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Introduction

1.1. General introduction

The main motivation of this book is the modeling of a class
of dynamic systems usually called “discrete event systems”
where the timing of the events is crucial. Events are viewed
as sudden changes in the process, which is essentially a
man-made system, such as automated manufacturing lines
or transportation systems. Forming the core of the following
sections, the synchronization of the tasks is expressed by the
maximum of the ends of the tasks conditioning the beginning
of another task. A classical example is the departure time of a
train that should wait for the arrival of other trains in order
to allow for the changeover of passengers. The basic idea of
dioid algebra is to treat the maximum as an operation that is
included in algebra, here the (max, +) algebra. A large part
of this book concerns this topic. Another fundamental idea
is to treat the maximum in a maximization of a criterion as
in linear programming. We also focus on this second topic in
this book.
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1.2. History and three mainstays

This book is based on the three following mainstays:

– Well developed in the European and French scientific
community, the topic of dioid algebra as (max, +) algebra
has existed for the past three decades. Its main advantage
is its formalism that allows us to clearly describe complex
notions and the possibility of transposing theoretical results
between dioids and practical applications. Only a few books
have been written on this subject. The first was written
by R.A. Cuninghame-Green in 1979. We can quote in graph
theory the important books of Gondran and Minoux (Chapter
3 in [GON 84] and [GON 02]). At the origin of the “French
school”, another book [BAC 92] was written from the system-
theoretical point of view in 1992. Finally, the last book focuses
on the transportation systems and was produced in 2006 by a
team working in the Netherlands [HEI 06].

– In conventional algebra, linear programming is the oldest
for which we can quote the famous French mathematician
and physicist Joseph Fourier (1768–1830) for his work at the
beginning of the 19th Century (Fourier–Motzkin algorithm).
However, this topic is still current and the IT community
has produced many algorithms that have efficiently solved
bivariable linear systems for the past three decades.

– The third mainstay is the Petri net, which has its origin
in Carl Adam Petri’s dissertation submitted in 1962 in West
Germany (Carl Adam Petri 1926–2010). A Petri net is a
graphical modeling tool that describes complex discrete event
systems with various themes and application fields. This topic
has been well developed for the past three decades in Europe.

1.3. Scientific context

We describe below the main concepts that will determine
the following studies in the mathematical field and Petri
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nets. The modeling of the time behaviors will also play an
important role.

Dioid algebra

Petri nets Linear programming

Figure 1.1. Three topics

1.3.1. Dioids

In the mathematical field, there are different structures
with sets provided with one or two operations [GON 84]. We
principally consider in this book the structure of the dioid,
which is an idempotent semi-ring, and, in particular, the (max,
+) algebra (R ∪ {−∞},⊕,⊗), which is an example of a dioid.
This is an interesting tool allowing us to study graph theory
and to analyze discrete event systems. The structure of the
ring is well-known as familiar examples are integers and real
numbers, equipped with the usual addition and multiplication
( (Z, +, ×) and (R, +, ×), respectively), which are used in
many fields such as automatic control. The common point
is the structure of the semi-ring, which is the mainstay of
the structure of the dioid and the ring (see Figure 1.2).
The fundamental difference is the existence of symmetry for
the first operation (a+(−a) = (−a)+a = 0) of the rings that is
replaced by idempotence (a + a = a) for the first operation
(maximum for the (max, +) algebra) of the dioids. This
difference is crucial as it is proved that the set is reduced to the
neutral element of the first operation (−∞ for the operation
max in the (max, +) algebra) if we assume that the structure
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presents the two properties. This point shows the fundamental
difference between automatic control for continuous systems
and discrete event systems. The analogies between these two
fields are limited to the common core, which is the structure
of the semi-ring, even if the authors working in discrete event
systems can find some general principles in automatic control
allowing the resolution of some specific problems such as
“estimation” and “control” in discrete event systems.

Semi-ring (S,+,x)

Ring (R,+,x) Dioid (R, , )
{ =

Figure 1.2. Two algebras: common core and fundamental difference

1.3.2. Petri nets

In the field of discrete event systems, the Petri net
allows the modeling of many types of industrial process,
transportation system, electronics system, etc. A classical
classification of Petri nets can be made with respect to the
following two fundamental types (T. Murata gives a good
overview of this subject in [MUR 89]).

