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Introduction to PtNLMS Algorithms

The objective of this chapter is to introduce proportionate-type normalized least mean square
(PtNLMS) algorithms in preparation for performing analysis of these algorithms in subsequent
chapters. In section 1.1, we begin by presenting applications for PtNLMS algorithms as the
motivation for why analysis and design of PtNLMS algorithms is a worthwhile cause. In section
1.2, a historical review of relevant algorithms and literature is given. This review is by no means
exhaustive; however, it should serve the needs of this work by acting as a foundation for the
analysis that follows. In section 1.3, standard notation and a unified framework for representing
PtNLMS algorithms are presented. This notation and framework will be used throughout the
remainder of this book. Finally, with this standardized notation and framework in hand, we
present several PtNLMS algorithms in section 1.4. The chosen PtNLMS algorithms will be
referenced frequently throughout this work.

1.1. Applications motivating PtNLMS algorithms

Historically, PtNLMS algorithms have found use in network echo cancellation
applications as a method for reducing the presence of delayed copies of the original
signal, i.e. echoes. For instance, in many telephone communication systems the
network consists of two types of wire segments: a four-wire central network and a
two-wire local network [MIN 06]. A converting device, called a hybrid, is needed at
the junction of the two-wire to four-wire segments. When a far-end user talks a
portion of the signal is reflected back to the far-end listener, due to the impedance
mismatch in the hybrid as shown in Figure 1.1. This type of echo is called electric
echo or circuit echo. An adaptive filter can be used to estimate the impulse response
of the hybrid and remove the echo caused by the hybrid.
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2 PtNLMS Algorithms

In modern telephone networks, greater delays increase the need for echo
cancellation. Specifically, these communication networks have driven the need for
faster converging echo cancellation algorithms when the echo path is sparse. A
sparse echo path is that in which a large percentage of the energy is distributed to
only a few coefficients. Conversely, a dispersive echo path has distributed most of its
energy more or less evenly across all of the coefficients. Examples of a dispersive
impulse response and a sparse impulse response are shown in Figures 1.2a and 1.2b,
respectively. While most network echo path cancelers have echo path lengths in the
order of 64 ms, the active part of the echo path is usually only about 4–6 ms long
[GAY 98], hence the echo path is sparse. The active part of an echo path corresponds
to the coefficients of the echo path that contain the majority of the energy. When the
impulse response is sparse, PtNLMS algorithms can offer improved performance
relative to standard algorithms such as the least mean square (LMS) and normalized
least mean square (NLMS) [HAY 02].

Hybrid
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Figure 1.1. Telephone echo example

Another application for PtNLMS has been spawned by the emergence of Voice
over IP (VOIP) as an important and viable alternative to circuit switched networks. In
these systems, longer delays are introduced due to packetization [SON 06]. In
addition, echoes can be created during the transition from traditional telephone
circuits to IP-based telephone networks [MIN 06].

The advent of telephone communication via satellite has motivated the search for
a better way to eliminate echoes [WEI 77]. The distortion caused by echo suppressors
is particularly noticeable on satellite-routed connections.

Let us also mention that modern applications of echo cancellation include
acoustic underwater communication where the impulse response is often sparse
[STO 09], television signals where the delay can be significant due to satellite
communication [SCH 95], high-definition television terrestrial transmission that
requires equalization due to inter-symbol interference caused by multi-path channels
exhibiting sparse behavior [FAN 05], and applications where the impulse response is
sparse in the transform domain [DEN 07].
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a) Dispersive impulse response
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b) Sparse impulse response

Figure 1.2. Dispersive and sparse impulse responses
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When examining these applications as well as others like them, several questions
regarding the desired performance of the PtNLMS algorithms need to be answered in
order to design an algorithm for the intended application. For instance, we need to
know what the required convergence of the algorithm needs to be. We also need to
know the computational complexity that the application can support as well as what
level of steady-state bias can be tolerated. To address these questions we need to
understand the underlying mechanics of each PtNLMS algorithm as well as what
factors control how the algorithms perform. Therefore, we intend to analyze
PtNLMS algorithms to find out what factors influence the convergence, steady-state
performance, and what the implementation cost of possible improvements in terms of
computational complexity is. In doing so, a better understanding of what influences
the performance of PtNLMS algorithms is provided. Answering these questions will
allow us to design algorithms that perform their desired tasks more efficiently.

