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Mathematical Preliminaries

1.1. Introduction

In this chapter, we first introduce the basic tools that are
used in the remainder of the book: the statistical
characterization and the optimization in the complex domain.
For the statistical characterization, we emphasize the
importance of taking full statistical information including
potential non-circularity of the signals into account, and for
the optimization, we review Wirtinger calculus that enables
us to perform optimization in the complex domain in a
manner very similar to the real-valued case, hence
significantly simplifying algorithm derivation and analysis.

1.2. Linear mixing model

We consider the following multidimensional signal mixing
model

x(t) = As(t) + n(t) [1.1]

where t is the time index, x(t) ∈ CNo is the set of
observations, s(t) ∈ CNs is the source (component) vector,
n(t) ∈ CNo is the additive random noise vector and
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2 Blind Identification and Separation of Complex-valued Signals

A ∈ CNo×Ns is the mixing matrix. This mixing matrix
characterizes all the physical propagation transformations
between the source signals, and the observations when the
sources correspond to actual physical quantities.
Furthermore, this model can be exploratory in nature where
the mixing matrix summarizes the contribution of each
underlying component.

The model in [1.1] corresponds to the so-called linear
memoryless mixing model that is typically found in a wide
range of applications, including biomedicine,
communications, finance and remote sensing [COM 10]. Since
the sources s(t) are not observable, the problem is their blind
identification given only the mixture, observations x(t).

Since both A and s(t) are unknown, the model in [1.1]
is not unique. Indeed, considering an invertible matrix C to
replace A and s(t) with AC and C−1s(t), respectively, leaves
x(t) unchanged. Hence, it is important to impose additional
assumptions in order to have a tractable model that helps with
the main indeterminacies. Throughout the following – unless
specified otherwise – we consider that:

A1. matrix A has full column rank;
A2. source signals are zero-mean, unit power and

statistically independent stochastic signals;
A3. noise is a zero-mean (white) Gaussian random

process;
A4. source signals and noise are statistically mutually

independent.

Assumption A1 ensures that a pseudo-inverse W = A† of
A exists. Assumption A2 is the key assumption that will
make the blind identification or the source separation
possible. Assumptions A3 and A4 are related to the nature of
noise, and will be important when we consider this more
general model. In the rest of this book, we focus on the
noiseless case.
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1.3. Problem definition

We consider the problems of blind identification and source
separation. Blind identification consists of directly estimating
the mixing matrix A whereas source separation has the goal
of estimating the source signals s(t). Here, we consider the
latter problem through the direct estimation of an inverse of
matrix A, which is accomplished by directly estimating an
inverse matrix, called the demixing matrix – subject to the
ambiguities – denoted by W.

We have seen that given an invertible matrix C, if we
change both A to AC and C−1s(t) in relation to [1.1], then
the observations remain unchanged. In practice, this is not
acceptable and it is the reason why additional assumptions
are imposed. The most important assumption is the
statistical independence of source signals. Hence, if s(t) has
statistically independent components, then we no longer have
C−1s(t) for any non-singular matrix C, but now C is
constrained so as to be C = DP, where D is an invertible
diagonal matrix and P is a permutation matrix.

These two indeterminacies corresponding to D and P are
often acceptable in practice. Indeed, they correspond to an
arbitrary ordering and an arbitrary power of the source
signals. They also directly correspond to an arbitrary
ordering and an arbitrary norm for the columns of the mixing
matrix A.

Hence, we estimate the mixing matrix – or rather an
inverse of the mixing matrix – up to these two
indeterminacies. For the source separation problem, this
corresponds to the estimation of matrix W called a
separating or demixing matrix such that we have

WA = DP [1.2]
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where D is an invertible diagonal matrix and P is a
permutation matrix.

1.4. Statistics

In this section, we provide an overview of the basic
concepts relevant to the discussion in the rest of the book. For
a more detailed treatment on statistics, readers are referred
to [ADA 11, ADA 13, SHC 10].

