
1

Content Distribution on the Internet

In the beginning, Internet applications were based on textual information.
Users were used to exchange email messages, transfer files via File Transfer
Protocol (FTP) and access remote servers. Today, the Internet is a complex
multimedia-information system based on content distribution. Documents,
videos, audio, images, Web pages, for example, are “contents” [PLA 05].
Metadata used to find, understand and manage contents are also considered
“contents”. However, in order to enable users to request and receive contents
efficiently, several basic requirements must be satisfied. First, content
persistence must be assured. Persistence means that content identifiers1

should be unique and valid during the lifetime of the associated content.
Recently, with the advent of Web 2.0, the number of content publishers has
hugely increased. Today, even users with low technical knowledge are able to
publish content on the Internet easily. Thus, it is quite hard to assure content
persistence in the current Internet. The second requirement is scalability.
Content-search and forwarding mechanisms should be efficient regardless of
the number of users and contents offered. Both must be able to operate at
Internet scale. Finally, the secure access to contents is an important
requirement to provide authentication and access control mechanisms to
available contents. Currently, there is no solution that satisfies all these three
requirements at the same time. Several techniques try to partially satisfy them

1 In this book, identifiers and names are synonyms.

CO
PYRIG

HTED
 M

ATERIA
L



2 Information-Centric Networks

and thus make the current Internet architecture more suitable to content
distribution. In this chapter, a few of these techniques are briefly presented.

1.1. End-to-end concept and limitations

Three characteristics of the current Internet architecture
are barriers to satisfy the requirements of content
distribution: there are no guarantees of (i) quality of service,
(ii) end-to-end security and (ii) no scalable forwarding
mechanisms.

The Internet is a packet-switched network on a global
scale, in which packets are forwarded based on the best-effort
service model offered by the Internet Protocol (IP). There is
neither resource reservation nor service differentiation
during packet forwarding. Consequently, contents are
distributed with no performance guarantees. Furthermore,
the current architecture is focused on communication
between hosts, which means that a source host includes in
packet headers the IP address of the host that it wants to
communicate with. Then, packets are forwarded hop-by-hop,
based solely on the destination IP address. This paradigm is
well suited for the first Internet application, because its main
goal is to share remote resources offered by a specific host,
such as a Web server, printer server and file server.
Nevertheless, such a paradigm is not able to satisfy content
distribution requirements, because it compels users to know
not only where a content is located, but also the name of the
content they want.

Currently, content distribution on the Internet is
supported by “patches”, that is a set of protocols and
mechanisms that partially satisfy application requirements.
The Hypertext Transfer Protocol (HTTP) redirect is an
example used for searching non-persistent contents. With
this mechanism, HTTP objects are requested by using



Content Distribution on the Internet 3

resource locators, referred to as Uniform Resource Locators
(URLs), which are in the headers of HTTP messages. Thus,
HTTP redirect events are triggered by the server that hosted
those objects originally. In this case, the server sends back to
the client an HTTP redirect message containing the new URL
in its header. This mechanism, however, must know where
contents are placed and thus it is necessary to develop
complementary mechanisms to assure persistent access to
these contents, regardless of location, properties or other
characteristics related to them. This example also illustrates
how the client–server model works. In this case, one
point-to-point communication channel is established between
one client and one server. If several users simultaneously
request a given content hosted by a server, multiple
point-to-point channels are established and one copy of the
same content is sent over each channel. Therefore, the more
popular the content is, the less the efficiency of content
distribution mainly in terms of bandwidth. Although not
efficient, this model is widely adopted by the current content
distribution applications. In summary, large-scale content
distribution applications require the development of scalable
forwarding mechanisms that must be quite different from the
traditional client–server model.

Content distribution applications also try to provide
content authentication and secure communication over the
Internet. Currently, all of them employ mechanisms to
provide a secure channel between the source and destination
hosts instead of explicitly providing security to the content
itself. Consequently, additional messages and process
overheads are introduced [SME 09]. Internet Protocol
Security (IPSec), for example, is a patch used to provide
secure communication. Basically, IPSec allows users to
establish reliable connections by introducing authentication
headers (AHs), applying cryptography to data, using
encapsulating security payloads (ESPs) and finally by
employing key management mechanisms. In this



4 Information-Centric Networks

connection-oriented approach, however, the content security
depends on the trust of the host that stores this content and
also on the connection established between hosts. Once again,
scalability is the barrier to surpass. In this case, the same
content are not available to be shared among different users,
because the content is carried out within a secure channel
between two hosts. The alternative is to establish multiple
secure connections among content sources and different
users, which are not scalable [SME 09]. Clearly, specific
solutions for content distribution applications are currently
mandatory.

1.2. Multicast communication

Multicast communication is one of the first proposals to
increase the content distribution efficiency on the Internet. In
practice, this technique is implemented by an IP multicast in
the network layer [DEE 89]. Basically, with the IP multicast,
one datagram sent by a host can reach multiple hosts that
are interested in the same content. For that reason, these
hosts are aggregated in a group, which is identified by only
one IP address. Thus, if a host sends a datagram to the IP
address of a given group, all the hosts that have joined this
group receive a copy of this datagram. The role of the
network layer, in this case, is to forward and replicate this
datagram, when necessary, over the entire distribution tree
that covers all the hosts interested in the group content. The
advantage is to save bandwidth by not forwarding
unnecessary copies of the same datagrams over one link.