1.2. Historical review of existing PtNLMS algorithms

In the past, adaptive filtering algorithms such as the LMS and NLMS have been
examined extensively [HAY 02]. These algorithms offer low computational
complexity and proven robustness. The LMS and NLMS algorithms share the
property of the adaptive weights being updated in the direction of the input vector.
These algorithms perform favorably in most adaptive filtering situations.

The LMS and NLMS algorithms fall within the larger class of PtNLMS
algorithms. PtNLMS algorithms can update the adaptive filter coefficients such that
some coefficients are favored. That is, some coefficients receive more emphasis
during the update process. Because of this fact, the PtNLMS algorithms are better
suited to deal with sparse impulse responses.

An example of a PtNLMS algorithm is the proportionate normalized least mean
square (PNLMS) algorithm [DUT 00]. This algorithm updates the adaptive filter
coefficients by assigning a gain proportional to the magnitude of the current
coefficient estimates. This approach improves the initial convergence rates. However,
this gain adaptation scheme causes the PNLMS algorithm to suffer from slow
convergence of small coefficients, and as a result the time needed to reach
steady-state error is increased compared to the NLMS algorithm. The PNLMS
algorithm has been shown to outperform the LMS and NLMS algorithms when
operating on a sparse impulse response. Currently, any analytical model to describe
learning curve convergence of the PNLMS algorithm does not exist [SON 06].

Another weakness of the PNLMS algorithm is that when the impulse response
is dispersive, the algorithm converges much slower than the NLMS algorithm. To
remedy this issue the PNLMS++ was proposed [GAY 98]. The PNLMS++ algorithm
solves this issue by alternating between the NLMS and PNLMS algorithms on each
sample period of the algorithm. The improved PNLMS (IPNLMS) was introduced to
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build upon the PNLMS++ algorithm [BEN 02]. The IPNLMS attempts to exploit the
shape of the estimated echo, instead of blindly alternating between the PNLMS and
NLMS algorithms as is done in the PNLMS++ algorithm. The IPNLMS algorithm
performs better than the NLMS and PNLMS algorithms no matter what the nature of
the impulse response.

In the following, the improved IPNLMS (IIPNLMS) algorithm was proposed
[CUI 04]. This algorithm attempted to identify active and inactive regions of the echo
path impulse response. Active regions received updates more in-line with the NLMS
methodology, while inactive regions received gains based upon the PNLMS
methodology. In this way, the IIPNLMS was able to outperform the IPNLMS
algorithm. The idea of applying gain selectively to active and inactive regions was
explored previously in the so-called partial update algorithms. These algorithms,
motivated by reducing computational complexity while improving performance,
update a subset of all the coefficients during each sampling period. Examples of
partial update NLMS algorithms can be found in [TAN 02] and [NAY 03].

Another set of algorithms was designed by seeking a condition to achieve the
fastest overall convergence. Initially, the steepest descent algorithm was optimized
and then the resulting deterministic algorithm was cast into the stochastic framework.
It can be shown that the total number of iterations for overall convergence is
minimized when all of the coefficients reach the �-vicinity of their true values
simultaneously (where � is some small positive number). This approach results in the
µ-law PNLMS (MPNLMS) [DEN 05]. The MPNLMS algorithm addresses the issue
of assigning too much update gain to large coefficients, which occurs in the PNLMS
algorithms.

The �-law PNLMS (EPNLMS) [WAG 06] algorithm is a second implementation
of the same philosophy used to generate the MPNLMS algorithm. This algorithm
gives the minimum gain possible to all of the coefficients with magnitude less than �.
It assumes that the impulse response is sparse and contains many small magnitude
coefficients [DEN 06]. The EPNLMS outperforms the MPNLMS algorithm in many
cases, however the MPNLMS algorithm’s performance is more robust regarding the
choice of algorithm parameters, as well as input signal and unknown system
characteristics, than the EPNLMS algorithm.

