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Electromagnetic Wave Scattering from
Random Rough Surfaces: Basics

This chapter recalls the basic necessary concepts for dealing with electromagnetic wave
scattering from random rough surfaces, by using integral equations. First, it recalls the notions of
Maxwell equations, plane wave propagation, polarization, Snell-Descartes laws. Second, it gives
a statistical description of the heights of random rough surfaces and defines the concept of
electromagnetic roughness through the Rayleigh roughness parameter. Last, it introduces the
integral equations describing the electromagnetic scattering, and the necessary Green functions,
for both 2D and 3D problems, and defines the notion of a normalized radar cross section.

1.1. Introduction

In this book, the incident wave illuminating the surfaces will be considered as a
plane wave. A wave can be called locally plane if it is located in the so-called
Fraunhofer zone1 of the transmitter source, or far-field zone of the source. This
assumes that the source is far enough from the surface such that the incident wave
may appear as a plane on a distance greater than any dimension of the surface
[LYN 70a]. The media are assumed to be linear, homogeneous and isotropic (LHI),
stationary and non-magnetic. The incident medium is perfectly dielectric2, and can
be assimilated to vacuum in general, although we will endeavor to write the
equations in the general case of any lossless perfect dielectric medium.

1 The Fraunhofer zone or far-field zone corresponds to a distance R from the source which is
greater than approximately 2D2/λ, where D is the greatest dimension of the source and λ is
the transmitted electromagnetic wavelength.
2 A dielectric medium is called perfect if the considered dielectric medium does not have
sources of load or current.
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2 Electromagnetic Wave Scattering from Random Rough Surfaces

The problem of electromagnetic (EM) wave scattering from non-flat surfaces,
called rough surfaces, has been studied for decades. In particular, let us quote the
works of Lord Rayleigh [RAY 45, RAY 07], who was the first to give a rigorous
definition of the EM roughness of a surface (characterized by the so-called Rayleigh
roughness criterion, which will be detailed further). Among rough surfaces, two main
categories may be distinguished: periodic surfaces (such as square surfaces,
triangular surfaces, sawtooth surfaces and sinusoidal surfaces), which are
deterministic, and random surfaces for which only some statistical features are
known. This latter category is discussed in this book.

This chapter aims at introducing the main necessary concepts for understanding
the tools used in the following chapters. In section 1.2, first, we will recall some
generalities on EM waves and their propagation in LHI media. The case of dielectric
media will be discussed in general, these media being potentially lossy dielectric3.
Then, the interaction of these EM waves with a flat interface will be studied by
detailing the reflection and transmission of a plane wave at a flat (perfectly
conducting, lossless or lossy dielectric) interface of infinite length. In section 1.3, a
description of random rough surfaces, with either spatial or spatiotemporal
variations, will be given. However, we will focus here only on the cases where
spatiotemporal varying surfaces are equivalent to spatial varying surfaces
(ergodicity). An application in the maritime domain will be given. Also, the so-called
Rayleigh roughness EM criterion will be described for making a distinction among a
slightly rough, a moderately rough and a very rough surface. Finally, in section 1.4,
the general problem of EM wave scattering from random rough surfaces will be
presented, in order to calculate the EM power scattered by such surfaces. In the
rough surface scattering community, this quantity is generally called scattering
coefficient as a general describer. The more specific terms used in radar and optics
will also be given.

1.2. Generalities

1.2.1. Maxwell equations and boundary conditions

In their local form, the Maxwell equations in dielectric media are given by
[BOR 80]:

divB = 0, [1.1]

rotE = −∂B

∂t
, [1.2]

3 A dielectric medium is called lossy if the considered dielectric medium is free of charge, but
not free of current. This is opposed to a lossless dielectric medium that is free of both charge
and current.
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divD = ρ, [1.3]

rotH = j +
∂D

∂t
. [1.4]

Usually, in Cartesian coordinates, the operator div is replaced by �· and the
operator rot is replaced by �∧ . The first two equations give the relationships of
the fields’ structure, and are valid irrespective of the medium. The last two equations
depend on the considered medium. Here, E and H refer to the electric and magnetic
field vectors, respectively, which compose the EM field. They are expressed in V/m
and A/m, respectively. It is important to note that, throughout the book, the vectors
will be denoted in bold, and the unitary vectors will be denoted in bold and with a hat.
D and B refer to the electric displacement and the magnetic induction, respectively,
and describe the action of the EM field on the matter. They are expressed in C/m2 and
Tesla, respectively. Finally, ρ and j refer to the densities of charge or current. They
are expressed in C/m3 and A/m2, respectively. These quantities act as sources for the
EM field. They check the charge conservation equation:

∂ρ

∂t
+�· j = 0 .

For an LHI medium4 (which is the case that we will always consider in the
following), the quantities D, B and j are related to E and H by the following
constitutive relations:

D = $ E = $0$r E, [1.5]

B = µH = µ0µr H, [1.6]

j = σE. [1.7]

where, $, µ and σ are, respectively, the permittivity, the permeability and the
conductivity of considered matter, with $0 and µ0 as their constants in vacuum,
which are equal to:

$0 � 1

36π × 109
F/m, [1.8]

µ0 � 4π × 10−7 H/m. [1.9]

These two quantities check the relation:

$0 µ0 c
2 = 1 ,

4 The linearity characterizes the fact that the quantities � and µ are independent of the intensity
of E and H , the homogeneity that � and µ do not depend on the considered space point and the
isotropy that �, µ and σ are scalar (i.e. they do not depend on any spatial direction).
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with c as the celerity of light in vacuum. $r and µr are the relative electric permittivity
and magnetic permeability, respectively: they are equal to 1 in vacuum. Let us recall
that in the following, only non-magnetic media will be considered; consequently, the
relative magnetic permeability µr = 1. Moreover, propagation media will be assumed
to be free of charge, ρ = 0, and most of the time free of current as well, j = 0. A
medium that is free of charge is then qualified as a dielectric medium; a distinction
will be made between a dielectric medium free of current, which will be called perfect
dielectric medium or lossless dielectric medium, and a dielectric medium not free of
current, which will be called lossy dielectric medium.

1.2.1.1. Boundary conditions

Figure 1.1. Interface between two semi-infinite LHI media Ω1

(incident medium) and Ω2

The Maxwell equations are applicable to infinite media, which does not reflect
reality as every medium has boundaries. For practical applications of
electromagnetics, it is essential to know how to deal with the problem of the
boundary between two media of different EM properties. Let us assume that an
arbitrary interface S12 separates two semi-infinite media (LHI) denoted by Ω1 for the
incident (upper) medium and Ω2 for the transmission (lower) medium, respectively,
and n̂ is a unitary vector that is orthogonal (normal) to the interface and oriented
towards the incident (upper) medium Ω1. The boundary conditions
[KON 90, FAR 98, PÉR 01] may be written in the local form as follows:

n̂ · (B2 −B1) = 0, [1.10]

n̂ · (D2 −D1) = ρs, [1.11]

n̂ ∧ (E2 −E1) = 0, [1.12]

n̂ ∧ (H2 −H1) = js ∧ n̂, [1.13]

where ρs and js represent the superficial (or surface) density of charge and the vector
of superficial (or surface) density of current, respectively, which may exist at the
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boundary between the two media (ρs = 0 for dielectric media, ρs = 0 and js = 0 for
perfect dielectric media). Equations [1.10] and [1.12], called continuity relations,
describe the continuity of the normal component of B and of the tangential
component of E at the interface, respectively. The other two equations [1.11] and
[1.13] describe the discontinuity of the normal component of D in the presence of
superficial charges of density ρs and the discontinuity of the tangential component of
H on a layer of current, respectively.

For the case where the lower medium is a perfectly conducting metal5, the
equations take the form:

n̂ · H1 = 0, [1.14]

n̂ · E1 = −ρs/$1, [1.15]

n̂ ∧ E1 = 0, [1.16]

n̂ ∧ H1 = −js ∧ n̂. [1.17]

Condition [1.16] is usually called the Dirichlet boundary condition and condition
[1.17], in the absence of current, is usually called the Neumann boundary condition.

Using the same method, for the case when the two LHI media are perfect dielectric,
the equations take the form:

n̂ · (H2 −H1) = 0, [1.18]

n̂ · (E2 −E1) = 0, [1.19]

n̂ ∧ (E2 −E1) = 0, [1.20]

n̂ ∧ (H2 −H1) = 0. [1.21]

1.2.2. Propagation of a plane wave (Helmholtz equation and plane wave)

The propagation equations of fields are obtained from the Maxwell equations by
using the property rot rot = grad div −�2, where �2 is the vector Laplacian6.
Then, in a general way, we obtain:

�2E − $µ
∂2E

∂t2
=

1

$
grad ρ+ µ

∂j

∂t
, [1.22]

�2H − $µ
∂2H

∂t2
= − rot j. [1.23]

5 A perfectly conducting metal is characterized by a conductivity σ → ∞.
6 In Cartesian coordinates, if we represent the scalar Laplacian by Δ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
, the

vector Laplacian of A = (Ax, Ay, Az), �2A, is defined by �2A = ΔAxx̂+ΔAyŷ+ΔAzẑ.
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For a perfect dielectric medium (ρ = 0, j = 0), the equations reduce to:

�2E − 1

v2
∂2E

∂t2
= 0, [1.24]

�2H − 1

v2
∂2H

∂t2
= 0. [1.25]

A wave equation of Alembert type is obtained, where v = 1/
√
$µ is the

propagation speed of the wave. v can be written in the form v = c/n, where
n =

√
$rµr is the refractive index of the considered medium (µr = 1 here) and c is

the propagation speed in vacuum, defined by c = 1/
√
$0µ0 � 3× 108 m/s.

