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Integral Equations for a Single Scatterer:
Method of Moments and Rough Surfaces

1.1. Introduction

In this chapter, the integral equations (IEs) are addressed to derive the field
scattered by a single scatterer in free space. They are obtained by introducing
the Green function concept and by applying the boundary conditions onto the
scatterer. In addition, the IEs are converted into a linear system by using the
method of moments (MoM) with the point-matching method. The impedance
matrix is then expressed for any shape of the object. The special case of a
perfectly conducting (PC) object is also discussed. This chapter also presents
the necessary statistical parameters to generate a random rough surface.

In all chapters, the media are considered as homogeneous, linear and
isotropic. In addition, they are considered as non-magnetic, which means that
the magnetic permeability is µ0 = 4π × 10−7 H/m. In addition, the medium
Ω0 (the subscript 0 is used for variables defined in vacuum) is considered as
vacuum and the time convention e−jωt is used. Then, the derivative over the
time t is ∂/∂t → −jω. For any media without sources, two Maxwell
equations [KON 05, TSA 00] are simplified as:�

curlH = � ∧H = −jω�E
curlE = � ∧E = jωµ0H

, [1.1]

where H is the magnetic field and E the electric field. In addition, ω is the
pulsation (rad/s) and � = �0�r is the permittivity, in which �0 = 1/(36π×109)
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2 Method of Moments for 2D Scattering Problems

is the permittivity in vacuum and �r is the relative permittivity (which equals
unity for vacuum). For a two-dimensional (2D) space of unitary vectors (x̂, ẑ),
the vectorial operator � is defined in Cartesian coordinates as:

� =
∂

∂x
x̂+

∂

∂z
ẑ. [1.2]

1.2. Integral equations

1.2.1. TE and TM polarizations and boundary conditions

Let n̂ be the normal to the surface S pointing toward Ω0 and lying in the
plane (x̂, ẑ) (2D problem), and separating two media, Ω0 (upper) and Ω1

(lower), of dielectric permittivities �0 and �1 (see Figure 1.1), respectively.

For the transverse electric (TE) polarization (the electric field is normal to
the incident plane (x̂, ẑ)), the electric field in the upper medium is defined as
E0 = ψ0ŷ, where ψ0 is a scalar number. In medium Ω0, the use of equation
[1.1] leads to:

H0 =
1

jωµ0
� ∧E0 = − 1

jωµ0
ŷ ∧�ψ0. [1.3]

knowing that A1∧(A2∧A3) = (A1 ·A3)A2−(A1 ·A2)A3, for any vectorial
function Ai, we have:

n̂ ∧H0 = − 1

jωµ0
n̂ ∧ (ŷ ∧�ψ0) = − 1

jωµ0
[(n̂ ·�ψ0)ŷ − (n̂ · ŷ)�ψ0]

= − ŷ

jωµ0
(n̂ ·�ψ0), [1.4]

where n̂·ŷ = 0 since the normal lies in the plane (x̂, ẑ). For the lower medium
Ω1, the quantities E1, H1 and ψ1 also satisfy equation [1.4], in which the
subscript “1” is used for variables defined in Ω1.

For a surface separating two dielectric media, the boundary conditions state
that the electric and magnetic tangential fields are continuous. Since E0,1 =
ψ0,1ŷ, this leads from equation [1.4] to:�

ψ0(r) = ψ1(r)
n̂ ·�ψ0(r) = n̂ ·�ψ1(r)

, ∀r ∈ S. [1.5]
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For the transverse magnetic (TM) polarization (the magnetic field is
normal to the incidence plane (x̂, ẑ)), the magnetic field in the upper medium
is defined as H0 = ψ0ŷ. The use of equation [1.1] leads to:

E0 = − 1

jω�0
� ∧H0 =

1

jω�0
ŷ ∧�ψ0, [1.6]

and

n̂ ∧E0 = − 1

jω�0
(ŷ ∧�ψ0) ∧ n̂ = +

1

jω�0
n̂ ∧ (ŷ ∧�ψ0)

= − 1

jω�0
[(n̂ ·�ψ0)ŷ − (n̂ · ŷ)�ψ0]

= +
ŷ

jω�0
(n̂ ·�ψ0). [1.7]

Moreover, for the lower medium Ω1, H1 = ψ1ŷ and n̂ ∧ E1 = +ŷ(n̂ ·
�ψ1)/(jω�1). The boundary conditions state that the electric and magnetic
tangential fields are continuous, leading to:�

ψ0(r) = ψ1(r)
n̂ ·�ψ0(r) =

�0
�1
n̂ ·�ψ1(r)

, ∀r ∈ S. [1.8]

In conclusion, for the TE and TM polarization, equations [1.5] and [1.8]
lead to:�

ψ0(r) = ψ1(r)
n̂ ·�ψ0(r) = ρ01n̂ ·�ψ1(r)

, ∀r ∈ S, [1.9]

where ρ01 = 1 for the TE polarization and ρ01 = �0/�1 for the TM
polarization.

1.2.2. Electric and magnetic currents for a 2D problem

For a 3D problem, the electric J0 and magnetic M0 currents are defined
on the surface as:

J0 = n̂ ∧ Ĥ0, M0 = −n̂ ∧ Ê0, [1.10]

where n̂ is the normal to the surface.
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For the TE polarization, E0 = ψ0ŷ and from equation [1.4], we then have:J0 = − 1

jωµ0
n̂ ∧ (ŷ ∧�ψ0) = − 1

jωµ0
(n̂ ·�ψ0) ŷ

M0 = −n̂ ∧ (ψ0ŷ) = ψ0 (−n̂ ∧ ŷ)
. [1.11]

For the TM polarization, H0 = ψ0ŷ and from equation [1.7], we then
have:J0 = n̂ ∧ (ψ0ŷ) = ψ0 (n̂ ∧ ŷ)

M0 = − 1

jω�0
n̂ ∧ (ŷ ∧�ψ0) = − 1

jω�0
(n̂ ·�ψ0) ŷ

. [1.12]

In conclusion, for the TE and TM polarizations, ψ0 and the normal
derivative n̂ · �ψ0 = ∂ψ0/∂n are related to the currents {M0,J0} and
{J0,M0}, respectively.