The individual activation factor PNLMS (IAF-PNLMS) algorithm was introduced
in [DAS 10]. The standard PNLMS algorithm performance depends on some
predefined parameters controlling proportionality activation through a minimum gain
that is common for all of the coefficients. In contrast, the IAF-PNLMS algorithm
computes a separate minimum gain for each coefficient. This time varying minimum
gain is called the activation factor and has the following characteristics: (1) an
individual activation factor is used for each adaptive filter coefficient; (2) each
individual activation factor is computed in terms of the past and current values of the
corresponding coefficient magnitude, thereby each activation factor presents some
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inherent memory associated with its corresponding coefficient magnitude; (3) the
individual activation factors do not rely on the proportionality and initialization
parameters, since they are no longer in the proposed formulation. As a consequence,
the convergence features of the IAF-PNLMS algorithm are improved relative to the
NLMS and PNLMS algorithms.

1.3. Unified framework for representing PtNLMS algorithms

We begin by introducing a unified framework for representing PtNLMS
algorithms. All signals are real-valued throughout this chapter and the majority of
this book. It will be stated explicitly if the signals under examination are complex.
Let us assume there is some input signal denoted as x(k) for time k that excites an
unknown system with impulse response w. Let the output of the system be
y(k) = wTx(k), where x(k) = [x(k), x(k − 1), . . . , x(k − L + 1)]T and L is the
length of the filter. The measured output of the system, d(k), contains measurement
noise v(k) and is equal to the sum of y(k) and v(k). The impulse response of the
system is estimated with the adaptive filter coefficient vector (also called weight
vector), ŵ(k), which also has length L. The outputs of the adaptive filters is given by
ŷ(k) = ŵT (k)x(k). The error signal e(k) between the outputs of the adaptive filters
ŷ(k) and d(k) drives the adaptive algorithm. A diagram of this processing scheme is
shown in Figure 1.3. The weight deviation vector is given by z(k) = w − ŵ(k).

Figure 1.3. Adaptive filtering “system identification” configuration

The PtNLMS algorithm is shown in Table 1.1. Here, β is the fixed step-size
parameter. The term F [|ŵl(k)|, k], with l ∈ {1, 2, . . . , L}, governs how each
coefficient is updated and we refer to this term as the control law. In the case when
F [|ŵl(k)|, k] is less than γmin, the quantity γmin is used to set the minimum gain a
coefficient can receive. The constant δp, where δp ≥ 0, is important in the beginning
of learning when all of the coefficients are zero and together with ρ, where ρ ≥ 0,
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prevent the very small coefficients from stalling. G(k) = Diag {g1(k), . . . , gL(k)}
is the time-varying step-size control diagonal matrix. The constant δ is typically a
small positive number used to avoid division by zero if the inputs are zero, that is
when x(k) = 0.

x(k) = [x(k), x(k − 1), . . . , x(k − L+ 1)]T

ŷ(k) = xT (k)ŵ(k)
e(k) = d(k)− ŷ(k)
F [|ŵl(k)|, k] = Specified by the user
γmin(k) = ρ max{δp, F [|ŵ1(k)|, k], . . . , F [|ŵL(k)|, k]}
γl(k) = max{γmin(k), F [|ŵl(k)|, k]}
gl(k) = γl(k)

1
L

3L

i=1
γi(k)

G(k) = Diag{g1(k), . . . , gL(k)}
ŵ(k + 1) = ŵ(k) + βG(k)x(k)e(k)

xT (k)G(k)x(k)+δ

Table 1.1. PtNLMS algorithm with time-varying step-size matrix

Some common examples of the term F [|ŵl(k)|, k] are F [|ŵl(k)|, k] = 1 and
F [|ŵl(k)|, k] = |ŵl(k)|, which result in the NLMS and PNLMS algorithms,
respectively.

Assuming that the impulse response being estimated is sparse, the PtNLMS
algorithms begin by setting ŵ(0) = 0. These algorithms rely on the fact that the true
system impulse response w is sparse and most coefficients are zero, therefore the
initial estimate ŵ(0) = 0 is correct for most of the estimated weights. In the
following, the weights that differ from zero should be driven toward their true values
as quickly as possible to speed up convergence. The question, as proposed in
[DEN 05], then becomes how to determine when an estimated coefficient’s true value
is non-zero and how to assign gain to all of the coefficients in a manner that increases
the convergence rate of the overall algorithm. These two issues give rise to the
question of switching criteria within the context of the overall control law. The
control law determines how to assign gain to each of the estimated coefficients. This
process can be broken into separate steps for most algorithms:

1) The first step does switching in order to separate the estimated coefficients into
two categories: those that are near to their true values and those that are not.