In a general way, the solution of the propagation equation in a perfect dielectric
medium for a plane progressive wave (PPW), which propagates in the direction û =
R/
R
 at speed v, is written as [PÉR 04, BOR 80, FAR 98]:

Ψ = Ψ+

$
t− û · R

v

(
+Ψ−

$
t+

û · R
v

(
, [1.26]

where, by definition of the plane wave, the wave planes (or surfaces of the plane
waves) are orthogonal to û, defined by the planes û · R = C, where C is a constant.
The function Ψ+, sometimes called PPW+, is a PPW that propagates at speed v in
the direction +R. Likewise, Ψ−, sometimes called PPW−, is a progressive wave that
propagates at speed v in the direction −R. This wave function is checked by both E
and H , and it can be shown that:

H = Z û ∧ E, [1.27]

where Z =
+

$/µ = Z0

+
$r/µr is the wave impedance of the considered medium,

with Z0 the wave impedance of vacuum which is equal to Z0 =
+
$0/µ0 � 120πΩ.

Thus, (E,H, û) form a direct trihedral. The wave is then called transverse
electromagnetic (TEM), because both vectors E and H are orthogonal to the
propagation direction given by û.

1.2.2.1. Harmonic regime and harmonic plane progressive waves

A harmonic plane progressive wave (HPPW) is a space–time function of real
expression7 [PÉR 04]:

Ψ(R, t) = A cos

�
ω

$
t− û · R

v

(
− φ

�
Ψ̂ = A cos(ωt− k · R− φ) Ψ̂, [1.28]

7 The generally retained solution of equation [1.26] for the HPPW is the PPW+, because most
of the time, the chosen coordinate is such that the studied incident HPPW propagates away from
the chosen origin point O.
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where k = ω/v û is the wave vector, ω is the pulsation in rad/s and φ is a constant
phase term. In the following, we will consider the harmonic regime such that every
EM quantity G is an HPPW of complex form:

Ψ(R, t) = A exp[±i(ωt− k · R− φ)] Ψ̂ = ψ(R) exp(±iωt) Ψ̂, [1.29]

where ψ(R) = A exp[�i(k · R + φ)]. Then, to simplify the notations, the complex
fields will be represented by being underlined.

Depending on the sign convention + or − in exp[±i(ωt − k · R)], the time
derivative operator ∂/∂t is equivalent to a multiplication by ±iω and the space
derivative operator �· is equivalent to a multiplication by �ik. In the following,
the retained convention is exp[−i(ωt − k · R)]8. Thus, the wave equation [1.24] of
the electric field E(R, t) = E0(R) exp(−iωt) in a free of charge and current
medium becomes:

(�2 + k2) E = 0, [1.30]

with k2 = ω2/v2 (dispersion relation), where k represents the wavenumber inside the
considered perfect dielectric medium. This equation, which is called the Helmholtz
equation, is also checked by the magnetic field H .

By taking the superficial currents j = σE into account, the wavenumber k is
expressed by the dispersion relation as:

k2 =
ω2

v2
(1 + i

σ

ω$
). [1.31]

In this case, the wavenumber k is complex and the wave is damped during its
propagation inside the lossy medium. This wave is then called “pseudo-HPPW”.

1.2.3. Incident wave at an interface: polarization

Let us consider a plane EM wave propagating in a non-magnetic LHI medium.
If the spatial frame is defined in Cartesian coordinates (x̂, ŷ, ẑ), it is usually chosen
(for the sake of simplicity) such that the wave propagates in the plane (x̂, ẑ) (see
Figure 1.2). The polarization of an EM wave is defined by the properties of the incident
electric field vector Ei of the wave in the given plane. When the wave interacts with
an interface, the chosen plane is usually the incidence plane. The latter is defined by

8 However, note that this choice impacts the definition of the permittivities and refractive
indices. With this choice of convention, they will have the form a = a�+ ia�� (with a�, a�� > 0);
otherwise, a = a� − ia��.
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the plane formed by the wave vector incident onto the surface k̂i and the normal to
the surface n̂. In the case when the studied surface is flat, n̂ ∈ (x̂, ẑ) with constant
direction whatever the surface point, the incidence plane (k̂i, n̂) is identical to the
plane (x̂, ẑ) as illustrated in Figure 1.2. In the case of a rough surface, the normal
to the surface becomes a local normal that depends on the considered surface point.
Considering an arbitrary rough surface for which the height ζ depends on the two
horizontal parameters x and y, ζ(x, y), the normal does not belong to the plane (x̂, ẑ)
a priori, then the incidence plane depends on the considered surface point. For better
convenience, the polarization of the incident wave is defined relatively to the mean
plane (k̂i, ẑ), as illustrated in Figure 1.3.

Figure 1.2. Incident wave on an infinite flat surface:
cut view in the incidence plane (k̂i, n̂)

To study the polarization in the general case rigorously, it is necessary to consider
an arbitrary elliptical polarization. However, by considering a Cartesian coordinate
system and knowing that every polarization state of a wave can be represented by the
combination of two linear horizontal and vertical components, we will study these two
fundamental components.

A possible representation of the horizontal and vertical polarizations is given in
Figure 1.3. Note that in the literature, various denominations of these polarizations
are given: the horizontal (denoted by H) polarization is also called the transverse
electric (denoted by TE) polarization or perpendicular (denoted by ⊥ or s for
senkrecht, which means perpendicular in German, in the optical domain)
polarization. The vertical (denoted by V) polarization is also called the transverse
magnetic (denoted by TM) polarization or parallel (denoted by 
 or p for parallel in
the optical domain) polarization.

1.2.3.1. Snell–Descartes laws and Fresnel coefficients

Let us consider an HPPW of pulsation ω, which propagates in direction k̂i inside
the medium Ω1 of relative permittivity $r1 onto the flat interface S12 that is assumed
to be of infinite length. This wave is transformed into a reflected wave in direction
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k̂r , and (possibly) a transmitted wave in direction k̂t. The continuity relations [1.18]–
[1.21] at the interface imply that the pulsations of the three waves are identical (we talk
about phase invariance), and that the planes of incidence (k̂i, n̂), of reflection (k̂r, n̂)
and of transmission (k̂t, n̂) are equal. Thus, the first Snell–Descartes law states that
for an incident ray, only one reflected ray exists and one refracted ray at the most
exists, and that the planes of incidence, reflection and refraction are equal. Moreover,
these continuity relations make it possible to establish the second Snell–Descartes law,
for which the angles of reflection and transmission check the condition:

θr = ± θi, [1.32]
√
$r2 sin θt =

√
$r1 sin θi, [1.33]

where the angles are defined relatively to the normal to the surface, with:

cos θi = −k̂i · n̂. [1.34]

a) H polarization

b) V polarization

Figure 1.3. Incident wave onto a random rough interface in horizontal (H)
and vertical (V) polarizations: cut view in the mean incidence plane (k̂i, ẑ)
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Figure 1.4. Reflected and transmitted waves by a flat interface
of infinite length (�r1 < �r2 here)

The reflection angle θr is equal to plus or minus θi, depending on whether the
angles are oriented or not. In this paragraph, it is not necessary, but in the following,
we will take oriented angles, at least for two-dimensional (2D) problems.

Likewise, from the boundary conditions for the electric field [1.19 and 1.20] and
magnetic field [1.18 and 1.21] at the interface S12 between Ω1 and Ω2, the expressions
of the so-called Fresnel reflection r12 and transmission t12 coefficients can be derived,
in both horizontal (H) and vertical (V) polarizations. They are given by [COM 96]:

rH12(θi) =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

=

√
$r1 cos θi −

+
$r2 − $r1 sin

2 θi√
$r1 cos θi +

+
$r2 − $r1 sin

2 θi
, [1.35]

tH12(θi) =
2n1 cos θi

n1 cos θi + n2 cos θt
=

2
√
$r1 cos θi√

$r1 cos θi +
+
$r2 − $r1 sin

2 θi
, [1.36]

in H polarization and:

rV12(θi) =
n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

= − $r2 cos θi −√
$r1

+
$r2 − $r1 sin

2 θi

$r2 cos θi +
√
$r1

+
$r2 − $r1 sin

2 θi
, [1.37]

tV12(θi) =
2n1 cos θi

n1 cos θt + n2 cos θi
=

2
√
$r1$r2 cos θi

$r2 cos θi +
√
$r1

+
$r2 − $r1 sin

2 θi
, [1.38]
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in V polarization, where θi is the local incidence angle defined by cos θi = −k̂i · n̂.
The transmission coefficient is expressed with respect to the reflection coefficient in
H and V polarizations by:

tH12(θi) = 1 + rH12(θi), [1.39]

tV12(θi) =
n1

n2

�
1− rV12(θi)

�
, [1.40]

respectively.

