
Chapter 1

0D Analytical Modeling of
Airplane Motions

The 0D modeling process tries to obtain variations as functions of
time for all parameters of the motions of the plane.

The plane is considered here as a solid body moving freely through
open space and therefore includes six degrees of freedom (DOF):

– three translational motions by three rectangular directions;

– three rotational motions classically described by Euler angles.

The plane is also under the influence of three external force
systems which are:

– aerodynamic forces;

– propulsion forces;

– gravitational forces.
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2 Modeling of Complex Systems

1.1. References: axis systems on use

In order to define the spatial motion of the airplane, we make use
of two geometrical references.

1.1.1. Galilean reference: R0

This geometrical reference has its origin center matched with the
center of mass G of the airplane. The three principal rectangular axes
are:

– Gx0: horizontal, generally oriented to the West;

– Gy0: horizontal, oriented to the North;

– Gz0: vertically downward.

Gx0, Gy0 and Gz0 form a direct rectangular reference.

NOTE.– Gz0 is directed downward, due to the natural tendency of the
airplane to descend when left to the effects of gravity.

This Galilean reference is in accordance with Newton’s first
principle which makes use of the absolute components of the
accelerations to be equal to the components of external forces.

1.1.2. Airplane reference: RB (body) also called “linked reference”

This geometrical reference also has its center matched with G, the
center of mass of the plane, but is physically linked to the airframe. Its
three principal axes are: GX, GY and GZ.

GX, GY, GZ are preferably the principal axes of inertia of the
plane and (GXYZ) is direct.

GXZ is the plane of symmetry of the airplane, with the exception
of a few particular airplanes with asymmetric engine setups (Blohm
and Voss, for instance; see Figure 1.1).
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Figure 1.1. Blohm and Voss BV 141

(GXYZ), also called RB, is the preferred reference for use with
torque equations due to the fact that the inertias remain constant.

We can move from the Galilean reference to the body reference by
making three Eulerian rotations, which are:

– Ψ (Psi): Yaw angle;

– Θ (Theta): Pitch angle;

– Φ (Phi): Roll angle.

a) Yaw rotation (ψ)

This first Euler rotation is made around the Gz0 axis.

Ψ = Yaw angle

The associated angular velocity is: ψ . Z0

(Gx0 y0 z0) → (Gx' y' z0)

(ψ)

The relationship between the cosine directors are:

x' = cosψ . x0 + sinψ . y0

y' = -sinψ . x0 + cosψ .y0 [1.1]
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Figure 1.2. First Euler rotation ψ around the Gz0 axis

b) Pitch rotation (θ)

This second rotation is made around the Gy' axis.

Θ = Pitch angle

The associated angular velocity is: θ . y

(Gx'y'z0) → (GXy'z')

(θ)

The relationships between the cosine directors are:

X = cos θ .x' - sinθ . z0

z' = sinθ . x' + cosθ . z0 [1.2]

And as obtained before:

z 0 = cosθ . z' - sinθ . X
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Figure 1.3. Second Euler rotation θ around the Gy' axis

c) Roll rotation (φ)

The third rotation (φ) is made around the GX axis.

Φ is the roll angle.

The associated angular velocity is: φ .X

(GXy'z') → (GXYZ)

(φ)

The relationships between cosine directors are:

Y = cosφ .y' + sinφ . z'

Z =-sinφ . y' + cosφ . z' [1.3]

therefore:

z' = sinφ .Y + cosφ.Z
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Figure 1.4. Third Euler rotation φ around the GX axis

1.1.3. Resultant angular velocity

The resultant angular velocity can be expressed as:

0z y x       
     [1.4]

These rotations are made around three axes which do not form a
rectangle.

We can now express the components of 


by the reference RB

linked to the airplane:

   = ψ . cosθ . z' – sinθ .X + θ . cosφ .Y –sinφ .Z +φ .X .
     

 

therefore:

 Ω = ψ. cosθ . sinφ .Y + cosφ . Z -sinθ . X + cosφ .θ .Y –sinφ .θ .Z + φ . X . 
 

      
  

     sin . .X cos .sin . cos . .Y cos .cos . sin . .Z             
   

    



0D Analytic Modeling of Airplane Motions 7

Now expressed by RB (GXYZ) reference:

 
p = φ – sinθ .ψ

Ω/ GXYZ = q = cosθ .sinφ .ψ + cosφ .θ

r = cosθ .cosφ .ψ – sinφ.θ







 





[1.5]

NOTE.– p, q and r are the components of the vector resultant angular
velocity expressed by the airplane body reference RB. They can be
measured on a real airplane by angular velocity sensors, commonly
called “gyrometers”.

The Euler parameters: ψ, θ, φ are actually more difficult to obtain.

This point will be covered in more detail hereafter.

Equations [1.5] can be written under matricial form:

p 0 1 sinθ θ
q cosφ 0 cosθ.sinφ φ
r sinφ 0 cosθ.cosφ ψ

     
           
          

[1.6]

It is then possible to solve this matricial equation in order to extract
the derivatives of Euler angles which figure in the column vector
[θ φ ψ ]T of [1.6].

The characteristic determinant of this equation is called Δ:

2 2

0 1 -sinθ
Δ = cosφ 0 cosθ.sinφ

-sinφ 0 cosθ.cosφ

Δ = -(cos φ.cosθ+sin φ.cosθ) = -cosθ.

[1.7]
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The minor
θN 
associated with θ is:

p 1 -sin
N q 0 cos sin

r 0 cos cos
N (cos cos q-cos sin r)






  

 

     





Then: θ = Nθ / Δ = cosφ. q - sinφ .r [1.8]

In the same way, the minor N associated with  is written as:

0 p -sin
N cos q cos sin

-sin r cos cos



   

  


N = -p.(cos2φ .cosθ +sin2φ.cosθ ) – sinθ.(cosφ.r + sinφ.q)

N = -p.cosθ -sinθ.( cosφ .r + sinφ.q )

Then:  = N /Δ = p + tgθ.( cosφ.r + sinφ.q) [1.9]

The last minor Nψ associated with  is:

 

0 1 p
N cos 0 q

sin 0 r

N cos .r sin .q





 
 

    





Then:  = N
/Δ = (cosφ /cosθ ).r + (sinφ /cosθ ) . q [1.10]

See the Euler block as shown in Figure 1.5.
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Figure 1.5. Euler block

This MATLAB/SIMULINK operator converts the linked
parameters (p, q, r) to Euler angles:

(Theta, Phi, Psi)

1.2. Equations of motion of the airplane

The equations of motion translate the two fundamental principles
of solid mechanical bodies:

1) The “quantity of acceleration” of the solid body in translation is
equal to the resultant vector of all external forces (Newton’s
principles).

