
1

Generating Elementary Signals

1.1. General points

A signal is a function of one or more variables, which has
the specificity of being generated by a physical phenomenon
and of carrying information rather than energy. Simple
examples of signals include speech signals, acoustic signals
and the electrical voltages provided by sensors. We may
distinguish between different types of signals:

– Continuous time signals, which have a (measurable)
value at any time.

– Discrete time signals, which only have (measurable)
values at certain moments.

– Sampled signals, which are time-discrete signals for
which the time gap between two consecutive measurements
is constant.

– Deterministic signals, for which the value may be
perfectly predicted using a mathematical model to calculate
exact values at any time.

– Random signals, which cannot be precisely predicted,
either because it is impossible or because it is not necessary.

CO
PYRIG

HTED
 M

ATERIA
L

2 Signal Processing with Free Software

– Causal signals, which are null prior to the instant selected
as time 0. These signals show the repercussions of a particular
event occurring at time 0.

– Stationary signals, which carry the same information
throughout the observation period. All periodic signals are
stationary, but not all stationary signals are periodic: for
example, the deterministic signal defined by the expression
x(t) = 10 sin(2π50t) + 5 sin(2π50

√
2t) is not periodic, as it is

the sum of two sinusoids with frequencies in an irrational
relationship.

1.2. Generation of elementary wave forms

To test the processing operations and analyses shown later
in this book, it is useful to generate synthetic test signals
(which are not the result of the observation of a real physical
phenomenon). To do this, we use the synth command. The
command file below (Generation1.bat) includes comment
lines (which begin with the instruction rem) and six calls to
the SOX program:
rem generation de signaux elementaires avec SoX
rem F. Auger, IUT Saint-Nazaire, dep. MP, dec. 2009

sox -n s1.mp3 synth 3.5 sine 440
sox -n s2.wav synth 90000s sine 660:1000
sox -n s3.mp3 synth 1:20 triangle 440
sox -n s4.mp3 synth 1:20 trapezium 440
sox -V4 -n s5.mp3 synth 6 square 440 0 0 40
sox -n s6.mp3 synth 5 noise

for %%i in (200,300,400) do ^
sox -n s7_%%i.mp3 synth 15 sine %%i

rem ecoute du resultat : le fichier de sortie est le canal
rem de sortie par defaut (-d), c’est a dire la carte son

sox s1.mp3 -d

pause

Generating Elementary Signals 3

– The first command generates a file s1.mp3 containing a
recording of 3.5 s of a sinusoid with a frequency of 440 Hz. The
-n (null) command is used to indicate the absence of an input
signal.

– The second command generates a file s2.wav containing
a recording of 90, 000 samples of a sinusoidal signal with a
frequency that varies in a linear manner from 660 to 1, 000
Hz.

– The third command generates a file s3.wav containing a
recording of 1 min and 20 s of a triangular signal.

– The fourth command generates a file s4.wav containing
a recording of 1 min and 20 s of a trapezoidal signal.

– The fifth command generates a file s5.wav containing
a recording of 6 s of a square signal with a null offset (no
continuous component), a null phase and a duty cycle of 50%.
The command -V4 is used to choose the amount of information
shown by SOX: its verbosity ranges from 0 (no information
sent back to the user) to 4 (maximum information displayed).

– The sixth command generates a file s6.wav containing a
recording of 5 s of a white noise with a value ranging from 1 to
1 with an average value of 0.

– The seventh command uses a repetition structure to
generate three files containing a recording of 15 s of a sinusoid.
The variable %%i is used both for the file name and for the
frequency of the sinusoid. The symbol ^ indicates that the
instruction continues onto the following line.

– The final command sends the contents of the file s1.mp3
to the default peripheral -d, i.e. the sound card, allowing us to
listen to the signal.

EXERCISE 1.1.– Write a command file to generate 10 files
containing recordings of 2.5 s of sinusoids, for which the
frequencies should be linearly spaced from 100 to 1, 000 Hz.
What is the analytical expression of these signals?

4 Signal Processing with Free Software

1.3. Elementary signal processing operations

A number of elementary operations may be applied to
existing signals. The command file below (called
Generation2.bat) shows some examples:
rem transformations elementaires de signaux avec SoX
rem F. Auger, IUT Saint-Nazaire, dep. MP, jan. 2010

sox s1.mp3 s1_faible1.mp3 vol -6 dB
sox s1.mp3 s1_faible2.mp3 vol -0.4 amplitude

sox s1.mp3 s2.mp3 DeuxSons1.mp3
sox s2.mp3 -v 0.6 s1_faible1.mp3 DeuxSons2.mp3

sox s1.mp3 s1_avec_silence1.mp3 pad 1
sox s1.mp3 s1_avec_silence2.mp3 pad 1 0.5
sox s1.mp3 s1_avec_silence3.mp3 pad 1 5000s@3 0.5

sox -m s3.mp3 s4.mp3 SommeSons.mp3

sox s1.mp3 s1_avec_offset.mp3 dcshift 0.05

sox s1.mp3 s1_a_l_envers.mp3 reverse

sox s3.mp3 s3_morceau.mp3 trim 1.5 2

sox s3.mp3 s3_faded.mp3 fade t 10 1:00 20

rem pause

– The first two commands apply gains to the signal
contained in file s1.mp3; 6 dB in the first case (corresponding
to a factor of 0.5) and 0.4 in the second case (corresponding to
a reduction in amplitude of 60% and a phase shift of 180o).

