that it does not impose a transition to be taken instantaneously but within
a (very small) amount of time. The authors also show in [DE 04] that the notion of
robustness defined in [PUR 00] is closely related to their notion of implementability.
Robust model checking in this framework has been considered in [BOU 06] with
results of decidability. Any reader interested in robustness questions can refer
to [MAR 11] for a survey.

The parametrization of timed automata into parametric timed
automata [ALU 93c], where parameters are used in guards and invariants in place of
constants, allows parametric model checking. In other words, instead of checking if a
given location can be reached, or if a given formula expressed, using for example the
timed computation tree logic (TCTL) is satisfiable, we can synthesize sets of values
for the parameters under which the location can be reached (or under which the
formula is satisfied). Unfortunately, most interesting problems related to parametric
timed automata have been shown to be undecidable for non-trivial parametric timed
automata; this is in particular the case of the emptiness problem [ALU 93c]. We
mention work related to the synthesis of parameters in the framework of parametric
timed automata in section 2.4.5 and perform a survey of model checkers for several
classes of timed automata and their extensions in section 3.10.

1.5.3. Time Petri nets

Time Petri nets [MER 74] are a classical and widely used extension of Petri nets
for modeling timed distributed systems using places, tokens and transitions that can
be fired within a time interval. It has been shown that state reachability is decidable
for bounded time Petri nets. Both time Petri nets and timed automata are dense-time
formalisms, which allow to study and verify dense-timed models, for example
asynchronous circuits. As a result their underlying state space is infinite and
verification techniques that enumerate exhaustively the state space cannot be applied.
The main difference relies in the fact that, although both formalisms may be
considered as infinite state because of the real-valued time values, the number of
locations in timed automata is finite, whereas time Petri nets remain an infinite
marking model. Although the number of places of a time Petri net is bounded, the
number of tokens in each node is (in the general case) unbounded, thus leading to a

22 The Inverse Method

potentially infinite number of markings. Note, however, that several subclasses of
Petri nets consider a bounded number of tokens per place. Several classes of time
Petri nets were shown to be equivalent to several classes of timed automata, and
several approaches for translations from time Petri nets to timed automata have been
proposed (see a survey in [PEN 06] as well as more recent work, e.g.
[CAS 06, DAP 07, LIM 09]).

A parametrization of time Petri nets with stopwatches (i.e. an extension of
traditional clocks that can be suspended and resumed) has been considered
in [TRA 09]. Similarly to parametric timed automata, the parameters are used instead
of constants in the firing conditions associated with the transitions. The authors
propose semi-algorithms for the synthesis of parameter valuations satisfying a
formula expressed using a subset of parametric TCTL formulas.

1.5.4. Hybrid systems

Hybrid systems can be seen as a generalization of timed automata, where
“clocks” (actually, real-valued variables) may evolve at different rates. Those
variables do not necessarily model the time elapsing, but can represent any
real-valued continuous variable, such as temperature, speed and geographical
position. Hybrid automata were introduced in [ALU 93b] and allow us to define in
any location a law of evolution with respect to time for each of the dynamic variables.
A common subclass of hybrid systems consists of linear hybrid systems, where the
derivatives of the variables are given within a (constant) interval for each location.
An interesting survey on the different models of hybrid systems and linear hybrid
automata, mostly in the 1990s, is given in Chapter 4 of [FRE 05]. Furthermore, work
related to the parameter synthesis for hybrid systems is discussed in section 5.5.