NOTE.– The quantity of acceleration is exactly the opposite value of
the inertial force.
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As a result, we obtain three equations for equilibrium forces.

2) The “dynamic momentum” of the solid body is equal to the
resultant torque of the external forces.

As a result, we obtain three equations for torque equilibrium.

1.2.1. Expression of Newton’s principle

Two vectors define the motion of the solid body as functions of
time:

–V

(Uvw) and 


(p q r) at any time.

Figure 1.6.

Let us call the expression of the quantity of acceleration of the
solid body Qa

a 0Q m.(dV / dt) / R
 

[1.11]

In this formula:

m = mass of the airplane (considered as a solid body).

dV


/dt = time derivative of the velocity vector by a Galilean
reference (velocity).
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Due to the fact that V

and 


are expressed by the body reference,

which is mobile, we can state that:

0 B B(dV / dt) / R (dV / dt) / R ( V) / R  
   

[1.12]

This formula states that the absolute velocity of the solid
( dV


/dt)/R0 can be expressed by two components which are written by
the body reference (theorem of differentiation by mobile reference).

Written under matricial form:

0

U p U U + qw - rv
(dV/dt)/R v q v v + rU - pw

w r w w + pv - qU

      
               
            

So, Newton’s first principle can be written as:

 
 
 

x

Y

Z

m . U +qw – rv = F
m . v + rU – pw = F
m . w + pv - q U = F






[1.13]

1.2.2. Expression of the dynamic momentum

At first we can assume that GX, GY and GZ are matched with the
principal axis of inertia, so the matrix of inertia of the plane is
diagonal:

 
A 0 0

I 0 B 0
0 0 C

 
   
  
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If the references (G XYZ) and (G xyz) are not confused, the matrix
of inertia is complete:

 
A -F -E

I -F B -D
-E -D C

 
   
  

In the case where the matrix of inertia is diagonal, we design the
kinetic momentum, sometimes called angular momentum, of the plane
by H. This is expressed by RB:

RB /RB RB

B

A . pA . p p A . p (C-B)q.r
H/ B . q So: H/ t B . q And: H/ q B . q (A-C)r.p

C . r r C . r (B-A)p.qC . r

R

     
                 
          


   





B RBR

The dynamic momentum of the plane, which is the time derivative
of the kinetic momentum by the Galilean reference, can be written as:

δH

/δt / R 0 = δH


/δt/ RB +


^ H

/RB

We notice that (δH/δt/R0) can be expressed by its components
in RB.

The expressions of external torques by the body reference are also
expressed by RB:

X

Y

Z

B

ext

M
M
M

R

M








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When making use of RB referencee, the equilibrium equations for
torque motions can be written as:

 
 
 

X

Y

Z

A.p C – B .q.r M sum of roll torques

B.q A – C .r.p M sum of pitch torques

C.r B – A .p.q M sum of yaw torques

  

  





 












[1.14]

The final equations defining the motions of the airplane are:

– Equilibrium between the components of the quantity of
acceleration and the external forces [1.13].

– Equilibrium between the components of the dynamical
momentum and the external torques [1.14].

– Values of the components of the resultant angular velocity [1.5].

The usual equations are shared into two groups:

– Longitudinal (symmetrical) group:

 
 

 

X

Z

Y

m U q.w – r.v F

m. w p.v – q U F
B.q A – C . r.p M
q cos .sin . cos .

 

 






 
      









[1.15]

– Transversal (asymmetrical) group:

 
 

 

Y

X

z

m . v r.U – p.w F

A.p C – B . q .r M

C.r B – A . p.q M
p sin .

r cos .cos . sin .

 

 

 
  

    







 



[1.16]
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These equations are described by MATLAB/SIMULINK as body
and Euler blocks.

1

2

3

4

5

6

Body

X

Euler

1
X1

Fx

Fy

Fz

Mx

My

Mz

Fx

Fy

Fz

Mx

My

Mz

X

Theta

Phi

Psi

X1 = [u v w p q r Theta Phi Psi ]

Figure 1.7. Body and Euler blocks

1.3. Description of external forces and torques

External forces and torques exerted on the airplane have three
origins, all described by the body reference (G XYZ).

1.3.1. Aerodynamic forces and torques

For an airplane, these elements are preponderant. Their
components are:

– FXa = aerodynamic drag;
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– FYa = side lift;

– FZa = vertical lift;

– MXa = aerodynamic roll torque;

– MYa = aerodynamic pitch torque;

– MZa = aerodynamic yaw torque.

These components depend on the angular positioning of the
velocity vector by the body reference, which is:

V

/RB = ( U,v,w )T/RB

The angles which position the velocity vector by the body
reference are as follows.

Attack angle: α

This is the angle between the projection of the velocity vector on
the plane of symmetry (GXZ) and the GX axis.

Figure 1.8. Attack angle α

Sideslip angle: β

This is the angle between the projection of the velocity vector on
the (GXY) plane and the plane of symmetry of the airplane.
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Figure 1.9. Attack angle β

So:

β = ( V , GX )

β = Arctg (-v/U ) [1.17]

NOTE.– In Figure 1.9, the velocity vector β <0 is on the right side of
the airplane.

The modulus of the velocity vector is expressed as:

|V| = ( U2 + v2 +w2)½ .

The SIMULINK scheme to compute V, alpha and beta can be
displayed as in Figure 1.10.

Figure 1.10. SIMULINK scheme to compute V, alpha and beta
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1.3.2. Sign rules

The sign rules for forces and torques respect the same rules as
those adopted for the axis of the referencee (GXYZ).

For angles and torques:

– Positive: from X toward Y, from Y toward Z, and from Z toward
X.

With regards to the displacement commands:

– Roll command displacement: δl ;

– δ l < 0 for an aileron stick displacement to the left side.

Figure 1.11. Aileron stick displacement to the left side, where the left
aileron goes up and the right aileron goes down. (Rear view)

Pitch control surface displacement: δm
δ m > 0 for an elevator stick displacement to the front, in this case,

the elevator control surface goes down (from Z toward X, see
Figure 1.12).

Figure 1.12. Elevator stick displacement to the front,
where the elevator control surface goes down
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Yaw control surface displacement: δ n

δ n > 0 for a left displacement of the yaw control surface (see
Figure 1.13).