It should be noted that, often in the literature on rough surface scattering, a slightly
different definition is given, as rV12 is replaced by −rV12.

1.2.3.2. Study of some particular cases

For normal incidence (θi = 0), equations [1.35]–[1.38] become:

rH12(0) = rV12(0) =
n1 − n2

n1 + n2
, [1.41]

tH12(0) = tV12(0) =
2n1

n1 + n2
, [1.42]

and for a low-grazing incidence angle θi → ±π/2, they become:

rH12(π/2) = −1, [1.43]

rV12(π/2) = +1, [1.44]

tH12(π/2) = tV12(π/2) = 0. [1.45]

In the case of a perfectly conducting lower medium (σ → ∞ or $r2 = i∞), we
get ∀θi:

rH12(θi) = rV12(θi) = −1, [1.46]

tH12(θi) = tV12(θi) = 0. [1.47]

Then, it is usually said that for the reflected wave, the field is reversed.

1.2.3.3. Limit angle and Brewster angle

If the incident wave goes from a less refractive to a more refractive medium
(n1 < n2) and the incident wave is grazing θi → π/2, a limit angle of transmission
θlt appears, which is defined by:

sin θlt = n1/n2. [1.48]
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For an air–glass interface (n2 = 1.5), θlt � 41.8◦. For an air–sea interface without
losses (n2 =

√
53), θlt � 7.9◦. Conversely, if n1 > n2, at the limit incidence angle

sin θli = n2/n1, the angle of transmission is equal to π/2. Thus, beyond this incidence
angle, there is no transmitted wave in the far field.

The reflection coefficient goes to 0 only in V polarization, for an incidence angle
called the Brewster incidence angle θBi , which is defined by:

tan θBi = n2/n1. [1.49]

For an air–glass interface, θBi � 56.8◦. For an air–sea interface, θBi � 82.2◦.

1.3. Random rough surfaces: statistical description and electromagnetic
roughness

In this section, the statistical description of random rough surfaces is presented,
by using the height distribution and autocorrelation function. An application to sea
surfaces is given. Finally, the concept of EM roughness of a rough interface is given
through the Rayleigh roughness criterion.

1.3.1. Statistical description of random rough surfaces

Here, the description of a random rough surface with height variations ζ is given
in detail. These variations are characterized by the height probability density function
(PDF) and the height autocorrelation function (or the height spectrum).

1.3.1.1. Surface height PDF

The surface height PDF ph(ζ) represents the statistical height distribution of the
random rough surface. Three important pieces of information are contained in this
PDF:

– its mean value: here, the mean surface height, ζ0;

– its standard deviation: here, the surface height standard deviation, σh;

– the type of this density: Gaussian, Lorentzian, exponential, etc.

Most of the time, a rough surface is characterized by a Gaussian height PDF
(see Figure 1.5):

ph(ζ) =
1

σh

√
2π

exp

�
−1

2

!ζ − ζ0
σh

%2�
. [1.50]
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Figure 1.5. One-dimensional (1D) random rough surface of Gaussian
statistics (a) and its height distribution (b)

Thus, for a Gaussian height PDF, 99.73% of the surface heights are contained
between ζ0 − 3σh and ζ0 + 3σh. The height PDF checks:

�1� =
� +∞

−∞
ph(ζ) dζ = 1, and �ζ� =

� +∞

−∞
ζ ph(ζ) dζ = ζ0. [1.51]

The mean (average) height ζ0 will be taken as 0 in general for the sake of
simplicity. The statistical average over the heights �ζ� is called first-order statistical
moment (or mean value). The centered second-order statistical moment (or variance),
�(ζ − ζ0)

2� = �ζ2� (for ζ0 = 0), corresponds here to the average over the square of
the heights:

�ζ2� =
� +∞

−∞
ζ2 ph(ζ) dζ = σ2

h. [1.52]

σh =
+�ζ2� is the surface height standard deviation, which is also called root mean

square (RMS) height.

1.3.1.2. Surface (spatial) height autocorrelation function and height spectrum

The (spatial) autocorrelation function between two surface points M1 and M2

represents the statistical correlation between these two points, with respect to their
horizontal distance rd = r2 − r1. It is maximum if r2 = r1 (or rd = 0). Two
important pieces of information are contained in this function:

– its correlation lengths along x̂ and ŷ, Lc,x and Lc,y;

– its type: Gaussian, Lorentzian, exponential, etc.

It is defined by:

Wh(r1, r2) = �ζ(r1) ζ(r2)�

= lim
X,Y→+∞

1

X Y

� +X/2

−X/2

� +Y/2

−Y/2

ζ(r1) ζ(r2) dx dy , [1.53]
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where (X,Y ) are the surface lengths with respect to x̂ and ŷ, respectively. For a
stationary9 surface, Wh(r1, r2) ≡ Wh(rd) = �ζ(r1) ζ(r1 + rd)�, with the property
Wh(rd = 0) = σ2

h. The autocorrelation coefficient C(rd) is equal to the
autocorrelation function normalized by the RMS height (height standard deviation);
it is written for a stationary surface as:

Ch(rd) =
�ζ(r1) ζ(r1 + rd)�

σh
2

. [1.54]

Ch(rd) = 1 when rd = 0. The correlation length Lc is a characteristic value of
the autocorrelation function, which determines the so-called scale of roughness of the
surface. Typically, it corresponds to the horizontal distance (xd for Lc,x or yd for Lc,y)
between two surface points for which the autocorrelation coefficient is equal to 1/e
(see Figure 1.6).

Figure 1.6. 2D random rough surface (a) and its height autocorrelation
function (b), here taken as Gaussian

9 In its usual definition, a stationary process is a stochastic process whose first moment and
covariance do not change when shifted in time or space. As applied to surfaces, it means that
the mean value and the autocorrelation function do not change with respect to space.
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Finally, the height PDF and the height autocorrelation function make it possible
to have a fair description of a random rough surface: indeed, for Gaussian statistics,
surfaces with Gaussian height PDF and autocorrelation function have the property that
all their statistical moments are related to the first two functions.

Usually, instead of using the height autocorrelation function, the surface height
spectrum, which is the spatial Fourier transform of the autocorrelation function, is
used. It is also often called the surface power spectral density function, and is defined
for a stationary surface of infinite extent by the relation:

Sh(k) = FT[Wh(rd)] =

� +∞

−∞

� +∞

−∞
Wh(rd) exp(−ik · rd) drd, [1.55]

where k represents the spatial frequency per cycle vector or surface wave vector10,
which is homogeneous to rad/m. Likewise, the autocorrelation function can be defined
from the spectrum by using an inverse Fourier transform as follows:

Wh(rd) = FT−1[Sh(k)] =
1

(2π)2

� +∞

−∞

� +∞

−∞
Sh(k) exp(+ik · rd) dk. [1.56]

Typically, considered autocorrelation functions are Gaussian, Lorentzian or
exponential. They are defined for 2D problems (also called 1D surfaces) as:

Wh(xd) = σ2
h exp

$
−xd

2

L2
c

(
, [1.57]

Wh(xd) =
σ2
h

1 + xd
2/L2

c

, [1.58]

Wh(xd) = σ2
h exp

$
−|xd|

Lc

(
, [1.59]

respectively. Their corresponding spectrum is then defined by:

Sh(k) =
√
π σ2

hLc exp

$
−L2

c k
2

4

(
, [1.60]

Sh(k) = π σ2
hLc exp (−Lc |k|) , [1.61]

Sh(k) =
2σ2

hLc

1 + L2
ck

2
, [1.62]

10 It must not be confused with the electromagnetic wave vector.
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respectively. It can be noted that the spectrum associated with a Gaussian
autocorrelation function is also Gaussian (by Fourier transform), and that the
spectrum of a Lorentzian autocorrelation is exponential and vice versa.

In addition to the RMS height σh and the correlation length Lc, other important
statistical parameters can be useful to characterize a random rough surface. The first
parameter is the surface RMS slope σs, which is defined by
[OGI 91, SOU 01a, MAR 90]:

σs =

,��
ζ 	(x)− �ζ 	(x)��2� =

*� +∞

−∞

dk

2π
k2S(k) =

)
−W 		

h (0). [1.63]

For a Gaussian PDF surface with Gaussian correlation [1.57], the RMS slope is
related to the RMS height and the correlation length by the relation:

σs =
√
2
σh

Lc
. [1.64]

For a so-called 2D surface (3D problem), the same results are obtained by splitting
along the x̂ and ŷ axes: σs,x is expressed in terms of Lc,x, and σs,y in terms of Lc,y.