1.2.3. Huygens’ principle and extinction theorem

In Figure 1.1, the upper medium Ω0 stands for the domain bounded by the
surface S and the contour C0,∞, whereas Ω1 stands for the domain bounded
by the surface S and the contour C1,∞. We recall that the normal to the surface
n̂ pointed toward Ω0.

Figure 1.1. The domain Ω0 is bounded by the contour C0,∞ and the surface S
whereas Ω1 is bounded by the contour C1,∞ and the surface S
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In media Ω0 and Ω1 (without sources), the fields ψ0 and ψ1 satisfy the
scalar Helmholtz equation:

�2ψi(r) + k2i ψi(r) = 0, ∀r ∈ Ωi, [1.13]

where ki = ω
√
�iµ0 is the wave number in medium Ωi (i = {0, 1}) and �2 is

the scalar Laplacian. The scalar Green functions g0(r, r�) and g1(r, r
�) defined

in media Ω0 and Ω1, respectively, satisfy:

�2gi(r, r
�) + k2i gi(r, r

�) = −δ(r − r�), [1.14]

where r = xx̂+ zẑ are the Cartesian coordinates of the source point and r� =
x�x̂ + z�ẑ are the Cartesian coordinates of the observation point. Physically,
the Green function is the field radiated from a source point represented from
the Dirac delta function δ. It then satisfies the Helmholtz equation, in which
the right-hand side of equation [1.13] is −δ(r − r�).

Applying the scalar Green theorem, we have:%%
Ω
(f1�2f2 − f2�2f1)dr =

$
C
(f1�f2 − f2�f1) · dS, [1.15]

where dS = n̂dS, in which n̂ is the unitary vector normal to the closed
oriented contour bounding medium Ω.

Let f1 = ψ0 and f2 = g0 in equation [1.15]. Then, from equations [1.13]
and [1.14], for r ∈ Ω0 we have:%%

Ω0

�
ψ0(r)�2g0(r, r

�)− g0(r, r
�)�2ψ0(r)

�
dr

=

%%
Ω0

�
ψ0(r)

�−δ(r − r�)− k20g0(r, r
�)
�
+ g0(r, r

�)k20ψ0(r)
�
dr

= −
%%

Ω0

ψ0(r)δ(r − r�)dr

=

�−ψ0(r
�) if r� ∈ Ω0

0 if r� /∈ Ω0

=

%
C0

�
ψ0(r)�g0(r, r

�)− g0(r, r
�)�ψ0(r)

� · dS, [1.16]
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where the contour C0 = S ∪ C0,∞ bounding the medium Ω0. In addition, the
last line of equation [1.16] can be written as:%

C0

�
ψ0(r)�g0(r, r

�)− g0(r, r
�)�ψ0(r)

� · dS
= −

%
S

�
ψ0(r)

∂g0(r, r
�)

∂n
− g0(r, r

�)
∂ψ0(r)

∂n

 
dS

+

%
C0,∞

�
ψ0(r)

∂g0(r, r
�)

∂n
− g0(r, r

�)
∂ψ0(r)

∂n

 
dS� �� 	

−ψinc(r�)∀r�∈Ω0

, [1.17]

where ∂f/∂n = n̂ · �f . The minus sign before the integral over S is due
to the sense of the normal n̂, which points inside Ω0. The plus sign before the
integral over C0,∞ is due to the sense of the normal n̂0,∞, which points outside
Ω0.

It can be shown that the integral over the contour C0,∞ equals minus the
incident field (−ψinc(r

�)) [TSA 00]. For r ∈ S, the substitution of equation
[1.17] into equation [1.16] then leads to:����

−ψinc(r
�) =

�
S

�
ψ0(r)

∂g0(r, r
�)

∂n
− g0(r, r

�)
∂ψ0(r)

∂n

�
dS if r� /∈ Ω0

ψ0(r
�)− ψinc(r

�) =
�
S

�
ψ0(r)

∂g0(r, r
�)

∂n
− g0(r, r

�)
∂ψ0(r)

∂n

�
dS if r� ∈ Ω0

. [1.18]

Special attention must be paid when r� approaches the surface S from either
below or above. For more details see [TSA 00 Chapter 4, section 2]. For r� /∈
Ω0, equation [1.18] gives the extinction theorem. For r� ∈ Ω0 (S excluded),
equation [1.18] gives the Huygens’ principle:

ψsca,0(r
�) = ψ0(r

�)− ψinc(r
�) =

%
S

�
ψ0(r)

∂g0(r, r
�)

∂n
− g0(r, r

�)
∂ψ0(r)

∂n

 
dS.

[1.19]
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This shows that the scattered field ψsca,0 is expressed from the field ψ0 and
its normal derivative on the surface ∂ψ0/∂n. These two quantities are often
called surface currents.

Applying the same principle for the field ψ1 in the lower medium Ω1, for
r ∈ S we have [TSA 00]:����

0 =

�
S

�
ψ1(r)

∂g1(r, r
�)

∂n
− g1(r, r

�)
∂ψ1(r)

∂n

�
dS if r� /∈ Ω1

ψ1(r
�) = −

�
S

�
ψ1(r)

∂g1(r, r
�)

∂n
− g1(r, r

�)
∂ψ1(r)

∂n

�
dS if r� ∈ Ω1

, [1.20]

and the scattered field ψsca,1 = ψ1 since ψ1,inc = 0 in Ω1. In equations [1.18]
and [1.20], the four surface unknowns to determine on the surface are ψ0(r),
∂ψ0(r)/∂n, ψ1(r) and ∂ψ1(r)/∂n, whereas the quantities ψinc(r

�), g0(r, r�)
and g1(r, r

�) are known. It is therefore necessary to have two additional
equations, which are obtained from the boundary conditions [1.9] on the
surface S, valid ∀(r, r�) ∈ S. Then, from equations [1.18] (the case for which
is r� ∈ Ω0), [1.20] (the case for which is r� ∈ Ω1) and [1.9], ∀(r, r�) ∈ S, the
IEs are [TSA 00]:����

ψinc(r
�) = +

1

2
ψ0(r

�)−−
�
S

ψ0(r)
∂g0(r, r

�)
∂n

dS +

�
S

g0(r, r
�)
∂ψ0(r)

∂n
dS

0 = −1

2
ψ0(r

�)−−
�
S

ψ0(r)
∂g1(r, r

�)
∂n

dS +

�
S

1

ρ01
g1(r, r

�)
∂ψ0(r)

∂n
dS

. [1.21]

The symbol −
&

stands for the Cauchy principal value, which means that the
case r = r� is not accounted for in the calculation of the integral. In addition,
letting

&
S dS = −

&
dS+

&
P dS (where P is a piece), it is important to note that

for r = r� ∈ S+ (at the upper limit),
&
P ψ0(r)

∂g0(r,r�)
∂n dS = +ψ0(r

�)/2, and
for r = r� ∈ S− (at the lower limit),

&
P ψ0(r)

∂g0(r,r�)
∂n dS = −ψ0(r

�)/2.