2) The second step of the overall control law determines how to assign gain once
the coefficients have been separated into two categories based on the switching
criterion.

In general, we want to assign the minimal possible gain to all of the coefficients
that are near their true values. This law is common throughout almost all of the
PtNLMS algorithms. The various algorithms addressed mainly differ in how they
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assign gain to the estimated coefficients that are not near their optimal values. That is,
the algorithms vary in the specification of the function F [|ŵl(k)|, k].

1.4. Proportionate-type NLMS adaptive filtering algorithms

In this section, mathematical representations of several PtNLMS algorithms are
presented in further detail.

1.4.1. Proportionate-type least mean square algorithm

The first algorithm we examine is the PtLMS algorithm. Strictly speaking, the
PtLMS algorithm is not a PtNLMS algorithm because the update term for the weight
deviation is not normalized by the input signal power. However, the PtLMS
algorithm serves as a building block toward the PtNLMS algorithms. The PtLMS
adaptive filtering algorithm is presented in Table 1.2. When we set G(k) = I for all
k, where I is the identity matrix, then the PtLMS algorithm reduces to the widely
known LMS [HAY 02] algorithm.

x(k) = [x(k), x(k − 1), . . . , x(k − L+ 1)]T

ŷ(k) = xT (k)ŵ(k)
e(k) = d(k)− ŷ(k)
ŵ(k + 1) = ŵ(k) + βG(k)x(k)e(k)

Table 1.2. PtLMS algorithm with time-averaging step-size matrix

1.4.2. PNLMS algorithm

The Proportionate NLMS algorithm was first proposed in [DUT 00]. The control
law for these algorithms assigns a gain proportionate to the magnitude of the estimated
coefficients,

F [|ŵl(k)|, k] = |ŵl(k)|, 1 ≤ l ≤ L. [1.1]

The motivation for this algorithm is based on knowledge that the impulse response
is sparse. Therefore it is desired to adapt coefficients with large magnitudes faster than
those that are at or near zero.

1.4.3. PNLMS++ algorithm

The PNLMS++ algorithm introduced in [GAY 98] is a combination of the
PNLMS and NLMS algorithms. For instance, one implementation of the PNLMS++
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algorithm is to alternate between the NLMS and PNLMS gains logic every iteration.
This implementation is shown here:

F [|ŵl(k)|, k] =
� |ŵl(k)|, 1 ≤ l ≤ L, if k is odd,
1, if k is even.

An alternative implementation of the PNLMS++ algorithm is to alternate between
the NLMS and PNLMS algorithms every M th iteration.

1.4.4. IPNLMS algorithm

The improved PNLMS (IPNLMS) was introduced in [BEN 02] and has the
following control law:

F [|ŵl(k)|, k] = (1− αIPNLMS)
||ŵ(k)||1

L
+ (1 + αIPNLMS)|ŵl(k)|, [1.2]

where ||ŵ(k)||1 =
3L

j=1 |ŵj(k)| is the L1 norm of the vector ŵ(k) and
−1 ≤ αIPNLMS ≤ 1. The algorithm uses ρ = 0, that is the minimum gain logic
introduced in Table 1.1, which in this case, is unnecessary. The components of the
time-varying gain matrix are given by:

gl(k) =
F [|ŵl(k)|, k]

||F [|ŵl(k)|, k]||1

=
(1− αIPNLMS)

2L
+ (1 + αIPNLMS)

|ŵl(k)|
2||ŵ(k)||1 . [1.3]

However in practice, to avoid division by zero, especially at the beginning of
adaptation when the estimated coefficients are all close to zero, a slightly modified
form of the time-varying gain matrix is used:

gl(k) =
(1− αIPNLMS)

2L
+ (1 + αIPNLMS)

|ŵl(k)|
2||ŵ(k)||1 + �IPNLMS

, [1.4]

where �IPNLMS is a small positive number. Note for αIPNLMS = −1 this algorithm
reduces to the NLMS algorithm and for αIPNLMS = 1 the IPNLMS algorithm behaves
like the PNLMS algorithm.
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1.4.5. IIPNLMS algorithm

In the following, the improved IPNLMS (IIPNLMS) algorithm was given in
[CUI 04]. The components of the time-varying gain matrix for the IIPNLMS
algorithm are given by:

F [|ŵl(k)|, k] = |ŵl(k)|
γmin(k) = ρ max{δp, F [|ŵ1(k)|, k], . . . , F [|ŵL(k)|, k]}

γl(k) = max{γmin(k), F [|ŵl(k)|, k]}

γ�
l(k) =

1− αIIPNLMS l(k)

2
+

1 + αIIPNLMS l(k)

2
γl(k)

gl(k) =
γ�
l(k)

1
L

3L
l=1 γ

�
l(k)

.