The second commonly used parameter is the surface mean curvature radius Rc,
which is defined for 1D surfaces (2D problems) as [OGI 91, SOU 01a, PAP 88]:

Rc = −
�
1 +

�
ζ 	(x)2

��3/2
�ζ 		(x)� . [1.65]

For a Gaussian surface (i.e. Gaussian height PDF and Gaussian correlation
[1.57]), under small slopes assumption, the mean curvature radius checks the
asymptotic relation [PAP 88]:

Rc � 1

2.76

L2
c

σh

$
1 +

3

2

σ2
h

L2
c

(
, [1.66]

which simplifies for RMS slope σs � 1 as:

Rc ≈ 0.36
L2
c

σh
. [1.67]
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Sometimes, an additional parameter is used: the mean distance Dm between two
successive peaks of the surface. It can be estimated by [MAR 90, FRE 97]:

Dm � π

.//- +∞
−∞ dk k2S(k) +∞
−∞ dk k4S(k)

. [1.68]

Physically, it is expected that this distance Dm would be of the same order as
the correlation length Lc. Indeed, for a Gaussian surface, this distance checks the
condition:

Dm =
π√
6
Lc � 1.28Lc, [1.69]

which is consistent with our qualitative physical prediction. Besides, it can be noted
that (at least for a Gaussian correlation surface) the distance between two surface
peaks is a bit greater than the correlation length.

1.3.1.3. Other statistical tools

In addition to the surface height PDF and/or autocorrelation function (or
spectrum), in some cases other statistical tools that describe random rough surfaces
may be used. Indeed, depending on the analytical models used to describe the EM
scattering, an alternative statistical tool to the autocorrelation function (or its
associated spectrum, like for the small perturbation method (SPM)) may be used. For
instance, as studied further, the geometric optics (GO) approximation uses the slope
PDF ps(γ). For a Gaussian process, it is defined for 1D surfaces (2D problems) by:

ps(γ) =
1

σs

√
2π

exp

�
−1

2

$
γ − γ0
σs

(2
�
, [1.70]

where σs is RMS of the slopes γ = ζ 	 of the surface. In general, the mean value
�γ� ≡ γ0 = 0. For 2D surfaces (3D problems), by assuming a correlated centered 2D
Gaussian process, (�γx� ≡ γ0x = 0 and �γy� ≡ γ0y = 0), it is defined by:

ps(γx, γy) =
1

2π
+|[C2]|

exp

�
− (σ2

syγ
2
x + σ2

sxγ
2
y + 2W2γxγy)

2 |[C2]|

�
, [1.71]

where |[C2]| = σ2
sxσ

2
sy − W2x

2W2y
2 is the determinant of the slope covariance

matrix {γx, γy}, with W2x = −∂2Wh

∂x2 and W2y = −∂2Wh

∂y2 as the surface slope
autocorrelation functions and (σsx, σsy) as the RMS slopes of (γx, γy), respectively.
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In the uncorrelated case, the slope PDF for an anisotropic Gaussian 2D process is
written as:

ps(γx, γy) =
1

2π σsxσsy
exp

"
− γ2

x

2σ2
sx

− γ2
y

2σ2
sy

&
. [1.72]

Similarly to the height spectrum, the height characteristic function χh(q), which is
equal to the statistical average over the complex exponential exp(iqζ), is sometimes
used. For an even process, it is then equal to the Fourier transform of the height PDF
as follows:

χh(q) = �exp(iqζ)� =
� +∞

−∞
ph(ζ) exp(iqζ) dζ. [1.73]

For a centered Gaussian process, it can be shown that:

χh(q) = exp

$
−1

2
q2σ2

h

(
. [1.74]

For a stationary surface, the characteristic function of two surface points separated
by a distance x12 is then given by:

χh(q1, q2;x12) =
�
ei(q1ζ1+q2ζ2)

�
=

� +∞

−∞

� +∞

−∞
ph(ζ1, ζ2;x12)e

i(q1ζ1+q2ζ2) dζ1dζ2, [1.75]

where ph(ζ1, ζ2;x12) can be expressed for a Gaussian process by:

ph(ζ1, ζ2;x12) =
1

2π
+|[C2]|

exp

�
−σ2

hζ
2
1 + σ2

hζ
2
2 − 2W0(x12)ζ1ζ2
2|[C2]|

�
, [1.76]

where |[C2]| = σ4
h − W0

2(x12) is the determinant of the height covariance matrix
{ζ1, ζ2}, with W0 ≡ Wh as the height autocorrelation function. This function can be
rewritten in the form:

ph(ζ1, ζ2;x12) =
1

2π
+|[C2]|

exp

$
−1

2
V T
2 [C2]

−1V2

(
, [1.77]

where V2 = [ ζ1 ζ2 ]. Thus, for a centered Gaussian process, the characteristic function
can be written as:

χh(q1, q2) = exp

�
−1

2

�
(q21 + q22)σ

2
h + 2q1q2W0(x12)

��
. [1.78]
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This can be generalized to n random variables as follows:�
exp

�
j

n0
i=1

qiζi

��
= exp

−1

2

�"
n0

i=1

qiζi

&2� = exp

− n0
i=1

n0
j=1

qiqj �ζiζj�
 .

[1.79]

1.3.2. Specific case of sea surfaces

It is important to note that for the case of a sea surface, the statistical description
is more complex. This issue mainly concerns the description of the surface height
spectrum, which is very different from a Gaussian, an exponential or a Lorentzian
function. Then, it is necessary to study this specific case more closely. It is usually
said that a sea surface has two main regimes of roughness: the capillary and
gravity regimes (see Figure 1.7). The capillary regime corresponds to the so-called
capillary waves, which are also called wavelets (or sometimes ripples). They
are created by the action of a local wind. They characterize the so-called small-scale
roughness of the sea surface, with correlation length Lcs. The gravity regime
corresponds to the gravity waves, which are sometimes called swell. They
characterize the so-called large-scale roughness of the sea surface, with correlation
length Lcl. The RMS height and the correlation length of the gravity waves are
significantly greater than those of the capillary waves, as illustrated in Figure 1.7.

Figure 1.7. Contribution of the two regimes of a sea surface:
gravity and capillary waves
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The first works on height spectra of sea surfaces were mainly developed in the
1970s, but it was only in the 1980s and the 1990s that global spectra, which take both
the gravity and the capillarity into account, were developed [BOU 99]. The following
three spectra can be quoted: the spectra of Pierson, of Apel and of Elfouhaily et al.
[ELF 97]. The latter, which was established in 1997, has been retrieved by
experimental measurements [COX 54], contrary to the other two spectra. Indeed, it
has been built on both experimental and theoretical bases that the previous two
models did not consider. It represents a summary of the entirety of the work on this
subject from the 1970s and has become a reference since then. The Elfouhaily et al.
spectrum SE(k,φ ) is given by [ELF 97]:

SE(k,φ ) =
M(k)

2π
[1 + Δ(k) cos 2φ], [1.80]

where M(k) is the isotropic part of the spectrum and Δ(k) the anisotropic part, and
φ the wind direction. φ = 0 corresponds to the upwind direction, and φ = π to
the downwind direction; φ = π/2 and φ = 3π/2 correspond to the two cross-wind
directions.

From the Elfouhaily et al. spectrum, it is possible to retrieve the classical statistical
parameters of the sea surface, due to the knowledge of the wind speed above the sea
surface. For instance, the following relationships can be obtained [BOU 02a]:

Lc � 3× 0.154 u10
2.04, [1.81]

σh =

*� +∞

0

M(k) dk � 6.29× 10−3 u10
2.02, [1.82]

where u10 is the wind speed at 10 m above the sea surface (mean level), expressed in
m/s. By construction, the Elfouhaily et al. spectrum is in agreement with the
experimental Cox and Munk model [COX 54], which was established from airborne
photographs. In this model, the global RMS slope σs is related to the RMS slope in
the up-wind direction σsx and in the cross-wind direction σsy by
σ2
s = (σ2

sx + σ2
sy)/2, where:

σ2
sx = 3.16× 10−3 u12 ± 4× 10−3, [1.83]

σ2
sy = 1.92× 10−3 u12 + 3× 10−3 ± 2× 10−3, [1.84]

where u12 is the wind speed at 12.5 m above the sea surface. In [BOU 99] and
[DÉC 04], a useful table giving the RMS slopes, the RMS height, the correlation
length with respect to the Beaufort scale and to u10 can be found.
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1.3.3. Electromagnetic roughness and Rayleigh roughness criterion

The first work on the scattering of waves from rough surfaces was made by Lord
Rayleigh, who considered the problem of an HPPW propagating upon a sinusoidal
surface at normal incidence [RAY 45]. This work led to the so-called Rayleigh
roughness criterion, which makes it possible to establish the degree of EM roughness
of a rough surface. It is used in practice in several simple models to describe the EM
wave scattering from random rough surfaces. For instance, in ocean remote sensing,
it is used in the Ament model [AME 53, FRE 06, FAB 06, PIN 07a] to calculate the
grazing incidence forward (i.e. in the specular direction) radar propagation over sea
surfaces; in optics to determine optical constants of films [YIN 96, YIN 97] and other
applications [OHL 95, AZI 99, POR 00, CHO 06, XIO 06, MAU 07, REM 09], or in
indoor propagation; in ray-tracing-based wave propagation models that take the wall
roughness into account by introducing a power attenuation parameter
[BOI 87, LAN 96, DID 03, JRA 06, COC 07].