Figure 1.13. Left displacement of the yaw control surface

1.4. Description of aerodynamic coefficients

The coefficients of forces and torques depend on the following
parameters:

– α: attack angle;

– β: sideslip angle;

– p: roll angular velocity;

– q: pitch angular velocity;

– r: yaw angular velocity;
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– δ l: roll control surface angular displacement;

– δ m: pitch control surface angular displacement;

– δ n: yaw control surface angular displacement.

1.4.1. Drag coefficient: Cx

The Bernouilli principle states that:

FX = - q0 .S . Cx where q0 = ½ .ρ .V2 (kinetic pressure)

[1.18]

FX is represented by the Lilienthal polar (Cz = function (CX )) with
respect to the body axis.

CZ and CX both depend on the attack angle.

NOTE.– CX > 0 for FX < 0 (see Figure 1.14).

Figure 1.14. Drag force is generally negative

1.4.2. Side lift coefficient: CY

The Side Lift depends on two parameters:

– the slip angle of the fuselage: CYβ;

– the angular displacement of the yaw control surface: CYδn.
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Figure 1.15. Dependance of Side Lift on β and δn

FYβ = q0.S. (ΔCY/Δβ).β = q0.S. CYβ.β [1.19]

For:

β< 0 → FYβ < 0 as shown in Figure 1.15.

And also:

FYδn = q0 . S CYδn. δ n

For:

δn > 0 → FYδn > 0 as shown in Figure 1.15.

1.4.3. Vertical lift due to attack angle: CZα

The angle between the velocity vector and the neutral axis of the
fuselage Gx is designed by α (which can sometimes be the principal
axis of inertia).
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For: α > 0 → FZα < 0 (as shown in Figure 1.16)

So: FZα = - q0.S.(ΔCZ /Δα).α = - q0. S .CZα. α . [1.20]

CZα = Δ CZ / Δ α is commonly called the “aerodynamic stiffness
of the plane”.

Vertical lift due to elevator control surface angular displacement

The elevator angular displacement is called δm.

For δm < 0 → FZδm > 0 as shown in the following figure.

Figure 1.16. Vertical lift due to elevator control surface angular displacement

FZδm = q0 . S . (ΔCZ / Δδm ).δm = q0 . S . CZδm .δm [1.21]

CZδm is commonly called “elevator efficiency”.

1.4.4. Lift due to pitch angular velocity: CZq

There is a modification to the attack angle of the pitch stabilizer;
this is due, simultaneously, to pitch angular velocity and translational
velocity V:

δαe = Arctg ( we / V ) (see Figure 1.17)

we = l . q → δαe = Arctg (l.q/ V) ~ l.q /V
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The lift variation is:

Δ FZe = q0 . Se .(Cze) δαe = q0 . Se .(Cze) l . q / V = q0 .Se.
ze zqC .l / V C . q .

For the complete plane:

CZq = CZe . l /V

Figure 1.17. Modification of the elevator attack angle due to angular pitch velocity

This coefficient creates a coupling between the pitch angular
velocity and the Vertical Lift.

1.4.5. Roll coefficients (due to β, δl , p)

1.4.5.1. Roll due to slip angle (commonly named “dihedral
effect”): CLβ

The dihedral effect creates a torque, in an aerodynamic way, which
allows the plane to bank to the inner side of the turn. This effect
constitutes the principal difference between planes and cars. Cars tend
to bank to the outer side of the turn – a phenomenon which is neither
comfortable nor safe for the passengers inside.

A good plane, therefore, naturally banks to the inner side of the
turn.
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Figure 1.18. Roll torque MX due to side slip angle β

The wings’ lateral tips curve upwards so that the relative wind hits
the lower face at the external side, creating a roll torque which banks
the plane inside the turn.

So, for:

β < 0 → MXβ = q0. S . l .(ΔCL/Δβ ).β = q0.S .l .CLβ.β < 0

[1.22]

1.4.5.2. Roll due to ailerons’ angular displacement CLδl
The lateral motion of the control stick acts on the ailerons’ angular

displacements.

When the control stick moves to the left, the left aileron goes up
and the right aileron goes down, creating a control torque which
enables the plane to make a left roll.

So for:

δL < 0 → MXδL = q0. S . l .( ΔCL / ΔδL ).δL = q0SlCLδl.δl→( ΔCl /
Δδl = CLδl) < 0

[1.23]
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Figure 1.19. The control stick moves to the left, the left aileron goes up
and the right aileron goes down, the plane to make a left roll

1.4.5.3. Roll due to roll angular velocity (CLp ): damping coefficient

For a positive roll angular velocity:

p > 0 → MXp = - ½.ρ.V.S. l2.(ΔCL/Δp ).p = - ½ .ρ
.V.S.l2.CLp.p [1.24]

This torque, which is proportional to an angular velocity, becomes
a damping torque, with a stabilizing tendency.

Its property is to be increased with the aspect ratio of the wing
(and horizontal stabilizer).

Figure 1.20. The damping torque
pXM is on the opposite side of p
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1.4.6. Pitch coefficients (due to α, δm , q , static curvature)

1.4.6.1. Pitch due to attack angle: Cmα (aerodynamic pitch stiffness)

This is the pitch stabilizing effect of the horizontal fin.

For:

α > 0 → MYα = - q0.S.l.(ΔCm/Δα ).α = - q0.S.l.Cmα.α < 0 [1.25]

Figure 1.21. The horizontal fin creates a torque on the opposite side of α

1.4.6.2. Pitch due to angular elevator deflexion: Cmδm (elevator
efficiency)

For a given elevator deflexion δm:

δ m > 0 →MYδm = - q0. S . l .(ΔCm/ Δδm).δm = - q0 .S.l.Cmδm < 0

[1.26]

Figure 1.22. For an elevator control surface motion going down,
the pitch torque is negative
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1.4.6.3. Pitch due to pitch angular velocity: Cmq (pitch damping)

For a given pitch angular velocity q (positive for instance), the
reaction torque is negative.

q > 0 → MYq = - ½.ρ .V .S. l2.(ΔCm/Δq).q = - ½.ρ.V.S.l2.Cmq.q < 0

[1.27]

Figure 1.23. Pitch torque and angular velocity are opposite

1.4.6.4. Pitch due to profile section curvature: Cm0
For a non-symmetrical profile section (a CLARK Y for

instance) there is a static momentum which is positive:

My0 = q0.S .l. Cm0 > 0 .

Figure 1.24. For a “normal” profile section, the static momentum is positive

This momentum Cm0 tends to cause an upward pitch motion for the
plane.