To solve a scattering problem, the currents on the surfaces ψ0 and ∂ψ0/∂n
must be calculated. For an arbitrary shape of a surface, a numerically rigorous
method is needed to compute them because the IEs have no analytical
solution. This is discussed in the following section. From the knowledge of
these currents, the scattered field ψi,sca (i = {1, 2}) is then computed in the
domain Ωi − S from equations [1.19] and [1.20] (with r� ∈ Ωi), respectively.
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COMMENT 1.1.– 2D SCALAR GREEN FUNCTION–. For a 2D problem, the
Green function is expressed as:

gi(r, r
�) =

j

4
H(1)
0 (ki

55r − r�
55) = j

4
H(1)
0

�
ki
1

(x− x�)2 + (z − z�)2
�
, [1.22]

where H(1)
0 is the zeroth-order Hankel function of the first kind. Their

derivatives with respect to x and z are then (with D = 
r − r�
):������
∂gi(r, r

�)
∂x

=
∂gi(kiD)

∂D

∂D

∂x
= −jki

4
H(1)
1 (kiD)

x− x�

D

∂gi(r, r
�)

∂z
=

∂gi(kiD)

∂D

∂D

∂z
= −jki

4
H(1)
1 (kiD)

z − z�

D

. [1.23]

The quantity ∂gi(r, r
�)/∂n = n̂ ·�gi(r, r

�) is then:

∂gi(r, r
�)

∂n
= −jki

4

H(1)
1 (ki 
r − r�
)


r − r�
 (r − r�) · n̂. [1.24]

Figure 1.2 shows the real and the imaginary parts of H(1)
0 (x) and its

envelope versus x (x > 0). For x � 1, it behaves as a periodic function
because for x → +∞, we have [ABR 70]:

H(1)
0 (x) ≈

2
2

xπ
exp

�
j
'
x− π

4

+�
as x → +∞. [1.25]

Moreover, the equation of its envelope is
1
2/(xπ) ∝ 1

1/x, which
corresponds to a cylindrical wave (2D problem).

1.2.4. Radar cross-section (RCS)

For a 2D problem, in medium Ω0, the RCS is defined as:

RCS = lim
r�→∞

2πr�
6666ψsca,0

ψinc,0

66662 , [1.26]

where r� is the distance between the object (phase center) and the receiver.
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Figure 1.2. Real and the imaginary parts of H(1)
0 (x) and its

envelope versus x (x > 0)

Figure 1.3. Huygens’ principle in the far field for a 2D problem

As shown in Figure 1.3, in the far field (r� → ∞, r� � and r� � λ0 =
2π/k0), 
r − r�
 = 
r� − r
 ≈ r� − k̂sca · r for the phase, whereas for
the amplitude term 
r − r�
 ≈ r�. From equation [1.25], in the observation
direction defined by k̂sca, the Green function can be simplified in the far field
as:

g0(r, r
�) =

j

4
H(1)
0 (k0

55r − r�
55) ≈ j

4

2
2

πk0r�
ej(k0r

�−ksca·r−π/4). [1.27]

Moreover,

∂g0(r, r
�)

∂n
= n̂ · �r�g0(r, r

�) ≈ −jg0(r, r
�)ksca · n̂. [1.28]



10 Method of Moments for 2D Scattering Problems

Substituting these two equations into the Huygens’ principle [1.19], the
scattered field in medium Ω0 in the far-field zone (super script ∞) is:

ψ∞
sca,0 =

j

4

2
2

πk0r�
e−jπ/4+k0r�ψ∞,0

sca,0ψinc,0, [1.29]

where the variable ψ∞,0
sca,0 is:

ψ∞,0
sca,0 = − 1

ψinc,0

%
S

�
jksca · n̂ψ0(r) +

∂ψ0(r)

∂n

 
� �� 	

f(r)

e−jksca·rdS, [1.30]

and ψinc,0 is the modulus of the incident field ψinc in medium Ω0. Then, the
scattered far field is then obtained from the Fourier transform of f(r).

The substitution of equation [1.29] into equation [1.26] then leads to:

RCS =

666ψ∞,0
sca,0

6662
4 |k0| . [1.31]

Since ψ∞,0
sca,0 is dimensionless, the RCS has the dimension of a distance

(meter), since we consider it to be a 2D problem.

1.2.5. Normalized radar cross-section (NRCS)

If the surface has a finite extent, edge diffraction occurs, because the
incident field does not vanish on the edges of the surface. To reduce this
phenomenon, for the scattering from a rough surface, a tapered incident wave
is used instead of a plane incident wave. A possible option is the Thorsos
wave defined as [THO 88]:

ψinc(r) = ψinc,0 exp (jkinc · r)� �� 	
Plane wave

exp

*
−(x+ z tan θinc)

2

g2

.
� �� 	

Damping factor

exp [jw(r)kinc · r]� �� 	
Corrective term

,

[1.32]
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where

w(r) =

�
2(x+ z tan θinc)

2

g2
− 1

 
1

(k0g cos θinc)2
, [1.33]

and kinc = k0(sin θix̂ − cos θiẑ). The damping is orthogonal to the incident
vector kinc. The additional corrective term allows us to better satisfy the
Helmholtz equation. Nevertheless, the Thorsos wave verifies the Helmholtz
equation at the order O

'
1

(gk0 cos θinc)3

+
, implying that 1/C = gk0 cos θinc >>

1. This condition is not satisfied for:

– grazing incidence angles: Indeed, for given k0 and g, if θinc → π/2, then
gk0 cos θinc → 0.