IP multicast, proposed in the 1990s, is not currently
adopted on a large scale on the Internet. For several authors,
the main reason is the complexity to configure and manage
the set of protocols needed by IP multicast. This complexity
comes from the service model proposed by the IP multicast
itself. In summary, a given host is able to join and leave a



Content Distribution on the Internet 5

group at any time, it may be a member of more than one
group simultaneously, and it does not need to be a member of
a group to send datagrams to the group [COS 06].

1.3. Peer-to-peer systems

Peer-to-peer (P2P) systems aim at increasing content
distribution efficiency by promoting content sharing among
the users of the system. Basically, nodes interested in the
same content, referred to as peers, create an overlay network
at the application layer and altruistically share bandwidth,
the process and storage capacity. Thus, they are able to
exchange contents. The key idea is that each peer contributes
to a given amount of its resources and uses the service offered
by the system [PAS 12]. Consequently, the more peers there
are in the system, the more is the capacity of the system to
satisfy the user requirements (delivery time, content
availability and among others). Thus, the scalability needed
by content distribution applications is intrinsically provided
by P2P systems. In addition, P2P systems do not require
changes in the network core as IP multicast does.

Another key aspect is that users today are interested in
receiving a given content – a file or a multimedia streaming –
no matter who sends it. With BitTorrent, for instance, a new
peer in the system randomly chooses its partners, that is the
nodes allowed to exchange content chunks with it. These
partners are selected at random from a subset of peers who
are interested in the same content and no information about
location or identification of peers is taken into account during
the selection process. The huge success of both P2P
file-sharing and P2P streaming systems – with millions of
users – clearly indicates that the paradigm of the Internet
application is changing. This is the basis for the development
of Information-Centric Networks: users are more and more
interested in the content itself and not in its sender.



6 Information-Centric Networks

Although scalable to distribute content, P2P systems
suffer from security problems and the lack of incentives for
peers to share their resources. P2P systems rely on the
collaborative behavior of peers to work properly. Thus, the
trust in data forwarded by other peers is a crucial point that
must be taken into account by these systems. Another
problem is the robustness of the system against peer churn,
that is the capacity to deal with frequent arrivals and
departures of peers. Peer churn may reduce content
availability and distribution efficiency because there is no
dedicated infrastructure to manage those events.

1.4. Content distribution networks

Content Distribution Networks (CDNs) are proposed to
increase the efficiency and scalability of the client–server
model employed by most of the content distribution
applications today [PAS 12]. CDNs are composed of a set of
distributed servers interconnected through the Internet that
cooperatively work to distribute content [BUY 08]. Contents
are replicated on different servers – preferably by different
Internet Service Providers (ISPs) – and thus CDNs increase
content availability and communication efficiency. Basically,
CDNs redirect content requests to one of the replicas stored
by a server closer to the requester. The main idea is to reduce
the number of hops between clients and servers.
Consequently, clients should experience low latency and high
delivery rate because the congestion probability decreases.

Two building blocks comprise the core of a CDN: the
distribution and replication service and the request
redirection service [PAS 12]. Content producers use the
distribution and replication service to find proper servers, to
allocate storage capacity and, finally, to allocate contents to
the selected servers. In addition, the request redirection
service is the CDN interface with content consumers.



Content Distribution on the Internet 7

Basically, this service receives content requests and then
forwards each request to the more suitable CDN server to
satisfy it.

CDNs are typically composed of two types of servers: an
origin server and a replica server. On the one hand, the origin
server attributes the content identifier, stores and announces
the content. Replica servers, on the other hand, forward the
content to clients. In general, clients send requests to the
origin server who redirects these messages to the replica
server closer to the client and that stores the desired content.
Figure 1.1 illustrates this process. In summary, redirection
mechanisms severely impact on a CDNs performance.

Figure 1.1. A simple example of how CDNs work: (1) client A sends
a content request to the origin server that (2) redirects this request to

the replica server closest to A. Then, (3) X sends the content to A

The simplest way to redirect requests in CDNs is to use
the redirection mechanism originally offered by HTTP. In this
case, all requests to HTTP objects are performed by Web
browsers running on client hosts. When the origin server
receives a request, it sends back to the requester an HTTP
redirect message with the address of the best replica server.
The origin server, in this case, is the bottleneck of the system
and also a single point of failure because it processes all
content requests. The Domain Name System (DNS) is also
used by CDNs to redirect contents. Basically, the CDN DNS



8 Information-Centric Networks

server receives messages requesting the address associated
with the name of the origin server and then sends back to the
client the address of the proper replica server. Both
techniques – HTTP or DNS redirection – can select the “best”
replica servers based on the number of hops or round-trip
time (RTT) between clients and replica servers and/or based
on the servers load. The main problem of these two
techniques, however, is to guarantee content persistence. If
the owner, domain or any other property of a given content
changes, users may not be able to retrieve this content by
using the same URL already known. In this case, for every
change, users have to query centralized structures in order to
obtain the new place of the content, which may increase the
content delivery time [KOP 07].