The wing alone, with such a section, is not self-stabilizing, and the
built up attack angle increases continuously until the stall attack angle
is reached and the plane crashes.
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1.4.7. Yaw coefficients (due to β, δn, r)

1.4.7.1. Yaw due to slip angle: Cnβ (directional stability)

The principal cause of this effect is due to the vertical fin, and
sometimes due to the fuselage if there is a large surface at the rear of
the plane.

Its principal effect is to align the longitudinal GX axis with the
velocity vector.

For β < 0 → MZβ = - q0.S.l .(ΔCn /Δβ).β = - q0.S .l .Cnβ.β > 0

[1.28]

Figure 1.25. The directional stability aligns GX with the velocity vector

1.4.7.2. Yaw due to directional control surface angular motion: Cnδn
(directional efficiency)

For:

δn > 0 → MZδn = - q0. S .l.(ΔCn/Δδn) . δn < 0 . [1.29]
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Figure 1.26. Rudder control surface motion creates yaw torque

1.4.7.3. Yaw due to yaw angular velocity: Cnr (yaw damping)

This damping torque is partially due to the directional fin and
partially due to the rear area of the fuselage.

Insufficient yaw damping leads to bad behavior called “snaking”,
where the airplane progresses like a snake.

For: r > 0 → MZr = - ½.V.S.l2.(ΔCn/Δr).r = - ½.V.S. l2.Cnr.r < 0

[1.30]

Figure 1.27. Yaw angular velocity creates an opposite damping torque
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All of these formulae are condensed in the “AERO” block of the
software, DYNAVION.

Figure 1.28. Evaluation of aerodynamic coefficients as functions
of the airplane’s configurations: drag coefficient CX

We consider here the Lilienthal reference attached to the airplane.

The drag coefficient CX belongs on:

– the fuselage form and frontal section;

– the wing area and its profile;

– the horizontal and vertical fins.

All of these data are usually measured in the wind tunnel, but wing
and stabilizer drag can be compiled by standard documents [ABB 59].

They are proper to each airplane, the number of them (18) is
condensed by values and signs in the following SIMULINK Modulus
called AERO.

The sign conventions for displacements and rotations, forces and
torques respect the conventions in use in the reference (GXYZ).
Mainly:

– For displacements and forces: positive like GX, GY, GZ.

– For angular displacements and torques:
- positive for X to Y;
- positive for Y to Z;
- positive for Z to X.
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The values of these coefficients are recorded inside the “gains”
block (Figure 1.29), they are all positive.

The signs of these coefficients are materialized inside the summing
blocks.

The AERO block requires the following as inputs:

– U: longitudinal velocity (by GX axis) of the airplane;

– Beta: sideslip angle;

– Delta_n: angular deflection of the rudder control surface;

– Alpha: attack angle;

– Delta_m: angular deflection of the elevator control surface;

– Delta_l: angular deflection of the ailerons;

– p: roll angular velocity;

– q: pitch angular velocity;

– r: yaw angular velocity;

– Cm0: static pitch coefficient of the wing section.

This AERO block provides as outputs:

– the three aerodynamic forces (by the Lilienthal reference): FXA,
FYA, FZA;

– the three aerodynamic torques (by the same reference): MXA,
MYA, MZA.

These six components are the external impulses which make the
plane move.

The organization of the AERO block is detailed, as shown by the
following SIMULINK diagram (Figure 1.29).



0D Analytic Modeling of Airplane Motions 31

Figure 1.29. SIMULINK diagram. All the necessary inputs are displayed
on the left side, and the six outputs are displayed on the right side
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1.5. Aerodynamic data of a supersonic airliner for valuation of the
software

The following data1 for the French/British airliner Concorde in the
landing configuration are provided here as validation elements for the
software resulting from this document:

Cyβ = 0.67

Cyδn = 0.01

CZα = -3.1

CZδm = -0.7

CZq = 0

Clβ = 0.1

Clδl = 0.02

Clp = -0.056

Cmα = -0.062

Cmδm = -0.02

Cm0 = 0 (pitch torque balanced wing)

Cmq = -0.2

Cnβ = -0.153

Cnδn = -0.01

Cnr = -0.125

Control surface deviations:

δ l = 0 (no ailerons motion)

δ m = -0.0395 (pitch control surface up)

δ n = 0 (no rudder motion)

1 Data from Sud-Aviation of 1963.
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The coefficient of lift (Cz) and drag (Cx) are not linear functions of
the attack angle α, and they are expressed during this subsonic phase
by the following formulae:

CZ = a0 + a1.α + a2.α2 + CZδm.δm

Cx = b0 + b1.Cz +b2.CZ
2 [1.31]

1.6. Horizontal flight as an initial condition

The horizontal flight is taken as the initial condition prior to any
perturbation. As a result, the velocity vector of the center of mass of
the airplane is located in the horizontal plane (Gx0y0):

– α 0 is the attack angle;

– θ 0 is the pitch angle;

– α 0 = θ 0 = (Gx0,GX) in the present situation.

The pitch control surface is activated by two successive motions:

– δ mT = trim deflection (permanent order);

– δ mC = command pitch order.

Figure 1.30.
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To solve this problem, we have to consider the following
equations:

m.g.sinα + q. S.Cx = T → forces balance by GX

m.g.cosα = q.S.Cz → forces balance by GZ [1.32]

MYα = q.S.l.(-Cmα.α –Cmδm.δmT) → torques balance around GY

For subsonic flight, the Lilienthal polar (by GXZ) can be expressed
as two functions of the attack angle α:

CZ = a0+ a1.α +a2.α2 (wing and fuselage)

CZ = a0 +a1.α +a2α2 + CZδm.δm (complete airplane) [1.33]

By the numerical example for validation, we have to consider the
following equations: 2

CZ = -0,0269 + 2,15.α +3,46.α2 – 0,7.δm

CX = 0,0256 – 0,061.CZ + 0,0556.CZ
2 [1.34]

Attack angle α0 at the horizontal flight

We consider the equation about the force balance by GZ:

mg.cosα0 = q.S.CZ0 = (a0 + a1.α0 +a2.α02 +CZδm.δm).q.S [1.35]

By this balance condition, there is a reciprocal condition between α
and δm due to the torque balance around GY:

q.S.l.(-Cmα .α0 – Cm.δm.δmT ) = 0 ;→ Cmδm.δmT = -Cmα.α0

As a result:

δmT = -(Cmα/Cmδm).α0 [1.36]

2 Sud-Aviation and ONERA data, 1963.
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Equation [1.36] is the static elevator angular deviation used to
obtain the static attack angle α0 at the horizontal velocity V.