– The next two commands place two signals in sequence. In
the second case, the amplitude of the first signal is reduced by
a factor of 0.6.

– The following three commands add null values (i.e.
silence) to the signal contained in the file s1.mp3. The first
command adds 1 s of silence at the beginning, the second

Generating Elementary Signals 5

adds 1 s at the beginning and 0.5 s at the end and the third
additionally inserts 5,000 samples from the third second of the
signal.

– The following command mixes the two signals s3.mp3
and s4.mp3.

– The next command adds a DC component equal to 0.05.

– The following command reverses a signal (the end
becomes the beginning, and vice versa).

– The next command extracts a section of the signal
contained in the file s3.mp3, beginning at 1.5 s with a duration
of 2 s. This command is used to easily extract sections of
signals for analysis or modification.

– The final command is used to modify the amplitude of
a signal. In this way, it is possible to vary the amplitude
of a signal progressively, at the beginning and at the end.
Parameter -t corresponds to a linear modulation. The second
parameter indicates that the amplitude of the signal moves
from 0 to its maximum value in the course of the first 10 s; the
next parameter indicates that a decrease begins after 1 min,
and the final parameter indicates that the linear decrease
continues for more than 20 s. These last two parameters are
optional. Other types of modulation are possible, as shown in
the software user manual.

EXERCISE 1.2.– Write a command file that generates a file
we will call succession.mp3, containing the 10 signals
generated in Exercise 1.1, placed in sequence. Next, write
another command file to generate a second file,
Sommesons.mp3, containing the sum of the 10 files generated
in Exercise 1.1. What is the analytical expression of this
second signal? What mathematical property does it satisfy?

EXERCISE 1.3.– Write a command file to generate a
recording of 1 min of signal equal to the sum of two sinusoids

6 Signal Processing with Free Software

with frequencies of 440 and 441 Hz and with the same
amplitude. What does this signal look like? Justify its
appearance using one of the following two relationships:

cos(θ1) + cos(θ2) = 2 cos

�
θ1 + θ2

2

	
cos

�
θ1 − θ2

2

	
sin(θ1) + sin(θ2) = 2 sin

�
θ1 + θ2

2

	
cos

�
θ1 − θ2

2

	

Finally, write a command file to extract 3 s from the file

AriaCantilenaVillaLobosPetibon.mp3

beginning at 5 min 24 s, then listen to and visualize this
extract using Audacity. How is this connected to the
previous question?

EXERCISE 1.4.– First generate a file Sinus.mp3 containing
a sinusoid of frequency 440 Hz, then a file Noise.mp3
containing random noise, both with a length of 7 s. Then, use
a command such as

sox -m Sinus.mp3 -v 0.01 Noise.mp3 SinusNoised.mp3

to add the sinusoid to the noise, with the noise being
attenuated by a factor of 0.01. Beyond what value of the
attenuation factor is the noise no longer perceptible to the
human ear?

Finally, use a command such as

sox -m Noise.mp3 -v 0.01 Sinus.mp3 SinusNoised.mp3

Generating Elementary Signals 7

to add the noise to the sinusoid, with the sinusoid being
attenuated by a factor of 0.01. Beyond what value of the
attenuation factor is the sinusoid no longer perceptible to the
human ear?

EXERCISE 1.5.– The aim of this exercise is to show that it is
possible to generate relatively complex files, which may then
be used for tests or monitoring.

Write a command file to generate an mp3 file containing a
recording of 2 s of the sum of six sinusoids of frequency f0,
2 f0, 3 f0, 4 f0, 5 f0 and 6 f0, where f0 = 523Hz. Next, generate
two other files obtained using values of 659 and 830 Hz,
respectively, for f0. Finally, generate a file containing the
sequence of these three sounds, and then a last file that
repeats the previous file three times1.

For this exercise, a spreadsheet may be used with file
GenerationCode.xls, which automatically generates a set
of SOX instructions; these instructions may then be copied
into a command file.

EXERCISE 1.6.– Write a command file that:

1) generates two sinusoidal signals with a duration of 10
s and frequencies of 12,000 and 12,440 Hz. These two signals
should be stored in files with extension .wav.

2) calculates the sum of these signals and stores them in a
third file with extension .wav.

1 In 1968, Jean-Claude Risset used this principle to create a perpetually
ascending sound, which gives the impression of constantly becoming higher
and higher.

8 Signal Processing with Free Software

Listen to the obtained signal (preferably using headphones).
What do you hear? Justify this result2.