1.4.1. Statistics of random variables and random
vectors

A complex-valued random variable X = Xr + jXi is
defined through the joint probability density function (pdf)
pX(x) � pXrXi(xr, xi) provided that it exists. The joint pdf for
a complex random vector X = Xr + jXi ∈ CN is written
similarly as pXrXi(xr,xi). In the subsequent discussions,
whenever there is no reason for confusion, we drop the
variable subscripts in the definitions of pdfs and statistics
to simplify the notation. We use the notation p(x) =
p(xr + jxi) � p(xr,xi) and define the expectations with
respect to the corresponding joint pdf. In addition, we assume
that all the variables are zero-mean except in few expressions
where we specifically include the mean.

Second-order statistics of a complex random vector X are
completely defined through two (auto) covariance matrices:
the covariance matrix

Cx = E{XXH}

that is commonly used and, in addition, the complementary
covariance matrix [SCH 03] – also called the pseudo-
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covariance [NEE 93] or the relation matrix [PIC 96] – given
by

)Cx = E{XXT }

Through their definitions, the covariance matrix is
Hermitian and the complementary covariance matrix is
complex symmetric. The non-negative eigenvalues of the
covariance matrix – which is non-negative definite, and in
practice typically positive definite – can be identified using
eigenvalue decomposition. However, for the complementary
covariance matrix, we need to use Takagi factorization
[HOR 99] to obtain the spectral representation. Assuming
that C has full rank, we write the coherence matrix [SCH 06]

R = C−1/2 )C(C∗)−H/2 = C−1/2 )CC−T/2. [1.3]

Since R is complex symmetric, R = RT , not Hermitian
symmetric, i.e. R �= RH , there exists a special singular value
decomposition (SVD), called the Takagi factorization:
[HOR 99]

R = FKFT . [1.4]

The complex matrix F is unitary and
K = diag(k1, k2, ..., kN ) contains the canonical correlations
between x and x∗, given by 1 ≥ k1 ≥ k2 ≥ · · · ≥ kN ≥ 0 on its
diagonal. The squared canonical correlations k2n are the
eigenvalues of the squared coherence matrix
RRH = C−1/2 )CC−∗ )C∗C−H/2, or equivalently, of the matrix
C−1 )CC−∗ )C∗ [SCH 06, SCH 10]. As in [ERI 06], we refer to
these canonical correlations as circularity coefficients though
the name impropriety coefficients would be more appropriate
given the fact that they are a measure of second-order
non-circularity [ADA 11].
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Second-order circularity properties of complex-valued
random variables and vectors are defined in terms of their
complementary covariances. A zero-mean complex random
variable is called proper [SCH 03, NEE 93] or second-order
circular [PIC 94] when its complementary covariance is zero,
i.e.

E{X2} = 0

which implies that σXr = σXi and E{XrXi} = 0 where σXr

and σXi are the standard deviations of the real and imaginary
parts of the variable. For a random vector X, the condition
for propriety or second-order circularity is given by )C = 0,
which implies that E{XrX

T
r } = E{XiX

T
i } and E{XrX

T
i } =

−E{XiX
T
r }.

A stronger condition for circularity is based on the pdf of
the random variable. A random variable X is called circular
in the strict sense, or simply circular, if X and Xejθ have the
same pdf, i.e., the pdf is invariant to phase rotations [PIC 94].
In this case, the phase is non-informative and the pdf is a
function of only the magnitude. A direct consequence of this
property is that E{Xp(X∗)q} = 0, for all p �= q, if X is circular.
Circularity is a strong property, preserved under linear
transformations, and since it implies non-informative phase,
a real-valued approach and a complex-valued approach for
this case are usually equivalent [VAK 96].

As we would expect, circularity implies second-order
circularity, and only for a Gaussian-distributed random
variable, second-order circularity implies (strict sense)
circularity. Otherwise, the reverse is not true.
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1.4.2. Differential entropy of complex random vectors

The differential entropy of a zero-mean random vector
X ∈ CN is given by the joint entropy H(Xr,Xi), and satisfies
[NEE 93]

H(X) ≤ log
�
(πe)Ndet(C)

�
[1.5]

with equality, if and only if, X is second-order circular and
Gaussian with zero-mean. Thus, it is a circular Gaussian
random variable that maximizes the entropy for the complex
case. It is also worthwhile to note that orthogonality and
Gaussianity, together do not imply independence for complex
Gaussian random variables, unless the variable is circular.