Figure 1.8. Electromagnetic roughness (in reflection) of a random rough
surface: phase variations of the reflected wave owing to the surface roughness

The roughness (from an EM point of view) of a surface depends – obviously – on
its height variations, but it is also related to the incident wavelength. Indeed, the EM
roughness of a surface is related to the phase variations δφr of the wave reflected by
the surface, owing to the surface height variations. It is obtained under the Kirchhoff-
tangent plane approximation11, which is valid for large surface curvature radii and
gentle slopes. Let us consider an incident HPPW inside a medium Ω1 of wavenumber
k1 on a rough surface with angle θi (see Figure 1.8). For the case of a random rough
surface considered here, the total reflected field Er results from the contribution of all
reflected fields from the random heights of the rough surface. Then, to quantify the
EM surface roughness, it is the phase variation δφr of the reflected field around its

11 (together with a further approximation, like the so-called scalar Kirchhoff approximation, or
the method of stationary phase)



22 Electromagnetic Wave Scattering from Random Rough Surfaces

mean value (which corresponds to the phase of the mean plane surface) that must be
considered. For the case of a rough surface (see Figure 1.8), the phase variation δφr is
given by the relation:

δφr = 2k1δζA cos θi, [1.85]

where δζA = ζA − �ζA� is the height variation, and θi is the incidence angle. �ζA�
is the mean value of the rough surface heights (with �· · ·� representing the statistical
average), which is equal to 0 here in Figure 1.8.

If the phase variation is negligible, δφ � π, for all positions of these points on
the surface, then all the waves scattered (reflected) by the random rough surface are
nearly in phase and will consequently interfere constructively. The surface is then
considered as slightly or very slightly rough: it may be assimilated to a flat surface. On
the contrary, if the phase variation checks δφ ∼ π, these rays interfere destructively.
The contribution of the energy scattered in this specular direction is then weak, and
the surface is then considered as rough.

The Rayleigh roughness criterion [OGI 91, TSA 00] assumes the following
condition: if δφ < π/2, the waves interfere constructively. Consequently, the surface
can be considered as very slightly rough or even flat if δφ � π/2. Conversely, if
δφ > π/2, the waves interfere destructively, and the surface can be considered as
rough. To apply this local approach to the whole surface, it is necessary to consider a
mean phenomenon, which implies quantifying this phenomenon by a statistical
average on δφ. The mean value of the surface heights being taken as zero, �ζA� = 0,
the Rayleigh roughness parameter is quantified by the variance of the phase variation
σ2
δφ. Knowing that �ζ2A� = σ2

h and �δφ� = 0, it is defined by:

σ2
δφ =

�
(δφ)2

�
=

�
(2k1δζA cos θi)

2
�
= 4k21 σ

2
h cos2 θi. [1.86]

The Rayleigh roughness parameter is then defined from the RMS value σδφ. Its
definition varies by a factor (coefficient) of 2, depending on the authors; here we take:

Ra = k1σh cos θi, [1.87]

which corresponds to Ra = σδφ/2. The Rayleigh roughness criterion is then:

Ra < π /4, [1.88]

which corresponds to σh cos θi < λ /8.

Thus, the EM roughness is not a phenomenon that is intrinsic to the surface: it
depends on the incident wavelength λ1 ≡ λ. It is the ratio σζ/λ that determines the



Electromagnetic Wave Scattering from Random Rough Surfaces: Basics 23

degree of roughness of a surface, for a given incidence angle. Besides, the influence
of the term cos θi is nearly always neglected. Nonetheless, it is not negligible when
the incidence angle becomes grazing, θi → 90◦: this implies that a surface can be
considered as rough for moderate incidence angles and becomes only slightly rough
for grazing angles.

If we look more closely at this roughness criterion, we can see that equation [1.87]
can be rewritten in the form:

σh <
1

8

λ1

cos θi
=

1

8
λapp, [1.89]

where λapp = λ1/ cos θi can be defined as an apparent wavelength along the normal
to the mean surface [CRO 84] (by analogy with the apparent wavelength in a metallic
waveguide).

From a more quantitative point of view, the field reflected by the surface Er(R)
can be written under some assumptions12 in the specular direction in the form:

Er(R) = Ei(RS) r12 exp[ikr · (R−RS)] exp(iδφ), [1.90]

where RS is a point of the average plane of the rough surface, that is for z = 0. It can
be rewritten in the form:

Er(R) = Eflat
r (R) exp(iδφ), [1.91]

where Eflat
r (R) corresponds to the field reflected by a flat surface. The Rayleigh

roughness criterion quantifies the attenuation of the mean field scattered by the random
rough surface. Here, the mean scattered field can be written as:�

Er(R)
�
= Eflat

r (R)
�
exp(iδφ)

�
, [1.92]

with, for a surface with Gaussian statistics,�
exp (iδφ)

�
= exp

#−�δφ2�/2' = exp
#−2Ra

2
'
. [1.93]

More precisely, as we are interested in the power (or intensity) reflected by the
random rough surface, the coherent power (intensity) attenuation due to the surface
roughness is equal to exp(−g), where g is given by:

g = 4Ra
2. [1.94]

12 The basic necessary assumption is that the Kirchhoff-tangent plane approximation must be
valid. An additional condition is also necessary; which, assuming negligible surfaces slopes are
enough, typically corresponds to the scalar Kirchhoff approximation. Alternatively, the method
of stationary phase can be applied to lead to the same attenuation in the specular direction.
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However, note that for a non-Gaussian stationary surface, the attenuation term
takes a different expression. Thus, the criterion Ra = π/4 corresponds to an
attenuation of the scattered power of exp(−π2/4) � 0.085 � −11 dB, which is not
negligible at all: the surface roughness is already significant. That is why, in order to
qualify a random rough surface as slightly rough, a more restrictive criterion is
sometimes given [SOU 01a, ULA 82]:

Ra < π /16, [1.95]

which corresponds to σh cos θi < λ /32. Then, the attenuation of the coherent
scattered intensity is equal to exp(−π2/64) � 0.86 � −0.7 dB. This condition
corresponds for normal incidence to the criterion called the Fraunhofer criterion:

σh/λ< 0.03. [1.96]

Conversely, for a surface to qualify as very rough compared to the wavelength,
the coherent power is very strongly attenuated; then, it is generally negligible
(compared to the incoherent power). Yet, the criterion Ra = π/4 corresponds to a
power attenuation of exp(−π2/4) � 0.085 � −11 dB, which may not generally be a
sufficient attenuation for the coherent power to be negligible. That is why, for a
surface to qualify as very rough, the following more restrictive criterion can be used:

Ra > π /2, [1.97]

which corresponds to σh cos θi > λ /4. The attenuation of the coherent power
(intensity) is then equal to exp(−π2) � 5.17 × 10−5 � −43 dB: this attenuation is
very significant this time, and the coherent power may be neglected (as compared to
the incoherent power) a priori. Then, for moderate incidence angles, this corresponds
to the following criterion on the surface RMS height:

σh/λ> 1/4. [1.98]

Another aspect of the surface roughness may be added here: the scale of the
surface roughness. As pointed out earlier for sea surfaces, in the literature, the terms
small-scale and large-scale roughnesses are commonly used. This roughness scale is
typically characterized by the correlation length (denoted by Lc) of the surface. Lc is
the horizontal distance that separates two surface points at which their
autocorrelation falls down to 1/e of its maximum (at least for Gaussian and
Lorentzian correlations). Then, it corresponds to the value for which the
autocorrelation coefficient is equal to 1/e. Note that this roughness scale is typically
quantified by Lc in comparison to the incident wavelength λ.
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1.3.3.1. Rayleigh roughness criterion in transmission

To our knowledge, the Rayleigh roughness criterion has always been defined only
in the case when the wave is scattered by the rough surface into the incident medium,
until recently [PIN 07a, PIN 07b, PIN 10]. Then, a Rayleigh roughness parameter in
reflection and a Rayleigh roughness criterion in reflection were defined.
Nevertheless, often the study focuses on a wave scattered in transmission through a
(perfectly dielectric) rough surface. Thus, it is of interest to know in this specific case
when a rough surface can be qualified as flat or rough. The same way is used to
derive this criterion in transmission. The phase variation δφt of the ray transmitted
through a surface point A(xA, δζA) in the direction of specular transmission θt (see
Figure 1.9) is given by:

Δφt = k0 δζ (n1 cos θi − n2 cos θt), [1.99]

where k0 is the wavenumber inside vacuum, and n1 =
√
$r1 and n2 =

√
$r2 are the

indices in media Ω1 and Ω2, respectively, checking the transmission Snell–Descartes
law n1 sin θi = n2 sin θt for the specular transmission. Using the same method as for
the reflection, let us define the transmission Rayleigh criterion corresponding to the
criterion on the phase variation δφt < π /2. Then, the transmission Rayleigh
roughness parameter Ra,t is defined by:

Ra,t = k0σh
|n1 cos θi − n2 cos θt|

2
, [1.100]

with the transmission Rayleigh criterion:

Ra,t < π /4. [1.101]

Figure 1.9. Roughness in transmission of a random surface: phase variations
of the transmitted wave owing to the surface roughness
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Note that the transmission Rayleigh roughness parameter is in general (for similar
refractive indices of the two media) lower than that in reflection. The consequence of
this result is important, as a random rough surface may be considered as very rough
electromagnetically when the reflected wave is considered, whereas it may be
considered as moderately rough or slightly rough electromagnetically when the
transmitted wave is considered. Then, it is necessary to take the appropriate Rayleigh
roughness parameter, depending on the studied configuration.