– g small in comparison to the wavelength λ0: in other words, if the width
of the incident beam is small in comparison to the wavelength.

Typically, 1/(gk0 cos θinc) ≤ C = 0.037 and in the following, we take
g = L/6, where L is the surface length.

From the Thorsos wave, the normalized incident power on the rough surface
mean plane z = 0 is then:

pinc = − 1

|ψinc,0|2
% +∞

−∞
Sinc · ẑ|z=0 dx

= − 1

2|ψinc,0|2η0

% +∞

−∞
|ψinc|2k̂inc · ẑ

666
z=0

dx

=
cos θinc

2|ψinc,0|2η0

% +∞

−∞
|ψinc|2

66
z=0

dx

=
g cos θinc

2η0

2
π

2

�
1− 1 + 2 tan2 θinc

2k20g
2 cos2 θinc

 
, [1.34]

where η0 is the wave impedance in medium Ω0. In addition, Sinc is the
Poynting vector that gives the power density carried by the incident wave.
The NRCS is defined as [TSA 00]:

NRCS = lim
r�→∞

r�

2η0

66ψ∞
sca,0

662
pinc

=
1

16πη0k0

666ψ∞,0
sca,0

6662
pinc

, [1.35]
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where the field ψ∞,0
sca,0 is computed from equation [1.30]. Note that unlike the

RCS, the NRCS is dimensionless.

1.3. Method of moments with point-matching method

The MoM is a numerical method that has been used extensively for the
solution of scattering electromagnetic problems. Many excellent textbooks like
[HAR 68, TSA 00] have been written on this subject. A characteristic of this
technique is that it leads to a full matrix equation that can be solved from
a matrix inversion. In this book, the MoM with point-matching method and
pulse basis function is applied. Their main advantages are that they are simple
to program and are efficient for scattering from rough surfaces.

Consider a 1D IE of the form:

L (f) = g, [1.36]

where L is an integral operator or integral–differential operator, f is the
unknown function and g is a given function.

– Step 1: Basis functions

A set of N basis functions in the domain D is chosen. Let the basis
functions be f1, f2, . . . , fN . The unknown function is expanded in terms of
a linear combination of these functions:

f " f̃ =
N3

n=1

anfn, [1.37]

and f̃ verifies limN→+∞
666f − f̃

666 = 0. The substitution of equation [1.37] into
equation [1.36] leads to:

Lf = L
(

N3
n=1

anfn

,
+ ε = g, [1.38]

where ε is the residue due to the truncation of the sum at the order N . Since
Lf is a linear operator:

Lf =

N3
n=1

an(Lfn) + ε = g. [1.39]
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– Step 2: Testing functions

Next, a set of M weighting functions w1, w2, . . . , wM is chosen.
Multiplying equation [1.39] by wm(x) (with m = 1 . . .M ), assuming that
�wm, ε� ≈ 0 and integrating over the domain D, we obtain:�

wm,
N3

n=1

an(Lfn)
�

=
N3

n=1

an �wm,Lfn� = �wm, g� , [1.40]

where the inner product �. . .� is defined for a single variable x as:

�f, g� =
%
D
f(x)g(x)dx. [1.41]

– Step 3: Linear system

From equation [1.40], the linear system to be solved is:

Z̄X = b, [1.42]

in which the elements of the matrix Z̄ and the vector b are defined as:�
Zmn = �wm,Lfn�
bm = �wm, g� , [1.43]

and the elements of the vector X , which equals an, must be determined. The
matrix Z̄ is the impedance matrix of the scattering problem and depends on
the shape and the electric properties of the surface.

– Point-matching method

Basis functions can use full domain functions such as sines, cosines, special
functions, polynomials and modal solutions. A set that is useful for a practical
problem is the subsectional basis function. This means that each fn is only
non-zero over a subsection of the domain of f .

A common choice is the pulse function:

fn(x) =

�
1 if αn ≤ x ≤ βn
0 otherwise

, [1.44]

where the interval D is divided into N subintervals βn − αn with end points
α1 and βN with n = {1, 2, . . . , N}.
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For the weighting functions wm, the following are two common choices:

1) Galerkin’s method. In this case, the weighting functions are the same as
the basis function, that is wn(x) = fn(x) with n = {1, 2, . . . , N}.

2) Point-matching method. In this case, the weighting functions are the
Dirac delta functions wm = δ(x − xm) with m = {1, 2, . . . ,M}, and we
choose M = N .

From the point-matching method and equation [1.40], we obtain:

Zmn = �wm(x),L[fn(x)]� = �δ(x− xm),L[fn(x)]�

=

%
D
δ(x− xm)L[fn(x)]dx = L[fn(xm)], [1.45]

and

bm = �wm, g(x)� = �δ(x− xm), g(x)�

=

%
D
δ(x− xm)g(x)dx = g(xm). [1.46]

1.4. Application to a surface

In this section, the MoM is applied along with the point-matching method
to convert the IEs [1.21] into a linear system.

1.4.1. The Dirichlet boundary conditions

For a PC surface and for the TE polarization (the Dirichlet boundary
conditions), the field vanishes on the surface, ψ0 = 0. Thus, equation [1.21]
can be simplified as:

ψinc(r
�) =

%
S
g0(r, r

�)
∂ψ0(r)

∂n
dS, [1.47]

where the points r = (x, y) and r� = (x�, y�) are on the surface S.
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For a surface of length L and centered on x = 0, equation [1.47] can be
written as:

Lf = g, [1.48]

where��L• =

% L/2

−L/2

0
1 +

*
dz

dx

.2

g0(r, r
�)dx•

f = ∂ψ(r)
∂n , g = ψinc(r

�)

. [1.49]

The unknown is f . From the MoM, equation [1.47] is converted into a
linear system Z̄X = b. The elements of the impedance matrix Z̄, Zmn (with
(n,m) ∈ [1;N ]), and the components of the vector b, bm, are given from
equations [1.45] and [1.46] by:

Zmn =

% βn

αn

0
1 +

*
dz

dx

.2

g0(r, rm)dx

≈
0
1 +

*
dzn
dxn

.2

g0(rn, rm)(βn − αn), [1.50]

and

bm = ψinc(rm). [1.51]

For the calculation of the integration over x of Zmn, we assumed that the
integrand does not vary significantly on the range x ∈ [αn;βn]. Physically, this
condition is fulfilled if βn−αn � λ0 (corresponding to slow variations of the
Green function g0 over the distance βn − αn), where λ0 is the wave length in
medium Ω0. Typically, for the simulations βn−αn = λ0/10, corresponding to
a distance for which the Green function slowly varies. For m = n, the Green
function has a singularity. Then, the evaluation of integral [1.50] requires us
to make Taylor series expansions of the integrand around r = rm. For more
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details, see [TSA 00, Chapter 4]. In conclusion, the elements of the impedance
matrix are:

Zmn =
jΔn

1
1 + γ2n
4

��
�
1 +

2j

π
ln
'
0.164k0

1
1 + γ2

nΔn

+ 
for m = n

H(1)
0 (k0 
rn − rm
) for m �= n

, [1.52]

where 
rn − rm
 =
1

(xn − xm)2 + (zn − zm)2

and

Xn =
∂ψ(rn)

∂n
bm = ψinc(rm)

, [1.53]

with γn = dzn/dxn and Δn = βn − αn.

1.4.2. The Neumann boundary conditions

For a PC surface and for the TM polarization (the Neumann boundary
conditions), the normal derivative of the field vanishes on the surface,
∂ψ0/∂n = 0. Thus, equation [1.21] can be simplified as:

ψinc(r
�) =

1

2
ψ0(r

�)−−
%
S
ψ0(r)

∂g0(r, r
�)

∂n
dS, [1.54]

where the points r = (x, y) and r� = (x�, y�) are on the surface.

Using the same method as in the previous section and from equation [1.24],
we have:

Zmn =

����������������

−jk0Δn

4

H(1)
1 (k0
rn − rm
)


rn − rm


× [γn(xn − xm)− (zn − zm)] for m �= n

+
1

2
− Δn

4π

γ�n
1 + γ2n

for m = n

, [1.55]
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where γ�n = dγn
dxn

and�
Xn = ψ(rn)
bm = ψinc(rm).

[1.56]

1.4.3. General case

For a dielectric medium Ω1, equation [1.21] leads to:������������

ψinc(r
�) = +

1

2
ψ0(r

�)−−
�
S

ψ0(r)
∂g0(r, r

�)
∂n

dS� �� �
Neumann

+

�
S

g0(r, r
�)
∂ψ0(r)

∂n
dS� �� �

Dirichlet

0 = −1

2
ψ0(r

�)−−
�
S

ψ0(r)
∂g1(r, r

�)
∂n

dS� �� �
Neumann with k0 → k1

+

�
S

1

ρ01
g1(r, r

�)
∂ψ0(r)

∂n
dS� �� �

Dirichlet with k0 → k1

. [1.57]

The general case is then obtained from “linear combinations” of the
Neumann and Dirichlet boundary conditions. The discretization of the above
equations from the MoM then leads to the following impedance matrix:

Z̄ =

 Z̄Neu Z̄Dir

Z̄Neu,k0→k1

1

ρ01
Z̄Dir,k0→k1

 , [1.58]

where the subscripts “Neu” and “Dir” mean Neumann and Dirichlet,
respectively. It is important to note that for Z̄Neu,k0→k1 , the Cauchy principal
value is −1/2, instead of +1/2 for Z̄Neu. In addition, the vectors b and X
are:

b =



ψinc(r1)
ψinc(r2)
...
ψinc(rN )
0
0
...
0

������ N times


and X =



ψ0(r1)
ψ0(r2)
...
ψ0(rN )
∂ψ0(r1)

∂n
∂ψ0(r2)

∂n
...
∂ψ0(rN )

∂n


. [1.59]
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The square matrix Z̄ is of size 2N × 2N . The square matrices Z̄Dir and
Z̄Neu of size N × N are expressed from equations [1.52] and [1.55],
respectively.

For a dielectric media Ω1, the sampling step βn − αn is (λ0/10)/|√�r1|
instead of λ0/10 for a PC surface because the wave number in medium Ω1 is
k1 = k0

√
�r1, where k0 is the wave number in a vacuum. Thus, for a highly

conducting surface checking Im(�r1) � 1, the number of samples on the
surface increases significantly, which makes the inversion of the impedance
matrix very difficult. To overcome this issue, the impedance boundary
condition (IBC) is applied.

1.4.4. Impedance boundary condition

For Im(�r1) � 1, system [1.57] can be converted into only one IES. Indeed,
from the Leontovitch boundary condition which is also called IBC, we have on
the surface r ∈ S:��������

TE : ψ0(r) =
j

k0

2
�r0
�r1

∂ψ0(r)

∂n

TM :
∂ψ0(r)

∂n
=

k0
j

2
�r0
�r1

ψ0(r)

, [1.60]

where Im(�r1) � 1. System [1.57] is then simplified as:����
TE : ψinc(r

�) =
�
S

∂ψ0(r)

∂n

�
g0(r, r

�)− j

k0

�
�r0
�r1

∂g0(r, r
�)

∂n

�
dS

TM : ψinc(r
�) =

1

2
ψ0(r

�) +−
�
S

ψ0(r)

�
g0(r, r

�)
k0
j

�
�r0
�r1

− ∂g0(r, r
�)

∂n

�
dS

. [1.61]

For the TE polarization, it is important to note that the unknown is
∂ψ0(r)/∂n since |∂ψ0(r)/∂n| � |ψ0(r)|, which is similar to considering
the Dirichlet boundary condition. On the other hand, for the TM polarization,
the unknown is ψ0(r) since |ψ0(r)| � |∂ψ0(r)/∂n|, which is similar to
considering the Neumann boundary condition.
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From the MoM, the matrix impedance is then:

Z̄ = βZ̄Dir + αZ̄Neu, [1.62]

with������
TE : β = 1, α =

j

k0

2
�r0
�r1

, X =
∂ψ0(r)

∂n
, ψ0(r) = α

∂ψ0(r)

∂n

TM : β =
k0
j

2
�r0
�r1

, α = 1, X = ψ0(r),
∂ψ0(r)

∂n
= βψ0(r)

. [1.63]

In conclusion, the use of the IBC allows us to discretize the surface along
the wave number k0 and then it becomes independent of the permittivity of
medium Ω1. In terms of number of unknowns, it is equivalent to solving the
scattering by a PC surface.