For a non-circular Gaussian random vector, we have
[ERI 06, SCH 08]

Hnoncirc = log
�
(πe)Ndet(R)

�� �� �
Hcirc

+
1

2
log

N%
n=1

(1− k2n)

where n are the circularity coefficients as defined and kn = 0,
n = 0, . . . , N − 1, when the random vector is circular. Hence,
the circularity coefficients provide an attractive measure for
quantifying circularity and a number of those measures are
studied in [SCH 08]. Since kn ≤ 1 for all n, the second term is
negative for non-circular random variables decreasing the
overall differential entropy as a function of the circularity
coefficients.

1.4.3. Statistics of random processes

References [AMB 96b, NEE 93, PIC 93, COM 94a, PIC 94]
give a detailed account of the statistical characterization and
properties of complex random processes. Here, we mainly
concentrate on second- and fourth-order statistical properties.
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First, the covariance – equivalently correlation since all
quantities are assumed to be zero-mean – matrix Rx(t) of a
stochastic signal x(t) is defined as

Rx(t) = E{x(t)xH(t)} [1.6]

and the auto-correlation matrix Rx(t, τ) as

Rx(t, τ) = E{x(t)xH(t− τ)}. [1.7]

Obviously, we have Rx(t) = Rx(t, 0).

In cases where the random signal vector x(t) is assumed
(broad sense) stationary, then the above two matrices do not
depend on t anymore. If the dependence on variable t is
periodic, then the stochastic vectorial signal is called
cyclostationary.

Similarly, for complex random processes as well, we can
introduce the complementary auto-correlation matrix )Rx(t) of
the random vector x(t) as

)Rx(t) = E{x(t)xT (t)} [1.8]

and the complementary auto-correlation matrix as

)Rx(t, τ) = E{x(t)xT (t− τ)} [1.9]

Again, we have )Rx(t) = )Rx(t, 0).

As will be seen in the following, second-order statistics can
be sufficient for blind identification or source separation. A
more general case requires the use of statistics of an order
higher than two. These statistics could be moments but
cumulants are preferred because of their useful properties
w.r.t. statistical independence. For simplicity, we only
consider fourth-order cumulants, but all the following
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derivations can be very easily extended to cumulants of any
order greater than or equal to three.

Depending on the number of complex conjugates, three
fourth-order cumulants can be defined in the complex case,
they are

Cx,ijkl = Cum{xi, x∗j , xk, x∗l } [1.10]

C �
x,ijkl = Cum{xi, xj , xk, x∗l } [1.11]

and

C ��
x,ijkl = Cum{xi, xj , xk, xl}. [1.12]

Note that for simplicity, we only consider the stationary
case with no delay. Hence, the cumulants no longer depend on
the time index t. This is the reason why we drop it in all of
the above definitions. The natural block representation of
these high-order cumulants is a tensor of order equal to the
cumulant order. However, this tensor can also be well
described by sets of matrices corresponding to particular
tensor slices.

The simplest way consists of considering the following
matrices�

Cx(k, l)
!
ij
= Cx,ijkl [1.13]

�
C�

x(k, l)
!
ij
= C �

x,ijkl [1.14]

and �
C��

x(k, l)
!
ij
= C ��

x,ijkl. [1.15]
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Since x is an No dimensional vector, in each of the above
cases, we have N2

o matrices of size (No, No). Thus, in each case,
all the N4

o cumulants are found in the above matrices.

Sometimes it can be useful to reduce the number of
matrices. The following matrices can be considered�

Cx(k)
!
ij
= Cx,ijkk [1.16]

�
C�

x(k)
!
ij
= C �

x,ijkk [1.17]

and �
C��

x(k)
!
ij
= C ��

x,ijkk. [1.18]

In each of the above three cases, we now only have No

matrices of size (No, No). In the first and third cases, it is not
a problem since the a priori “missing” cumulants can be
found within the No matrices because of cumulant
symmetries. However, in the second case, not all the
“missing” cumulants can be found within the No matrices. We
will see later that this missing statistical information will not
be a true problem.

For the reduction of the number of matrices, we can also
consider sums of matrices as

�
Cx(S)

!
ij
=

No'
k,l=1

Cx,ijklSkl [1.19]

�
C�

x(S)
!
ij
=

No'
k,l=1

C �
x,ijklSkl [1.20]

and

�
C��

x(S)
!
ij
=

No'
k,l=1

C ��
x,ijklSkl [1.21]
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where S is a fixed matrix corresponding to the coefficients of
the sum. In each of the above cases, we now only have one
matrix of size (No, No).