The term αIIPNLMS l(k) is unique to the IIPNLMS algorithm and is described as
follows. First, the objective of the IIPNLMS algorithm was to derive a rule to locate
the “active” portion of the echo path in order to further improve performance. In the
IPNLMS, the parameter αIPNLMS was fixed for the whole echo path coefficients.
Second, in the IIPNLMS version, αIIPNLMS is allowed to vary as:

αIIPNLMS l(k) =

�
α1 IIPNLMS, when γl(k) > γIIPNLMS max

l
γl(k)

α2 IIPNLMS, when γl(k) < γIIPNLMS max
l

γl(k)

where γIIPNLMS is a parameter used to control the threshold in order to locate the
“active” portion.

1.4.6. IAF-PNLMS algorithm

The IAF-PNLMS algorithm was introduced in [DAS 10]. The IAF-PNLMS
algorithm proceeds in the following manner:

F [|ŵl(k)|, k] = |ŵl(k)|

ψl(k) =


1
2F [|ŵl(k)|, k] + 1

2γl(k − 1), k = mL
m = 1, 2, 3, . . .

ψl(k − 1), otherwise

γl(k) = max{ψl(k), F [|ŵl(k)|, k]}.
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Typically, ψl(0) is initialized to some small positive constant for all of the
coefficients.

In contrast to the other PNLMS-type algorithms, such as the PNLMS and
IPNLMS, the IAF-PNLMS algorithm transfers part of the inactive coefficient gains
via ψl(k) to the active coefficient gains [DAS 10], and, as a consequence, has the
following properties:

1) It provides better (“truly proportionate”) gain distribution compared with the
PNLMS and IPNLMS algorithms.

2) It slows down the convergence speed of the small coefficients.

Point (1) leads to an improvement in the convergence speed as well as in tracking
ability, enabling the IAF-PNLMS algorithm to outperform both the PNLMS and
IPNLMS algorithms for impulse responses with high sparseness. Moreover, the point
(2) is undesirable, arising from the fact that the IAF-PNLMS algorithm transfers
gains from the inactive coefficients to the active coefficients over the whole
adaptation process.

1.4.7. MPNLMS algorithm

The control law for the MPNLMS algorithm assigns a gain proportional to the
logarithm of the estimated coefficients [DEN 05, DEN 06] as follows:

F [|ŵl(k)|, k] = ln(1 + µ|ŵl(k)|), 1 ≤ l ≤ L, [1.5]

where µ = 1/�. The parameter � is used to define when a coefficient is considered to
be converged. For instance, a coefficient could be considered to have converged if it is
within the �-vicinity of its true value.

1.4.8. EPNLMS algorithm

The EPNLMS algorithm uses switching [DEN 06]. The switching criterion for this
algorithm is based on the magnitude of the estimated coefficients. If the coefficient
magnitude is less than �, the minimum possible gain is assigned. Otherwise the gain
assigned to the coefficients is proportional to the natural logarithm of the magnitude
of the coefficient as shown here:

F [|ŵl(k)|, k] =
 0 if |ŵl(k)| < �

ln

"
|ŵl(k)|

�

(
if |ŵl(k)| ≥ �.

This algorithm tries to limit the resources (update gain) applied to the coefficients
that have reached the �-vicinity of their assumed true values of zero (sparsity).
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1.5. Summary

In this chapter, an introduction to PtNLMS algorithms was given. The chapter
started by presenting applications that motivate the design and analysis of PtNLMS
algorithms. Classic examples of applications for PtNLMS algorithms such as
telephone echo cancellation were discussed as well as more recent applications such
as VOIP and acoustic underwater communication. Then a unified framework for
representing PtNLMS algorithms was presented, followed by several examples of
PtNLMS algorithms. Key strengths and weaknesses of each PtNLMS algorithm were
also discussed.