The complete lift coefficient of the airplane becomes:

CZ0 = a 0 +a1.α0 – CZδm.(-Cmα/Cmδm).α0+a2.α02

The total lift coefficient becomes:

CZ0 = a0 + ( a1 +( Cmα . CZδm/Cmδm )).α0 +a2.α02 [1.37]

As for the total drag coefficient:

CX0 = b0 +b1.CZ0 + b2.CZ0
2 [1.38]

We also obtain the expression of the necessary thrust:

T0 = m.g.sinα0 + q.S.CX0 [1.39]

The attack angle α0 required for horizontal flight can be obtained
by a graphical method, this attack angle is the value of α at the
intersection that is displayed in equation [1.40] and Figure 1.31.

CZ0 = m.g.cosα0 /(q. S) =a0 +( a1 + (Cmα.CZδm/Cmδm).α0 + a2.α02

[1.40]

Figure 1.31.
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The calculation of the successive data of the horizontal flight
follows this schedule:

V0

α 0 = θ 0

CZ0

C X0

U 0 = V 0 .cosα 0

w 0 = V 0 .sinα 0

q = 0.5.ρ .U0
2

T0 = m.g.sinα 0 + q .S.CX0

T0 is the thrust-force necessary in order for the plane to sustain the
velocity V0.

1.7. Effect of gravitational forces

As the airplane moves through the atmosphere it is submitted to a
uniform gravitational field. The resulting effect of this field on the
airplane is a unique vertical force applied in a downward direction to
the center of the airplane’s mass.

We will now evaluate the components of this force by the airplane
reference (GXYZ).

We consider the pitch angle (θ) and the roll angle (φ) which
position the airplane reference in relation to the Galilean reference
(Gx0y0z0).
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Figure 1.32. Angular positioning by the horizontal plane Gx0y0

We thus obtain the following equations:

Pitch rotation (θ)

X = cosθ . x0 - sinθ . z0

z’ = sinθ . x0 + cosθ . z0

z0 = cosθ . z’ - sinθ . X [1.41]

Roll rotation (φ)

Y = cosφ . y0 + sinφ . z’

Z = -sinφ . y0 + cosφ .z’

z’ = cosφ . z + sinφ . Y [1.42]
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So, by successive substitutions, we can express X, Y, Z by x0,y0,z0
as follows:

X = cosθ . x0 - sinθ . z0

Y = cosφ . y0 + sinφ. (sinθ . x0 + cosθ .z0 )→ Y = sinθ . sinφ . x0
+ cosφ . y0+cosθ.sinφ. z0

Z = -sinφ .y0 + cosφ. (sinθ .x0 +cosθ . z0)→ Z = sinθ. cosφ . x0 –
sinφ.y0 +cosθ . cosφ . z0

So, written under the matricial form:

0

0

0

sin
sin .sin cos cos .sin
sin .cos sin cos .cos

xX cos 0
Y y
Z z

 
    
     

     
          
         

[1.43]

The gravitational force is linearly confused with z0 and directed
downwards.

GF


= m.g.
0z


or
GF

/ R0 =

0
0

m.g.

 
 
 
  

So, the components of FG expressed via the body reference are:

XG

YG

ZG

F cos
F sin .sin cos cos .si

0 sin 0
0

si
n

sin .cos cos .cosF n m.g


    
   

      
           
          

[1.44a]

After development, the components of the vector gravitational
force expressed by the body reference are:

YG

XG

G

ZG

F m.g.sin
F m.g.cos .sin
F m.g.cos .c

F
os

  
 




 








[1.44b]

See the External forces block (Figure 2.12).
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So we were able to define the forces coming from three different
origins:

– aerodynamic;
– thrust;
– gravity.

These forces are combined together and act as external forces,
which appear as second members of the equations of the airplane’s
motion.

See the Forces and Torques blockset (Figure 2.11).

1.8. Calculation of the trajectory of the airplane in open space

1

2

3

4

5

6

Body V, Alpha, Beta

V, Alpha,
Beta

X

X Euler

Euler

X1

1

X1

h

y

xx0

h

y0

Absolute marker
position

Fx

Fy

Fz

Mx

My

Mz

Fx

Fy

Fz

Mx

My

Mz

X

X1 = [ u v w p q r Theta Phi Psi V, Alpha, Beta ]

Figure 1.33.

The motion equations of the airplane form a “state vector” written as:

| X | = | U v w p q r |T
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This state vector includes the components of the velocity vector
(U, v, w) and also those of the motion around the center of mass (p, q, r).

We start with the components of V in the airplane reference:

V = U.X +v.Y +w.Z

We now have to convert these components into those of the
Galilean reference.

Once integration is made, we obtain the coordinates of G by the
Galilean reference which represent the trajectory of the airplane.

This operation is acceptable due to the fact that (GXYZ) is
Galilean.

Now we have to take into account the three Eulerian rotations which
allow the passage from (Gx0y0z0) to (GXYZ) which are: Ψ, θ, φ.

Yaw rotation Ψ

(Gx0 y0 z0) → (Gx’ y’ z0)

(Ψ)

Figure 1.34. First Euler rotation ψ
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x’ = cosΨ.x0 + sinΨ.y0

y’ = -sinΨ. x 0 + cosΨ.y0

Under matricial form:

0

0

cos sin

sin cos

x x'

y y'

    
          
    

 

     

We call Δ the characteristic determinant of this equation.

2 2

cos sin
cos sin 1

sin cos

  
       
    

To solve this equation and obtain x0 and y0 we need to form:

X0N x’ sin cos .x’ sin .y’
y’ cos

      
  

x 0 = NX0 / Δ = 1/Δ.(cosΨ.x’ - sinΨ.y’) = cosΨ.x’ - sinΨ.y’

[1.45]

y0 = NY0 / Δ = 1/Δ.(cosΨ.y’ + sinΨ.x’) = cosΨ.y’ + sinΨ.x’

Pitch rotation (θ)

(G x’ y’ z0) → (G X y’ z’)

(θ)
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Figure 1.35. Second Euler rotation θ

X = cosθ .x’ - sinθ.z0 = cosθ .( cosΨ.x0 + sinΨ.y0) – sinθ.z0

X =cosθ.cosΨ.x0 +cosθ.sinΨ.y0 - sinθ.z0 [1.46]

Also, as shown in Figure 1.34:

z’ = sinθ.x’ + cosθ.z0 ;

Roll rotation (φ)