Note that the N2
o matrices in [1.13] (respectively [1.14] and

[1.15]) are special cases of matrix of the form [1.19]
(respectively [1.20] and [1.21]) when considering the N2

o

matrices for S in the set�
Ek,� = eke

T
� | 1 ≤ k, & ≤ No

	
[1.22]

where ek is the No dimensional column vector with 1 in
position k and 0 elsewhere.

Note that the No matrices in [1.16] (respectively [1.17] and
[1.18]) are also special cases of matrix of the form [1.19]
(respectively [1.20] and [1.21]) when considering the No

matrices for S in the set�
Ek,k | 1 ≤ k ≤ No

	
. [1.23]

1.4.4. Complex matrix decompositions

In the noiseless case, using [1.1] in [1.7], [1.9] and [1.19],
[1.20] and [1.21], it is rather straightforward to see that

Rx(t, τ) = ARs(t, τ)A
H [1.24]

)Rx(t, τ) = A)Rs(t, τ)A
T [1.25]

Cx(S) = ACs,x(S)A
H [1.26]

C�
x(S) = AC�

s,x(S)A
T [1.27]

and

C��
x(S) = AC��

s,x(S)A
T [1.28]
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where by definition

�
Cs,x(S)

!
ij
=

No'
k,l=1

Cum{si, s∗j , xk, x∗l }Skl [1.29]

�
C�

s,x(S)
!
ij
=

No'
k,l=1

Cum{si, sj , xk, x∗l }Skl [1.30]

and

�
C��

s,x(S)
!
ij
=

No'
k,l=1

Cum{si, sj , xk, xl}Skl. [1.31]

Now because of assumption A2 ensuring statistically
independent sources, all the matrices Rs(t, τ), R�

s(t, τ),
Cs,x(S), C�

s,x(S) and C��
s,x(S) are diagonal. Hence, depending

on considered statistics, we can find two kinds of matrix
decomposition. They are written as

M(n) = AD(n)AH [1.32]

M�(n) = AD�(n)AT [1.33]

where both matrices D(n) and D�(n) are diagonal.

Thus, matrices M�(n) are always complex symmetric, while
matrices M(n) are Hermitian when all matrices D(n) are
real. If this is not the case, we can always consider the
Hermitian part of M(n). Hence, we will talk about matrices
M(n) as Hermitian in the following even if the diagonal
matrices D(n) are not real.

We denote the set of Hermitian matrices with Mh

Mh =
�
M(n) ∈ CNo×No , n = 1, . . . NH

	
[1.34]
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and the set of complex symmetric matrices with Ms

Ms =
�
M�(n) ∈ CNo×No , n = 1, . . . NT

	
[1.35]

Important remark

Given matrix A, the only degrees of freedom for matrices
M(n) in [1.32] correspond to the diagonal components of
D(n). Since there are Ns diagonal components, matrices M(n)
belong to a linear space of dimension Ns. Exactly the same
remark holds for matrices M�(n) in [1.33]. They also belong to
a linear space of dimension Ns.

Hence, the set Mh of Hermitian matrices is said to be
complete when it contains a basis of the corresponding
Ns-dimensional linear space. The set Ms of complex
symmetric matrices is also said to be complete when it
contains a basis of the corresponding Ns-dimensional linear
space.

1.5. Optimization: Wirtinger calculus

In the derivation of independent component analysis (ICA)
algorithms and their analyses, we often have to compute
gradients and Hessians of the cost functions. Since cost
functions are real valued, i.e., are scalar quantities in the
complex vector space, they are not analytic, and hence not
differentiable in a given open set. To overcome this basic
limitation, a number of approaches have been traditionally
adopted in the signal processing literature, the most common
of which is the evaluation of separate derivatives with
respect to the real and complex parts of the non-analytic
function. Another approach has been to define augmented
vectors by stacking the real and imaginary parts in a vector
of twice the original dimension and performing all the
evaluations in the real domain, and finally, converting the
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solution back to the complex domain. Needless to say, both
approaches are cumbersome, and might also lead to the need
to make additional assumptions such as circularity to
simplify the expressions.