1.3.3.2. Comparison between the Rayleigh roughness parameters in reflection and
transmission

A comparison between the Rayleigh roughness parameters in reflection and
transmission makes it possible to compare the EM roughness between the cases of
the reflected wave and of the transmitted wave. The Rayleigh parameter in reflection
is given by equation [1.87] and the Rayleigh parameter in transmission by equation
[1.100] where θt is related to θi by the Snell–Descartes law n1 sin θi = n2 sin θt.
Figure 1.10 plots the normalized Rayleigh parameter, that is, for k0σh = 1, for
$r1 = 1 and for different values of $r2 with respect to the incidence angle θi.

As a general remark, it can be seen that the Rayleigh roughness parameter in
reflection decreases for the increasing incidence angle θi; by contrast, the parameter
in transmission increases for increasing θi. Moreover, the latter increases for
increasing $r2 (for $r1 = 1). It can be noted that for values of relative permittivities
$r2 close to 1, for low incidence angles, the transmission Rayleigh parameter is lower
than the reflection parameter; on the contrary, it is higher for higher incidence angles.
Thus, it can easily be shown that the incidence angle for which the Rayleigh
roughness parameters in reflection and transmission are equal is given, for $r2 ≥ $r1,
by:

θrugi = arccos

$,
$r2 − $r1
8 $r1

(
, [1.102]

if $r2 ≤ 9$r1. For $r1 = 1 in Figure 1.10, this gives θrugi � 69.3◦ for $r2 = 2 and
θrugi � 52.3◦ for $r2 = 4. Here, $r1 = 1, so for relative permittivities $r2 > 9, the
Rayleigh roughness parameter in transmission is always greater than that in reflection,
as can be seen in Figure 1.10 for $r2 = 53. Thus, for $r2 = 9, the equality holds only
for normal incidence, θi = 0◦.

In conclusion, for $r2 > 9$r1, the Rayleigh roughness parameter in transmission is
always greater than that in reflection. On the other hand, for lower permittivity values
of $r2, it is greater only from a given incidence angle θrugi , which is given by equation
[1.102]. Then, for relative permittivities $r2 close to 1 (for $r1 = 1) and moderate
incidence angles, the Rayleigh roughness parameter in transmission is lower than that
in reflection: in this case, the surface is rougher electromagnetically in reflection than
in transmission.
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Figure 1.10. Comparison of the normalized Rayleigh roughness
parameters for �r1 = 1 and for different values of �r2

with respect to the incidence angle θi

1.3.3.3. Specular and diffuse scattering in reflection and transmission: coherent and
incoherent scattering

For a surface of infinite extent, the fields scattered in reflection Er(R) and
transmission Et(R) by a random rough surface can be split up into an average
component and a fluctuating component as [SOU 01a, TSA 01b, CAR 03a]:

Er(R) = �Er(R)�+ δEr(R), [1.103]

Et(R) = �Et(R)�+ δEt(R), [1.104]

with

�δEr(R)� = �δEt(R)� = 0, [1.105]

where �...� represents the statistical average and δ represents the field variations. Then,
the total intensity scattered by the surface may be expressed as the sum of the coherent
and incoherent intensities as:

�|Er(R)|2� = |�Er(R)�|2 + �|δEr(R)|2�, [1.106]

�|Et(R)|2� = |�Et(R)�|2 + �|δEt(R)|2�. [1.107]
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The term |�Er,t(R)�|2 represents the coherent intensity, owing to its well-defined
phase relationship with the incident wave. It corresponds to the specular reflection or
transmission of a flat surface (but its amplitude is potentially attenuated). The term

�|δEr,t(R)|2� = �|Er,t(R)|2� − | �Er,t(R)�|2 [1.108]

represents the incoherent intensity, owing to its angular spreading and its low
correlation with the incident wave. It corresponds to the so-called diffuse reflection
or transmission. Then, when the surface is flat, the coherent term is maximum and
the incoherent term is zero, as all the incident energy is reflected or transmitted into
the specular direction. When the EM roughness of the surface increases, the coherent
term is attenuated, and the incoherent term increases. For a surface that is qualified
(through the Rayleigh criterion) as (very) slightly rough, the coherent term is
dominant, whereas for a surface that is qualified as moderately rough, the incoherent
term is dominant. Finally, for a very rough surface, the coherent term may be
neglected.

1.4. Scattering of electromagnetic waves from rough surfaces: basics

1.4.1. Presentation of the problem (2D/3D)

We are interested, in general, in a 3D problem and potentially study the 2D
problem first, which is equivalent to a rough surface that is invariant along one
direction. The chosen frame is an orthonormal Cartesian frame (x̂, ŷ, ẑ), with an
arbitrary origin O on the mean plane (x̂, ŷ) of the random rough surface.

Let Ei(R) be a plane EM wave, propagating inside the upper incident medium
Ω1 toward a rough interface Σ12 separating the lower medium Ω2. The two media are
assumed to be LHI, stationary, non-magnetic and of relative permittivities $r1 and $r2,
respectively. The separating interface Σ12 is of infinite extent. It is described by its
height variations z = ζ(x, y). A point of space, denoted by R, is expressed in the
Cartesian frame by R = xx̂ + yŷ + zẑ ≡ r + zẑ, and a point of the rough surface,
denoted by RA, is expressed by RA = xAx̂+ yAŷ + ζAẑ ≡ rA + ζAẑ.

The incident wave propagates along the direction K̂i = (kix, kiy, kiz)/|k1| =

(k̂ix, k̂iy, k̂iz), having an (elevation) angle θi with respect to the vertical axis and an
(azimuth) angle φi with respect to the axis x̂ in the plane (x̂, ŷ). The incident wave
on the rough surface at the point A is written as:

Ei(RA) = E0 exp(ik1 K̂i · RA) êi, [1.109]
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where êi is the vector of polarization of Ei. The total field on the dielectric surface in
the incident medium Ω1 is then the sum of the incident field and the field scattered (in
reflection) inside Ω1:

E(RA) = Ei(RA) +Er(RA), [1.110]

where Er(RA) is the scattered field in reflection in the direction K̂r , with angles
(θr, φr) in a spherical frame. The total field on the dielectric surface in the medium of
transmission Ω2 is equal to the scattered field in transmission Et(RA) in the direction
K̂t, with angles (θt, φt) in a spherical frame. The unknowns of the problem are then
the scattered fields in reflection Er(R) and transmission Et(R) by the rough surface
at any point of the space R.

To express the normalized wave vectors K̂ as well as the polarization basis of the
electric and magnetic fields (v̂, ĥ, K̂) in the frame (x̂, ŷ, ẑ), we can choose whether
to orientate the angles or not. For a 3D problem, if we choose not to orientate the
angles, by taking θi,r,t ∈ [0;π/2] and φi,r,t ∈ [0; 2π], we obtain in the basis (x̂, ŷ, ẑ),
[TSA 01b]:

v̂i = ( − cos θi cosφi,− cos θi sinφi,− sin θi )

ĥi = ( − sinφi , +cosφi , 0 )

K̂i = ( + sin θi cosφi,+sin θi sinφi,− cos θi )

, [1.111]


v̂r = ( +cos θr cosφr,+cos θr sinφr,− sin θr )

ĥr = ( − sinφr , +cosφr , 0 )

K̂r = ( + sin θr cosφr ,+sin θr sinφr ,+cos θr )

, [1.112]


v̂t = ( − cos θt cosφt,− cos θt sinφt,− sin θt )

ĥt = ( − sinφt , +cosφt , 0 )

K̂t = ( + sin θt cosφt,+sin θt sinφt,− cos θt )

. [1.113]

The incident wave and the wave scattered in reflection check the Helmholtz
equation [1.30] inside the upper medium Ω1, and the wave scattered in transmission
checks the Helmholtz equation inside the lower medium Ω2:

(�2 + k2α)E = 0, [1.114]

where α = 1 in the upper medium and α = 2 in the lower medium. The waves
scattered in reflection and transmission on the rough interface Σ12 are related to the
incident wave by the boundary conditions that are expressed in a general way by
equations [1.10]–[1.13]. Finally, in order to fully describe the problem, it is necessary
to have a condition of radiation at infinity, that is to say R → +∞
[DÉC 04, SOM 54]. This condition is checked by the so-called Green functions that
will be detailed hereafter.
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1.4.2. Huygens’ principle and extinction theorem

The Huygens principle [SOM 54, PÉR 04, FAR 93] is a fundamental principle of
the undulatory theory of light. Its statement is as follows [FAR 93]: Each point of
a wave surface13 S0 reached by the light at an instant t0 may be considered as a
secondary source which transmits spherical wavelets. At the instant t > t0, the wave
surface S is the envelope of the wave surfaces transmitted by the secondary sources
emanating from S0. This intuitive principle, which makes it possible to retrieve the
laws of geometrical optics, was completed by the postulate of Fresnel in 1818: Each
point M of a surface S reached by the light may be considered as a secondary source
which transmits a spherical wave whose amplitude and phase are those of the incident
wave at the point M . That is why this principle is sometimes called the principle
of Huygens–Fresnel. It can be demonstrated from the propagation equations and the
second theorem of Green.