1.5. Forward–Backward (FB) method

For a problem with many unknowns, it is interesting to investigate
rigorous fast numerical methods to treat the scattering from a large
electrically rough surface. For instance, for a single rough surface, we can
quote the banded-matrix-iterative-approach/canonical grid (BMIA-CAG) of
Tsang et al. [TSA 93a, TSA 93b, TSA 95] of complexity O(N logN), the
FB method of Holliday et al. [KAP 96, ADA 96, HOL 98, IOD 02] of
complexity O(N2) and the accelerated version FB method with spectral
acceleration (FB-SA) of Chou et al. [CHO 02, CHO 00, TOR 00, TOR 02] of
complexity O(N), in which N is the number of unknowns on the surface.

In this section, the FB method is applied to a dielectric surface to speed up
the calculation of Z̄−1

b, in order to reduce the complexity to O(N2) instead
of O(N3) from a direct lower–upper (LU) inversion.

We want to solve Z̄X = b ⇔ X = Z̄
−1

b. From equation [1.58], the
matrix Z̄ of size 2N × 2N can be expressed from four square submatrices of
size N ×N as:

Z̄ =

�
Ā B̄
C̄ D̄

 
, X =

�
X1

X2

 
, b =

�
b1
b2

 
. [1.64]
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The FB algorithm decomposes Z̄X = b into:�
ĀDiagX1,Forw + B̄DiagX2,Forw = b1 − ĀForwX1 − B̄ForwX2

C̄DiagX1,Forw + D̄DiagX2,Forw = b2 − C̄ForwX1 − D̄ForwX2
, [1.65]

and �
ĀDiagX1,Back + B̄DiagX2,Back = −ĀBackX1 − B̄BackX2

C̄DiagX1,Back + D̄DiagX2,Back = −C̄BackX1 − D̄BackX2
. [1.66]

For instance, ĀDiag is a diagonal matrix, ĀForw a lower triangular matrix
and ĀBack an upper triangular matrix, all built from Ā
(Ā = ĀForw + ĀDiag + ĀBack). The subscripts {Diag, Forw,Back} stand for
diagonal, forward and backward matrices and are referred to as diagonal,
lower and upper triangular matrices, respectively. Moreover,
{b1, b2,X1,X2} are column vectors of length N . Finally, the unknown
vectors are decomposed into X i = Xi,Forw +Xi,Back (i = {1, 2}), in which
Xi,Forw gives the forward contribution (from the points on the left of the
current point) and Xi,Back gives the backward contribution (from the right).
The surface is oriented by assuming that the incident beam propagates from
the left to the right.

To compute Xi = Xi,Forw + Xi,Back, an iterative procedure is applied.
Assuming first that Xi,Back = 0 ⇒ Xi = Xi,Forw + Xi,Back = Xi,Forw,
equation [1.65] is solved for Xi,Forw. Then, by introducing Xi,Forw in equation
[1.66], we obtain Xi,Back. The first iteration X

(0)
i is then equal to Xi,Forw +

Xi,Back. The scheme is repeated to calculate the next iterations X(p)
i up to the

order p = PFB.

The use of equations [1.65] and [1.66] is very convenient to solve by
substitution for Xi,Forw and Xi,Back. For instance, from [1.65], since
{ĀForw, B̄Forw, C̄Forw, D̄Forw} are lower triangular matrices with null
diagonal coefficients, we get with m ∈ [2;N ]:����������

Am,m
Diag Xm

1,Forw +Bm,m
Diag Xm

2,Forw = bm1 −
n=m−13
n=1

(Am,n
ForwX

n
1 +Bm,n

ForwX
n
2 )

Cm,m
Diag Xm

1,Forw +Dm,m
Diag Xm

2,Forw = bm2 −
n=m−13
n=1

(Cm,n
ForwX

n
1 +Dm,n

ForwX
n
2 )

. [1.67]
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For instance, Am,n is the element of the matrix Ā of column m and row n.
Xn

i is the nth component of the vector Xi. Thus, assuming first
XBack = 0 ⇒ Xi = Xi,Forw + Xi,Back = Xi,Forw and by solving equation
[1.67], the unknowns {Xm

1,Forw, X
m
2,Forw} with m ∈ [2;N ] are calculated from

4N2/2 multiplications. From equation [1.66], we obtain a similar equation
system to [1.67] but the sum over n is n ∈ [m + 1;N ], and the unknowns
{Xm

1,Back, X
m
1,Back} with m ∈ [1;N − 1] are also calculated from 4N2/2

multiplications. In conclusion, the complexity of the FB method is O(N2).

Déchamps et al. [DÉC 07b] mathematically showed that the FB method
converges if the spectral radius (i.e. the modulus of the eigenvalue, which has
the highest modulus) of the characteristic matrix M̄ c,FB is strictly smaller
than 1, where M̄ c,FB is expressed as:

M̄ c,FB =
)
Z̄Diag + Z̄Forw

-−1
Z̄Forw

)
Z̄Diag + Z̄Back

-−1
Z̄Back. [1.68]

This method will be tested in Chapter 2.

1.6. Random rough surface generation

In this section, we describe how to generate realizations of a random rough
surface. We assume that the surface is Gaussian, which means that the height
probability density function (PDF) follows a Gaussian process or a normal
law. We assume that the surface height profile z(x) is univocal and follows a
stationary Gaussian random process.