The framework based on Wirtinger calculus
[WIR 27, ADA 10] – also called CR calculus [KRE 07] –
provides a simple and straightforward approach to calculate
derivatives in the complex plane, in particular for the
important case we mention above, for non-analytic functions.
Wirtinger calculus allows us to perform all the derivations
and analyses in the complex domain without having to
consider the real and imaginary parts separately, or without
doubling the dimensionality, the approach taken by [VAN 94].
Hence, all the computations can be carried out in a manner
very similar to the real-valued case, and they become quite
straightforward making many tools and methods developed
for the real case readily available for the complex case.

In this section, we introduce the main idea behind
Wirtinger calculus for scalar, vector, and matrix optimization,
and give examples to demonstrate its application. We note
that besides keeping the expressions and evaluations simple,
a key advantage is that assumptions that have become
common practice in complex-valued signal processing – most
notably the assumption of circularity of signals – can thus be
avoided since evaluations do not become unnecessarily
complex.

1.5.1. Scalar case

We first consider a complex-valued function f(z) =
u(zr, zi) + jv(zr, zi), where z = zr + jzi. The classical definition
of differentiability, which is identified as complex
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differentiability in Wirtinger calculus, requires that the
derivatives defined as the limit

f �(z0) = lim
Δz→0

f(z0 +Δz)− f(z0)

Δz
[1.36]

be independent of the direction in which Δz approaches 0 in
the complex plane. This requires that the Cauchy–Riemann
equations [ABL 03, ADA 10]

∂u

∂zr
=

∂v

∂zi
and

∂u

∂zi
= − ∂v

∂zr
[1.37]

be satisfied. These conditions are necessary for f(z) to be
complex-differentiable. If the partial derivatives of u(zr, zi)
and v(zr, zi) are continuous, then they are sufficient as well. A
function that is complex-differentiable on its entire domain is
called holomorphic or analytic. Obviously, since real-valued
cost functions have v(zr, zi) = 0, the Cauchy–Riemann
conditions do not hold, and hence cost functions are not
analytic. Indeed, the Cauchy–Riemann equations impose a
rigid structure on u(zr, zi) and v(zr, zi) and thus f(z). A
simple demonstration of this fact is that either u(zr, zi) or
v(zr, zi) alone suffices to express the derivatives of an analytic
function.

Wirtinger calculus provides a general framework for
differentiating non-analytic functions, and is general in the
sense that it includes analytic functions as a special case. It
only requires that f(z) be differentiable when expressed as a
function f : R2 → R2. Such a function is called real-
differentiable. If u(zr, zi) and v(zr, zi) have continuous partial
derivatives with respect to zr and zi, then f is
real-differentiable. For such a function, we can write:

∂f

∂z
� 1

2

�
∂f

∂zr
− j

∂f

∂zi

"
and

∂f

∂z∗
� 1

2

�
∂f

∂zr
+ j

∂f

∂zi

"
, [1.38]
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which can be derived by writing zr = (z + z∗)/2 and
zi = (z − z∗)/2j and then using the chain rule [REM 91]. The
key point is that rather than formally implementing [1.38] as
separate derivatives with respect to real and imaginary
parts, we can simply consider f to be a bivariate function
f(z, z∗) and treat z and z∗ as independent variables. That is,
when applying ∂f/∂z, we take the derivative with respect to
z, while formally treating z∗ as a constant. Similarly, ∂f/∂z∗

yields the derivative with respect to z∗, formally regarding z
as a constant. Thus, there is no need to develop new
differentiation rules. This was shown in [BRA 83] in 1983
without a specific reference to Wirtinger’s earlier work
[WIR 27]. Interestingly, many of the references that refer to
[BRA 83] and use the generalized derivatives [1.38] evaluate
them by computing derivatives with respect to zr and zi
separately, instead of directly considering the function in the
form f(z, z∗) and directly taking the derivative with respect
to z or z∗. This leads to unnecessarily complicated
derivations.

When we consider the function in the form f(z, z∗), the
Cauchy–Riemann equations can simply be stated as
∂f/∂z∗ = 0. In other words, an analytic function cannot
depend on z∗. If f is analytic, then the usual complex
derivative in [1.36] and ∂f/∂z in [1.38] coincide. Hence,
Wirtinger calculus contains standard complex calculus as a
special case.