(G X y’ z’) → (G X Y Z )

(φ)

Figure 1.36. Third Euler rotation φ
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Y = cosφ.y’ +sinφ.z’ = cosφ.(sinΨ.x0+cosΨ.y0)+sinφ.
[sinθ.(cosΨ.x0+sinΨ.y0)+cosθ.z0]

The components of Y grouped by x0, y0, z0 are:

Y = (sinφ.sinθ.cosΨ –cosφ.sinΨ).x0 + (cosφ.cosΨ
+sinφ.sinθ.sinΨ) y0 +sinφ.cosθ.z0

[1.47]

As shown in Figure 1.36:

Z = -sinφ.y’ + cosφ.z’

Z = -sinφ.(-sinΨ.x0 +cosΨ.y0) +cosφ.(sinθ.x’+cosθ.z0))

Z = -sinφ.(-sinΨ.x0+cosΨ.y0)+cosφ.[sinθ.(cosΨ.x0+sinΨ.y0)+cosθ.z0]

Z = (sinφ.sinΨ+cosφ.sinθ.cosΨ).x0 +(cosφ.sinθ.sinΨ – sinφ.cosΨ).
y0+cosφ.cosθ.z0

[1.48]

We already have the components of the velocity vector expressed
in the body reference which are: U, v, w:

V = U.X +v.Y +w.Z

Now the expression of V in the Galilean reference will be:

V = U.cosθ.cosΨ.x0+ U.cosθ.sinΨ.y0-U.sinθ.z0

+v.(sinφ.sinθ.cosΨ-cosφ.sinΨ).x0 + v.(cosφ.cosΨ

+sinφ.sinθ.sinΨ).y0+v.sinφ.cosθ.z0

+w.(sinφ.sinΨ+cosφ.sinθ.cosΨ).x0+w.(cosφ.sinθ.sinΨ
–sinφ.cosΨ).y0+w.cosφ.cosθ.z0
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Finally, the components of the velocity vector in the Galilean
reference are:

V/x0=U.cosθ.cosΨ+v.(sinφ.sinθ.cosΨcosφ.sinΨ)+
w.(sinφ.sinΨ+cosφ.sinθ.cosΨ)

V/y0 = U.cosθ.sinΨ + v.(cosφ.cosΨ+sinφ.sinθ.sinΨ)
+w.(cosφ.sinθ.sinΨ-sinφ.cosΨ)

V/z0 = -U.sinθ +v.sinφ.cosθ +w.cosφ.cosθ [1.49]

The motions of the airplane inside the Galilean reference are
obtained by integrating the precedent expressions.

For practical reasons, in order to consider the height of the airplane
as a positive upright we use:

H = -z0

So, we merely consider the “altitude” H of the airplane as the value
obtained by the integration of dH/dt which is:

dH/dt = H = U.sinθ – v.sinφ.cosθ –w.cosφ.cosθ [1.50]

The following SIMULINK blockset condenses all the necessary
operations to obtain the trajectory of the airplane.

The inputs of this blockset is the State Vector

[ X 1] = [ U v w p q r ]T .

The outputs are: x0 , y0 , h .

Details of the calculations are given in Figure 2.10, inside the
block named:

– “Absolute marker position”→ (inside the Galilean reference).
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1
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4

5

6

Body V, Alpha, Beta

V, Alpha,
Beta

X

X Euler

Euler

X1

1

X1

h

y

xx0

h

y0

Absolute marker
position

Fx

Fy

Fz

Mx

My

Mz

Fx

Fy

Fz

Mx

My

Mz

X

X1 = [ u v w p q r Theta Phi Psi V, Alpha, Beta ]

Figure 1.37.

This block represents the overall calculation of the motions of the
airplane in application of Newton’s principle:

– the input is the state vector [X 1];

– the output represents the placement of the airplane in the open
space:

- x0 , y0 , h .

The details of this computing process are shown in Figure 1.38.
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Figure 1.38. Details of computing process
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1.9. Validation by comparison with ONERA Concorde data

Figure 1.39.

In the early 1960s, there was a common project between Sud-
Aviation and ONERA on a supersonic airliner called Concorde.

ONERA was in charge of the feasibility of this project on domains
like aerodynamics, flying qualities and structural vibrations.

One of these projects was a version with a total mass of 85,000 kg,
flying at Mach 2.2 at the altitude of 16,600 meters.

The numerical data, shown here, deal with the longitudinal motions
of the airplane, including the two general modes (vertical and pitch),
and three primary symmetrical vibration modes.

These vibration modes have their frequencies placed at:

– 2.59 Hz, 3.22 Hz and 5.10 Hz

The coupling influence between these modes and the general
modes does not negatively impact the flying qualities of the airliner –
one of the principal conclusions of this survey.
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Figure 1.40. Lateral figure of Concorde, showing altitude z and Pitch angle θ

The numerical results show little deviation between ONERA
methods and those used in this book.

Figures 1.41 and 1.42 display the responses of the airplane after a
step input of 0.01 radians (about 0.6 degrees) of the elevator control
surface (elevons), first for ONERA, and then for DYNAVION.

The figures show:
– The response of the airplane as pitch angle (θ) as a function of

time.
– The response of the airplane as attitude angle (α) as a function of

time.

For a step input of the elevator command, the pitch angle response
displays an integration mode as a function of time (linear increase
mode), while the pitch angle mode displays an almost constant
response without integration.

Before the application of the elevator step input the airplane moves
freely at an attitude angle α0, which is the attitude angle obtained after
the very slow angular motion, called “phugoid”, is stabilized.

When the elevator step input is then applied (at t= tP), the attitude
response superimposes the attitude angle as (α –α 0).
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Figure 1.41. ONERA results (A.T. PHAM report / 1963)

Figure 1.42. DYNAVION results

This comparison valuates DYNAVION software as a research tool
for airplane dynamics.

The data of this plane are condensed in the file named “Données
Concorde Mach 2.2 m” shown in Figure 1.43.



50 Modeling of Complex Systems



0D Analytic Modeling of Airplane Motions 51

Figure 1.43. Listing of DYNAVION for Concorde data

1.10. Definitions of aerodynamic coefficients and derivatives

1.10.1. Aerodynamic coefficients

We have to consider six aerodynamic coefficients, three for forces
and three for torques, they are:

– total lift coefficients (wing, fuselage, elevator);

– drag coefficients;

– side lift coefficients;

– pitch coefficient;

– yaw coefficient;

– roll coefficient (generally this coefficient is neglected).