1.6.1. Statistical parameters

For a centered Gaussian process, the surface height PDF is given by:

pz(z) =
1

σz
√
2π

exp

*
− z2

2σ2
z

.
, [1.69]
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and checks:������������

�1� =
% ∞

−∞
pz(z)dz = 1

�z� =
% ∞

−∞
zpz(z)dz = 0

�(z − �z�)2� = �z2� =
% ∞

−∞
z2pz(z)dz = σ2

z

, [1.70]

where

�•� =
% ∞

−∞
(•)pz(z)dz. [1.71]

The real number σz stands for the surface height standard deviation and the
surface height mean value �z� is zero. Since the height PDF is Gaussian, the
derivative dnz(x)/dxn also follows a Gaussian process.

Full characterization of the random rough surface height z is necessary for
knowing the correlation between two heights on the surface of abscissa x1 and
x2. For z real, the surface height autocorrelation function is then defined as:

�z(x1)z(x1 + x)� = Cz(x). [1.72]

Since the process is stationary, Cz depends only on the abscissa difference
x = x2 − x1 between two points of the surface. Then, a Gaussian process is
fully characterized by its height PDF, pz(z), and its surface height
autocorrelation function, Cz(x).

The power spectral density (PSD) or the surface height spectrum is defined
as:

Ĉz(k) = FT[Cz(x)] =

% +∞

−∞
Cz(x)e

−jkxdx, [1.73]

and

Cz(x) =
1

2π
FT−1[Ĉz(k)] =

1

2π

% +∞

−∞
Ĉz(k)e

jkxdk, [1.74]

where FT denotes the Fourier transform.
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From equations [1.74], [1.73], [1.72] and [1.70], we have:

σ2
z = Cz(0) =

1

2π

% +∞

−∞
Ĉz(k)dk. [1.75]

In addition, we can show that the surface slope autocorrelation function Cs

is defined from the surface height autocorrelation function Cz as [BOU 99]:

Cs(x) = −d2Cz

dx2
=

1

2π

% +∞

−∞
k2Ĉz(k)e

jkxdx, [1.76]

and then the slope variance is:

σ2
s = Cs(0) =

1

2π

% +∞

−∞
k2Ĉz(k)dk. [1.77]

In addition, equation [1.77] shows that the surface slope spectrum is
Ĉs(k) = k2Ĉz(k).

1.6.2. Generation of a random profile

At the input of a linear filter, if e is a stationary process (of second order)
of PSD Ĉe, then the output signal s of PSD Ĉs satisfies [KUN 91]:

Ĉs =
666Ĉg

6662 Ĉe, [1.78]

where Ĉg = FT(g) is the PSD of g, where g is the impulse response of the
filter. In addition, if Ĉg ∈ R+, then:

Ĉg =

0
Ĉs

Ĉe

. [1.79]

Since the system is assumed to be linear, we have [KUN 91]:

s = g ∗ e = FT−1 [FT(g)FT(e)] = FT−1

0 Ĉs

Ĉe

FT(e)

 , [1.80]

where the symbol * stands for the convolution product.
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Since we want to generate a surface height Gaussian process z = s, a
Gaussian white noise of unitary variance is applied at the input of the filter,
which implies that Ĉe = 1 ∀k. Then:

z = FT−1

�/
Ĉz FT(e)

 
. [1.81]

Numerically, the convolution product is calculated in the Fourier domain
because the complexity of a fast Fourier transform (FFT) is O(N logN)
instead of O(N2) if the convolution product is calculated from its definition:

z(i) = g(i) ∗ e(i) = 1

N

N3
n=1

g(n)e(n− i), [1.82]

where N is the length of both g and e. Since the surface height z is real, from
equation [1.81], the function inside the operator FT−1 must satisfy f∗(−k) =
f(k) ∀k, with ∗ the complex conjugate operator. As shown further, Ĉz is real
and an even function of k. Thus, FT(e) = ê is a complex Gaussian white noise,
which must satisfy ê(−k)∗ = ê(k). For more details, see [TSA 00, Chapter 4].

For surface height Gaussian and exponential autocorrelation functions
defined as:����

Cz(x) = σ2
z exp

*
−x2

L2
c

.
Cz(x) = σ2

z exp

*
−|x|
Lc

. , [1.83]

the surface height spectra (or PSD) are given from equation [1.73] by:����
Ĉz(k) = σ2

zLc
√
π exp

*
−k2L2

c

4

.
Ĉz(k) =

2σ2
zLc

1 + k2L2
c

. [1.84]
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For an exponential autocorrelation function, its derivative is not defined for
x = 0. This implies, from equation [1.77], that the surface slope variance is
not defined (from −C ��

z (0)). On the other hand, it can be estimated from the
spectrum of the generated surface Ĉz(k), because Ĉz(k) has a limited band,
of upper cutoff spatial frequency kc. Indeed, to have kc → ∞, the sampling
step of the surface (generates from an FFT algorithm) must tend to zero since
Δx = π/(2kc).

From equations [1.84], [1.83], [1.77] and [1.75], we can show for a
Gaussian autocorrelation function that:σz,kc ≈ σz,∞erf

)
kcLc

2

-
σs,kc ≈ σs,∞

�
erf

)
kcLc

2

-− kcLc√
π

exp

*
−k2cL

2
c

4

. 
, σs,∞ =

σz,∞
√
2

Lc

, [1.85]

and for an exponential autocorrelation function that:����
σz,kc = σz,∞

2
2 arctan(kcLc)

π

σs,kc = σs,∞

2
1− arctan(kcLc)

kcLc
, σs,∞ = σz,∞

2
2kc
πLc

. [1.86]

For kc → ∞, arctan(kcLc) → π/2 and arctan(kcLc)/(kcLc) → 0. Then,
σz,∞ = σz and σs,∞ = σs. Compared to a Gaussian autocorrelation function,
the decreasing is slower since the function arctan(u)/u decreases more slowly
than the functions ue−u2/4/

√
π and erf(u/2).