For real-valued f(z), we have (∂f/∂z)∗ = ∂f/∂z∗, i.e., the
derivative and the conjugate derivative are complex
conjugates of each other. Because they are related through
conjugation, we only need to compute one or the other. As a
result, a necessary and sufficient condition for real-valued f
to have a stationary point is ∂f/∂z = 0. An equivalent,
necessary and sufficient condition is ∂f/∂z∗ = 0 [BRA 83].
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EXAMPLE 1.1.– Consider the real-valued function
f(z) = |z|4 = z4r + 2z2rz

2
i + z4i . We can evaluate ∂f/∂z by

differentiating separately with respect to zr and zi,

∂f

∂z
=

1

2

�
∂f

∂zr
− j

∂f

∂zi

"
= 2z3r + 2zrz

2
i − 2j(z2rzi + z3i ) [1.39]

or we can write the function as f(z) = f(z, z∗) = z2(z∗)2 and
differentiate by treating z∗ as a constant,

∂f

∂z
= 2z(z∗)2. [1.40]

The second approach is clearly simpler. It can be easily
shown that the two expressions, [1.39] and [1.40], are equal.
However, while the expression in [1.39] can easily be derived
from [1.40], it is not quite as straightforward the other way
round. Because f(z) is real-valued, there is no need to
compute ∂f/∂z∗: it is simply the conjugate of ∂f/∂z.

Series expansions are a valuable tool in the study of
nonlinear functions. For analytic, i.e., complex differentiable
functions, the Taylor series expansion assumes the same form
as in the real case:

f(z) =
∞'
k=0

f (k)(z0)

k!
(z − z0)

k, [1.41]

where f (k)(z0) denotes the kth order derivative of f evaluated
at z0. If f(z) is analytic for |z| ≤ R, then the Taylor series given
in [1.41] converges uniformly in |z| ≤ R1 < R.

As in the case of Taylor expansions, the desire to have the
complex domain representation follow the real-valued case
closely has also been the main motivation for defining
differentiability in the complex domain using [1.36]. However,
the class of functions that admit such a representation is
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limited, excluding the important group of cost functions. For
functions that are real differentiable, Wirtinger calculus can
be used to write the Taylor series of a non-analytic function
as an expansion in z and z∗. We discuss this approach in more
detail in section 1.5.2 when we introduce vector optimization
using Wirtinger calculus. This simple but useful idea for
Taylor series expansions of real-differentiable functions has
been introduced in [AMB 96a] and formalized in [ERI 10]
using the duality between R2N and CN .

1.5.2. Vector case

1.5.2.1. Second-order expansions

In the development of adaptive signal processing
algorithms, i.e., in iterative optimization of a selected cost
function and in performance analysis, the first- and
second-order expansions prove to be most useful. For an
analytic function f(z) : CN �→ C, we define Δf = f(z) − f(z0)
and Δz = z − z0 to write the second-order approximation to
the function in the neighborhood of z0 as

Δf ≈ ΔzT∇zf +
1

2
ΔzTH(z) Δz

= �∇zf ,Δz∗�+ 1

2
�H(z) Δz ,Δz∗� [1.42]

where

∇zf =
∂f(z)

∂z

++++
z0

is the gradient evaluated at z0 and

∇2
zf � H(z) =

∂2f(z)

∂z ∂zT

++++
z0
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is the Hessian matrix evaluated at z0. As in the real-valued
case, the Hessian matrix is symmetric and it is constant if the
function is quadratic.

For a cost function, on the other hand, f(z) : CN �→ R, which
is non-analytic, we can use Wirtinger calculus to expand f(z)
in two variables z and z∗, which are treated as independent:

Δf(z, z∗) ≈ �∇zf,Δz∗�+ �∇z∗f,Δz�+ 1

2

�
∂f2

∂z∂zT
Δz,Δz∗

�
+

�
∂f2

∂z∂zH
Δz∗,Δz∗

�
+

1

2

�
∂f2

∂z∗∂zH
Δz∗,Δz

�
.