1.10.2. Total lift coefficient

We consider the wing and horizontal stabilizer separately as
slender lifting surfaces. Only the fuselage is considered as a lifting
body.

Lifting surfaces have lift coefficients which depend mainly on the
attack angle and aspect ratios, as shown below in Figure 1.44,
extracted from Theory of Wing Sections [ABB 59].
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)

Figure 1.44.

This diagram shows the variation of the lift coefficient as a
function of attack angle α and of aspect ratio λ.

To evaluate the total lift coefficient of the airplane, we have to
consider Figure 1.45.
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Figure 1.45. Geometrics of the wing and the horizontal stabilizer

In this figure, we consider O to be the center of coordinates at the
leading edge of the middle wing section.

The rectangular body reference is connected to the plane as usual
(OX to the front, OY to the right, OZ on the underside).



54 Modeling of Complex Systems

Aerodynamic forces are expressed by Lilienthal data in this
reference.

Lift wing force FZa is applied on Fa which is the focal point of each
wing. The lift center of the total wing is situated at the same
longitudinal coordinate, but at the centerline of the plane.

By similar considerations we can define the position of Fe which is
the focal point of the horizontal stabilizer.

Figure 1.46. Figure showing angular deviations of wing and stabilizer

– i a defines the angular deviation of the wing, relative to the OX
axis;

– ie the angular deviation of the horizontal stabilizer to the OX
axis;

– αa the attack angle of the wing;

– αe the attack angle of the horizontal stabilizer, as shown on the
precedent figure.

The total lift is:

Fz = Fz a + Fz e

½.ρ . Va
2.S.Cz = ½ . ρ .Va

2. S. Cza + ½.Ve
2.S .Cze [1.51]

Dividing the two members by ½ .ρ. Va
2. S:

CZ = CZa + ( ½.ρ .Ve
2.Se )/(½ .ρ .Va

2.S) .CZe
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We can call this:

µ = ( ½..ρ.Ve
2) / ½.ρ.Va

2 = Efficiency ( 0.8 < µ < 1.2 )

CZ = CZa + µ .(Se / S). CZe ; ( Se /S ~ 0.25 ) [1.52]

(Dimensionless)

The total lift coefficient is equal to the lift coefficient of the wing,
plus a percentage of the lift coefficient of the horizontal stabilizer.

Differentiating from α:

ΔCZ /Δα = ΔCZa/Δα +(µ.Se/S) .(ΔCZe/Δαe.)Δαe/Δα

So for the complete airplane:

CZα = CZαa + µ . Se / S . Δαe/Δα . CZαe [1.53]

CZαa and CZαe both depend on the aspect ratios of the wing and the
stabilizer.

The ratio of attack angles between the stabilizer and the wing is
about 0.5 due to deflection law.

Now we have the complete description of the airplane’s lift
capability.

1.10.3. Drag characteristics: (dimensionless)

Figure 1.47. An elevation time δmT is necessary to maintain an attack angle α0
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We will consider the horizontal static flight condition at the
velocity V0 as a basis.

The kinetic pressure q is:

q = ½ .ρ .V0
2

Considering the force balance by the reference (GXYZ),
essentially by GZ:

m.g.cosα0 = q . S . CZ0 →CZ0

This is the lift coefficient necessary for the plane to sustain this
velocity.

For a given plane, CZ0 is a function of the attack angle α (drag due
to lift) and elevator angular displacement (trim) δmT.

So: q .S .CZ0 = q . S .(a0 +a1. α 0 +a 2. α 0
2+CZδm.δmT )

δ mT is the necessary angular trim displacement to obtain the attack
angle α0, taking into account the pitch balance equation:

q .S . l .( - Cmα.α0 –Cmδm.δmT ) = 0 . → δmT = - (Cmα / Cmδm ). α 0

[1.54]

m.g.cosα0 / q .S = a0 +( a1 + (Cmα.CZδm/Cmδm).α0+a2.α02

We can solve this equation graphically to obtain α0.

Figure 1.48. Graphical solution to obtain α0
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Once α 0 is obtained, we can compute CZ0, then CX0.

CX0 is the total drag due to the shape of the airplane (principally the
fuselage) and to the lift (induced drag).

The drag of the plane’s body shape can only be measured in a wind
tunnel, due to the difficulties associated with 3D flow simulations.

Figure 1.49. On this example (X-24 Prototype), we notice that
the airflow near the plane is predominantly 3D

Lilienthal polar

Figure 1.50. The Lilienthal polar plot CZ as a function of CX by the body reference
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1.10.4. Side lift coefficient: CY (dimensionless)

The side lift capability of an airplane principally depends on rudder
surface and fuselage shape.

These two properties both play a role in the side lift and yaw-
centering characteristics of the plane.

If the fuselage has a substantial surface at the front, the side lift
effect is predominant, for a given sideslip angle, the plane has more
capability to make a “knife-edge” flight.

If the rudder is predominant, the yaw torque effect is more
important than the side-force effect and the plane will have more
tendency to go with the wind. This means that it will have some
difficulty in sustaining a knife-edge flight, while its directional
stability is convenient.

Figure 1.51. From this point of view, a good plane manages a correct
mix between directional stability and knife-edge capability
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1.10.5. Roll coefficients

Roll efficiency: CLδl
Roll efficiency is defined as the ratio of roll torque on a given

aileron’s control surface angular motion.

.

Figure 1.52. The figure above shows the half-wing planform

b = half wingspan

c = current width (wing chord)

y1 = initial lateral coordinate of the aileron

y2 = extreme coordinate of the aileron

An angular motion δ l of the aileron control surface is equivalent to
a change in attack angle of δα. Experimental measurements show that:

δα / δl ~ 0.2

If CZαa is the lift coefficient of the wing surface (which depends
mainly on the wing section), the expression of aileron efficiency is:

CLδl = (2.CZαa / S.b).∫ C.y.dy . [1.54]
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Roll damping coefficient

When the plane makes a roll motion, it induces an orthogonal and
linearly increasing field of velocity on the whole wingspan, which,
combined with the velocity V of the plane, creates changes to the
attack angle alongside the two half wingspans, and thus, also creates
changes to the aerodynamic torque, with an intensity proportional to
the roll angular velocity of the plane.

This damping torque stabilizes the roll motion of the plane by
decreasing oscillations.

Figure 1.53. The change of attack angle along the
side of the wingspan due to roll angular velocity

The total aerodynamic stiffness of the wing is known as CZα. It
depends on the wing aspect ratio and the wing airfoil section.

The elementary surface is: c(y).dy. This surface is placed at y from
the centerline of the plane.