– The event graphs (each place has exactly one in-
going transition and one out-going transition) highlight the
synchronization, but no choice is possible. The introduction of
time is possible in this model and complex synchronizations
can be considered. We will choose this model in the following
chapters.
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– The state graphs (each transition has exactly one in-going
place and one out-going place) consider the choices but do not
model the synchronization. The logical aspect is an important
characteristic in this model, but the introduction of time is not
easy.

– The intersection of the two classes is not empty but
only contains Petri nets that do not express either the
synchronization or the choice. Therefore, event graphs and
state graphs are two fundamental models that equally
determine two research fields.

Figure 1.3. Key structures in Petri nets

1.3.3. Time and algebraic models

All processes naturally present a time evolution and the
introduction of time in Petri nets constitutes an important
motivation. There are also many everyday examples such as
the arrival of students to a course (see Chapter 4 on control).
However, the direct introduction of time in general Petri
nets quickly leads to a combinatorial blow up of the state-
space, which reduces the application field. Contrary to Model
Checking, which generates an origin at each event (firing
transition) in complex systems, we consider below a unique
origin time. Moreover, we will consider specific time models
where we can establish a complete algebraic model.
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In the field of Petri nets, P-time event graphs, T-time
event graphs and time stream event graphs allow us to
describe complex synchronizations and to model processes in
the production industry, microcircuit design, transportation
systems, the food industry or multimedia under the time
aspect. The state trajectory is not determined by the iteration
of a state equation but is described by a space evolution
expressed by the iteration of an interval. The bounds
are defined by functions using the minimum, maximum
and addition operations. These models are called “interval
models”. The models obtained are not only (max, +) models
but also (min, max, +) models.

Note that the choice of analysis of these models comes from
the choice of the use of the “dater”, that is, to describe each
event by a numbered date or to note by a “counter”, i.e. the
number of events at each moment. This choice affects the
initial modeling, which is a delicate step as it can lead to an
unusable model. Note that it is always possible to numerically
convert a trajectory expressed with daters into counters, and
vice versa. A consequence is that the following chapters will
describe complex phenomena of synchronization for Petri nets
presenting simple structures. The dual remark is symmetrical:
the choice of the counters leads to the analysis of Petri nets
presenting complex structures, weights on the arcs but simple
synchronizations.

From a mathematical point of view, we consider the real
space and use the following algebras, that is (R ∪ {−∞}, max,
+), and (R∪{−∞},min,max,+), possibly completed with+∞.
On the other hand, the counters are defined over the integers
and not the real numbers. In that case, we consider algebra as
(Z ∪ {+∞},min,+) or (N ∪ {+∞},min,+) possibly completed
with −∞. Remember that the integer linear programming
problems need specific techniques.
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Dioids

Algebra ( {- },max, +)

Complex synchronizations
Simple structures (event
graphs)

Algebra ( {- , + },min,
max, +)

Algebra ( {+ },min, +)

Simple synchronizations
Complex structures,
weight on the arcs

Daters Counters

Figure 1.4. Daters and counters

1.4. Organization of the book

Figure 1.5 presents the chapters of the book focusing on
timemodels based on daters. We consider the liveness problem
as a bad modeling or incorrect parameters which can lead to
the absence of a time evolution. The cycle time is the subject
of Chapter 3 as it gives an interesting picture of the efficiency
of the system. The aim is also to control the process and this
point is described in the final chapters.

A comparison of the different classes of time event graphs
will be presented at the beginning of chapters on consistency
and control as our main interest is on the algebraic models
that can describe a broad spectrum of Petri nets. In this book,
we also focus on the efficiency of the proposed algorithms:
different discussions about complexity and CPU time will be
given in the chapters on liveness and predictive control. We
also describe some pedagogical examples that will illustrate
the main concepts and suggest some new ideas. Each chapter
is almost autonomous and the reader only needs to read
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the preliminary remarks of the chapter on consistency. The
book ends with a bibliography and a list of frequently used
symbols.

Introduction

Consistency

Cycle time

On-line aspect of the predictive control

Control with specifications

Figure 1.5. Chapters of the book