[1.43]

Thus, the series expansion has the same form as for a
real-valued function of two variables, except that these are
replaced by z and z∗. Note that when f(z, z∗) is real valued,
we have

�∇zf,Δz∗�+ �∇z∗f,Δz� = 2Re {�∇z∗f,Δz�} [1.44]

since in this case ∇fz∗ = (∇fz)
∗. Using the Cauchy–

Bunyakovskii–Schwarz inequality, see e.g. [MEY 00], we have

|ΔzH∇fz∗ | ≤ �Δz��∇fz∗�

which holds with equality when Δz is in the same direction
as ∇fz∗ . Hence, it is the gradient with respect to the complex
conjugate of the variable ∇f(z∗) that yields the maximum
change Δf .

It is also important to note that when f(z, z∗) = f(z), i.e.,
the function is analytic (complex differentiable), all
derivatives with respect to z∗ in [1.43] vanish and [1.43] thus
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coincides with [1.42]. As noted earlier, the Wirtinger
framework includes analytic functions, and when the
function is analytic, all the expressions reduce to those for
analytic functions.

1.5.2.2. Linear transformations between C and R

We now look at different ways that linear transformations
can be described in the real and complex domains. In order
to do so, we construct three closely related vectors from two
real vectors wr ∈ RN and wi ∈ RN . The first vector is the
complex vector w = wr + jwi ∈ CN , and the second vector is
the real composite 2N -dimensional vector wR = [wT

r ,w
T
i ]

T ∈
R2N , obtained by stacking wr on top of wi. Finally, the third
vector is the complex augmented vector w = [wT ,wH ]T ∈ C2N ,
obtained by stacking w on top of its complex conjugate w∗.
Augmented vectors are always underlined.

Consider a function f(w): CN �→ R that is real
differentiable up to second order. If we write the function as
f(wR) : R2N �→ R using the augmented vector definition given
above, we can easily establish the following two relationships
[ADA 10, SCH 10]:

∂f

∂wR
= UH

N

∂f

∂w∗ [1.45]

∂2f

∂wR∂wRT
= UH

N

∂2f

∂w∗∂wT
UN [1.46]

where

UN =

�
I jI
I −jI

�
∈ C2N×2N . [1.47]

The real-to-complex transformation UN is unitary up to a
factor of 2, i.e. UNUH

N = UH
NUN = 2I. The complex
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augmented vector w is obviously a redundant, but
convenient, representation of wR.

1.5.2.3. Complex gradient updates

We can use the linear transformation defined above to
derive the expressions for gradient descent and Newton
updates for iterative optimization in the complex domain.

From the real gradient update rule ΔwR = −μ
∂f

∂wR
, we

obtain the complex update relationship

Δw = UNΔwR = −μUN
∂f

∂wR
= −2μ

∂f

∂w
.

The dimension of the update equation can be further
reduced as follows:

�
Δw
Δw∗

�
= −2μ

⎡⎢⎣ ∂f

∂w∗
∂f

∂w

⎤⎥⎦ =⇒ Δw = −2μ
∂f

∂w∗ .

Again, we note that the gradient with respect to the
conjugate of the parameter gives the direction for maximal
first-order change, derived here using the representation
equivalent to the real-valued case in R2N .

1.5.2.4. Complex Newton updates

Given the relationships in [1.45] and [1.46], the Newton
update in R2N given by

∂2f

∂wR∂w
T
R
ΔwR = − ∂f

∂wR
[1.48]
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can be shown to be equivalent to [ADA 10]

Δw = −(H∗
2 −H∗

1H
−1
2 H1)

−1

�
∂f

∂w∗ −H∗
1H

−1
2

∂f

∂w

"
[1.49]

in CN , where

H1 �
∂2f

∂w∂wT
and H2 �

∂2f

∂w∂wH
. [1.50]

To establish this relationship, we can use [1.45] and [1.46]
to express the real domain Newton update in [1.48] as