For remote sensing applications, it is interesting to study the case of a sea
surface. Under approximations [ELF 97], the sea surface can be modeled as a
Gaussian process. For a 2D surface, the surface height autocorrelation function
is defined from its spectrum as:

Cz(x, y) =
1

(2π)2

% +∞

−∞

% +∞

−∞
Ĉz(kx, ky)e

jkxx+jkyydkxdky. [1.87]
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In addition, an ocean-like 2D spectrum is defined in polar coordinates
(kρ, φ) from Ĉz(kx, ky)dkxdky = kρĈzρ(ρ,φ )dkρdφ = S(kρ)[1+
f(φ)]dkρdφ, where S(kρ) is the isotropic part of the sea spectrum and f(φ) is
its anisotropic part. As Cz(0, 0) = σ2

z , we then have:

σ2
z =

1

(2π)2

% +∞

−∞

% +∞

−∞
Ĉz(kx, ky)dkxdky

=
1

(2π)2

% 2π

0
[1 + f(φ)]

% ∞

0
S(kρ)dkρ

=
1

2π

% ∞

0
S(kρ)dkρ, [1.88]

since f is a periodic function over φ.

To set up a correspondence between a 2D spectrum S(kρ) and 1D
spectrum Ĉz(k), the comparison of equation [1.88] with equation [1.74] leads
to Ĉz(|k|) = S(kρ)/2 since Ĉz is an even function of k. In the following, the
spectrum of Elfouhaily et al. is used [ELF 97] for dealing with the case of a
sea surface.

1.6.3. Simulations

In Figure 1.4, the surface height autocorrelation function is Gaussian of
correlation length Lc = 10 and of variance σz = 1. a) The number of samples
is N = 8,192, and b) the number of samples is N = 1,6384.

The top of Figure 1.4 shows that the surface heights (more precisely,
erf(3/

1
(2)) =99.7% of heights) range from −3σz to +3σz . As the

correlation length decreases, the simulations show (not displayed here) that
the surface is more irregular (the horizontal distance between two consecutive
extrema decreases) because the surface slope variance increases.
Theoretically, from equation [1.85], if Lc is divided by 2, then the slope
variance σs,∞ is multiplied by 2.

In the middle of Figure 1.4, the histograms show that z follows a Gaussian
process and as the number of samples N increases, the histogram better
matches the theoretical histogram (which is related to the height PDF by a
normalization).
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a) N = 8,192
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Figure 1.4. Top: Surface heights over x ∈ [0; 200] versus the abscissa x. Middle: Height
histogram versus the surface heights. Bottom: Surface height autocorrelation function versus
the abscissa x. The surface height autocorrelation function is Gaussian of correlation
length Lc = 10 and of variance σz = 1. a) The number of samples is N = 8,192,
and b) the number of samples is N = 1,6384

The bottom of Figure 1.4 shows as N increases, the curve obtained
numerically from z and equation [1.82] better matches the theoretical curve
(equation [1.83]) for larger x. Indeed, as N increases, the length of the
surface increases (with a constant sampling step) and then the correlation
between far surface points is better predicted.

From Figure 1.5, the same remarks hold for an exponential autocorrelation
function. The comparison of Figure 1.5 with Figure 1.4 shows that the surface
is more irregular than that obtained from a Gaussian autocorrelation function,
because the high frequencies contribute more to an exponential
autocorrelation function. Indeed, as k increases, equation [1.84] shows that
the corresponding spectrum decreases more slowly than that obtained from a
Gaussian autocorrelation function. From an electromagnetic point of view,
these high frequencies can have a strong impact on the scattered field.

Table 1.1 shows the values of the surface height and slope standard
deviations, where σz,kc and σs,kc are computed from equations [1.85] and
[1.86]. Moreover, σ̃z and σ̃s are computed from the generated surfaces shown
in Figures 1.4 and 1.5. For the height variance, we can observe that σz,kc is
very close to σ̃z and the difference decreases as N increases. For the slope
variance and for a Gaussian autocorrelation function, a good agreement is
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also obtained between σs,kc and σ̃s, whereas the agreement is less good for an
exponential autocorrelation function. In addition, as N increases, the slope
variance does not change significantly with a Gaussian autocorrelation
function, whereas with an exponential autocorrelation function, it changes
significantly.
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Figure 1.5. Same plots as in Figure 1.4 but for an exponential
autocorrelation function

N σ̃z σz,kc σ̃s σs,kc
Gaussian 8,192 0.963 1.000 0.132 0.141
Gaussian 16,384 0.988 1.000 0.141 0.141
Exponential 8,192 0.985 0.999 0.132 1.272
Exponential 16,384 0.993 0.999 1.587 1.805

Table 1.1. Values of the surface height and standard deviations

The comparison of the surface heights and slopes computed from a sea-
like spectrum and a Gaussian autocorrelation function of the same height and
slope variances is shown in Figure 1.6. The wind speed defined at 10 m above
the sea is u10 = 5 m/s, the number of samples is N = 524,288 and the
surface length is 400 m. Figure 1.6a) shows that the surface heights are similar,
whereas the surface slopes strongly differ. Indeed, as shown in Figure 1.7, the
sea slope spectrum contributes significantly to high wave numbers whereas for
a Gaussian autocorrelation function, its slope spectrum rapidly decreases as k
increases.
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Figure 1.6. Top: Surface heights in m versus the abscissa x in m. Bottom: Surface slopes versus
the abscissa x in m. For the sea spectrum, the wind speed u10 = 5 m/s. The number of samples is
N = 524288 and the surface length is 400 m. For the Gaussian surface height autocorrelation
function, the height variance σ2

z is the same as the sea surface and its associated correlation
length Lc is computed from the sea surface slope variance σ2

s and equation [1.85] with kc → ∞
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Figure 1.7. a) Surface height spectra Ĉz versus the wave number k in rad/m.
b) Surface slope spectra Ĉs = k2Ĉz versus the wave number k in rad/m.

Same parameters as in Figure 1.6
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1.6.4. Conclusion

This section shows that the elevations of a random rough surface following
a Gaussian process depend strongly on the choice of the height
autocorrelation function. Indeed, two random rough surfaces having the same
slope and height variances can strongly differ if the slope spectrum of one of
the surfaces contributes to high frequencies. In fact, the surface variance
(height, slope etc.) is obtained by integrating the corresponding spectrum over
all the wave numbers, and cannot give the associated power for each
frequency. When we want to properly characterize a natural surface (ocean,
land, mountain, etc.), this point highlights that the knowledge of the surface
height autocorrelation function or its spectrum is essential. Indeed, we will
show in Chapter 2 that the high-frequency components of the surface can
have a strong impact on the scattered field.