1.4. Using other file formats

In the previous section, signals were stored in mp3 format
files. However, SOX is able to handle a wide variety of file
formats, both in terms of reading and writing. These formats,
described in detail in the user manual, include .wav, used by
the Windows operating system, and .dat, which corresponds
to text files (coded in ASCII), in which the first line
corresponds to the sampling frequency and the following lines
contain two numbers for time and the value of the signal. The
command file below (Generation3.bat)

rem generation d’un fichier texte au format .dat
rem F. Auger, IUT Saint-Nazaire, dep. MP, jan. 2010

sox s1.mp3 s1.dat silence 0 trim 0.1 10s

generates a file s1.dat containing 10 successive values (10s)
of file s1.mp3 taken 0.1 s after the start of the signal (having
removed the null values from the beginning of the file). The
contents of file s1.dat are as follows:

; Sample Rate 48000
; Channels 1

0 -0.68915808
2.0833333e-005 -0.65037082
4.1666667e-005 -0.60942747

6.25e-005 -0.56646369
8.3333333e-005 -0.52161656
0.00010416667 -0.47505816

0.000125 -0.42689275
0.00014583333 -0.37733861

2 This technique is used by directional speakers to generate acoustic waves
using ultrasonic transducers. See [MUI 11].

Generating Elementary Signals 9

0.00016666667 -0.32652545
0.0001875 -0.27462651

By creating files of this type, we are able to manipulate
measurement signals of non-acoustic origin using SOX. We
must simply normalize these signals so that they always
fall between −1 and 1. By choosing a sampling frequency
suited to human audition, we are able to listen to
non-acoustic phenomena. The program below (called
GenerationFichierDat2010.ch), written in C for the Ch
environment, reads numbers from a text file, extracts the
maximum and the minimum, and then generates a .dat file,
applying cross-multiplication to the values of the text file to
convert values between xmin and xmax into values between −1
and 1. The result may then be converted into an mp3 file, and
may be listened to using the command
sox -V4 Mesures.dat Mesures.mp3

//
Programme permettant de transformer un fichier de mesures au format texte
// en fichier de mesures au format .dat
// F. Auger, janvier 2010

#include <stdio.h>

int main()

{

char NomFichierTexte[] = "Mesures.txt" ;

char NomFichierDat[] = "Mesures.dat" ;

FILE *PointeurFichierTexte, *PointeurFichierDat ;

double x, xmax, xmin, xnorm, Somme, Difference, Fe=16000.0, Te=1.0/Fe, t;

// on ouvre une premiere fois le fichier pour trouver le min et le max
PointeurFichierTexte = fopen(NomFichierTexte, "r") ;

if (PointeurFichierTexte == NULL)

{printf("Impossible d’ouvrir le fichier %s en lecture \n",

NomFichierTexte);}

else
{

// premiere lecture dans le fichier pour initialiser xmin et xmax
if (fscanf(PointeurFichierTexte,"%lf", &x) != EOF)

{xmin=x ; xmax=x;}

10 Signal Processing with Free Software

while (fscanf(PointeurFichierTexte,"%lf", &x) != EOF)

{

if (x>xmax) {xmax=x;}

if (x<xmin) {xmin=x;}

}

fclose(PointeurFichierTexte);

Somme=xmax+xmin; Difference = xmax-xmin; t=0;

// generation du fichier .dat par une relecture du fichier texte
PointeurFichierTexte=fopen(NomFichierTexte,"r");// ouverture en lecture
PointeurFichierDat =fopen(NomFichierDat,

"w");// ouverture en ecriture

if (PointeurFichierDat == NULL)

{printf("Impossible d’ouvrir le fichier %s en ecriture\n",

NomFichierDat);}

else
{

// on precise la frequence d’echantillonnage du signal de sortie, qui
// n’est pas forcement la meme que celle du signal d’entree
fprintf(PointeurFichierDat,"; Sample Rate %8.2f\n", Fe);

// un seul signal = une seule voie = un seul canal
fprintf(PointeurFichierDat,"; Channels 1\n");

while (fscanf(PointeurFichierTexte,"%lf", &x) != EOF)

{

xnorm=(2*x-Somme)/Difference;

fprintf(PointeurFichierDat, "%f %f \n", t, xnorm);

t=t+Te;

}

fclose(PointeurFichierTexte);// c’est fini, on ferme les fichiers
fclose(PointeurFichierDat);

}

}

return 0;

}

EXERCISE 1.7.– If x is between xmin and xmax, which
intervals must contain

x− xmin

xmax − xmin
and 2

x− xmin

xmax − xmin
− 1 ?

Generating Elementary Signals 11

Provide a justification of the expression of xnorm used in
the program. Next, modify the previous program to convert
the file ecg.txt into .dat format. This file contains an
electrocardiogram sampled at 720 Hz and acquired using a 12
bit analog–digital converter3. This file may then be converted
into .wav format using SOX, then visualized using
Audacity.

Figure 1.1. Result of the creation of an mp3 file based on electrical
currents measured at the terminals of an asynchronous machine

This format may also be used to process signals generated
by SoX in other programs, for example in a spreadsheet
program such as LibreOffice Calc4.

3 Source: http://www.physionet.org/physiobank/database/aami-ec13/.
4 See http://fr.libreoffice.org/.