∂2f

∂w∗∂wT
Δw = − ∂f

∂w∗ ,

which can then be rewritten as

�
H∗

2 H
∗
1

H1 H2

� �
Δw
Δw∗

�
= −

⎡⎢⎣ ∂f

∂w∗
∂f

∂w

⎤⎥⎦
where H1 and H2 are defined in [1.50]. We can use the
formula for the inverse of a partitioned positive definite
matrix ([HOR 99], p. 472), provided that the non-negative

definite matrix
∂2f

∂w∗∂wT
is full rank, to write

�
Δw
Δw∗

�
= −

�
T−1 −H−∗

2 H∗
1T

−∗

−T−∗H1H
−∗
2 T−∗

�⎡⎢⎣ ∂f

∂w∗
∂f

∂w

⎤⎥⎦ [1.51]

where T � H∗
2 − H∗

1H
−1
2 H1 and (·)−∗ denotes [(·)∗]−1. Since

∂2f

∂w∗∂wT
is Hermitian, we finally obtain the complex Newton
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update given in [1.49]. The expression for Δw∗ is the conjugate
of [1.49].

In [MOR 04], it was shown that the Newton algorithm for
N complex variables cannot be written in a form similar to
the real-valued case. However, as established here, it can be
written as in [1.51] using the augmented form, which is
equivalent to the Newton method in R2N . In CN , it can be
expressed as in [1.49]. An equivalent form in C2N is given in
[VON 94] by using the 2 × 2 real-to-complex mapping
w = U1wR for each entry of the vector w ∈ CN .

1.5.3. Matrix case

Wirtinger calculus extends straightforwardly to functions
f : CN → CM or f : CN×M → C. Similarly, for the matrix
gradient defined for g(W,W∗) : CM×N × CM×N → R, we can
write

 g = � W,∇W∗g�+ � W∗,∇Wg�
= 2Re{� W,∇W∗g�} [1.52]

where ∇W∗g=∂g/∂W∗ is an M × N matrix whose (k, l)th
entry is the partial derivative of g with respect to w∗

kl. It is
also important to note that, in both cases, the gradient ∇w∗g
defines the direction of the maximum rate of change in g(·, ·)
with respect to w, not ∇wg, as sometimes incorrectly noted.
It can be easily verified by using the Cauchy–
Schwarz–Bunyakovski inequality [MEY 00] that the term
∇w∗g leads to increments that are guaranteed to be
non-positive when minimizing a given function. Hence, all
the expressions from the real-valued case given, for example
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in [PET 08], can be straightforwardly applied to the complex
case. For instance, for g(Z,Z∗) = Trace(ZZH), we obtain

∂g

∂Z
=

∂Trace(Z(Z∗)T )
∂Z

= Z∗ and
∂g

∂Z∗ = Z.

Also, when deriving gradient update rules for ICA,
Wirtinger calculus has again proven very useful, both for the
derivation of the algorithm and in stability and performance
analysis [ADA 08, LI 10a, LOE 13]. Next, we demonstrate the
derivation of the relative gradient updates [CAR 96a] – as
well as equivalently natural gradient updates [AMA 96] –
which provides significant gains in gradient optimization of
the maximum likelihood (ML) cost.

EXAMPLE 1.2.– To write the relative gradient rule, consider
an update of the parameter matrix W in the invariant form
( W)W [CAR 96a]. We then write the first-order Taylor
series expansion given in [1.52] for the perturbation ( W)W
as

 g =

�
( W)W,

∂g

∂W∗

�
+

�
( W∗)W∗,

∂g

∂W

�
= 2Re

��
 W,

∂g

∂W∗W
H

�

to determine the quantity that maximizes the rate of change
in the function. The complex relative gradient of g at W is
then written as (∂g/∂W∗)WH leading to the relative gradient
update term

ΔW = −μ
∂g

∂W∗W
HW. [1.53]

Upon substitution of ΔW into [1.52], we observe that

 g = −2μ�(∂g/∂W∗)WH�2Fro,
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i.e., a non-positive quantity, thus a proper update term. This
result also follows from the observation that the update in
[1.53] is nothing but a multiplication of the gradient with a
positive definite matrix, WHW, provided that W is full rank.

1.5.4. Summary

This chapter presents the main ICA problem and an
overview of the basic statistical and optimization tools
important for the development in the reminder of the book. A
comprehensive statistical characterization of complex-valued
random variables is given in [SCH 10] along with their
estimation and detection. Wirtinger calculus is presented in
more detail in [ADA 10, KRE 07], and [ADA 11, ADA 13] are
recent overviews on the topic and include more detailed
treatment of topics such as tests of circularity.