1.4.2.1. Expressions in the scalar case

In the scalar case (2D or 3D), from the appropriate Green function (see equation
[1.128] or [1.129] hereafter), inside the medium Ω1 it can be shown that:

R ∈ Ω1, E1(R)
R ∈ Ω2, 0

�
= Ei(R)

+

�
ΣA

dΣA

$
E1(RA)

∂G1(RA,R)

∂NA
−G1(RA,R)

∂E1(RA)

∂NA

(
, [1.115]

where E1(RA) = Ei(RA) + Er(RA) is the total field on the surface ΣA inside the
incident medium, with Er(RA) the field scattered in reflection. N̂A is the normal
to the surface ΣA at the point A considered, oriented upward, that is to say, in our
convention, toward the direction of positive z (see Figure 1.11). In the 2D and 3D
cases, it is expressed by:

N̂A =
−γAxx̂+ ẑ+

1 + γ2
Ax

(2D case), [1.116]

N̂A =
−γAxx̂− γAyŷ + ẑ)

1 + γ2
Ax + γ2

Ay

(3D case), [1.117]

13 A wave surface is the ensemble of points of equal light perturbation. If the wave surface is
a plane, the wave is called plane (it is then called plane wave); if this surface is spherical, the
wave is called spherical.
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respectively, where γAx = ∂ζA/∂xA and γAy = ∂ζA/∂yA. In the 2D case, ζA ≡
ζ(xA), and in the 3D case, ζ ≡ ζ(xA, yA). The normal derivative ∂/∂NA is defined
by:

∂F

∂NA
= NA · �F. [1.118]

Figure 1.11. Presentation of the problem (view in the plane (x̂, ẑ))

The equation for R ∈ Ω1 corresponds to the Huygens principle, as the field at any
point inside Ω1 can be calculated from the knowledge of the field on the surface
E1(RA) inside Ω1 and of its normal derivative. To do so, it is necessary to use the
appropriate Green function G1(R,RA) (as well as its normal derivative). The
equation for R ∈ Ω2 corresponds to the extinction theorem, as the integral over the
rough surface cancels out the incident field.

For the dielectric case, for which a transmitted wave inside the lower medium Ω2

exists, the Huygens principle and the extinction theorem are obtained using the same
method:

R ∈ Ω1, 0
R ∈ Ω2, E2(R)

�
=

−
�
ΣA

dΣA

$
E2(RA)

∂G2(R,RA)

∂NA
−G2(R,RA)

∂E2(RA)

∂NA

(
, [1.119]
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where E2(RA) = Et(RA) is the total field on the surface ΣA inside the transmission
medium, which is equal to the field scattered in transmission Et(RA).

The determination of these equations for a given Green function is related to the
knowledge of the total field and its normal derivative on the surface.

1.4.2.2. Expressions in the vectorial case

The expressions in the scalar case have been generalized to 3D in the vectorial case
by Stratton and Chu [STR 41, KON 90]. These equations, which are usually called
Stratton–Chu equations, describe the Huygens principle and the extinction theorem,
and can be expressed in the form:

R ∈ Ω1, E1(R)
R ∈ Ω2, 0

�
= Ei(R)

+

�
ΣA

dΣA



iωµ0 Ḡ1(R,RA) · [NA ∧ H1(RA)]

+�∧ Ḡ1(R,RA) · [NA ∧ E1(RA)]
�
, [1.120]

for the field E1(R) inside Ω1, and

R ∈ Ω1, 0
R ∈ Ω2, E2(R)

�
= −

�
ΣA

dΣA



iωµ0 Ḡ2(R,RA) · [NA ∧ H2(RA)]

+�∧ Ḡ2(R,RA) · [NA ∧ E2(RA)]
�
, [1.121]

for the field E2(R) inside Ω2, where Ḡα represents the vectorial Green function,
usually called dyadic Green function, which is defined as:

Ḡα(R,RA) =

$
I +

��
k2α

(
Gα(R,RA), [1.122]

where α = {1, 2}, and Hα(RA) is expressed in terms of Eα(RA) from the Maxwell
equation [1.2], which can be rewritten in a Cartesian frame and by assuming non-
magnetic media (µr = 1) in the form:

Hα(RA) =
1

iωµ0
� ∧ Eα(RA). [1.123]

In the vectorial case, for a given Green function, the determination of these
equations is related to the knowledge of the tangential components of the electric and
magnetic fields, NA ∧ Eα(RA) and NA ∧ Hα(RA). These quantities play a
role in the passage relations on the surface, which are written in the general form by
[1.12] and [1.13], respectively.
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1.4.2.3. Kirchhoff–Helmholtz equations

In what follows, the equations that describe the Huygens principle will be used in
a slightly different form for which only the scattered field (and not the total field) is
expressed at any point R in terms of the total field on the surface: these equations are
then called Kirchhoff–Helmholtz equations. For a scalar problem, they are expressed
in reflection and transmission by:

∀R ∈ Ω1, Er(R) = +

�
ΣA

dΣA [1.124]!
E1(RA)∂G1(R,RA)

∂NA
−G1(R,RA)∂E1(RA)

∂NA

%
,

∀R ∈ Ω2, Et(R) = −
�
ΣA

dΣA [1.125]!
E2(RA)∂G2(R,RA)

∂NA
−G2(R,RA)∂E2(RA)

∂NA

%
,

respectively. For the vectorial case, they are expressed in reflection and transmission
by [TSA 01b]:

∀R ∈ Ω1,Er(R) = +

�
ΣA

dΣA



iωµ0 Ḡ1(R,RA) · [NA ∧ H1(RA)] [1.126]

+�∧ Ḡ1(R,RA) · [NA ∧ E1(RA)]
�
,

∀R ∈ Ω2,Et(R) = −
�
ΣA

dΣA



iωµ0 Ḡ2(R,RA) · [NA ∧ H2(RA)] [1.127]

+�∧ Ḡ2(R,RA) · [NA ∧ E2(RA)]
�
,

respectively.

1.4.3. Green functions (2D/3D)

The Green function is a mathematical tool that makes it possible to propagate a
wave from a point of a given medium to another point; for our purpose, it is used to
relate the scattered wave on the surface to the scattered wave at any point of the space,
and that checks the radiation condition at infinity. Its derivation is not detailed here;
for more details, see, for instance, [DUR 03] and [SOU 01a]. Its general expression is
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given for a wave propagating from any point R1 to any point R2 inside the medium
Ωα (with α = {1, 2}), in 2D and 3D (for the scalar case) by:

Gα(R2,R1) =
i

4
H

(1)
0 (kα||R2 −R1||), where R = xx̂+ zẑ, [1.128]

Gα(R2,R1) =
exp(ikα||R2 −R1||)

4π||R2 −R1|| , where R = xx̂+ yŷ + zẑ, [1.129]

respectively, where H
(1)
0 is the Hankel function of first kind and order zero. The

expression in 3D and in the vectorial case is given by the dyadic Green function,
which is expressed from [1.129] by:

Ḡα(R2,R1) =

$
I +

��
k2α

(
Gα(R2,R1), where R = xx̂+ yŷ + zẑ. [1.130]

1.4.3.1. Weyl representation of the Green function

Another possible equivalent representation of the Green functions is the
representation in the Fourier domain under the form of a sum (a spectrum) of plane
waves. Also called Weyl representation of the Green function, it is expressed in 2D
by:

Gα(R2,R1) =
i

2

� +∞

−∞

dkx
2π

eikx(x2−x1)+if(kx)|z2−z1|

f(kx)
, [1.131]

where R = xx̂+ zẑ, with:

f(kx) =

� +
k2α − k2x if k2α ≥ k2x

i
+
k2x − k2α if k2α < k2x

, [1.132]

where kα is the wavenumber inside the medium Ωα, and in 3D (in the scalar case) by
[BOU 04a, FUN 94, BAS 78]:

Gα(R2,R1) =
i

2

� +∞

−∞

� +∞

−∞

dk

(2π)2
eik · (r2−r1)+if(k)|z2−z1|

f(k)
, [1.133]

where R = xx̂+ yŷ + zẑ, k = kxx̂+ kyŷ and r = xx̂+ yŷ, with:

f(k) =

� +
k2α − ||k||2 if k2α ≥ ||k||2

i
+||k||2 − k2α if k2α < ||k||2 . [1.134]

Note that the case k2α < ||k||2 (k2α < k2x in 2D) corresponds to the contribution of
the evanescent waves. However, generally we study the scattered field in the far-field
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zone of the surface. In this case, the evanescent waves can be neglected, and the
integration of kx,y in the interval ] −∞; +∞[ is reduced to the interval [−kα; +kα].
Then, the variable f(k) is always positive and is equal to f(k) =

+
k2α − ||k||2.

Using the same method in the 2D case, f(kx) =
+

k2α − k2x > 0.