The lack of interoperability between CDNs is another
problem. Most of these networks are proprietary and specific
for a given application and thus CDNs cannot be considered a
general solution to satisfy the different content distribution
applications on the Internet. In addition, server placement
algorithms, capacity planning of servers and cache
replacement policies have key roles on a CDNs
performance [PAS 12]. For example, redirection mechanisms
must select the best replica server in real time in order to
have less impact on the delivery time, but it implies high
computational costs. Also, the more the number of replica
servers there are, the higher is the probability of finding a
server close to the client. However, a CDN provider has to
increase its budget to achieve that.

There are several examples of both academic, such as
CoDeeN [WAN 04], and commercial CDN providers, such as
Limelight2 and Akamai3, which are very popular. Akamai

2 http://www.limelight.com/
3 http://www.akamai.com/



Content Distribution on the Internet 9

has approximately 100,000 servers spread over the entire
Internet, with points of presence in 72 countries and supports
trillions of interactions per day [AKA 12].

1.5. Publish/subscribe systems

Publish/subscribe systems, or simply pub/sub, also
indicates that the paradigm for current Internet applications
is changing. Similar to P2P users, pub/sub users are
interested in receiving the content regardless of its sender. In
pub/sub systems, contents desired by users are referred to as
events and the delivery of the content is called notification.
The basic operation of a simple pub/sub system is the
following. First, publishers create events and make them
available to subscribers. Second, subscribers are able to
announce their interest in events or event patterns defined by
publishers. Thus, a subscriber is notified whenever an event
that matches their interests is generated by any publisher.

Publishers and subscribers are decoupled in both time and
space [EUG 03]. A subscriber, for example, may announce
that it is interested in an event not yet published by any
publisher. In addition, this interest should not be necessarily
announced when the publisher is online. Decoupling, in
this context, provides scalability to pub/sub systems
because it allows publishers and subscribers to work
independently [EUG 03]. Publishers add events to the system
by calling the function publish(). Subscribers call the
function subscribe() to register their interest in events.
The pub/sub system, in this case, has a key role. The system
itself have to store all interests announced and deliver
contents to all interested subscribers, as shown in Figure 1.2.
This operation mode allows pub/sub systems to distribute
content between a huge number of users because publishers
do not store states related to the interests of subscribers and



10 Information-Centric Networks

subscribers receive content from any publisher, no matter if
the sender is unknown [MAJ 09].

Figure 1.2. Subscribe and event notification functions
in a simple pub/sub system

The first proposed pub/sub system is based on topics
identified by keywords and is called a topic-based pub/sub
system. Examples of this kind of system include enterprise
application integration, stock-market monitoring engines,
Really Simple Syndication (RSS) feeds, online gaming, among
others [CHO 07]. With topic-based systems, users subscribe
and publish events by using a topic, which is conceptually
similar to the group defined by IP multicast, described in
section 1.2. Each topic is a unique event service, identified by
a unique name and provides interfaces to users that want to
call publish and subscribe functions. Spidercast [CHO 07]
and TERA [BAL 07] are examples of topic-based pub/sub
systems.

Content-based systems are the next step in the
evolutionary line of pub/sub systems. Basically, these systems
allow users to subscribe to events based on properties of the
events themselves and not based on previously defined and
static characteristics, such as topic identification. With
content-based systems, subscribers are able to specify filters
to define their subscriptions by using restrictions based on



Content Distribution on the Internet 11

attribute-value pairs (AVPs) and basic logical and
comparative operators, such as =, <, >, ≤ and ≥. Restrictions
can be logically combined by using Boolean operators, such as
AND and OR, in order to define complex subscription patterns.
These patterns are used in two basic functions of the system.
First, patterns identify events of interest specified by a given
subscriber. Second, notifications are forwarded through the
system based on patterns, as detailed in section 3.1. Filters
simplify the declaration of interests compared with
topic-based systems. However, filters can introduce a
communication overhead in the case of partially declared
interests. Siena [CAR 01] and Kyra [CAO 04] are examples of
content-based systems.

The different architectures employed by pub/sub systems
can be classified into centralized or distributed, regardless of
the way the subscribers specify their events of
interest [EUG 03]. With the centralized architecture, on the
one hand, event publishers send messages to a central entity
that stores these messages and redirects them to subscribers
on demand. With the distributed architecture, on the other
hand, all system nodes must process and forward interests
and notifications because there is no central entity. In
general, distributed architectures rely on multicast
communication and, thus, are prone to deliver content
efficiently. In this case, topic-based systems benefit from this
characteristic of distributed architectures. Content-based
systems, however, face a huge challenge to efficiently provide
multicast communication. Multicast performance is impacted
by the computational cost of filtering needed during content
forwarding, which varies with the amount of subscriptions in
the system.