Due to the roll angular velocity p, the local angle of attack is:
(p .y / V).



0D Analytic Modeling of Airplane Motions 61

The elementary force is:

CZα .( c(y).dy /S) .(p.y/V ).

The elementary torque is:

CZα .( c(y).dy /S) . ( p.y2 /V).

The total roll torque due to the roll angular velocity of the plane is
then:

L = 2 . p . ∫0b (CZα/(S.V)).c(y).dy ; (b = half wingspan) (roll torque)

We define as:

CLp = L/p = 2.(CZα/(S.V)).∫0b c(y).y2.dy

We can also make this work for the horizontal stabilizer, so that the
total roll damping coefficient of the plane is:

           b 2 b 2 1
Lp Z w 0 Zes 0C 2 . C / S.V . c y .y .dy 2 . C / S.V . c y .y .dy ; m.N / rd.s

(Wing) (Stabilizer)


   

 

[1.56]

We notice that this roll damping coefficient takes into account the
square of the wingspan. This property shows us that gliders with high-
aspect ratio wings are presumably very “lazy” in roll motion.

Figure 1.54. A glider with high-aspect ratio wings
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1.10.6. Pitch coefficients

We distinguish two types of pitch coefficients: pitch stiffness and
pitch damping.

These two functions are principally provided by the horizontal
stabilizer (or elevator); part of this function can be assumed by special
wing airfoils (self-stabilizing airfoils).

Figure 1.55. O is the center of the body reference

We have to consider three points:

– G the center of mass of the plane, placed at OG.

– Fa is the focal point of the wing located at the quarter of the mean
wing chord, at GFa.

– Fe is the focal point of the horizontal stabilizer, located at the
quarter of the mean stabilizer chord.

The distance between G and Fe is called the horizontal lever = lB.

In normal flight conditions, the plane stabilizes itself at an attack
angle equal to α 0.

(See section 1.6. – Horizontal flight as an initial condition).

Any disturbance causes the plane to move slightly, but it naturally
returns to the attack angle α0.
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Pitch stiffness

For a given disturbance Δα (> 0 for instance) and q = ½.ρ.V2

(dynamic pressure).

The wing generates an aerodynamic force which is: - q .S.CZα.Δα
(this force is negative here).

Then an aerodynamic torque which is:

MYα = q .S.l.CMα.Δα = GFa.q.S.CZα.Δα

where: l = reference length = mean wing chord.

GFa is the distance between the center of mass and the focal point
of the wing.

We can define: CMα = MYα / ( q .S.l ) = (GFa / l ).CZα .Δα .

The horizontal stabilizer generates:

MYe = q .S.l.CMe = -GFe. q .S.CZe.Δα .

The total aerodynamic torque is:

MY = MYa+MYe= q .S.(GFa.CZa–GFe.CZe) .Δα =( la .CZa –l e
.CZe). q .S.Δα .

The total pitch coefficient will be written as:

CM = My / q .S.l = ( ( l a .CZa – le . C Ze )/l ) .Δα .

The total aerodynamic stiffness is then:

CMα = d CM / d Δα = ( l a . CZa – l e . CZe )/ l .



64 Modeling of Complex Systems

Pitch damping

Figure 1.56. Change of attack angle at the stabilizer due to V

and q

For a given pitch angular velocity q, there is a vertical velocity q.lB
at the level of the horizontal stabilizer, which gives an attack angle
(q.lB/U), combined with the velocity U (translation of the plane), at
this place.

Thus a supplementary lift at the horizontal stabilizer:

ΔFZe = ½.ρ . V2 .(q.lB / U). CZαe

Where CZ α e = ΔCZe /Δ α e = slope of variation of CZe as function
of α e

Then a pitch torque:

MY = ½.ρ .V2 .(q.lB2 /V) .CZαe . = ½ . ρ.V.q.lB2.CZαe = ½ .ρ.V. CZq .q

So the coefficient of pitch torque as a function of angular velocity
q can be written as:

CZq = CZαe.lB2/V [1.57]

The pitch damping depends, of course, on the efficiency of the
horizontal stabilizer (CZαe) and also on the square of the horizontal
stabilizer lever lB.

Good pitch damping requires sufficient horizontal stabilizer length.
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Figure 1.57. The POLIKARPOV I-16 “RATA” with a very short pitch lever

This drawing shows a Russian WW2 fighter, the POLIKARPOV
I-16 “RATA”.

This plane was not very successful as a fighter, probably due to its
very short pitch lever, leading to a critical control.

Russia lost many of these planes during the 1943–1944 phase of
the Russian campaign.

German fighters were better equipped with their
MESSERSCHMITT – BF 109 which were fitted with a more
convenient (longer) pitch lever.

Despite the fact that Russian pilots were numerous, the balance of
victories was clearly in favor of the Germans.

Figure 1.58 shows another concept, more slender, especially in
longitudinal view, called the MESSERSCHMITT – BF 109.
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Figure 1.58. The MESSERSCHMITT – BF 109

1.10.7. Yaw coefficients

We distinguish two types of yaw coefficients: yaw stiffness and
yaw damping.

These two functions are insured principally by the rudder, and
partly by the lateral fuselage surface.

As shown in Figure 1.59:

– the rudder area is SR;

– the lever of the rudder is lR, distance between the center of mass
and the focal point of the rudder.

The two inputs for yaw motions are:

– slip angle β;

– yaw angular velocity r.
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Figure 1.59. Parameters of yaw stiffness and yaw damping

Yaw stiffness

For a given slip angle β (negative on the figure), there will be a
side force FR at the level of the rudder:

FR = ½.ρ .V2 .SR.CYβR.β . (FR is negative on Figure 1.59)

Where CYβR is the aerodynamic stiffness of the rudder.

Thus a yaw torque which is:

MZR = lR. FR = ½.ρ.V2.SR.lR.CYβR.β [1.58]

Yaw damping

For a given yaw angular velocity r, there will be a lateral velocity
r.lR at the level of the rudder (exactly at the focal point of the rudder).
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Thus, a modification of ( r.lR/V) slip angle in the same place.

Thus, creation of a lateral force equal to:

FR = ½.ρ.V2.SR .CYβR.(r.lR/V) .

Thus, a yaw torque (related to yaw velocity) which is:

MZR = lR.FR = ½ .ρ .V .SR .lR2. CYβR. β ; [1.59]

We notice that the yaw damping is proportional to the square of the
yaw lever, and this property is important for the plane’s yaw
oscillations in turbulent atmospheres (“snaking”).