The above expressions of the Green function can then be simplified: the term
inside the exponential can be rewritten in the form of a scalar product between the
vector R2 −R1 and the propagation wave vector K from the point R1 to the point
R2. K can then be written in the form:

K = kα
R2 −R1

||R2 −R1|| . [1.135]

In the 3D case, K is also expressed by:

K = k + kzẑ, with kz = K · ẑ = sign(K · ẑ) f(k). [1.136]

From equation [1.135], the vector K points in the same direction as R2 − R1,
but in the opposite way. Thus, kz = K · ẑ and z2 − z1 = R2 − R1 · ẑ have the
same sign. As a result, the term inside the exponential may be rewritten in the form
[ISH 96, BAH 01]:

exp[iK · (R2 −R1)], [1.137]

and the Weyl representation of the Green function can be rewritten in 2D in the form:

Gα(R2,R1) =
i

4π

� +π/2

−π/2

dθ exp[iK · (R2 −R1)], [1.138]

and in 3D in the form [ISH 96]:

Gα(R2,R1) =
ikα
8π2

�
sin θdθ

�
dφ exp[iK · (R2 −R1)], [1.139]

with (θ,φ ) as the angular directions corresponding to the wave vector K.

It is also possible to express the Green function that represents the propagation of
a wave from a point R1 to a point R2 after the reflection onto a perfectly flat surface
of elevation zS by [BAS 78, TSA 75, SOU 01a]:

Gα,r(R2,R1) =
i

2

� +∞

−∞

� +∞

−∞

dk

(2π)2
r(k)

eik · (r2−r1)+if(k)(z2+z1−2zS)

f(k)
, [1.140]

where r(k) is the Fresnel reflection coefficient.
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1.4.3.2. Far-field approximation

In the case when the point R2 ≡ P is in the far-field zone relative to R1, the
Green function may be expressed approximately in 2D and 3D in the form:

Gα(P ,R1) � i

4

,
2

πkαR
exp

�
i(kαR−K · R1 − π/4)

�
, [1.141]

Gα(P ,R1) �
exp

�
i(kαR−K · R1)

�
4πR

, [1.142]

respectively, where R = ||P || and kα = ||K||.

1.4.4. Scattered powers and scattering coefficients

To determine the EM power (or intensity) scattered by random rough surfaces,
usually, a coefficient that relates the power density scattered in a given direction to the
incident power is used. This coefficient differs in its name and definition according
to various scientific communities (optics, radar, etc.). In what follows, the classical
definition in the rough surface scattering community is derived, and the relationship
with the other definitions is given.

1.4.4.1. Incident power, scattered power(s) and energy conservation

It is necessary to know the incident power onto the surface as well as the power
scattered by this surface, not only in reflection in the incident medium, but also in
transmission. First, the incident power onto the surface is taken as the average power
on the rough surface Σ12, corresponding to the incident power on the average plane
S12 of the rough surface. Knowing that the elementary flux dF of a vector V through
an element of (flat) surface dS is equal to:

dF = V · dS, [1.143]

the flux of the average incident Poynting vector �Πi� received by an element of flat
surface dS12 = dxdy with normal N̂ = ẑ is then equal to dPi = −�Πi · N̂� dx dy =
−(�Πi� · ẑ) dx dy (the minus sign is due to the fact that dPi must be positive). Then,
the total incident power Pi on the average plane is [TSA 01a]:

Pi =

� +Lx/2

−Lx/2

� +Ly/2

−Ly/2

−(�Πi� · ẑ) dx dy = LxLy cos θi ||�Πi�||, [1.144]

where ||�Πi�|| = �|Ei|2�
2Z1

, with Z1 =
)

µ0

�0�r1
for a plane wave inside a non-magnetic

perfect dielectric medium.
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The flux of the average scattered Poynting vector �Πs� (in reflection �Πr� or
in transmission �Πt�) by the rough surface through an element of surface dS with
normal n̂ is equal to dPs = +(�Πs� · n̂) dS. The scattered wave being spherical in
general, in the spherical frame (R,θ s, φs), the element of surface dS is expressed in
the hypothesis when the scattered wave is in the far-field zone of the surface by:

dS = dS n̂ = R2 sin θs dθsdφs n̂, [1.145]

where R is the distance of the scattered field Es to the origin, θs is the elevation angle
of the scattered wave and φs is its azimuthal angle. Then, the total scattered wave Ps

(in reflection Pr or transmission Pt) by the rough surface is [TSA 01a]:

Ps =

� �
(�Πs� · n̂) R2 sin θs dθs dφs =

� �
||�Πs�||R2 sin θs dθs dφs,[1.146]

where ||�Πs�|| = �|Es|2�
2Zα

, with Zα =
)

µ0

�0�rα
for a plane wave inside a

(non-magnetic) perfect dielectric medium. For a wave scattered in reflection,
s ≡ r ⇒ α = 1, and for a wave scattered in transmission, s ≡ t ⇒ α = 2.

Then, it is possible to study the energy conservation, which should be checked in
theory, that is (Pr + Pt)/Pi = 1. By analogy with a flat surface, the reflectivity is
usually defined by Pr/Pi and the transmissivity by Pt/Pi. They are then defined for
perfect dielectric media by:

Pr

Pi
=

� �
R2 ||�Πr�||

Pi
sin θr dθr dφr [1.147]

=

� �
R2 �|Er|2�

LxLy cos θi |Ei|2 sin θr dθr dφr,

Pt

Pi
=

� �
R2 ||�Πt�||

Pi
sin θt dθt dφt [1.148]

=

� �
R2 �|Et|2�

LxLy cos θi |Ei|2
Z1

Z2
sin θt dθt dφt.

Thus, by analogy with the case of a flat surface, the principle of energy
conversation must lead to the result (Pr + Pt)/Pi = 1. As a result, the study of
(Pr + Pt)/Pi is a good means (among others) to study the validity of an EM model,
depending on various parameters such as the incidence angle and the characteristic
statistical parameters of the studied rough surface.
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1.4.4.2. Scattering coefficient, radar cross-section (RCS) and bidirectional
reflectance distribution function (BRDF)

By definition, the scattering coefficient is equal to the proportion of the wave
scattered by the surface (relatively to the incident power) in a solid angle defined by
sin θs dθsdφs, around the observation direction K̂s given by (θs, φs) [TSA 01a]14:

Ps(K̂i)

Pi(K̂i)
=

�
φs

�
θs

σs(K̂s, K̂i) sin θs dθsdφs. [1.149]

It is defined in the far-field zone R → +∞. Thus, by identification, the scattering
coefficients in reflection and transmission are defined by [TSA 01b]:

σr(K̂r, K̂i) = lim
R→+∞

R2 ||�Πr�||
Pi

= lim
R→+∞

R2 ||�Πr�||
LxLy cos θi ||�Πi�|| , [1.150]

σt(K̂t, K̂i) = lim
R→+∞

R2 ||�Πt�||
Pi

= lim
R→+∞

R2 ||�Πt�||
LxLy cos θi ||�Πi�|| . [1.151]

For 2D problems, by using the same way [DÉC 04], the scattering coefficients are
written in reflection and transmission by:

σr(θr, θi) = lim
R→+∞

R ||�Πr�||
Pi

= lim
R→+∞

R ||�Πr�||
Lx cos θi ||�Πi�|| , [1.152]

σt(θt, θi) = lim
R→+∞

R ||�Πt�||
Pi

= lim
R→+∞

R ||�Πt�||
Lx cos θi ||�Πi�|| . [1.153]

The radar cross-section (RCS), widely used in the radar domain, has a similar
definition. However, contrary to the scattering coefficient that is dimensionless, as its
name suggests, the RCS is proportional to a surface, so it is homogeneous to m2. It is
defined by:

RCS = 4π lim
R→+∞

R2 ||�Πr�||
||�Πi�|| . [1.154]

Thus, the relation between the RCS and the scattering coefficient in reflection is as
follows:

RCS = 4π LxLy cos θi σr(K̂r, K̂i). [1.155]

14 A slightly different definition is often met (particularly in the Anglo-Saxon literature), where
a multiplicative factor 1/4π appears on the right-hand side of equation [1.149]. Consequently,
the scattering coefficient is multiplied by 4π.
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The difference between these two definitions may be explained by the fact that
in radar, the target (illuminated object) is often unknown; consequently, its size is
not known, so the incident total power on the target is unknown. That is why the
RCS is defined from the density of the incident power. Also note that the scattering
coefficient is often called normalized radar cross-section (NRCS), as it corresponds to
a normalization of the RCS by the illuminated object size.

In the optical domain, the bidirectional reflectance distribution function (BRDF)
has a slightly different definition from the scattering coefficient (or NRCS) in
reflection σr. It can be shown [CAR 03a] that the BRDF is expressed by:

BRDF (K̂r, K̂i) =
σr(K̂r, K̂i)

cos θr
. [1.156]

Using the same method, the bidirectional transmittance distribution function
(BTDF) is defined by [CAR 03a]:

BTDF (K̂t, K̂i) =
σt(K̂t, K̂i)

cos θt
. [1.157]

In the remainder of the book, these general concepts are used for calculating the
scattered field and intensity of random rough surfaces by using asymptotic models.


